Sample records for vertical laminar air

  1. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin


    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  2. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)


    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  3. The Heated Laminar Vertical Jet in a Liquid with Power-law Temperature Dependence of Density


    Sharifulin, V. A.


    The analytical solution of heated laminar vertical jet in a liquid with power-law temperature dependence of density was obtained in the skin-layer approximation for certain values of Prandtl number. Cases of point and linear sources were considered.

  4. Experimental study of ``laminar'' bubbly flows in a vertical pipe (United States)

    Kashinsky, O. N.; Timkin, L. S.; Cartellier, A.


    Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.

  5. Theoretical Analysis for Laminar Film Condensation of Pure Refrigerant in a Finned Vertical Rectangular Channel (United States)

    Matsumoto, Tatsuya; Koyama, Shigeru

    In the present study, a theoretical analysis for the laminar film condensation in a finned vertical rectangular channel is carried out to clarify the heat transfer characteristics of plate-fin condensers. In the analysis the following assumptions are employed. The bulk vapor is pure and saturated, and the effect of viscous shear of vapor on the liquid film is negligible. The heat conduction in the fin is one-dimensional, and the base surface temperature is a constant. The local characteristics of liquid film shape and fin temperature are examined, and a heat transfer correlation including the effects of fin shape parameters is proposed.

  6. Mathematical simulation of lithium bromide solution laminar falling film evaporation in vertical tube (United States)

    Shi, Chengming; Wang, Yang; Hu, Huili; Yang, Ying


    For utilization of the residual heat of flue gas to drive the absorption chillers, a lithium-bromide falling film in vertical tube type generator is presented. A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube. In the model, the factor of mass transfer was taken into account in heat transfer performance calculation. The temperature and concentration fields were calculated. Some tests were conducted for the factors such as Re number, heating flux, the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation. The heat transfer performance is enhanced with the increasing of heat flux. An increasing inlet concentration can weaken the heat transfer performance. The operating pressure hardly affects on heat and mass transfer. The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer. The mass transfer obviously restrains the heat transfer in the falling film solution. The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.

  7. Combined experimental and computational study of laminar, axisymmetric hydrogen-air diffusion flames

    NARCIS (Netherlands)

    Toro, V.V.; Mokhov, A.V.; Levinsky, H.B.; Smooke, MD


    We investigate the structure of two-dimensional, axisymmetric, laminar hydrogen-air flames in which a cylindrical fuel stream is surrounded by coflowing air, using laser-diagnostic and computational methods. Spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS) are used to

  8. A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight (United States)

    Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko


    A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.

  9. Inconsistent correlation between aerobic bacterial surface and air counts in operating rooms with ultra clean laminar air flows: proposal of a new bacteriological standard for surface contamination. (United States)

    Friberg, B; Friberg, S; Burman, L G


    The relationship between surface contamination (cfus/m2/h) with particles carrying aerobic bacteria and corresponding air contamination rates (cfus/m3) was evaluated in operating rooms (OR) equipped with ultra clean vertical or horizontal laminar airflow (LAF). For the evaluation we collected data during strictly standardized sham operations using non-woven disposable or cotton clothing. Air contamination in the wound and instrument areas (Casella slit sampler) was related to the surface contamination rate (settle plates) in the same areas and in addition, on the patient chest. Typically, the mean surface counts were 20-70 cfus/m2/h and the air counts 1-2 cfus/m3 in disposable clothing experiments, whilst the use of cotton clothing resulted in higher counts of 100-200 cfus/m2/h (wound P > 0.05, patient P > 0.05, instruments P operations together, the surface and air contamination rates (surface/air ratio SAR) were highly correlated (P = 0.02-0.004) and the ratio varied between 18:1 and 50:1 with a mean for wound air of 36:1. Using only disposable clothing in the vertical LAF, the number of significant correlations was reduced. With cotton clothing experiments in vertical LAF and in the horizontal LAF using disposable clothing, no significant correlation between surface and air contamination was found. The wide variation of SAR values and the inconsistent relationship between surface and air counts indicates that measurement of OR air contamination represents an unhelpful method for assessment of surgical site contamination in LAF units. We propose instead that colony counts on sedimentation plates is a clinically more relevant indicator of bacterial OR contamination in LAF units. In addition to the current bacteriological standard for ultra clean OR air of (contamination rate of < 350 cfus/m2/h.

  10. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)


    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  11. Structure and extinction of laminar ethanol/air spray flames

    Energy Technology Data Exchange (ETDEWEB)

    Gutheil, E. [Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)


    The paper presents the structure and extinction of both mono- and bidisperse ethanol/air spray flames in the counterflow configuration. A similarity transformation for monodisperse spray flames is extended to polydisperse spray flames, and the resulting one-dimensional formulation accesses the use of detailed chemical reaction mechanisms as well as detailed transport. For the ethanol/air system, 38 species and 337 elementary reactions are used. At high strain, the droplets cross the gas stagnation plane, reverse and return towards their injector. For this situation, the width of the chemical reaction zone of bidisperse and monodisperse sprays with the Sauter mean radius is almost the same. However, the droplet oscillation causes the spray flame of the bidisperse spray to strongly increase the total spray flame thickness. For the injection velocity of the spray studied here, the droplets returning to their injector hit the boundary of the computational domain as strain is increased whereas the monodisperse spray flame extinguishs at a considerably higher value of gas strain rate. Thus, the extinction behavior of the bidisperse spray flame is not represented by the monodisperse spray flame with the Sauter mean radius. The model is also suitable to predict pollutant formation. (orig.)

  12. Spatially resolved laser-induced breakdown spectroscopy in laminar premixed methane-air flames (United States)

    Tian, Zhaohua; Dong, Meirong; Li, Shishi; Lu, Jidong


    Laser-induced breakdown spectroscopy was evaluated for the analysis of the structure of laminar premixed methane-air flames. Firstly, breakdown threshold pulse energy and plasma energy in different areas of the flame were measured simultaneously, and an approximate linear relation between them was detected. Secondly, a new approach was proposed to qualitatively characterize the flame temperature distributions based on the plasma energy distributions. Finally, combination of the spatial analysis of the spectrum intensity, plasma energy and equivalence ratio, the laminar premixed flames structure was investigated deeply, including the distribution of the flame temperature, the width and distribution of different flame region (e.g. premixed combustion regions, high temperature regions.),as well as the location of the flame front.

  13. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air

    KAUST Repository

    Choi, Byungchul


    Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.

  14. Effect of forced-air warming on the performance of operating theatre laminar flow ventilation. (United States)

    Dasari, K B; Albrecht, M; Harper, M


    Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; presistive mattress (+3.63 (0.7) °C; pwarming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  15. A uniform laminar air plasma plume with large volume excited by an alternating current voltage (United States)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying


    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  16. The structure of laminar premixed H{sub 2}-air flames at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, M. [Stuttgart Univ. (Germany). Inst. fuer Technische Verbrennung; Gutheil, E.; Warnatz, J. [Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)


    In high-pressure flames that occur in many practical combustion devices such as industrial furnaces, rocket propulsion and internal engine combustion, the assumption of an ideal gas is not appropriate. The present paper presents a model that includes modifications of the equation of state, transport and thermodynamic properties. The model is implemented into a Fortran program that was developed to simulate numerically one-dimensional planar premixed flames. The influence of the modifications for the real gas behavior on the laminar flame speed and on flame structure is illustrated for stoichiometric H{sub 2}-air flames at initial pressures ranging from 0.1 to 100 MPa. (orig.)

  17. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv


    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  18. Turbulent and Stable/Unstable Laminar Burning Velocity Measurements from Outwardly Propagating Spherical Hydrogen-Air Flames at Elevated Pressures (United States)

    Smallbone, Andrew; Tsuneyoshi, Kousaku; Kitagawa, Toshiaki

    The laminar burning velocity of pre-mixed hydrogen-air mixtures was measured in a fan stirred combustion bomb. Unstretched laminar burning velocities and Markstein lengths were obtained at 0.10MPa for equivalence ratios of 0.4, 0.6, 0.8 and 1.0 using high speed flame imaging. The difficulties which arose whilst obtaining similar measurements at 0.25MPa and 0.50MPa are outlined. The turbulent burning velocity was measured at equivalence ratios of 0.4 and 0.8 from explosions carried out at 0.10MPa with turbulence intensities of 0.8 and 1.6m/s. Higher turbulent burning velocity ratios were observed for mixtures which yielded lower Markstein lengths in the laminar combustion experiments.

  19. An Experimental Measurement on Laminar Burning Velocities and Markstein Length of Iso-Butane-Air Mixtures at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Yousif Alaeldeen Altag


    Full Text Available In the present work, experimental investigation on laminar combustion of iso-butane-air mixtures was conducted in constant volume explosion vessel. The experiments were conducted at wide range of equivalence ratios ranging between Ф = 0.6 and 1.4 and atmospheric pressure of 0.1 MPa and ambient temperature of 303K. Using spherically expanding flame method, flame parameters including stretched, unstretched flame propagation speeds, laminar burning velocities and Markstein length were calculated. For laminar burning velocities the method of error bars of 95% confidence level was applied. In addition, values of Markstein lengths were measured in wide range of equivalence ratios to study the influence of stretch rate on flame instability and burning velocity. It was found that the stretched flame speed and laminar burning velocities increased with equivalence ratios and the peak value was obtained at equivalence ratio of Ф = 1.1. The Markstein length decreased with the increases in equivalence ratios, which indicates that the diffusion thermal flame instability increased at high equivalence ratios in richer mixture side. However, the total deviations in the laminar burning velocities have discrepancies of 1.2-2.9% for all investigated mixtures.

  20. Natural convection air flow in vertical upright-angled triangular cavities under realistic thermal boundary conditions

    Directory of Open Access Journals (Sweden)

    Sieres Jaime


    Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.

  1. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. (United States)

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong


    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  2. Thermal performances of vertical hybrid PV/T air collector (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.


    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  3. Experimental study of the structure of laminar axisymmetric H2/air diffusion flames

    NARCIS (Netherlands)

    Toro, Vishal Vijay


    This thesis presents an experimental study of the structure of laminar axisymmetric coflow hydrogen diffusion flames. The motivation behind studying these flames is the current drive towards sustainable energy and strict pollution norms. In this regard, hydrogen as a fuel is one such candidate,

  4. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed


    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  5. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan


    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  6. Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty. (United States)

    Sossai, D; Dagnino, G; Sanguineti, F; Franchin, F


    Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m(3)) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m(3) without the LAF to 3.5 CFU/m(3) with the LAF (P operations with LAF and six without LAF, particle counts were performed and the number of 0.5 μm particles was analyzed. The particle counts decreased significantly when the LAF unit was used (P = 0.003). When a mobile LAF unit was added to the standard OR ventilation, bacterial contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections.

  7. Metode Vertical Electrical Sounding (VES untuk Menduga Potensi Sumberdaya Air

    Directory of Open Access Journals (Sweden)

    Harjito .


    Full Text Available Pada umumnya pemenuhan kebutuhan air dilakukan dengan memanfaatkan airtanah. Airtanah lebih banyak dimanfaatkan dalam pemenuhan kebutuhan domestik maupun industri karena kualitas airtanah pada umumnya lebih baik dibandingkan dengan air permukaan. Potensi airtanah untuk pemenuhan kebutuhan domestik dan industri pada umumnya sulit dihitung secara tepat karena airtanah tidak tampak dan keberadaannya sangat bergantung pada kondisi geologi. Salah satu metode pendugaan yang sering digunakan adalah metode geolistrik VES (Vertical Electrical Sounding. Metode tersebut umum digunakan karena hasilnya lebih akurat, biaya operasional yang murah, dan akuisi data yang cepat. Metode VES digunakan untuk menduga lapisan-lapisan material di bawah permukaan bumi berdasarkan sifat resistivitasnya. Nilai resistivitas (ρ dihitung berdasarkan data arus listrik (I dan beda potensial (V yang diperoleh di lapangan. Data arus listrik dan beda potensial diperoleh dari injeksi arus listrik ke bawah permukaan bumi melalui pasangan elektroda arus (C1,C2 dan elektroda potensial (P1,P2. Berdasarkan hasil pendugaan menggunakan metode VES, potensi airtanah di Kota Surakarta mempunyai volume airtanah yang tersedia besar karena akuifer terdistribusi secara luas dan seragam.Debit airtanah berdasarkan perhitungan dengan data yang tersedia dan asumsi-asumsi yang digunakan, maka debit airtanah di sebagian kota Surakarta adalah 1.208 m 3 /hari. Kata kunci : Vertical Electrical Sounding, sumberdaya air, akuifer

  8. The effect of laminar air flow and door openings on operating room contamination. (United States)

    Smith, Eric B; Raphael, Ibrahim J; Maltenfort, Mitchell G; Honsawek, Sittisak; Dolan, Kyle; Younkins, Elizabeth A


    We evaluate the association of laminar airflow (LAF) and OR traffic with intraoperative contamination rates. Two sterile basins were placed in each room during 81 cases, one inside and one outside the LAF. One Replicate Organism Detection and Counting (RODAC) plate from each basin was sent for culture at successive 30-minute intervals from incision time until wound closure. At successive 30-minute intervals more plates were contaminated outside than inside the LAF. A negative binomial model showed that the bacteria colony forming units (CFU) depended on whether there were any door openings (P=0.02) and the presence of LAF (P=0.003). LAF decreases CFU by 36.6%. LAF independently reduces the risk of contamination and microbial counts for surgeries lasting 90 minutes or less. © 2013.

  9. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey


    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  10. Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal; Jensen, Anker; Glarborg, Peter; Day, Marcus S.; Grcar, Joseph F.; Bell, John B.; Pope, Christopher J.; Kee, Robert J.


    This paper reports on a combined experimental and modeling investigation of NOx formation in nitrogen-diluted laminar methane diffusion flames seeded with ammonia. The methane-ammonia mixture is a surrogate for biomass fuels which contain significant fuel-bound nitrogen. The experiments use flue-gas sampling to measure the concentration of stable species in the exhaust gas, including NO, O2, CO, and CO2. The computations evolve a two-dimensional low Mach number model using a solution-adaptive projection algorithm to capture fine-scale features of the flame. The model includes detailed thermodynamics and chemical kinetics, differential diffusion, buoyancy, and radiative losses. The model shows good agreement with the measurements over the full range of experimental NH3 seeding amounts. As more NH3 is added, a greater percentage is converted to N2 rather than to NO. The simulation results are further analyzed to trace the changes in NO formation mechanisms with increasing amounts of ammonia in the fuel.

  11. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect. (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md


    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  12. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul


    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  13. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem


    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  14. Prevention of airborne contamination and cross-contamination in germ-free mice by laminar flow

    NARCIS (Netherlands)

    Waaij, D. van der; Andres, A.H.


    The efficacy of horizontal and vertical laminar flow units (equipped with high-efficiency air filters) in the prevention of cross-contamination between cages and of contamination from outside has been demonstrated. With germ-free mice and using germ-free standard techniques for sterilization and for

  15. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air (United States)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.


    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  16. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep.

    Directory of Open Access Journals (Sweden)

    Michal P Spilak

    Full Text Available People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject's movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body.

  17. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep

    DEFF Research Database (Denmark)

    Spilak, Michal; Sigsgaard, Torben; Takai, Hisamitsu


    environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled...... laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity...... was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between...

  18. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction (United States)

    Oyegbesan, A. O.; Algermissen, J.


    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  19. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    P.J.F. Berkvens (Patrick); M.A. Botchev; J.G. Verwer (Jan); M.C. Krol; W. Peters


    textabstractFor the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived

  20. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.; Krol, M.C.; Peters, W.; Verwer, J.G.


    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  1. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)



    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI:

  2. United States Air Force Academy (USAFA) Vertical Axis Wind Turbine. (United States)


    speed ratio - blade tip speed + wind speed. -45- CONTROLCHECVMODE NON is * AD> YES Figure~ SE 22 Molrora -46N) SECTION VI TURBINE PERFORMANCE 1...Rotors, SAND76-0131. Albuquerque: July 1977. 10. Oliver, R.C. and P.R. Nixon. "Design Procedure for Coupling Savonius and Darrieus Wind Turbines ", Air...May 17-20, 1976. -65- 16. Blackwell, B.F., R.E. Sheldahl, and L.V. Feltz. Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA 0012

  3. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports (United States)

    Swift, G.; Mungur, P.


    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  4. An experimental study of naturally driven heated air flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Mostafa; Bayat, Mohammad Mehdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)


    Specifications of warm air flow within a vertical pipe which is induced by the buoyancy effect were investigated in this study. Air from surroundings was directed into a heating chamber connected to a vertical pipe to establish a flow within the pipe. The temperature and the velocity were measured at different points within the stable flow and the mean values of these parameters were computed. Mass flow rate of air was evaluated using ideal gas assumption. In order to investigate the effect of the thermal boundary condition of the pipe, two tests were conducted; once for the pipe exposed to the surroundings and then for the pipe with a thermal insulation. A model for predicting the induced flow rate of warm air was developed and the predictions of the model were compared with the experimental data over the tested range of the parameters. (author)

  5. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carden, R.S.


    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  6. A numerical study of a vertical solar air collector with obstacle (United States)

    Moumeni, A.; Bouchekima, B.; Lati, M.


    Because of the lack of heat exchange obtained by a solar air between the fluid and the absorber, the introduction of obstacles arranged in rows overlapping in the ducts of these systems improves heat transfer. In this work, a numerical study using the finite volume methods is made to model the dynamic and thermal behavior of air flow in a vertical solar collector with baffles destined for integration in building. We search essentially to compare between three air collectors models with different inclined obstacles angle. The first kind with 90° shows a good performance energetic and turbulent.

  7. Experimental study of a laminar premixed LFG/air flame in a slot burner using Mach-Zehnder interferometry

    Directory of Open Access Journals (Sweden)

    Najafian Ashrafi Zabihollah


    Full Text Available An experimental study was conducted to investigate the influence of Reynolds number and equivalence ratio on flame temperature field and thermal flame height of laminar premixed LFG fuel. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field. The slot burner with large aspect ratio (L/W, length of L=60 mm and width of W=6 mm was used to eliminate the three- dimensional effect of temperature field. Two kinds of mixed fuels, LFG70 (70%CH4- 30%CO2 on volume basis and LFG50 (50%CH4- 50%CO2 were used to investigate flame characteristics under the test conditions of 100 ≤ Re ≤ 600 and 0.7 ≤ φ ≤ 1.3. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible. On the other hand, the equivalence ratio and fuel composition have a noticeable effect on flame temperature. In addition, the results show that the LFG flames compared to the CH4 ones have a lower flame temperature. With increment of CO2 volume fraction at lean combustion, thermal flame height is augmented while at stoichiometric and rich combustion, its value reduced. Thermal flame height augments linearly by Reynolds number increase, while its increment at rich mixture is higher and the effect of Reynolds number at lean mixtures is insignificant. For validation of experimental results from Mach-Zehnder Interferometry, K-type thermocouples are used at peripherally low and moderate isotherm lines.

  8. Condensation of the air-steam mixture in a vertical tube condenser

    Directory of Open Access Journals (Sweden)

    Havlík Jan


    Full Text Available This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  9. Natural convection heat transfer along vertical rectangular ducts

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M. [King Saud University, Mechanical Engineering Department, Riyadh (Saudi Arabia)


    Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases. (orig.)

  10. Effect of Periodic Surface Air Temperature Variations on Subsurface Thermal Structure with Vertical Fluid flow (United States)

    D, R. V.; Ravi, M.; Srivastava, K.


    The influence of climate change on near subsurface temperatures is an important research topic for global change impact assessment at the regional scale. The varying temperature of the air over the surface in long term will disturb subsurface thermal structure. Groundwater flow is another important process which perturbs the thermal distribution into the subsurface. To investigate the effect of periodic air temperature on nonisothermal subsurface, one dimensional transient heat conduction-advection equation is solved numerically using finite element method. Thermal response of subsurface for periodic variations in surface air temperature (SAT) with robin type boundary condition on the surface with vertical ground water flow are calculated and the amplitude attenuation of propagation of surface temperature information in the subsurface for different scenarios of advection and convective coefficient are discussed briefly. The results show the coupled response of trigonometric variation in air temperature with surface temperatures along with ground water velocity has significant implications for the effects of climate change.

  11. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.


    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  12. Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma

    Directory of Open Access Journals (Sweden)

    A. Kodumagulla


    Full Text Available Vertically-aligned carbon nanofibres (VACNFs have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere.

  13. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice


    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  14. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed


    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  15. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna


    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  16. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah


    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  17. On the effects of vertical air velocity on winter precipitation types

    Directory of Open Access Journals (Sweden)

    J. M. Thériault


    Full Text Available The various precipitation types formed within winter storms (such as snow, wet snow and freezing rain often lead to very hazardous weather conditions. These types of precipitation often occur during the passage of a warm front as a warm air mass ascends over a cold air mass. To address this issue further, we used a one-dimensional kinematic cloud model to simulate this gentle ascent (≤10 cm/s of warm air. The initial temperature profile has an above 0°C inversion, a lower subfreezing layer, and precipitation falls from above the temperature inversion. The cloud model is coupled to a double-moment microphysics scheme that simulates the production of various types of winter precipitation. The results are compared with those from a previous study carried out in still air. Based on the temporal evolution of surface precipitation, snow reaches the surface significantly faster than in still air whereas other precipitation types including freezing rain and ice pellets have a shorter duration. Overall, even weak background vertical ascent has an important impact on the precipitation reaching the surface, the time of the elimination of the melting layer, and also the evolution of the lower subfreezing layer.

  18. Three-dimensional flow observation on the air entrainment into a vertical-wet-pit pump (United States)

    Hirata, K.; Maeda, T.; Nagura, T.; Inoue, T.


    The authors consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the “vertical wet-pit pump,” and has many practical advantages in construction, maintenance and operation. Most of the flows appearing in various industrial and environmental problems like the present suction- sump flow become often complicated owing to both of their unsteadiness with poor periodicity and their fully-three-dimensionality. In order to understand the complicated flow inside a suction sump in the vertical-wet-pit-pump configuration, the authors experimentally observe the flow using the three-dimensional particle tracking velocimetry (3D-PTV) technique, which includes more unknown factors in accuracy and reliability than other established measuring techniques. So, the authors examine the simultaneous measurement by the 3D-PTV with another velocimetry the ultrasonic velocity profiler. As a result, under the suitable condition with high accuracy, the authors have revealed the complicated flow.

  19. Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas. (United States)

    Lin, Chi-Chi; Lin, Chitsan; Hsieh, Lien-Te; Chen, Chin-Ying; Wang, Jr-Ping


    More than half of the world's population lives in cities, and their populations are rapidly increasing. Information on vertical and diurnal characterizations of volatile organic compounds (VOCs) in urban areas with heavy ambient air pollution can help further understand the impact of ambient VOCs on the local urban environment. This study characterized vertical and diurnal variations in VOCs at 2, 13, 32, 58, and 111 m during four daily time periods (7:00 to 9:00 a.m., 12:00 to 2:00 p.m., 5:00 to 7:00 p.m., and 11:00 p.m. to 1:00 a.m.) at the upwind of a high-rise building in downtown, Kaohsiung City, Taiwan. The study used gas chromatography-mass spectrometry to analyze air samples collected by silica-coated canisters. The vertical distributions of ambient VOC profiles showed that VOCs tended to decrease at greater heights. However, VOC levels were found to be higher at 13 m than at ground level at midnight from 11:00 p.m. to 1:00 a.m. and higher at 32 than 13 m between 7:00 and 9:00 a.m. These observations suggest that vertical dispersion and dilution of airborne pollutants could be jointly affected by local meteorological conditions and the proximity of pollution sources. The maximum concentration of VOCs was recorded during the morning rush hours from 7:00 to 9:00 a.m., followed by rush hours from 5:00 to 7:00 p.m., hours from 12:00 to 2:00 p.m., and hours from 11:00 p.m. to 1:00 a.m., indicating that the most VOC compounds in urban air originate from traffic and transportation emissions. The benzene-toluene-ethyl benzene-xylene (BTEX) source analysis shows that BTEX at all heights were mostly associated with vehicle transportation activities on the ground.

  20. Laminar-flow airfoil (United States)

    Somers, Dan M. (Inventor)


    An airfoil having a fore airfoil element, an aft airfoil element, and a slot region in between them. These elements induce laminar flow over substantially all of the fore airfoil element and also provide for laminar flow in at least a portion of the slot region. The method of the invention is one for inducing natural laminar flow over an airfoil. In the method, a fore airfoil element, having a leading and trailing edge, and an aft airfoil element define a slot region. Natural laminar flow is induced over substantially all of the fore airfoil element, by inducing the pressures on both surfaces of the fore airfoil element to decrease to a location proximate the trailing edge of the fore airfoil element using pressures created by the aft airfoil element.

  1. Vertical distribution of the Saharan Air Layer from 5 years of CALIPSO observations (United States)

    Tsamalis, C.; Chédin, A.


    The Saharan Air Layer (SAL) forms as dry and hot air moves across the Sahara desert. SAL, containing substantial amounts of mineral dust, is a dominant feature that influences the large scale environment from West Africa to eastern tropical America, inhibiting tropical cyclogenesis and Atlantic hurricane formation. Furthermore, SAL dust aerosols have a strong impact on the energy budget through the so-called direct and indirect effects. The SAL has been studied with dedicated campaigns at the two sides of the Atlantic or using space observations due to lack of systematic in situ measurements away from the continents. However the campaigns are restricted in time, while satellite observations of thermodynamic variables are affected by the presence of dust. Moreover, satellite measurements of aerosols, particularly in the visible, mostly provide column integrated properties like the optical depth, without information about the vertical distribution. On the other hand, new generation infrared sounders now bring reliable information on the dust layer mean altitude, but their new established results need further validation. However, the two-wavelength lidar CALIOP, launched on board CALIPSO in April 2006, permits an accurate determination of the aerosol vertical distribution, on a global scale. Thanks to depolarisation at 532 nm, CALIOP is able to discriminate between dust and other types of aerosols, which generally do not depolarize light. Here, the L2 5 km aerosol layer product (version 3.01) is used to calculate the vertical distribution of the dust aerosols above the Atlantic during the last 5 years (June 2006 - May 2011) with a horizontal resolution of 1 degree for the four seasons. More specifically, two classes of aerosols are used from the L2 product: dust and polluted dust, in order to take into account the change of dust aerosols optical properties with transport. Results show the latitudinal displacement of the SAL between winter [-5, 15]°N and summer [10

  2. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics (United States)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing


    A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge-discharge model is available. The results show that the vertical air motion at the lightning initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

  3. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    National Research Council Canada - National Science Library

    Olivier Membrive; Cyril Crevoisier; Colm Sweeney; François Danis; Albert Hertzog; Andreas Engel; Harald Bönisch; Laurence Picon


    .... The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives...

  4. Natural convection heat transfer from a long heated vertical cylinder to an adjacent air gap of concentric and eccentric conditions

    DEFF Research Database (Denmark)

    Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.


    In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric...

  5. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  6. Surgical clothing systems in laminar airflow operating room: a numerical assessment. (United States)

    Sadrizadeh, Sasan; Holmberg, Sture


    This study compared two different laminar airflow distribution strategies - horizontal and vertical - and investigated the effectiveness of both ventilation systems in terms of reducing the sedimentation and distribution of bacteria-carrying particles. Three different staff clothing systems, which resulted in source strengths of 1.5, 4 and 5 CFU/s per person, were considered. The exploration was conducted numerically using a computational fluid dynamics technique. Active and passive air sampling methods were simulated in addition to recovery tests, and the results were compared. Model validation was performed through comparisons with measurement data from the published literature. The recovery test yielded a value of 8.1 min for the horizontal ventilation scenario and 11.9 min for the vertical ventilation system. Fewer particles were captured by the slit sampler and in sedimentation areas with the horizontal ventilation system. The simulated results revealed that under identical conditions in the examined operating room, the horizontal laminar ventilation system performed better than the vertical option. The internal constellation of lamps, the surgical team and objects could have a serious effect on the movement of infectious particles and therefore on postoperative surgical site infections. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  7. Uso de mesa vertical como parâmetro para regulagens de turboatomizadores The use of a vertical patternator as parameter for adjustments of air assited sprayer

    Directory of Open Access Journals (Sweden)

    Renildo L. Mion


    Full Text Available O consumo excessivo de agrotóxicos na agricultura brasileira é preocupante, e um dos fatores que contribuem para este excesso é o uso incorreto dos equipamentos de aplicação, causando grandes problemas de contaminação ambiental. O sucesso de uma aplicação agrícola somente é efetivado quando se consegue atingir o alvo com a menor contaminação ambiental possível. O objetivo deste trabalho foi comparar o perfil da distribuição vertical de um turboatomizador com e sem fluxo de ar e o número de bicos utilizados nos ramais, utilizando-se de uma mesa vertical como parâmetro de avaliação. O conjunto utilizado foi um trator marca VALTRA, modelo BM-120 4x2 TODA, e um turboatomizador da marca Jacto, modelo ARBUS 400 GOLDEN, com pontas do tipo J5-2, pressão de 1378 kPa e velocidade do ar de 35 m s-1. O número de bicos não influenciou no perfil de distribuição volumétrico. O fluxo de ar influenciou no perfil de distribuição volumétrico tanto para o lado direito quanto para o lado esquerdo. Os maiores volumes ocorreram abaixo de 1,16 cm com o turboatomizador utilizando ou não o fluxo de ar, com 12 ou 6 pontas.Excessive consumption of pesticides in Brazilian agriculture is of concern, and one of the factors contributing to this surplus is the incorrect use of equipment for its applying, causing severe environmental contamination. The success of agricultural applications is effective only when it manages to hit the target with the lowest possible environmental contamination. The aim of this study was to compare the profile of the vertical distribution of an air assisted sprayer with and without air flow and the number of nozzles used in extensions, using a vertical patternator as the parameter. The set used was a Valtra tractor, model BM-120 4x2 TDA and one Jacto air assisted sprayer jet, model ARBUS 400 GOLDEN, with nozzle J5-2, and pressure of 1378 kPa, with air velocity of 35 m s-1 at the time of the test was conducted. The

  8. Effect of Brinkman number and magnetic field on laminar convection ...

    African Journals Online (AJOL)

    The effect of Brinkman number and magnetic field on laminar convection in a vertical plate channel with uniform and asymmetric temperatures has been studied. The dimensionless form of momentum and energy balanced equations has been solved using one term perturbation series solution. The solution of the ...

  9. Validated Design and Analysis Tool for Small Vertical-Lift Unmanned Air Vehicle Noise Prediction Project (United States)

    National Aeronautics and Space Administration — A procedure and supporting computer code for the prediction of noise that radiates from small, vertical lift UAV aircraft is proposed. The resulting building block...

  10. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E (United States)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; Giangrande, Scott E.; Collis, Scott M.; Potvin, Corey K.


    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with those from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time-height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. The results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.

  11. Distribuição vertical e horizontal de temperaturas do ar em ambientes protegidos Vertical and horizontal distribution of air temperature in a plastic greenhouse

    Directory of Open Access Journals (Sweden)

    Raquel A. Furlan


    space distribution of the air temperature inside the greenhouse atmosphere, thermo couples of (copper-constantan were installed, forming a grid spaced 3.0 m horizontally, at the heights of 0.5, 1.0, 2.0, 3.0 and 4.0 m above the soil. The data were stored every 15 min by a system of data acquisition. The fog system constituted of two lines with 70 foggers, installed at 3.0 m height and operating at a pressure of 20 kPa. The fog system did not affect the vertical temperature gradient, maintaining the tendency of increase of the air temperature with the height in relation to the soil level. While the effect of fog system to decrease the air temperature was effective when the system was on. The representation of the air temperature distribution in space inside the greenhouse at different height levels was done by isotherm surfaces. It was verified that the fog system had the highest effect in the homogenization of the air temperature distribution inside the greenhouse at the height of 2.0 m from the soil.

  12. Simulación numérica de flujo de aire y transferencia de calor en un enfriador vertical con puerta panorámica


    Narváez Buestán, Freddy Eduardo


    En este proyecto de investigación se analizan los flujos de aire y transferencia de calor en el interior de un Enfriador vertical. El aire sale por el cobertor y se visualiza mediante el software Ansys Fluent como el diseño influye en la distribución de flujo. Se propone una mejora en el diseño del Cobertor optimizando la distribución del flujo. In this research project the air flows and heat transfer inside a Vertical Cooler are analyzed. The air comes out through the cover panel freez...

  13. Vertical and horizontal distribution of wind speed and air temperature in a dense vegetation canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; van Boxel, J.H.; El-Kilani, R.M.M.


    Wind speed and temperature were measured within a corn row canopy to investigate horizontal and vertical variability of the mean wind speed and temperature. It appears that the mean wind speed can vary between 20% and 30% from its horizontal mean value. In the narrow row crop, the horizontal mean

  14. Detection of Hard X-Rays in Air for Precise Monitoring of Vertical Position & Emittance in the ESRF Dipoles

    CERN Document Server

    Scheidt, B K


    The un-used X-rays produced in each of the 64 ESRF dipoles are absorbed in so-called crotch absorbers at the end of the dipole. With 40mm of Copper + 5mm of Steel only 250uW/mrad (out of the total emitted power fan of 154W/mrad) traverse the absorber. About 20% of these >170 keV energy X-rays are converted by a 0.5mm thick high-Z CadmiumTungstenate (CdWO4) scintilator into visible light that is collected and focussed by simple optics on to a commercial CCD camera. This compact monitor operates in air and is situated just behind the crotch chamber. The knowledge of the small vertical opening angle of 170 keV X-rays and the distance of the source-point to the scintillator makes it possible to calculate precisely the vertical electron beamsize at this sourcepoint. The light yield is enough to measure at 1 kHz frequency, with a sub-micron meter precision of the beam position, thereby also constituting a powerful tool for beam stability measurement in the vertical plane. The principle, the practical realisation an...

  15. A numerical study of a laminar methane/air flame impinged upon by a two-dimensional counter-rotating vortex pair (United States)

    Womeldorf, Carole A.

    Today's electricity, transportation, and manufacturing all fundamentally rely on the turbulent combustion of fuel. However, modeling the deep complexity inside a realistic turbulent flame is well beyond the capability of today's fastest computers. By studying flame/vortex interactions we can build insights that will illuminate much of the complex interplay of kinetics, fluid dynamics, and heat and mass transfer of turbulent combustion. For this study, the interaction of a freely-propagating premixed methane-air flame with a two-dimensional counter-rotating vortex pair is simulated under fuel-rich conditions using a detailed C1-C2 chemical mechanism and mixture-averaged Dipole Reduced Formalism (DRFM) transport properties. The effect of the strength and size of the vortex pair on the transient flame response and the evolution of its structure along the centerline of the vortex pair are examined. Additional effects of initial air dilution and/or heating of the vortex pair are also analyzed. Further refinements of the distribution of added air are also postulated in an effort to reconcile previous experimental results observed by Nguyen and Paul (1996) and Najm et al. (1999). Observations of qualitative changes in the response of OH and CH, their source terms, and rate-of-progress variables are presented.

  16. Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles. (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T


    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10-4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10-7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  17. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2 (United States)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence


    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  18. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive


    Full Text Available An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010. It consists of a long (>  100 m and narrow (<  1 cm stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i better capture the vertical distribution of CO2 and CH4, (ii provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm tube and a 100 m of 0.25 in. (6.35 mm tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h. The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada. High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a

  19. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  20. Concentration distribution for pollutant dispersion in a reversal laminar flow (United States)

    Wang, Ping; Chen, G. Q.


    Pollutant transport in reversal laminar flows gains its significance in various coastal regions. Since oscillation in the flow introduces much complexity into the transport process, little progress has been made to illustrate the evolution of concentration distribution. In this work, the first order expansion of the generalized dispersion model, as a simplified applicable method based on the previously proposed Aris-Gill expansion (Wang and Chen, 2016b,c), is applied to analytically study the pollutant dispersion in an open channel reversal laminar flow. This method is conveniently used to accurately predict the two-dimensional concentration evolution characteristic of peak concentration position and duration. The vertical concentration difference is determined to be tremendous and vary periodically, and the peak concentration appears at the freesurface or bottom depending on the reversal amplitude. The approach for vertical concentration to uniformity in the dispersion process lasts longer remarkably in reversal flows than that in steady flows.

  1. Versatile control of multiphase laminar flow for in-channel microfabrication. (United States)

    Gao, Yunxiang; Chen, Liwei


    We have improved the multiphase laminar flow based in-channel fabrication method to overcome diffusion-induced broadening. A sheathing phase with protecting molecules confines metal wire deposition and allows for flexible control of the location, width, and uniformity of deposited metal wires. Two-layered T-junctions are introduced to form vertically stacked multiphase laminar flow. Combining these techniques, we fabricate quadrupole silver electrodes on the four sidewalls of rectangular polydimethylsiloxane (PDMS) microchannels that are 3 cm in length.

  2. A comparison between numerical predictions and theoretical and experimental results for laminar core-annular flow


    Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.


    high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is that it is very well possible to simulate laminar core-annular flow in a pipe using the volume-of-fluid method.

  3. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin


    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  4. A Method for Retrieving Vertical Air Velocities in Convective Clouds over the Tibetan Plateau from TIPEX-III Cloud Radar Doppler Spectra

    Directory of Open Access Journals (Sweden)

    Jiafeng Zheng


    Full Text Available In the summertime, convective cells occur frequently over the Tibetan Plateau (TP because of the large dynamic and thermal effects of the landmass. Measurements of vertical air velocity in convective cloud are useful for advancing our understanding of the dynamic and microphysical mechanisms of clouds and can be used to improve the parameterization of current numerical models. This paper presents a technique for retrieving high-resolution vertical air velocities in convective clouds over the TP through the use of Doppler spectra from vertically pointing Ka-band cloud radar. The method was based on the development of a “small-particle-traced” idea and its associated data processing, and it used three modes of radar. Spectral broadening corrections, uncertainty estimations, and results merging were used to ensure accurate results. Qualitative analysis of two typical convective cases showed that the retrievals were reliable and agreed with the expected results inferred from other radar measurements. A quantitative retrieval of vertical air motion from a ground-based optical disdrometer was used to compare with the radar-derived result. This comparison illustrated that, while the data trends from the two methods of retrieval were in agreement while identifying the updrafts and downdrafts, the cloud radar had a much higher resolution and was able to reveal the small-scale variations in vertical air motion.

  5. Application of vertical-beam in-air PIXE to surface analysis of plant root exposed to aluminum stress

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Satoshi; Mae, Tadahiko [Tohoku Univ., Sendai (Japan). Faculty of Agriculture; Inoue, Jun-ichi; Murozono, Keisuke; Matsuyama, Sigeo; Yamazaki, Hiromichi; Iwasaki, Sin; Ishii, Keizo


    Elemental composition of living cells and tissues reflects their physiological function and status. However, it has been difficult to know in-situ elemental distribution by conventional analytical methods. In-air PIXE seems suitable for surface analysis of living cells and tissues because any treatment (e.g. freeze drying, digestion) is not required before and during measurement. We applied Via (vertical-beam in-air) PIXE to surface analysis of plant roots exposed to aluminum (Al). Aluminum stress is a major factor that limits elongation of plant roots in acid soils. We previously reported decrease in atomic ratio of potassium to phosphorus (K/P ratio) of dried root-tip of alfalfa (Medicago sativa L.) under Al stress using in-vacuum PIXE. In Via PIXE, 5 to 7-minute irradiation by 3 MeV proton beams of 200 pA was sufficient to obtain X-ray spectra without drying root samples. Decrease in K/P ratio in surface cells of root-tips was observed by short-term (6-8 h) exposure of root to Al. Via PIXE is recognized as a powerful tool for in-situ surface analysis of plant material. (author)

  6. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)


    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  7. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames (United States)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  8. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  9. Laminar composite structures for high power actuators (United States)

    Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.


    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.

  10. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture (United States)

    Leonard, J. T.; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Lee, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.


    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ˜22 kA/cm2 (25 mA), with a peak output power of ˜180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  11. Mapping the Vertical Distribution of Population and Particulate Air Pollution in a Near–Highway Urban Neighborhood: Implications for Exposure Assessment (United States)

    Wu, Chih-Da; MacNaughton, Piers; Melly, Steve; Lane, Kevin; Adamkiewicz, Gary; Durant, John L.; Brugge, Doug; Spengler, John D.


    Due to data collection challenges, the vertical variation in population in cities and particulate air pollution are typically not accounted for in exposure assessments, which may lead to misclassification of exposures based on elevation of residency. To better assess this misclassification, the vertical distribution of the potentially highly exposed population (PHEP), defined as all residents within the 100-m buffer zone of above-ground highways or the 200-m buffer zone of a highway-tunnel exit, was estimated for four floor categories in Boston’s Chinatown (MA, USA) using the three-dimensional digital geography (3DIG) methodology. Vertical profiles of particle number concentration (7–1000 nm; PNC) and PM2.5 mass concentration were measured by hoisting instruments up the vertical face of an 11-story (35-m) building near the study area throughout the day on multiple days. The concentrations from all the profiles (n=23) were averaged together for each floor category. As measurement elevation increased from 0 to 35 m PNC decreased by 7.7%, compared to 3.6% for PM2.5. PHEP was multiplied by the average PNC for each floor category to assess exposures for near-highway populations. The results show that adding temporally-averaged vertical air pollution data had a small effect on residential ambient exposures for our study population; however, greater effects were observed when individual days were considered (e.g., winds were off the highways). PMID:24084758

  12. Mapping the vertical distribution of population and particulate air pollution in a near-highway urban neighborhood: implications for exposure assessment. (United States)

    Wu, Chih-Da; MacNaughton, Piers; Melly, Steve; Lane, Kevin; Adamkiewicz, Gary; Durant, John L; Brugge, Doug; Spengler, John D


    Owing to data collection challenges, the vertical variation in population in cities and particulate air pollution are typically not accounted for in exposure assessments, which may lead to misclassification of exposures based on elevation of residency. To better assess this misclassification, the vertical distribution of the potentially highly exposed population (PHEP), defined as all residents within the 100-m buffer zone of above-ground highways or the 200-m buffer zone of a highway-tunnel exit, was estimated for four floor categories in Boston's Chinatown (MA, USA) using the three-dimensional digital geography methodology. Vertical profiles of particle number concentration (7-3000 nm; PNC) and particulate matter (PM2.5) mass concentration were measured by hoisting instruments up the vertical face of an 11-story (35-m) building near the study area throughout the day on multiple days. The concentrations from all the profiles (n=23) were averaged together for each floor category. As measurement elevation increased from 0 to 35 m PNC decreased by 7.7%, compared with 3.6% for PM2.5. PHEP was multiplied by the average PNC for each floor category to assess exposures for near-highway populations. The results show that adding temporally-averaged vertical air pollution data had a small effect on residential ambient exposures for our study population; however, greater effects were observed when individual days were considered (e.g., winds were off the highways).

  13. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)


    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  14. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test (United States)


    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Clearance Date: 28 Apr 2017 14. ABSTRACT The HIFiRE-5b program launched an experimental FLight test vehicle to study laminar-turbulent transition

  15. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city. (United States)

    Pandey, Ashutosh Kumar; Pandey, Mayank; Tripathi, B D


    The aim of the present study was to examine Air Pollution Tolerance Index (APTI) of some climber plant species to develop vertical gardens in Varanasi city which has characteristics of tall building and narrow roads. This condition results in street canyon like structure and hinders the vertical dispersal of air pollutants. We have selected 24 climber plant species which are commonly found in of Varanasi city. Chosen plants can be easily grown either in planter boxes or directly in the ground, with a vertical support they can climb on walls to form green walls or vertical garden. Air Pollution Tolerance Index (APTI) of the selected plant species was calculated and plants with higher APTI are recommended for the development of Vertical garden. Highest APTI was noted for Ipomoea palmata (25.39) followed by Aristolochia elegans (23.28), Thunbergia grandiflora (23.14), Quisqualis indica (22.42), and Clerodendrum splendens (22.36). However, lowest APTI value (8.75) was recorded for the species Hemidesmus indicus. Moreover, the linear regression analysis has revealed a high positive correlation between APTI and ascorbic acid content (R2=0.8837) and positive correlation between APTI and Chlorophyll content (R2=0.6687). On the basis of higher APTI values (greater than 17), nine species of climber plants viz. I. palmata, T. grandiflora, C. splendens, A. elegans, Q. indica, Petria volubilis, Antigonon leptopus, Cryptolepis buchuanni and Tinospora cordifolia have been recommended to develop vertical greenery systems in a compact tropical city. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Development of laminar flow control wing surface porous structure (United States)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.


    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  17. Two-dimensional flow effects on soot formation in laminar premixed flames


    Y. Xuan; Blanquart, G.


    Experimental measurements on axisymmetric laminar premixed flames have been used extensively for chemical and soot model validation. Numerical simulations of these flames always rely on the assumption of one-dimensionality. However, the presumed one-dimensionality has not been justified in general, and may not be valid under all circumstances. In the current work, two-dimensional flow effects are investigated in four representative ethylene/air laminar premixed flames, which have been selecte...

  18. {sup 137}Cs airborne levels in the vertical plane from observations taken at high altitude European locations, after the arrival of the Fukushima-labeled air masses

    Energy Technology Data Exchange (ETDEWEB)

    Masson, O. [IRSN - Institut de Radioprotection et de Surete Nucleaire (France); Estier, S. [Federal Office of Public Health (Switzerland)


    The Fukushima-labeled air masses reached Europe at different times according to the location. Airborne levels of the released radionuclides also exhibited some discrepancies at local or regional scales, with a corridor of higher activity levels that extended along a NW to SE axis from Scandinavia, across eastern Germany, Poland, the Czech Republic and Belarus. These observations were mostly based on lowlands air samplings, We compare here the variations in the vertical plane by using the maximum airborne {sup 137}Cs levels registered at high altitude European locations with what was observed at the closest lowland location. {sup 137}Cs levels were systematically lower in altitude. The relation [{sup 137}Cs]max vs. altitude shows a linear relationship and thus the concentration of activity in the vertical plane was not homogenous even after a long travel time and that Document available in abstract form only. (authors)

  19. The research of the cross-links effect influence in the color matrix photodetector on an error of the air tract vertical temperature gradient determination (United States)

    Nekrylov, Ivan S.; Kleshchenok, Maksim A.; Timofeev, Aleksandr N.; Sycheva, Elena A.; Gusarov, Vadim F.


    The research of the cross-links effect influence in the color matrix photodetector on an error of the air tract vertical temperature gradient determination is provided. It is invited to consider the influence of the signals from matrix photodetector channels on each other. There is a method to determine the value of the cross-links effect ant its influence on the energy center coordinates determination.

  20. Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    Directory of Open Access Journals (Sweden)

    E. Solazzo


    Full Text Available This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA and European (EU continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS and direction (WD, temperature (T, and relative humidity (RH, are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas and one in Europe (Frankfurt, from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs. The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL or free troposphere being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≤ 0.01 K, WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability, while above 1000 m, the model performance improves (correlation coefficient often above 0.9. The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large

  1. Natural laminar flow nacelle for transport aircraft (United States)

    Lamb, Milton; Abeyounis, William K.; Patterson, James C., Jr.; Re, Richard J.


    The potential of laminar flow nacelles for reducing installed engine/nacelle drag was studied. The purpose was twofold: to experimentally verify a method for designing laminar flow nacelles and to determine the effect of installation on the extent of laminar flow on the nacelle and on the nacelle pressure distributions. The results of the isolated nacelle tests illustrated that laminar flow could be maintained over the desired length. Installing the nacelles on wing/pylon did not alter the extent of laminar flow occurring on the nacelles. The results illustrated that a significant drag reduction was achieved with this laminar flow design. Further drag reduction could be obtained with proper nacelle location and pylon contouring.

  2. A comparison between numerical predictions and theoretical and experimental results for laminar core-annular flow

    NARCIS (Netherlands)

    Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.


    high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is

  3. Developing laminar flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.


    As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The

  4. Review of hybrid laminar flow control systems (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.


    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  5. Measuring Laminar-Separation Bubbles On Airfoils (United States)

    Stack, John P.; Mangalam, Sivaramakrishnan M.


    Nonintrusive multielement heat-transfer sensor overcomes limitations of previous methods. New technique determines simultaneously extent of laminar boundary layer and locations of laminar separation, transition in separated layer, and turbulent reattachment. In tests, only small amounts of heat introduced, and heated thin films caused little disturbance to shear layer or to each other. Promising tool for measurements of stability of laminar boundary layers, separated shear layers, and transitional separation bubbles. Simple and capable of providing comprehensive picture of state of shear flow along entire surface. Significant savings in tunnel (or flight) test time with corresponding savings in cost.

  6. Study on natural convection heat transfer in a vertical enclosure of double coaxial cylinder. Cooling by natural circulation of air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youjie [Institute on Nuclear Energy Technology, Tsinghua Univ., Beijing (China); Takeda, Tetsuaki; Inaba, Yoshitomo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment


    To investigate a heat transfer characteristic in a vertical cavity between the pressure vessel and the cooling panel of a high-temperature engineering test reactor (HTTR), we carried out an experiment of natural convection coupled with thermal radiation in a vertical enclosure of a double coaxial cylinder. Rayleigh number based on the width of the double coaxial cylinder was set to be 5.6x10{sup 5} < Ra{sub d} < 1.04x10{sup 8}. A heat transfer coefficient of natural convection coupled with thermal radiation was obtained as function of Rayleigh number, aspect ratio of the enclosure, and the temperature of the hot and cold surface. We also carried out the numerical analysis using a heat transfer and fluid flow analytical code, which is named FLUENT/UNS. The numerical results of the temperature distribution in the apparatus showed good agreement with the experimental ones. (J.P.N.)

  7. Laminar mixed convection heat and mass transfer in an isothermally cooled channel

    Energy Technology Data Exchange (ETDEWEB)

    Oulaid, O. [Laboratoire de Mecanique des Fluides et d Energetique, Marrakech (Morocco). Dept. of Physics; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Benhamou, B. [Laboratoire de Mecanique des Fluides et d Energetique, Marrakech (Morocco). Dept. of Physics; Galanis, N. [Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering


    Many studies have been performed to investigate the combined effects of thermal and mass buoyancy forces in channel convection. This paper presented a numerical study of a laminar mixed convection associated with phase change in an isothermally cooled vertical parallel-plate channel. The plates were wetted by a thin liquid water film and maintained at a constant temperature lower than that of the air entering the channel. The paper discussed the use of an elliptical model, including axial diffusion of momentum, heat and mass transfer. The paper also presented the solution of the governing equations using the finite volume method with the simpler algorithm for handling the velocity-pressure coupling. Cases of film evaporation and vapor condensation were also considered. In order to to bring out the effects of buoyancy forces, results from mixed convection case and forced convection were compared. A comparative evaluation showed that these forces, mostly of thermal origin, decelerate the flow near the walls and induce flow reversal for high temperatures, thus reducing heat and mass transfer. 17 refs., 1 tab., 6 figs.

  8. Quality improvement of melt extruded laminar systems using mixture design. (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D


    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ultrawide continuously tunable 1.55-μm vertical air-cavity wavelength-selective elements for VCSELs using micromachined electrostatic actuation (United States)

    Hillmer, Hartmut H.; Daleiden, Juergen; Prott, Cornelia; Roemer, Friedhard; Irmer, Soeren; Ataro, Edwin; Tarraf, Amer; Gutermuth, D.; Kommallein, I.; Strassner, Martin


    Surface-micromachined 1.55μm vertical-resonator-based devices, capable of wide, continuous, monotonic and kink-free tuning are designed, technologically implemented and characterized. Tuning is achieved by mechanically actuating one or several membranes in a vertical resonator including two ultra-highly reflective DBR mirrors. The tuning is controlled by a single parameter (actuation voltage). The two different layers composing the mirrors reveal a very strong refractive index contrast. Filters including InP/air-gap DBR's (3.5 periods) using GaInAs sacrificial layers reveal a continuous tuning of up to 9% of the absolute wavelength. Varying a reverse voltage (U=0 .. -3.2V) between the membranes, a tuning range up to 142nm was obtained by electrostatic actuation. The correlation of the wavelength and the applied voltage is accurately reproducible without any hysteresis. Theoretical model calculations are performed for symmetric and asymmetric device structures, varying layer thickness and compositions. Models of highly sophisticated color tuning can be found in nature, e.g. in tunable spectral light filtering by trogon and butterfly wings. Bionics transfers the principles of success of nature into natural science, engineering disciplines and applications (here filters and VCSELs for optical communication on the basis of WDM). Light interferes constructively and destructively with nano- and microstructures of appropriate shape, dimensions and materials, both in the artificial DBR structures fabricated in our labs as well as in the natural ones.

  10. Bionics: prcise color tuning by interference in nature and technology-applications in surface-micromachined 1.55μm vertical air-cavity filters (United States)

    Hillmer, Hartmut; Daleiden, Juergen; Prott, Cornelia; Irmer, Soeren; Roemer, Friedhard; Ataro, Edwin; Tarraf, Amer; Ruehling, H.; Maniak, Markus; Strassner, Martin


    Bionics transfers the principles of success of nature into natural science, engineering disciplines and applications. Often generation and detection of different spectral colors play key roles in communication in both, nature and technology. The latter one refers e.g. to dense wavelength division multiplex optical communication systems. This paper shows interesting parallels in tunable spectral light filtering by butterfly wings and by tunable optical filters used in optical communication systems. In both cases light interferes constructively and destructively with nano- and microstructures of appropriate shape, dimensions and materials. In this paper methodology is strongly emphasized. We demonstrate that tailored scaling allows the effectiveness of physical effects to be enhanced in nature and technology. These principles are rigorously applied in micromachined 1.55μm vertical-resonator-based filters, capable of wide, continuous, monotonic and kink-free tuning by a single control parameter. Tuning is achieved by mechanically actuating one or several membranes embedded by air-gaps in a vertical resonator including two ultra-highly reflective DBR mirrors. The layers of mirrors reveal a very strong refractive index contrast. Filters including InP/air-gap DBR's (3.5 periods) using GaInAs sacrificial layers reveal a continuous tuning of >9% of the absolute wavelength. Varying a reverse voltage (U=0 .. -3.2V) between the membranes, a tuning range up to 142nm was obtained due to electrostatic actuation. Appropriate miniaturization is shown to increase the mechanical stability and the effectiveness of spectral tuning by electrostatic actuation since the relative significance of the fundamental physical forces can be shifted considerably by appropriate scaling.

  11. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research (United States)

    Braslow, Albert L.


    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  12. Drag Reduction by Laminar Flow Control

    Directory of Open Access Journals (Sweden)

    Nils Beck


    Full Text Available The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF and Hybrid Laminar Flow Control (HLFC to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS solver. The effect on total aircraft drag is estimated for a state-of-the-art mid-range aircraft configuration using preliminary aircraft design methods, showing that total cruise drag can be halved compared to today’s turbulent aircraft.

  13. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Directory of Open Access Journals (Sweden)

    V. V. Rozanov


    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  14. Combustion characteristics of methane hydrate in a laminar boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Katsuki, R.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Yokohama (Japan). Dept. of Mechanical Engineering; Takahashi, M.; Iwasaki, T.; Uchida, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)


    The combustion characteristics of methane hydrates in a laminar boundary layer were investigated in order to examine the flame propagation speed of methane hydrates. The experiments were performed under atmospheric pressure using methane hydrate crystals previously stored at a liquid-nitrogen temperature. A wind tunnel was used to form an air laminar boundary layer. The crystals were packed in an insulated rectangular cell to ensure that the hydrate layer was level with a horizontal flat plate. The surface of the dissociating hydrate crystals was ignited using a pilot flame at the downstream end of the hydrate crystals. Flame location was measured using a video camera. Results showed that after the flame was extinguished, the methane hydrate crystals were not completely dissociated. The flame was extinguished by an ice layer that had formed over the methane hydrate crystals. Propagation rates were measured in order to explore the relationship between the flame propagation rate and free-stream velocity. 8 refs., 2 tabs., 10 figs.

  15. Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center. (United States)

    Erichsen Andersson, Annette; Petzold, Max; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin


    The importance of laminar airflow systems in operating rooms as protection from surgical site infections has been questioned. The aim of our study was to explore the differences in air contamination rates between displacement ventilation and laminar airflow systems during planned and acute orthopedic implant surgery. A second aim was to compare the influence of the number of people present, the reasons for traffic flow, and the door-opening rates between the 2 systems. Active air sampling and observations were made during 63 orthopedic implant operations. The laminar airflow system resulted in a reduction of 89% in colony forming units in comparison with the displacement system (P air samples taken in the preparation rooms showed high levels of bacterial growth (≈ 40 CFU/m(3)). Our study shows that laminar airflow-ventilated operating rooms offer high-quality air during surgery, with very low levels of colony forming units close to the surgical wound. The continuous maintenance of laminar air flow and other technical systems are crucial, because minor failures in complex systems like those in operating rooms can result in a detrimental effect on air quality and jeopardize the safety of patients. The technical ventilation solutions are important, but they do not guarantee clean air, because many other factors, such as the organization of the work and staff behavior, influence air cleanliness. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  16. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra

    Directory of Open Access Journals (Sweden)

    A. de Lange


    Full Text Available The first profile retrieval results of the Terahertz and submillimeter Limb Sounder (TELIS balloon instrument are presented. The spectra are recorded during a 13-h balloon flight on 24 January 2010 from Kiruna, Sweden. The TELIS instrument was mounted on the MIPAS-B2 gondola and shared this platform with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the mini-Differential Optical Absorption Spectroscopy (mini-DOAS instruments. The flight took place within the Arctic vortex at an altitude of ≈34 km in chlorine activated air, and both active (ClO and inactive chlorine (HCl were measured over an altitude range of respectively ≈16–32 km and ≈10–32 km. In this altitude range, the increase of ClO concentration levels during sunrise has been recorded with a temporal resolution of one minute. During the daytime equilibrium, a maximum ClO level of 2.1 ± 0.3 ppbv has been observed at an altitude of 23.5 km. This equilibrium profile is validated against the ClO profile by the satellite instrument Microwave Limb Sounder (MLS aboard EOS Aura. HCl profiles have been determined from two different isotopes – H35Cl and H37Cl – and are also validated against MLS. The precision of all profiles is well below 0.01 ppbv and the overall accuracy is therefore governed by systematic effects. The total uncertainty of these effects is estimated to be maximal 0.3 ppbv for ClO around its peak value at 23.5 km during the daytime equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, depending on altitude. In both cases the main uncertainty stems from a largely unknown non-linear response in the detector.

  17. Research in Natural Laminar Flow and Laminar-Flow Control, part 1 (United States)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)


    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  18. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  19. Flow Laminarization and Acceleration by Suspended Particles

    NARCIS (Netherlands)

    Bertsch, M.; Hulshof, J.; Prostokishin, V.M.


    In [Comm. Appl. Math. Comput. Sci., 4(2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present

  20. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel.

  1. Air (United States)

    ... and your health: Green living Sun Water Air Health effects of air pollution How to protect yourself from air pollution Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  2. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter. (United States)

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han


    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Similarity solution for rarefied flow over a vertical stretched surface (United States)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.


    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  4. Scales of Free Convection around a Vertical Cylinder (United States)

    Lira, Ignacio


    The natural scales of the laminar steady-state free convection flow regime surrounding an isothermal vertical cylinder are established. It is shown that nondimensionalizing the momentum and energy equations in terms of the Rayleigh or Boussinesq numbers allows the use of the Prandtl number as a criterion to establish whether the motive buoyancy…

  5. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  6. Technology for formation of axisymmetric free jets with long laminar region (United States)

    Reshmin, A.; Sudarikova, A.; Teplovodskii, S.; Zayko, J.


    A new technology for formation of axisymmetric free jets with a long laminar region is presented in the work. Such jets are created by of a compact device and experimentally studied in the Reynolds number range from 2000 to 13000. The device is capable of creation a jet of 0.12 m diameter. Numerical simulations are conducted with the purpose to analyse the flow inside the device and its impact on the jet velocity profile. Also calculations are conducted in order to find a way for a jet laminar region prolongation. Based on the calculations, the device parameters are corrected and the jet laminar region length is magnified from the size of 5.5 to 6.5 jet diameters. Free jets with long initial laminar regions and the diameter more than 0.1 m are advantageous for detailed research of perturbation growth and transition to turbulence in round jets, and can also be used to organize air curtains in order to protect objects in medicine and high–accurate industries.

  7. Laminar Flow in the Ocean Ekman Layer (United States)

    Woods, J. T. H.


  8. Dyadic Green's functions of a laminar plate. (United States)

    Reinhardt, Alexandre; Laude, Vincent; Khelif, Abdelkrim; Ballandras, Sylvain


    We introduce the concept of dyadic Green's functions of a laminar plate. These functions generalize classical Green's functions. In addition to relating displacements and stresses at the surface of a medium, they relate these quantities at both the top and the bottom surfaces of a medium of finite thickness and infinite extent in the transverse directions. We describe here the calculation of these functions in the spectral domain and provide some academic examples demonstrating their interest.

  9. Development of a spherical combustion chamber for measuring laminar flame speeds in Navy bulk fuels and biofuel blends


    Buckley, Omari D.


    This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was designed, built, and instrumented to conduct these experiments. Premixed Ethylene/air mixtures at a pressure of 2 atm, temperature of 298ᆱ 5K and equivalence ratios ranging from 0.8 to 1.5 were ignited and using a high speed video Schlieren system images were taken to measure the laminar ...

  10. Tackling a Hot Paradox: Laminar Soot Processes-2 (LSP-2) (United States)

    Faeth, Gerard M.; Urban, David L.; Over, Ann (Technical Monitor)


    The last place you want to be in traffic is behind the bus or truck that is belching large clouds of soot onto your freshly washed car. Besides looking and smelling bad, soot is a health hazard. Particles range from big enough to see to microscopic and can accumulate in the lungs, potentially leading to debilitating or fatal lung diseases. Soot is wasted energy, and therein lies an interesting paradox: Soot forms in a flame's hottest regions where you would expect complete combustion and no waste. Soot enhances the emissions of other pollutants (carbon monoxide and polyaromatic hydrocarbons, etc.) from flames and radiates unwanted heat to combustion chambers (a candle's yellowish glow is soot radiating heat), among other effects. The mechanisms of soot formation are among the most important unresolved problems of combustion science because soot affects contemporary life in so many ways. Although we have used fire for centuries, many fundamental aspects of combustion remain elusive, in part because of limits imposed by the effects of gravity on Earth. Hot or warm air rises quickly and draws in fresh cold air behind it, thus giving flames the classical teardrop shape. Reactions occur in a very small zone, too fast for scientists to observe, in detail, what is happening inside the flame. The Laminar Soot Processes (LSP-2) experiments aboard STS-107 will use the microgravity environment of space to eliminate buoyancy effects and thus slow the reactions inside a flame so they can be more readily studied. 'Laminar' means a simple, smooth fuel jet burning in air, somewhat like a butane lighter. This classical flame approximates combustion in diesel engines, aircraft jet propulsion engines, and furnaces and other devices. LSP-2 will expand on surprising results developed from its first two flights in 1997. The data suggest the existence of a universal relationship, the soot paradigm, that, if proven, will be used to model and control combustion systems on Earth. STS-107

  11. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)


    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  12. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)


    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  13. Large eddy simulations of laminar separation bubble (United States)

    Cadieux, Francois

    The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous

  14. On a certain laminar dynamo model (United States)

    Novikov, V. V.; Fevralskikh, L. N.


    We consider the motion of a conducting incompressible viscous fluid in the space between two rotating spheres. We assume the centres of symmetry of spheres to lie a short distance from each other in a plane perpendicular to the axes of rotation. If we ignore the effect of the magnetic field on the motion of the liquid and regard the flow as laminar, then we are able to solve the hydrodynamics system of equations analytically. We use this solution to assess the possibility of a magnetic dynamo.

  15. Laminar airflow and the prevention of surgical site infection. More harm than good? (United States)

    McHugh, S M; Hill, A D K; Humphreys, H


    Laminar airflow (LAF) systems are thought to minimise contamination of the surgical field with airborne microbes and thus to contribute to reducing surgical site infections (SSI). However recent publications have questioned whether LAF ventilation confers any significant benefit and may indeed be harmful. A detailed literature review was undertaken through and Google scholar ( Search terms used included "laminar flow". "laminar airflow", "surgical site infection prevention", "theatre ventilation" and "operating room ventilation", "orthopaedic theatre" and "ultra-clean ventilation". Peer-reviewed publications in the English language over the last 50 years were included, up to and including March 2014. Laminar airflow systems are predominantly used in clean prosthetic implant surgery. Several studies have demonstrated decreased air bacterial contamination with LAF using bacterial sedimentation plates placed in key areas of the operating room. However, apart from the initial Medical Research Council study, there are few clinical studies demonstrating a convincing correlation between decreased SSI rates and LAF. Moreover, recent analyses suggest increased post-operative SSI rates. It is premature to dispense with LAF as a measure to improve air quality in operating rooms where prosthetic joint surgery is being carried out. However, new multi-centre trials to assess this or the use of national prospective surveillance systems to explore other variables that might explain these findings such as poor operating room discipline are needed, to resolve this important surgical issue. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  16. Study on the premixed laminar flames of iso-octane (United States)

    Yang, Bo; Hong, Yan-ji; Xu, Qing-yao; Liu, Yi; Cheng, Qi-sheng; Ding, Xiao-yu


    Propagation characteristics of premixed laminar iso-octane flames at atmosphere and equivalence ratios from 0.8 to 1.4 are studied in a constant combustion bomb using a schlieren technique, the laminar burning velocity at different initial pressure, temperature, equivalence ratio are calculated through CHEMKIN program. The experimental and calculation results show that the laminar burning velocity of iso-octane rise with the decreasing of initial pressure and rise with the rising of initial temperature . Only changing the initial temperature or pressure ,the maximum laminar burning velocity of iso-octane were both obtained at equivalence ratio 1.1. Flame stability become weak ,when increased the equivalence ratio. The problem of the chemistry reaction mechanism to predict the laminar burning velocity were analysed.

  17. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir


    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall....... It is shown that the model is in a good agreement with the classical Nusselt equations for the laminar flow regime. Comparisons of the present model with other empirical models also demonstrate good agreement beyond the laminar regime. This allows the film condensation modeling at high film Reynolds numbers...

  18. A laminar flow unit for the care of critically ill newborn infants

    Directory of Open Access Journals (Sweden)

    Perez JM


    Full Text Available Jose MR Perez,1 Sergio G Golombek,2 Carlos Fajardo,3 Augusto Sola41Stella Maris Hospital, International Neurodevelopment Neonatal Center (CINN, Sao Paulo, Brazil; 2M Fareri Children’s Hospital, Westchester Medical Center, New York Medical College, Valhalla, NY, USA; 3University of Calgary, Calgary, Canada; 4St Jude Hospital, Fullerton, California, CA, USAIntroduction: Medical and nursing care of newborns is predicated on the delicate control and balance of several vital parameters. Closed incubators and open radiant warmers are the most widely used devices for the care of neonates in intensive care; however, several well-known limitations of these devises have not been resolved. The use of laminar flow is widely used in many fields of medicine, and may have applications in neonatal care.Objective: To describe the neonatal laminar flow unit, a new equipment we designed for care of ill newborns.Methods: The idea, design, and development of this device was completed in Sao Paulo, Brazil. The unit is an open mobile bed designed with the objective of maintaining the advantages of the incubator and radiant warmer, while overcoming some of their inherent shortcomings; these shortcomings include noise, magnetic fields and acrylic barriers in incubators, and lack of isolation and water loss through skin in radiant warmers. The unit has a pump that aspirates environmental air which is warmed by electrical resistance and decontaminated with High Efficiency Particulate Air Filter (HEPA filters (laminar flow. The flow is directed by an air flow directioner. The unit has an embedded humidifier to increase humidity in the infant’s microenvironment and a servo control mechanism for regulation of skin temperature.Results: The laminar flow unit is open and facilitates access of care providers and family, which is not the case in incubators. It provides warming by convection at an air velocity of 0.45 m/s, much faster than an incubator (0.1 m/s. The system

  19. Steady laminar flow of fractal fluids (United States)

    Balankin, Alexander S.; Mena, Baltasar; Susarrey, Orlando; Samayoa, Didier


    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived.

  20. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper experimentally examines the performance of a commercial static mixer (SMX. Experiments were carried out to obtain the pressure drop across different numbers of mixing elements (4, 8, 12 and 16. The quality of mixing was visually assessed using flow visualization techniques. Experiments were performed for Reynolds number between 50 and 3000 (based on the unobstructed pipe diameter. The presence of the mixing elements in the flow stream promotes a non-laminar, turbulent-like flow which considerably enhances the mixing. Addition of more mixing elements triggered mixing in the flow at lower Reynolds numbers but this was achieved at the expense of higher pressure drop. This work represents the first stage of an on going work to develop correlations to assess the mixing quality and pressure loss in the SMX static mixers.

  2. CFD validation of a supersonic laminar flow control concept (United States)

    Woan, Chung-Jin; Gingrich, Philip B.; George, Michael W.


    A three-dimensional Navier-Stokes code is used in conjunction with a linear compressible stability analysis code to develop a numerical procedure for prediction of laminar flow transition. The procedure is applied to a modified F-16XL fighter with a laminar flow control glove at supersonic speed. Details of boundary layer stability analysis indicate that, computationally, laminar flow could be realized on the highly swept wing in the absence of the leading edge attachment-line contamination. Effects of the three-dimensionality of the flow were shown to be important in the boundary layer stability analysis. The numerically predicted surface pressures compare favorably with the flight test data.

  3. A Study of Laminar Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The laminar flow for a backwards facing step is studied. This work was initially part of the work presented in. In that work low-Reynolds number effects was studied, and the plan was also to include laminar flow. However, it turned out that when the numerical predictions of the laminar flow (Re......= 118) was compared to the experiments of Restivo , we found a large discrepancy. We believe that there is something wrong in that experimental investigation. To support that conclusion, we present in this report prediction of other backward facing flow configurations, where we show that our predictions...

  4. Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion (United States)

    Anggono, Willyanto; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, Slamet; Hamidi, Nurkholis; Hayakawa, Akihiro


    Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (phi) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from phi=0.6 till phi=1.3. The flame at phi >= 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At phiflame for biogas-air mixtures propagates in a narrower range, that is from phi=0.6 to phi=1.2. Different from the methane flame, the biogas flame does not propagate at phi>=1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at phi<=0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.

  5. Studi Penurunan Kandungan Total Coliform dengan Menggunakan Kombinasi Vertical Flow Roughing Filter (Vrf) dan Horizontal Flow Roughing Filter (Hrf) pada Air Buangan Domestik Artifisial


    Suryanti, Irma; Samudro, Ganjar; Sumiyati, Sri


    This research is aims to reduce the content of total coliform bacteria in domestic wastewater using a combination of vertical flow roughing filter (VRF) and horizontal flow roughing filter (HRF) for each variation of flow rate, the type and the size of filter media. Domestic wastewater influent is used as an artificial wastewater containing total coliform bacteria sample 2400 MPN/100 ml. The results of the best drop reaches 0 MPN/100 ml sample contained in VRF combination with medium-sized fi...

  6. GPM Ground Validation Advanced Vertical Atmospheric Profiling System (AVAPS) OLYMPEX V1 (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Vertical Atmospheric Profiling System (AVAPS) OLYMPEX dataset contains dropsonde vertical profiles of atmospheric pressure, air...

  7. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi


    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  8. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF (United States)

    Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric


    The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

  9. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)


    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  10. Laminar flow resistance in short microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Phares, D.J. [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering; Smedley, G.T.; Zhou, J. [Glaukos Corp., Laguna Hills, CA (United States). Dept. of Research and Development


    We have measured the pressure drop for the flow of liquid through a series of short microtubes ranging from 80 to 150 {mu}m in diameter with aspect ratios between L/D = 2 and L/D = 5. These dimensions were selected to resemble lumens of implantable microstents that are under consideration for the treatment of glaucoma. For physiologically relevant pressure drops and flow rates, we have determined that a fully-developed laminar pipe flow may be assumed throughout the microtube when (L/D) > 0.20Re, where Re is the Reynolds number based on the diameter, D, and L is the length of the tube. We have examined flow rates between 0.1 and 10 {mu}L/s, corresponding to Reynolds numbers between 1 and 150. For smooth microtubes, no difference from macroscopic flow is observed for the tube sizes considered. However, flow resistance is found to be sensitive to the relative surface roughness of the tube walls. (author)

  11. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    The laminar fully developed flow in a vertical double passage channel filled with clear fluid has been discussed using Robin boundary conditions. The thin perfectly conductive baffle is inserted in the channel. The governing equations of the fluid which are coupled and nonlinear are solved analytically by the perturbation ...

  12. Mixed convection of micropolar fluid in a vertical double-passage ...

    African Journals Online (AJOL)

    The effect of the presence of a thin perfectly conductive baffle on the fully developed laminar mixed convection in a vertical channel containing micropolar fluid is analyzed. The channel has different constant wall temperatures. Analytical expressions for velocity and microrotation velocity are obtained. The solutions are ...

  13. Modelling of laminar spray flames in high-pressure conditions; Modellierung laminarer Sprayflammen unter Hochdruckbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlotz, D.; Gutheil, E.


    The structure of laminar spray diffusion flames is investigated in counterflow configuration using numerical methods in a spray of liquid oxygen with hydrogen as carrier gas. The model considers detailed chemistry and detailed transport. The conditions selected require an extension of the model to consider the transport properties at cryogenic inlet temperatures as well as changed phase equilibria of binary mixtures at high pressure. The parametric dependence of the flame structure on the elongation velocity and the global equivalence ratio is presented and discussed. The model enables calculation of quenching conditions which are a fundamental parameter in simulating turbulent spray diffusion flames by means of a flamelet approach. [German] Die Struktur laminarer Spraydiffusionsflammen wird in der Gegenstromkonfiguration mittels numerischen Methoden untersucht. Ein Spray aus fluessigem Sauerstoff mit Traegergas Wasserstoff wird gegen Wasserstoff bei hohem subkritischen Druck und mit kryogener Eintrittstemperatur eingeduest. In dem Modell werden detaillierte Chemie und detaillierter Transport beruecksichtigt. Die gewaehlten Bedingungen erfordern die Modellerweiterung bezueglich der Transporteigenschaften bei kryogenen Eintrittstemperaturen sowie die Beruecksichtigung veraenderter Phasengleichgewichte binaerer Mischungen bei Hochdruck. Parametrische Abhaengigkeiten der Flammenstruktur von der Streckungsgeschwindigkeit und dem globalen Aequivalenzverhaeltnis werden dargestellt und diskutiert. Das Modell ermoeglicht die Bestimmung von Verloeschbedingungen, die fuer die Simulation turbulenter Spraydiffusionsflammen mittels eines Flamelet-Ansatzes grundlegend sind. (orig.)

  14. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul


    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  15. Endoscopic inter laminar management of lumbar disease (United States)

    Yadav, Yad Ram; Parihar, Vijay; Kher, Yatin; Bhatele, Pushp Raj


    Discectomy for lumbar disc provides faster relief in acute attack than does conservative management. Long-term results of open, microscopy-, and endoscopy-assisted discectomy are same. Early results of endoscopy-assisted surgery are better as compared to that of open surgery in terms of better visualization, smaller incision, reduced hospital stay, better education, lower cost, less pain, early return to work, and rehabilitation. Although microscopic discectomy also has comparable advantages, endoscopic-assisted technique better addresses opposite side pathology. Inter laminar technique (ILT) and trans foraminal technique (TFT) are two main endoscopic approaches for lumbar pathologies. Endoscopy-assisted ILT can be performed in recurrent, migrated, and calcified discs. All lumbar levels including L5-S1 level, intracanalicular, foraminal disc, lumbar canal and lateral recess stenosis, multiple levels, and bilateral lesions can be managed by ILT. Migrated, calcified discs, L5-S1 pathology, lumbar canal, and lateral recess stenosis can be better approached by ILT than by TFT. Most spinal surgeons are familiar with anatomy of ILT. It can be safely performed in foramen stenosis and in uncooperative and anxious patients. There is less risk of exiting nerve root damage, especially in short pedicles and in presence of facet osteophytes as compared to TFT. On the other hand, ILT is more invasive than TFT with more chances of perforations of the dura matter, pseudomeningocele formation, and cerebrospinal fluid fistula in early learning curve. Obtaining microsurgical experience, attending workshops, and suitable patient selection can help shorten the learning curve. Once adequate skill is acquired, this procedure is safe and effective. The surgeon must be prepared to convert to an open procedure, especially in early learning curve. Spinal endoscopy is likely to achieve more roles in future. Endoscopy-assisted ILT is a safer alternative to the microscopic technique. PMID

  16. Temperature controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow

    DEFF Research Database (Denmark)

    Alsved, Malin; Civilis, Anette; Ekolind, Peter


    , vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique: temperature controlled airflow (TcAF). CFU concentrations were measured at three locations in an operating room during 45 orthopaedic surgeries: close to the wound (...), at the instrument table, and peripherally in the room. The operating team evaluated the working environment comfort by answering a questionnaire. FINDINGS: We showed that LAF and TcAF, but not TMA, resulted in less than 10 CFU/m(3) at all measurement locations in the room during ongoing surgery. Median values...... of CFU/m(3) close to the wound (250 samples) were 0 for LAF, 1 for TcAF and 10 for TMA. Peripherally in the room, the CFU concentrations were lowest for TcAF. The CFU concentrations did not scale proportionally with airflow rates. Compared to LAF, TcAF's power consumption was 28% lower...

  17. F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win (United States)


    Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  18. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity (United States)

    Kandula, M.


    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  19. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant


    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  20. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.


    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  1. Analysis of first stage ignition delay times of dimethyl ether in a laminar flow reactor (United States)

    Wada, Tomoya; Sudholt, Alena; Pitsch, Heinz; Peters, Norbert


    The combustion chemistry of the first stage ignition and chemistry/flow interactions are studied for dimethyl ether (DME) with a mathematical analysis of two systems: a plug flow reactor study is used to reduce the reaction chemistry systematically. A skeletal reaction mechanism for the low temperature chemistry of DME until the onset of ignition is derived on the basis of the detailed DME mechanism of the Lawrence Livermore National Laboratory - see Curran, Fischer and Dryer, Int. J. Chem. Kinetics, Vol. 32 (2000). It is shown that reasonably good results for ignition delay times can be reached using a simple system of three ordinary differential equations and that the resulting analytical solution depends only on two reaction rates and the initial fuel concentration. The stepwise reduction of the system based on assumptions yields an understanding on why these reactions are so important. Furthermore, the validation of the assumptions yields insight into the influence of the fuel and the oxygen concentration on the temperature during the induction phase. To investigate the influence of chemistry/flow interactions, a 2D model with a laminar Hagen-Poiseuille flow and 2D-polynomial profiles for the radial species concentration is considered. For the 2D model, it is found that only the diffusion coefficients and the reactor radius need to be taken into consideration additionally to describe the system sufficiently. Also, the coupling of flow and chemistry is clarified in the mathematical analysis. The insight obtained from the comparison of the 2D model and the plug flow model is used to establish an average velocity for the conversion of ignition locations to ignition delay times in a laminar flow reactor. Finally, the 2D analytical solution is compared against new experimental data, obtained in such a laminar flow reactor for an undiluted DME/air mixture with an equivalence ratio of φ = 0.835 and a temperature range of 555 to 585 K at atmospheric pressure.

  2. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics (United States)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.


    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  3. Transport modelling of TEXTOR-DED laminar zone

    Energy Technology Data Exchange (ETDEWEB)

    Eich, Th. E-mail:; Reiser, D.; Finken, K.H


    In the case of a strong ergodisation of the plasma edge of TEXTOR-DED, the edge magnetic field forms an extended laminar zone, which is established by magnetic field lines with short connection lengths (open ergodic system). In the laminar zone the parallel transport can compete with the cross-field transport and the situation is similar to that in a regular divertor. For an analysis of the generic effects of the laminar zone on the plasma transport, the LUPUS code is developed taking flux tubes with short connection lengths into account. The ergodic zone with rather high connection lengths is described by enhanced perpendicular diffusion coefficients. As important results, which differ significantly from common SOL's, the expected power load and the flow pattern to the plasma facing components are presented.

  4. Natural Laminar Flow Design for Wings with Moderate Sweep (United States)

    Campbell, Richard L.; Lynde, Michelle N.


    A new method for the aerodynamic design of wings with natural laminar flow is under development at the NASA Langley Research Center. The approach involves the addition of new flow constraints to an existing knowledge-based design module for use with advanced flow solvers. The uniqueness of the new approach lies in the tailoring of target pressure distributions to achieve laminar flow on transonic wings with leading-edge sweeps and Reynolds numbers typical of current transports. The method is demonstrated on the Common Research Model configuration at critical N-factor levels representative of both flight and high-Reynolds number wind tunnel turbulence levels. The design results for the flight conditions matched the target extent of laminar flow very well. The design at wind tunnel conditions raised some design issues that prompted further improvements in the method, but overall has given promising results.

  5. IR thermography for dynamic detection of laminar-turbulent transition (United States)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven


    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  6. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)


    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  7. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot


    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  8. Design of a hybrid laminar flow control nacelle (United States)

    Wie, Yong-Sun; Collier, Fayette S., Jr.; Wagner, Richard D.; Viken, Jeffery K.; Pfenninger, Werner


    Consideration is given to the potential application of hybrid-laminar-flow control to the external surface of a modern, high-bypass-ratio (HBR) turbofan engine nacelle. With the advent of advanced ultra-HBR fans (with bypass ratios of 10-15), the wetted areas of these nacelles approach 10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies on an advanced twin-engine transport configuration are presented to determine potential benefits in terms of reduced fuel consumption.

  9. Vertical cavity laser

    DEFF Research Database (Denmark)


    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index......, an index of refraction of the second low-index layer or air being less than 2; and a thickness of the cap layer and a thickness of the grating layer, and a pitch and a duty cycle of the grating structure are selected to obtain a resonance having a free-space resonance wavelength in the interval 300 nm to 3...... microns, the cap layer comprises an active region configured to generate or absorb photons at the free-space resonance wavelength by stimulated emission or absorption when a sufficient forward or reverse bias voltage is applied across the active region, a thickness of the first low-index layer is less...

  10. Roughness and waviness requirements for laminar flow surfaces (United States)

    Obara, Clifford J.; Holmes, Bruce J.


    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  11. Multilayer laminar co-extrudate as a novel controlled release dosage form. (United States)

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F


    Design of a new dosage form manufactured by laminar extrusion for oral administration of drugs. Different mixtures of materials (microcrystalline cellulose [MCC], hydroxypropyl methylcellulose [HPMC], lactose [LAC], dicalcium phosphate [DCP], coumarin [COU], propranolol hydrochloride [PRO], water [W]) were prepared prior to laminar extrusion. Mono, bi and tri layer extrudates were manufactured and evaluated for extrudability, drying, water uptake and swelling ability and in vitro characterization of the drug release. Good quality extrudates were manufactured with higher HPMC molecular weight and fraction in formulation at an extrusion rate of 400 mm/min and slow drying (forced air stream), otherwise surface roughness, thickness in-homogeneity, bending and shark skin were present in the extrudates. Swelling of extrudates was dependent on HPMC fraction and molecular weight (60% up to 90% weight gain for low and high polymer chains, respectively) and the presence of either MCC or DCP. The release of drug was dependent on its solubility (PRO>COU), the fraction of HPMC (low>high fractions), the type of diluent (DCP>MCC) and number of layers (1>2>3 layers). By designing the number and type of layers, dosage forms with well-defined release-kinetics can be tailored. The study has shown the ability of the technology of extrusion to manufacture a controlled release dosage form in a continuous fashion. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta


    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  13. A generalized relationship for swirl decay in laminar pipe flow

    Indian Academy of Sciences (India)

    Swirling flow is of great importance in heat and mass transfer enhancements and in flow measurements. In this study, laminar swirling flow in a straight pipe was considered. Steady three-dimensional axisymmetric Navier–Stokes equations were solved numerically using a control volume approach. The swirl number ...

  14. Laminar Flow Processes of Fluid Energy Carries in Pipe Lines

    Directory of Open Access Journals (Sweden)

    R. I. Еsman


    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flows in pipes and channels.  Various regimes of fluid motion in pipelines of heat-power units and equipment are considered in the paper.The presented dependencies can be used for practical calculations while transporting energy carriers for various application.

  15. Dynamic pitching effect on a laminar separation bubble

    NARCIS (Netherlands)

    Nati, A.; De Kat, R.; Scarano, F.; Van Oudheusden, B.W.


    The unsteady effect of a periodic pitching motion on the characteristic of a laminar separation bubble on the suction side of a SD7003 aerofoil is investigated by means of time-resolved planar and tomographic particle image velocimetry. The measurements provide information on the separation,

  16. Flight Tests of a Supersonic Natural Laminar Flow Airfoil (United States)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.


    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  17. Study of the supersonic laminar/turbulent micro-jets

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mi Seon; Kim, Heuy Dong [Andong National Univ., Andong (Korea, Republic of)


    Due to a very small characteristic length, Reynolds number of supersonic micro-jets is, in general, comparatively low and strongly depends on the pressure ratio of the jet. For low Reynolds numbers, the supersonic micro-jets are laminar. With an increase in Reynolds number, the jet becomes turbulent. In the present study, the supersonic laminar and turbulent micro-jets are computed using the axisymmetric, two-dimensional, compressible, Navier-Stokes equations. The micro-jets are obtained by a supersonic nozzle with a design Mach number of 2.6. The computed results are compared with the previous experimental and theoretical ones as well. The supersonic micro-jets are also theoretically analyzed using Tollmien and Goertler's solutions for the axisymmetric incompressible jets. Both the computed and analyzed results show that the supersonic laminar micro-jet strongly depends on Reynolds number, compared with turbulent jet. The supersonic length of the laminar jet is much larger than that of the turbulent jet.


    Directory of Open Access Journals (Sweden)

    Mikoláš Kesely


    Full Text Available The paper deals with a determination of the terminal settling velocity of coarse particles in quiescent visco-plastic liquids of Herschel-Bulkley type. Experiments on laminar settling of glass beads of different sizes were conducted in transparent Carbopol solutions of various rheological properties in a sedimentation column. The terminal settling velocity of a solitude bead was determined together with the rheological parameters of the Carbopol liquid. An evaluation of the experimental results confirms the existence of the laminar regime for all tests and compares the measured velocities with predictions by Wilson et al. method. Furthermore, an alternative method is proposed for a prediction of the terminal settling velocity in the laminar regime which uses a particle-based determination of the strain rate in the expression for the equivalent viscosity. A comparison with our experimental results shows that the predictions using the proposed method agree well with the experiments and the proposed method is in the laminar settling regime more accurate than the Wilson et al. method.

  19. Comparison Between Laminar and Turbulent Flow in a Single ...

    African Journals Online (AJOL)

    Results show that laminar flow depends on viscous forces and is independent of gravity whereas turbulent flow does not depend on viscous forces but pipe roughness, gas gravity, pressure drop and gas flow rate. Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 343 – 350 ...

  20. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.


    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive s...

  1. Electroosmotic guiding of sample flows in a laminar flow chamber

    NARCIS (Netherlands)

    Besselink, G.A.J.; Vulto, Paul; Lammertink, Rob G.H.; Schlautmann, Stefan; van den Berg, Albert; Olthuis, Wouter; Engbers, G.H.M.; Schasfoort, Richardus B.M.


    The so-called address-flow principle is described: a valveless, electroosmotically driven technology used for controlling the stream profile in a laminar flow chamber. The method is explained, and a theoretical description and experimental verification are presented. Adjustment of the flow of two

  2. An averaging method for nonlinear laminar Ekman layers

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Lautrup, B.; Bohr, T.


    We study steady laminar Ekman boundary layers in rotating systems using,an averaging method similar to the technique of von Karman and Pohlhausen. The method allows us to explore nonlinear corrections to the standard Ekman theory even at large Rossby numbers. We consider both the standard self...

  3. Numerical heat transfer in a cavity with a solar control coating deposited to a vertical semitransparent wall (United States)

    Alvarez, G.; Estrada, C. A.


    A transient two-dimensional computational model of combined natural convection, conduction, and radiation in a cavity with an aspect ratio of one, containing air as a laminar and non-participating fluid, is presented. The cavity has two opaque adiabatic horizontal walls, one opaque isothermal vertical wall, and an opposite semitransparent wall, which consists of a 6-mm glass sheet with a solar control coating of SnS-CuxS facing the cavity. The semitransparent wall also exchanges heat by convection and radiation from its external surface to the surroundings and allows solar radiation pass through into the interior of the cavity. The momentum and energy equations in the transient state were solved by finite differences using the alternating direction implicit (ADI) technique. The transient conduction equation and the radiative energy flux boundary conditions are coupled to these equations. The results in this paper are limited to the following conditions: 104Gr106, an isothermal vertical cold wall of 21°C, outside air temperatures in the range 30°CT040°C and incident solar radiation of AM2 (750 W m-2) normal to the semitransparent wall. The model allows calculation of the redistribution of the absorbed component of solar radiation to the inside and outside of the cavity. The influences of the time step and mesh size were considered. Using arguments of energy balance in the cavity, it was found that the percentage difference was less than 4 per cent, showing a possible total numerical error less than this number. For Gr=106 a wave appeared in the upper side of the cavity, suggesting the influence of the boundary walls over the air flow inside the cavity. A Nusselt number correlation as a function of the Rayleigh number is presented. Copyright

  4. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong


    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  5. Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance (United States)

    Li, Dan; Rigden, Angela; Salvucci, Guido; Liu, Heping


    The scalar roughness length and laminar resistance are necessary for computing scalar fluxes in numerical simulations and experimental studies. Their dependence on flow properties such as the Reynolds number remains controversial. In particular, two important power laws ("1/4" and "1/2"), both having strong theoretical foundations, have been widely used in various parameterizations and models. Building on a previously proposed phenomenological model for interactions between the viscous sublayer and the turbulent flow, it is shown here that the two scaling laws can be reconciled. The 1/4 power law corresponds to the situation where the vertical diffusion is balanced by the temporal change or advection due to a constant velocity in the viscous sublayer, while the 1/2 scaling corresponds to the situation where the vertical diffusion is balanced by the advection due to a linear velocity profile in the viscous sublayer. In addition, the recently proposed "1" power law scaling is also recovered, which corresponds to the situation where molecular diffusion dominates the scalar budget in the viscous sublayer. The formulation proposed here provides a unified framework for understanding the onset of these different scaling laws and offers a new perspective on how to evaluate them experimentally.

  6. Retinoblastoma (Rb) regulates laminar dendritic arbor reorganization in retinal horizontal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Rodrigo [St. Jude Children' s Research Hospital; Davis, Denise [St. Jude Children' s Research Hospital; Dyer, Michael [St. Jude Children' s Research Hospital; Kerekes, Ryan A [ORNL; Zhang, Jiakun [St. Jude Children' s Research Hospital; Bayazitov, Ildar [St. Jude Children' s Research Hospital; Hiler, Daniel [St. Jude Children' s Research Hospital; Karakaya, Mahmut [ORNL; Frase, Sharon [St. Jude Children' s Research Hospital; Gleason, Shaun Scott [ORNL; Zakharenko, Stanislav S [ORNL; Johnson, Dianna [University of Tennessee Health Science Center, Memphis


    Neuronal differentiation with respect to the acquisition of synaptic competence needs to be regulated precisely during neurogenesis to ensure proper formation of circuits at the right place and time in development.This regulation is particularly important for synaptic triads among photoreceptors, horizontal cells (HCs), and bipolar cells in the retina, because HCs are among the rst cell types produced during development, and bipolar cells are among thel ast.HCs undergo a dramatic transition from vertically oriented neurites that form columnar arbors to overlapping laminar dendritic arbors with differentiation.However, how this process is regulated and coordinated with differentiation of photoreceptors and bipolar cells remains unknown. Previous studies have suggested that there tino-blastoma(Rb) tumor suppressor gene may play a role in horizontal cell differentiation and synaptogenesis. By combining genetic mosaic analysis of individual synaptictriads with neuroanatomic analyses and multiphoton live imaging of developing HCs, we found that Rb plays a cell-autonomous role in there organization of horizontal cell neurites as they differentiate. Aberrant vertical processes in Rb-de cient HCs form ectopic synapses with rods in the outer nuclear layer but lack bipolar dendrites. Although previous reports indicate that photoreceptor abnormalities can trigger formation of ectopic synapses, our studies now demonstrate that defects in a post synaptic partner contribute to the formation of ectopic photoreceptor synapses in the mammalian retina.

  7. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.


    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  8. Measurements of laminar mixed convection flow adjacent to an inclined surface with uniform wall heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Mulaweh, H.I. [Mechanical Engineering Department, Purdue University at Fort Wayne, 2101 E. Coliseum Blvd., 46805, Fort Wayne, IN (United States)


    Measurements of laminar mixed convection flow adjacent to an inclined heated flat plate with uniform wall heat flux are reported. Laser-doppler velocimeter and cold wire anemometer were used to measure simultaneously the velocity and temperature distributions, respectively. Measurements of the air velocity and temperature distributions are presented for a range of buoyancy parameters 0{<=}{xi}{<=}2.91. It was found that both the mixed convection local Nusselt number and local friction coefficient increase as the buoyancy force increases (under the buoyancy assisting condition). The velocity field was found to be more sensitive to the buoyancy force than the thermal field. Predictions from both local similarity and local non-similarity models agree well with the experimental results for the thermal field, but only the predictions from the local non-similarity model agree favorably with the measured values for the flow field. (authors)

  9. Effects of Forced Air Warming on Airflow around the Operating Table. (United States)

    Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio


    Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.

  10. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh


    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  11. Acquired vertical accommodative vergence. (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A


    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  12. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)


    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  13. High spatio-temporal resolution PIV of laminar boundary layer relaxation instability at the free surface of a jet (United States)

    Andre, Matthieu; Bardet, Philippe


    In high-speed free surface flows, microscale instabilities can lead to dramatic macroscale effects such as waves, breakup, or air entrainment. The importance of jets in practical applications requires a better understanding of the mechanisms leading to these instabilities. This experimental study focuses on laminar boundary layer relaxation (LBLR) instability. This has received fewer attention than other instabilities due to the small scale, the high Reynolds number and the proximity of an interface. The experiment features a 20 . 3 mm × 146 . 0 mm laminar slab wall jet exiting a nozzle into quiescent air (Re= 3 . 1 ×104 to 1 . 6 ×105). The free surface is flat near the nozzle exit then the LBLR leads to 2D capillary waves which can become very steep eventually resulting in primary breakup and air entrainment. The inception and growth of the capillaries are investigated using time-resolved PIV coupled with PLIF to track the free surface. A magnification of 4 allows a spatial and temporal resolution better than 0.1mm and 0.1ms, respectively. These high resolution results show the role of vortices -created by the roll-up of the shear layer below the surface- in the formation of capillaries. Vortices and waves are a coupled system; the waves can sustain, damp, or amplify. This study has been supported by the start-up funds from The George Washington University to Dr. Bardet.

  14. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    National Research Council Canada - National Science Library

    Tomasz Muszyński; Sławomir Marcin Kozieł


    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator...

  15. Natural laminar flow and airplane stability and control (United States)

    Vandam, Cornelis P.


    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  16. Laminar/turbulent oscillating flow in circular pipes (United States)

    Ahn, Kyung H.; Ibrahim, Mounir B.


    A two-dimensional oscillating flow analysis was conducted simulating the gas flow inside Stirling engine heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10,800 (Va = 272), 19,300 (Va = 272), and 60,800 (Va = 126). The results are compared with experimental results of previous investigators. Predictions of the flow regime are also checked by comparing velocity amplitudes and phase difference with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, the performance of the k-epsilon model was evaluated to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  17. Forced underwater laminar flows with active magnetohydrodynamic metamaterials (United States)

    Culver, Dean; Urzhumov, Yaroslav


    Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.

  18. Membraneless microseparation by asymmetry in curvilinear laminar flows. (United States)

    Seo, Jeonggi; Lean, Meng H; Kole, Ashutosh


    Membraneless microseparation by asymmetric inertial migration is studied in curvilinear laminar flows and evidence of the microseparation is presented. Along a curvilinear laminar flow, transverse particle migration involves competition between three shear-flow effects; the tubular pinch effect, centrifugal force, and Dean's vortex. Equilibrating control of migration allows for particle separation to different outlets. No filter-media or external force is necessary for the microseparation utilizing only shear-flow characteristics. A double-spiral design effectively controls the migration to optimize microseparation. The concentration ratio of 10 microm beads from the two different outlets was 660 times at 92 mm/s of flow velocity. This new technology has great potential for high-throughput and low cost in bio-agent and particulate separation at both macro and micro scales.

  19. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.


    Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.

  20. Gyrotactic trapping in laminar and turbulent Kolmogorov flow

    CERN Document Server

    Santamaria, Francesco; Cencini, Massimo; Boffetta, Guido


    Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases we show t...

  1. Gyrotactic trapping in laminar and turbulent Kolmogorov flow (United States)

    Santamaria, Francesco; De Lillo, Filippo; Cencini, Massimo; Boffetta, Guido


    Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases, we show that TPLs become transient, and we characterize their persistence.

  2. Laminar boundary layers with uniform shear cross flow (United States)

    Weidman, Patrick


    Laminar boundary layers with fully developed uniform shear cross flows are considered. The first streamwise laminar flow is a Blasius boundary layer flow, the second is uniform shear flow over a semi-infinite plate, and the third is the flow induced by a power-law stretching surface. In the first two cases, the effect of streamwise plate motion is taken into account by the parameter λ. In each case, the similarity solutions reduce the governing boundary layer equations to a primary ordinary differential equation for the streamwise flow and a secondary linear equation coupled to the primary solution for the cross flow. It is found that an infinity of solutions exist in each problem and the unique solution in each case is found by applying the Glauert criterion. In some instances, a simple exact solution for the cross flow is presented. Results for the wall shear stresses and velocity profiles are given in graphical form.

  3. Mobile Bank Conditions for Laminar Micro-Rivers


    Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane


    International audience; The present study aims to establish a simple mechanistic model for river bank erosion. Recent experiments demonstrate that small-scale laminar flumes can develop erosion structures similar to those encountered in Nature. From Saint-Venant's Equations, a classical sediment transport law and a simple avalanche model, it is shown that bank failure caused by flow erosion can be represented through simple boundary conditions. These conditions are able to deal with the water...

  4. Natural laminar flow experiments on modern airplane surfaces (United States)

    Holmes, B. J.; Obara, C. J.; Yip, L. P.


    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.

  5. 3D Numerical Simulation of Laminar Flow and Conjugate Heat Transfer through Fabric

    Directory of Open Access Journals (Sweden)

    Zhu Guocheng


    Full Text Available The air flow and conjugate heat transfer through the fabric was investigated numerically. The objective of this paper is to study the thermal insulation of fabrics under heat convection or the heat loss of human body under different conditions (fabric structure and contact conditions between the human skin and the fabric. The numerical simulations were performed in laminar flow regime at constant skin temperature (310 K and constant air flow temperature (273 K at a speed of 5 m/s. Some important parameters such as heat flux through the fabrics, heat transfer coefficient, and Nusselt number were evaluated. The results showed that the heat loss from human body (the heat transfer coefficient was smallest or the thermal insulation of fabric was highest when the fabric had no pores and no contact with the human skin, the heat loss from human body (the heat transfer coefficient was highest when the fabric had pores and the air flow penetrated through the fabric.

  6. Vertical distribution of Arctic methane (United States)

    Tukiainen, Simo; Karppinen, Tomi; Hakkarainen, Janne; Kivi, Rigel; Heikkinen, Pauli; Tamminen, Johanna


    In this study we show the vertical distribution of atmospheric methane (CH4) measured in Sodankylä, Northern Finland. The CH4 profiles are retrieved from the direct Sun FTS measurements using the dimension reduction retrieval method. In the retrieval method, we have a few degrees of freedom about the profile shape. The data set covers years 2010-2016 (from February to November) and altitudes 0-40 km. The retrieved FTS profiles are validated against ACE satellite measurements and AirCore balloon measurements. The total columns derived from the FTS profiles are compared to the official TCCON XCH4 data. A vertically resolved methane data set can be used, e.g., to study stratospheric methane during the polar vortex.

  7. Vertical axis wind turbines (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU


    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  8. A Joint Numerical-Experimental Study on Impact Induced Intra-laminar and Inter-laminar Damage in Laminated Composites (United States)

    Riccio, A.; Caputo, F.; Di Felice, G.; Saputo, S.; Toscano, C.; Lopresto, V.


    The investigation of the mechanical response of fibre-reinforced composite laminates under impact loads can be very difficult due to the occurrence of simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damages, like fibre and matrix cracking, and inter-laminar damages, such as delaminations, can take place simultaneously. These damage mechanisms can lead to significant reductions in strength and stability of the composite structure. In this paper a joint numerical-experimental study is proposed which, by means of non-destructive testing techniques (Ultra-sound and thermography) and non-linear explicit FEM analyses, aims to completely characterise the impact induced damage in composite laminates under low velocity impacts. Indeed the proposed numerical tool has been used to improve the understanding of the experimental data obtained by Non-Destructive Techniques. Applications on samples tested according to the AECMA (European Association of Aerospace Manufacturers) prEn6038 standard at three different impact energies are presented. The interaction between numerical and experimental investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the inter-laminar damage formation and evolution.

  9. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator


    Syed Naveed Ul Hasan; Sultan Ali


    This paper reports the experimental evaluation of the heat transfer coefficient (U) in a VRF (Vertical Tube Rising Film Evaporator). The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, s...

  10. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.


    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  11. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar


    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  12. Type I planet migration in nearly laminar disks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory; Lubow, S H [STSI; Lin, D [UCSC


    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  13. Laminar dispersion at low and high Peclet numbers in finite-length patterned microtubes (United States)

    Adrover, Alessandra; Cerbelli, Stefano


    Laminar dispersion of solutes in finite-length patterned microtubes is investigated at values of the Reynolds number below unity. Dispersion is strongly influenced by axial flow variations caused by patterns of periodic pillars and gaps in the flow direction. We focus on the Cassie-Baxter state, where the gaps are filled with air pockets, therefore enforcing free-slip boundary conditions at the flat liquid-air interface. The analysis of dispersion is approached by considering the temporal moments of solute concentration. Based on this approach, we investigate the dispersion properties in a wide range of values of the Peclet number, thus gaining insight into how the patterned structure of the microtube influences both the Taylor-Aris and the convection-dominated dispersion regimes. Numerical results for the velocity field and for the moment hierarchy are obtained by means of finite element method solution of the corresponding transport equations. We show that for different patterned geometries, in a range of Peclet values spanning up to six decades, the dispersion features in a patterned microtube are equivalent to those of a microtube characterized by a uniform slip velocity equal to the wall-average velocity of the patterned case. This suggests that two patterned micropipes with different geometry yet characterized by the same flow rate and average wall velocity will exhibit the same dispersion features as well as the same macroscopic pressure drop.

  14. On the limits of detection of a chemical vapor plume in air using the schlieren optical method (United States)

    Bigger, Rory; Settles, Gary


    A modest benchtop z-type schlieren optical system employing twin parabolic mirrors is characterized in terms of its sensitivity limit using the standard-lens method of calibration. A measurement by this method of the free-convection boundary layer on a heated vertical plate in air compares well with known theory. A mixing tube and oxygen sensor are then used to image laminar plumes of both helium and carbon dioxide in air at various mixture ratios, revealing a minimum value of the refractive-index gradient across the plume-air mixing boundary at its origin that is required for visibility. Thus the schlieren detection of a chemical vapor plume must depend upon the concentration of vapor in the air and the vapor refractive index. A range of chemicals is explored in order to determine the detectable concentration limit by this means. The results are discussed in terms of the possible use of schlieren optics to detect explosive vapor plumes in air.

  15. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.


    the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow......Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...

  16. Hybrid laminar flow control applied to advanced turbofan engine nacelles (United States)

    Collier, F. S., Jr.; Arcara, P. C., Jr.; Wie, Y. S.


    The potential application of hybrid laminar flow control (HLFC) to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area that approaches 15 percent of the wing total wetted area of future commercial transports is presented. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed employing a predictor/corrector design technique. Performance evaluations on an advanced twin-engine transport configuration are discussed to determine potential benefits in terms of reduced fuel consumption.

  17. Estudio estructural de materiales laminares y su aplicación en membranas mixtas material laminar-polímero


    Galve Guinea, Alejandro; Coronas Ceresuela, Joaquín; Téllez Ariso, Carlos


    El objetivo principal de esta tesis es el estudio estructural de materiales laminares y su utilización para la preparación de membranas mixtas, específicamente se ha buscado conseguir membranas que muestren propiedades barrera y propiedades de separación mejoradas para la mezcla hidrógeno/metano. Se ha realizado el estudio estructural de las zeolitas Nu-6(1) y Nu-6(2) a partir de datos de difracción de rayos X obtenidos en el sincrotrón ESRF de Grenoble. El principal objetivo era obtener info...

  18. Functionalized vertical InAs nanowire arrays for gas sensing

    NARCIS (Netherlands)

    Offermans, P.; Crego-Calama, M.; Brongersma, S.H.


    Vertical InAs nanowires are contacted in situ using an air-bridge construction and functionalized with a metalloporphyrin (Hemin). The response of bare and functionalized vertical InAs nanowire arrays to ppb-level concentrations of NO2 and NO is demonstrated. Hemin enhances the response to NO

  19. Nanoparticle-wall collision in a laminar cylindrical liquid jet. (United States)

    Xu, Xuefeng; Luo, Jianbin; Guo, Dan


    Although nanoparticle impacts on a solid surface always occur in natural or engineering processes and cause extensive investigations, less works have been reported on the nanoparticle-wall collisions in a liquid. In present paper, by considering the inertial effect and the Brownian motion of nanoparticles, a theoretical model was established for calculating the collision frequency between the nanoparticles and the solid surface in a laminar cylindrical liquid jet impacting normally on the solid surface. The analysis showed that the collision frequency grows as the square root of the impacting speed for low impacting speed regime in which the Brownian motion is predominant, whereas increases as the second power of the impacting speed for high impacting speed regime in which the inertial effect is predominant. Meanwhile, an observation system for nanoparticle-wall collisions in a laminar cylindrical liquid jet has been developed. The adsorption of the nanoparticles on the solid surface after collision has also been observed. Because of their lower attractive energy with the solid surface, these adsorbed nanoparticles are easier to be removed by the hydrodynamic force of the impacting liquid than that deposited on a dry surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Cortical laminar necrosis in dengue encephalitis-a case report. (United States)

    Garg, Ravindra Kumar; Rizvi, Imran; Ingole, Rajan; Jain, Amita; Malhotra, Hardeep Singh; Kumar, Neeraj; Batra, Dhruv


    Dengue encephalitis is a rare neurological manifestation of dengue fever. Its clinical presentation is similar to other viral encephalitides and encephalopathy. No single specific finding on magnetic resonance imaging of dengue encephalitis has yet been documented. They are highly variable and atypical. A 15-year boy presented with fever, the headache and altered sensorium of 12-day duration. On neurological examination, his Glasgow Coma Scale score was 10 (E3M4V3). There was no focal neurological deficit. Laboratory evaluation revealed leukopenia and marked thrombocytopenia. Dengue virus IgM antibody was positive both in serum and cerebrospinal fluid. Magnetic resonance imaging of the brain revealed signal changes in bilateral parietooccipital and left frontal regions (left hemisphere more involved than the right hemisphere). There was gyriform enhancement bilateral parietooccipital regions consistent with cortical laminar necrosis. Bilaterally diffuse subcortical white matter was also involved and subtle T2 hyperintensity involving both basal ganglia was noted. Gradient echo sequence revealed presence of hemorrhage in the subcortical white matter. Patient was treated conservatively and received platelet transfusion. Patient became fully conscious after 7 days. In a patient with highly suggestive dengue e\\ephalitis, we describe an unusual magnetic resonance imaging finding. This report is possibly the first instance of cortical laminar necrosis in such a setting.

  1. Spatial distribution of laminar flow-assisted dendritic amplification. (United States)

    Hosokawa, Kazuo; Maeda, Mizuo


    In this paper, we report spatial distribution of laminar flow-assisted dendritic amplification (LFDA) product. LFDA is a recently invented signal amplification method dedicated to biomolecular binding events on microchannel walls. Onto the bound biomolecule, a dendritic structure is constructed by supplying two building blocks from laminar streams produced by a Y-shaped microchannel. In view of the extension of LFDA to simultaneous amplification of multiple binding spots, we have investigated the distribution of the LFDA product across and along the microchannel with the course of time. We fabricated a Y-shaped microchannel with a cross section of 110 microm x 22 microm using poly(dimethylsiloxane). As the LFDA building blocks, FITC-labeled streptavidin and biotinylated anti-streptavidin were injected from the two inlets of the microchannel at a mean flow velocity of 6.2 mm s(-1) (after the confluence). Nonspecific adsorption of the building blocks formed the seed layer of LFDA. The progress of LFDA was monitored with a fluorescence microscope up to 10.1 mm of microchannel length. After 5 min or later, the fluorescence intensity profile across the microchannel showed a peak at the center of the channel. With the course of time, the peak height grew exponentially except for slight saturation, but the peak width was almost constant. Along the microchannel, the peak height decreased almost linearly with the increasing logarithm of the distance, and the peak width was broadened in accordance with the 1/3 power law.

  2. Numerical study of mixed convection and conduction in a 2-D square ventilated cavity with an inlet at the vertical glazing wall and outlet at the top surface (United States)

    Arce, J.; Xamán, J.; Álvarez, G.


    A steady state numerical study of combined laminar mixed convection and conduction heat transfer in a ventilated square cavity is presented. The air inlet gap is located at the bottom of a vertical glazing wall and air exits the cavity via a gap located at the top surface. Three locations for the opening at the top surface: left (case a), center (case b) and right side (case c) are considered. All the remaining surfaces are considered adiabatic. The mass, momentum and energy conservation equations were solved using the finite volume method for different Rayleigh numbers in the interval of 104 < Ra < 106 and Reynolds number in the interval of 100 < Re < 700. Temperature, flow field, and heat transfer rates are analyzed. The effect of the interaction between ambient conditions outside the glazing and the air inlet gap at the bottom for different air outlet gap positions at the top surface modifies the flow structure and temperature distribution of the air inside the cavity. The Nusselt number as a function of the Reynolds number was determined for the three cases. It was found that configuration for case (a) removes a higher amount of heat entering the cavity compared to cases (b) and (c). This is due to the short distance between the main stream and the glass wall surface. Thus, the forced airflow entering the cavity is assisted by the buoyancy forces, and most of the cavity remains at the inlet flow temperature, which should be appropriate for warm climates. These results may provide useful information about the heat transfer and fluid flow for future studies.

  3. Numerical modelling of sooting laminar diffusion flames at elevated pressures and microgravity (United States)

    Charest, Marc Robert Joseph

    Fully understanding soot formation in flames is critical to the development of practical combustion devices, which typically operate at high pressures, and fire suppression systems in space. Flames display significant changes under microgravity and high-pressure conditions as compared to normal-gravity flames at atmospheric pressure, but the exact causes of these changes are not well-characterized. As such, the effects of gravity and pressure on the stability characteristics and sooting behavior of laminar coflow diffusion flames were investigated. To study these effects, a new highly-scalable combustion modelling tool was developed specifically for use on large multi-processor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modelling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement algorithm on body-fitted, multi-block meshes. An acetylene-based, semi-empirical model was used to predict the nucleation, growth, and oxidation of soot particles. Reasonable agreement with experimental measurements for different fuels and pressures was obtained for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The effects of pressure and gravity were studied for flames of two different fuels: ethylene-air flames between pressures of 0.5--5 atm and methane-air flames between 1--60 atm. Based on the numerical predictions, zero-gravity flames had lower temperatures, broader soot-containing zones, and higher soot concentrations than normal-gravity flames at the same pressure. Buoyant forces caused the normal-gravity flames to narrow with increasing pressure while the

  4. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles (United States)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.


    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  5. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    Energy Technology Data Exchange (ETDEWEB)

    Wie, Y.S.; Collier, F.S. Jr.; Wagner, R.D. (High Technology Corp., Hampton, VA (United States) NASA, Langley Research Center, Hampton, VA (United States))


    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption. 13 refs.

  6. Vertical atlantoaxial dislocation


    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.


    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  7. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan


    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  8. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  9. Composition of vertical gardens


    Sandeva, Vaska; Despot, Katerina


    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  10. Computational wing design studies relating to natural laminar flow (United States)

    Waggoner, Edgar G.


    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  11. Analytical solutions of laminar swirl decay in a straight pipe (United States)

    Yao, Shanshan; Fang, Tiegang


    In this work, the laminar swirl flow in a straight pipe is revisited and solved analytically by using prescribed axial flow velocity profiles. Based on two axial velocity profiles, namely a slug flow and a developed parabolic velocity profiles, the swirl velocity equation is solved by the separation of variable technique for a rather general inlet swirl velocity distribution, which includes a forced vortex in the core and a free vortex near the wall. The solutions are expressed by the Bessel function for the slug flow and by the generalized Laguerre function for the developed parabolic velocity. Numerical examples are calculated and plotted for different combinations of influential parameters. The effects of the Reynolds number, the pipe axial distance, and the inlet swirl profiles on the swirl velocity distribution and the swirl decay are analyzed. The current results offer analytical equations to estimate the decay rate and the outlet swirl intensity and velocity distribution for the design of swirl flow devices.

  12. Cortical laminar necrosis in brain infarcts: serial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Siskas, N.; Lefkopoulos, A.; Ioannidis, I.; Charitandi, A.; Dimitriadis, A.S. [Radiology Department, AHEPA University Hospital, Aristotele University of Thessaloniki (Greece)


    High-signal cortical lesions are observed on T1-weighted images in cases of brain infarct. Histological examination has demonstrated these to be ''cortical laminar necrosis'', without haemorrhage or calcification. We report serial MRI in this condition in 12 patients with brain infarcts. We looked at high-signal lesions on T1-weighted images, chronological changes in signal intensity and contrast enhancement. High-signal cortical lesions began to appear about 2 weeks after the ictus, were prominent at 1 - 2 months, then became less evident, but occasionally remained for up to 1.5 years. They gave high signal or were isointense on T2-weighted images and did not give low signal at any stage. Contrast enhancement of these lesions was prominent at 1 - 2 months, and less apparent from 3 months, but was seen up to 5 months. (orig.)

  13. Turbulence and Laminar Structures: Can They Co-Exist? (United States)

    Canuto, V. M.


    Schwarzschild first suggested that the laminar structures observed in the high Reynolds number Re = UL/nu approx. = (10(exp 12)) solar photosphere are the result of turbulence rather than a proof of its absence. He reasoned that since turbulence generates large turbulent viscosities nu(sub t) much greater than nu, the "effective" Reynolds number Re = UL/nu(sub t) approx. = O(1). Schwarzschild's argument is, however, incomplete for it assumes that the entire role of the non-linear interactions is to "enhance" viscosity. While this is not true in general, we present a proof of how and why it may occur, thus completing Schwarzschild's argument. We further discuss the fact that the same model non-local turbulence models have been shown to reproduce LES data for a variety of flows pertaining to astrophysics, geophysics and laboratory situations (at a fraction of the time).

  14. Laminar separation control effects of shortfin mako shark skin (United States)

    Bradshaw, Michael Thomas

    Shark skin is investigated as a means of laminar flow separation control due to its preferential flow direction as well as the potential for scales to erect and obstruct low-momentum backflow resulting from an adverse pressure gradient acting on the boundary layer. In this study, the effect of the scales on flow reversal is observed in laminar flow conditions. This is achieved by comparing the flow over a pectoral fin from a shortfin mako shark to that over the same fin that is painted to neutralize the effect of the scales on the flow. The effect of the scales on flow reversal is also observed by comparing the flow over a smooth PVC cylinder to that over the same cylinder with samples of mako shark skin affixed to the entire circumference of the cylinder. These samples were taken from the flank region of the shark because the scales at this location have been shown to have the greatest angle of erection compared to the scales on the rest of the shark's body. Scales at this location have an average crown length of 220 microm with a maximum bristling angle of proximately 50 degrees. Because these scales have the highest bristling angle, they have the best potential for separation control. All data was taken using time-resolved Digital Particle Image Velocimetry. The flow over the pectoral fin was analyzed at multiple angles of attack. It was found that the shark skin had the effect of decreasing the size of the separated region over both the pectoral fin and the cylinder as well as decreasing the magnitudes of the reversing flow found in these regions. For all Reynolds numbers tested, drag reduction over 28% was found when applying the sharkskin to the cylinder.

  15. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio


    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  16. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.


    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  17. Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information (United States)

    Zelenak, D.; Narayanaswamy, V.


    Temperature is an important thermochemical property in combusting flows that holds the key to uncovering pollutant formation, flame extinction, and heat release. In a practical combustion environment, the local composition is typically unknown, which hinders the effectiveness of many traditional non-intrusive thermometry techniques. This study aims to offset this limitation by developing a laser-based thermometry technique that does not require prior knowledge of the local composition. Two methods for obtaining temperature are demonstrated in this work, both of which make use of the spectral line broadening of an absorbing species (krypton) seeded into the flow. In the first method, the local Doppler broadening is extracted from an excitation scan to yield the corresponding temperature, while the second method utilizes compositional scaling information of the collisional broadening and collisional shift to determine the temperature. Both methods are demonstrated by measuring the radial temperature profile of a steady laminar CH4/N2 diffusion flame with an air co-flow. The accuracy of the temperature measurements obtained using both methods are evaluated using corresponding temperature profiles determined from computational simulations.

  18. Suppression of the separation zone by a spark discharge on laminar transonic airfoil (United States)

    Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.


    The effect of plasma actuators on Shock Wave / Laminar Boundary Layer Interaction (SWBLI) was studied experimentally on transonic laminar aerofoil. The steady and unsteady characteristics of the separation zone were measured for several flow regimes including the transonic buffet. Multi Sliding Spark Discharge was used for the flow control. Successful suppression of separated flow and laminar transonic buffet by plasma actuators` was demonstrated. An analysis of the discharge pulse energy effect on SWBLI was carried out. The perturbation and thermal spot evolution generated by the discharge was studied in the zone of SWBLI.

  19. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail:; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)


    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  20. Application of 1 D Finite Element Method in Combination with Laminar Solution Method for Pipe Network Analysis (United States)

    Dudar, O. I.; Dudar, E. S.


    The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross – Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.

  1. Numerical Simulation of Laminar Forced Convection of Pin-Fin Heat-Sink Array in a Channel by Using Porous Approach


    Tzer-Ming Jeng; Sheng-Chung Tzeng


    This work used a porous approach model to numerically investigate the fluid flow and heat transfer characteristics of the pin-fin heat-sink array in a rectangular channel with in-line arrangement. The air flow through the channel was laminar. The pin-fin heat sinks with various porosities and pin-fin numbers were employed. The relative center-to-center longitudinal and transverse distances between adjacent heat sinks were changed. The results indicate that the Nusselt number of various heat-s...

  2. A Hybrid Analytical-Numerical Solution to the Laminar Flow inside Biconical Ducts

    National Research Council Canada - National Science Library

    Thiago Antonini Alves; Ricardo Alan Verdú Ramos; Cassio Roberto Macedo Maia


    In this work was presented a hybrid analytical-numerical solution to hydrodynamic problem of fully developed Newtonian laminar flow inside biconical ducts employing the Generalized Integral Transform Technique (GITT...

  3. Convective-diffusive transport in laminar MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, L.


    The two questions of main interest for the design of a fusion blanket are whether the heat transfer to the coolant is high enough that the temperature of the plasma facing wall does not exceed a critical value and whether the corrosion rate is below a certain limit. Both processes are governed by convective - diffusive transport mechanisms. A numerical code for the 3D-solution of these equations in the laminar flow regime is discussed. It is assumed that tthe flow is fully developed when entering the heated section of a blanket element. The interaction of the strong magnetic field with the electrically conducting fluid is taken into account by an asymptotic analysis valid for fully developed MHD flows in ducts with arbitrary shape of cross section. Heat transfer conditions are discussed for circular pipes and square ducts. The influence of the main parameters on wall temperature is analyzed in detail and summarized by an empirical correlation. As an example for an extended use of the heat transfer code the full numerical solution of fully developed MHD flows in circular and rectangular ducts is presented. (orig.) [Deutsch] Bei der Auslegung eines Fusionsblankets sind die wichtigen Fragen zu klaeren, ob die Waermeuebertragung an das Kuehlmedium ausreicht, damit die Temperatur der plasmanahen Wand einen kritischen Wert nicht uebersteigt, und ob die Korrosionsraten unterhalb eines gewissen Grenzwertes bleiben. Beide Prozesse werden durch Gleichungen fuer konvektiv - diffusive Transportvorgaenge beschrieben. Es wird ein numerisches Rechenverfahren zur Bestimmung von dreidimensionalen Loesungen dieser Gleichungen im Bereich laminarer Stroemungen vorgestellt. Dabei wird vorausgesetzt, dass die Stroemung beim Eintritt in den beheizten Teil des Blankets bereits voll ausgebildet ist. Die Wechselwirkung des starken Magnetfeldes mit dem elektrisch leitenden Fluid wird durch eine asymptotische Rechnung beruecksichtigt, die fuer voll ausgebildete MHD Stroemungen in Kanaelen mit

  4. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites -; TCEQ ground site measurements of...

  5. Diel vertical migrat..

    African Journals Online (AJOL)


    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  6. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen


    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  7. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.


    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  8. Vertical shaft windmill (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)


    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  9. Study on supersonic laminar flow control on a warped delta wing


    Ogoshi, Hirokage; Inagaki, Kenjiro; Ishida, Yoji; Yoshida, Kenji; Noguchi, Masayoshi; 生越 博景; 稲垣 健次郎; 石田 洋治; 吉田 憲司; 野口 正芳


    Since the friction drag of an SST (Supersonic Transport) must be reduced to improve the lift-to-drag ratio, supersonic laminar flow control on a warped wing has been investigated from a viewpoint of applying it to real aerodynamic design. Then large reduction due to suction at M = 1.4 was experimentally confirmed and the stability of laminar boundary layer was numerically analyzed.

  10. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus (United States)

    Abrahamson, A. L.


    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  11. Numerical Analysis of Laminar Natural Convection Heat Transfer Around Two Vertical Fins by a Spectral Finite Difference Method

    National Research Council Canada - National Science Library

    Song, HaeHwan; Mochimaru, Yoshihiro


    .... A boundary-fitted coordinate system is formed. Streamlines, isotherms, mean Nusselt numbers and drag and lift coefficients are presented for a variety of dimensionless parameters such as a Grashof number and a Prandtl number at a steady-state...

  12. Vertical gastroplasty: evolution of vertical banded gastroplasty. (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W


    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.

  13. Laminar and turbulent surgical plume characteristics generated from curved- and straight-blade laparoscopic ultrasonic dissectors. (United States)

    Kim, Fernando J; Sehrt, David; Pompeo, Alexandre; Molina, Wilson R


    To characterize laparoscopic ultrasonic dissector surgical plume emission (laminar or turbulent) and investigate plume settlement time between curved and straight blades. A straight and a curved blade laparoscopic ultrasonic dissector were activated on tissue and in a liquid environment to evaluate plume emission. Plume emission was characterized as either laminar or turbulent and the plume settlement times were compared. Devices were then placed in liquid to observed consistency in the fluid disruption. Two types of plume emission were identified generating different directions of plume: laminar flow causes minimal visual obstruction by directing the aerosol downwards, while turbulent flow directs plume erratically across the cavity. Laminar plume dissipates immediately while turbulent plume reaches a second maximum obstruction approximately 0.3 s after activation and clears after 2 s. Turbulent plume was observed with the straight blade in 10 % of activations, and from the curved blade in 47 % of activations. The straight blade emitted less obstructive plume. Turbulent flow is disruptive to laparoscopic visibility with greater field obstruction and requires longer settling than laminar plume. Ultrasonic dissectors with straight blades have more consistent oscillations and generate more laminar flow compared with curved blades. Surgeons may avoid laparoscope smearing from maximum plume generation depending on blade geometry.


    NARCIS (Netherlands)


    The effect of the cleanliness of environmental air on the microbial contamination of a simulated i.v.-admixture during its preparation by aseptic transfer was studied under three conditions: (i) in a laminar air flow (LAF) bench situated in a class 1000 clean room, (ii) in an LAF bench in a

  15. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin


    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  16. Prediction of laminar/turbulent transition in airfoil flows

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J.


    The prediction of the location of transition is important for low Reynolds number airfoil flows. The laminar/turbulent properties of the flow field have an important influence on skin friction and separation and therefore on lift and drag characteristics. In the present study the more general e{sup n} model, originally proposed by Smith and van Ingen, is compared to the Michel criterion. The e{sup n} method is based on linear stability analysis employing the Orr-Sommerfeld equation to determine the growth of spatially developing waves. In order not to compute growth rates for each velocity profile, a database with integral boundary layer parameters as input, has been established. The problem of determining boundary layer properties using Navier-Stokes solver, is solved using a two-equation integral formulation, which is solved using a direct/inverse Newton-Raphson method. The test cases under investigation are incompressible transitional flow over a flat plate and around airfoils at low and moderate Reynolds numbers, at fixed angles of attack, varying from attached flow through light stall. At high Reynolds numbers no large difference is observed between the two transition models, but for lower Reynolds numbers, the e{sup n} method shows better agreement with experiments. Furthermore, it has shown to be more stable. It is therefore preferable to the empirical transition model. (au) 2 tabs., 14 ills., 21 refs.

  17. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan


    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  18. The effect of mako sharkskin on laminar flow separation (United States)

    Bradshaw, Michael; Lang, Amy; Motta, Philip; Habegger, Maria; Hueter, Robert


    Many animals possess effective performance enhancing mechanisms, such as the denticles found on the skin of the shortfin mako shark (Isurus oxyrinchus). The shortfin mako, one of the fastest sharks on the planet, is covered by small, tooth-like scales that vary in flexibility over the body. Previous biological findings have shown that the scales increase in flexibility from the leading to trailing edge over the pectoral fin as well as on various sections of the body. It is believed that the scale bristling may provide a mechanism for flow separation control that leads to decreased drag and increased maneuverability. This study involved testing a left pectoral fin of a shortfin mako shark as well as a cylinder with a sharkskin specimen applied circumferentially in a water tunnel facility under static, laminar conditions. Digital Particle Image Velocimetry (DPIV) was used to characterize the flow over the surfaces. Various Reynolds numbers were tested for both configurations, as well as several AOAs for the pectoral fin. The flow over the fin and cylinder were compared to a painted fin and a smooth PVC cylinder, respectively. The study found that the shark scales do, in fact, help to control flow separation. However, in order for the scales to bristle and trap the reversing flow, a certain magnitude of reversed flow and shear is required. This phenomenon seems to be most effective at near stall conditions and at higher Reynolds numbers. Support from REU grant 1062611 is greatfully acknowledged.

  19. Building a Practical Natural Laminar Flow Design Capability (United States)

    Campbell, Richard L.; Lynde, Michelle N.


    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  20. Parametric analysis of laminar pulsating flow in a rectangular channel (United States)

    Blythman, Richard; Alimohammadi, Sajad; Persoons, Tim; Jeffers, Nick; Murray, Darina B.


    Pulsating flow has potential for enhanced cooling of future electronics and photonics systems. To better understand the mechanisms underlying any heat transfer enhancement, it is necessary to decouple the mechanical and thermal problems. The current work performs a parametric analysis of the flow hydrodynamics using particle image velocimetry (PIV) measurements, CFD simulations and analytical solutions, reorganised in terms of amplitude and phase values using complex notation. To the best of the authors' knowledge, the frequency-dependent behaviour of amplitude and phase of wall shear stress has not been studied in a two-dimensional channel. For laminar flow, the amplitudes are directly proportional to pressure. The amplitudes of various local and mean wall shear stress measures are augmented with frequency compared to steady flow, especially near the short walls and corners. The phases of wall shear stress differ at each wall at moderate frequencies - with the bulk-mean values at the short wall leading those at the long wall - and tend to π/4 in the limit of high frequency. The amplitudes of pressure gradient increase more significantly than wall shear stress magnitudes due to accelerative forces. The boundaries to the quasi-steady, intermediate and inertia-dominated regimes are estimated at Womersley number W o = 1.6 and 27.6 in a rectangular channel, based on the contribution of viscous and inertial terms.

  1. Finite amplitude wave interaction with premixed laminar flames (United States)

    Aslani, Mohamad; Regele, Jonathan D.


    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  2. Flamelet mathematical models for non-premixed laminar combustion

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222 Terrassa, Barcelona (Spain); Coelho, P.J. [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)


    Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive (Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive (Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models. (author)

  3. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth


    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is, how to average out the fluctuations and calculate their average influence on the flow, is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model.

    The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  4. On the collision of laminar jets: fluid chains and fishbones (United States)

    Bush, John W. M.; Hasha, Alexander E.


    We present the results of a combined experimental and theoretical investigation of the family of free-surface flows generated by obliquely colliding laminar jets. We present a parameter study of the flow, and describe the rich variety of forms observed. When the jet Reynolds number is sufficiently high, the jet collision generates a thin fluid sheet that evolves under the combined influence of surface tension and fluid inertia. The resulting flow may take the form of a fluid chain: a succession of mutually orthogonal links, each composed of a thin oval film bound by relatively thick fluid rims. The dependence of the form of the fluid chains on the governing parameters is examined experimentally. An accompanying theoretical model describing the form of a fluid sheet bound by stable rims is found to yield good agreement with the observed chain shapes. In another parameter regime, the fluid chain structure becomes unstable, giving rise to a striking new flow structure resembling fluid fishbones. The fishbones are demonstrated to be the result of a Rayleigh Plateau instability of the sheet's bounding rims being amplified by the centripetal force associated with the flow along the curved rims.

  5. Wall functions for numerical modeling of laminar MHD flows

    CERN Document Server

    Widlund, O


    general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20 x 20 grid, and Hartmann numbers Ha = [10,30,100], the accuracy of pressure drop and wall shear stress predictions was [1.1%,1.6%,0.5%], respectively. Com...

  6. A Laminar Organization for Selective Cortico-Cortical Communication

    Directory of Open Access Journals (Sweden)

    Rinaldo D. D’Souza


    Full Text Available The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and synaptic architectures must differ so that they result in distinct computations at the target projection neurons. In what ways do these pathways differ? By originating and terminating in different laminae, and by selectively targeting specific populations of excitatory and inhibitory neurons, these “interareal” pathways can differentially control the timing and strength of synaptic inputs onto individual neurons, resulting in layer-specific computations. Due to the rapid development in transgenic techniques, the mouse has emerged as a powerful mammalian model for understanding the rules by which cortical circuits organize and function. Here we review our understanding of how cortical lamination constrains long-range communication in the mammalian brain, with an emphasis on the mouse visual cortical network. We discuss the laminar architecture underlying interareal communication, the role of neocortical layers in organizing the balance of excitatory and inhibitory actions, and highlight the structure and function of layer 1 in mouse visual cortex.

  7. Prediction of laminar/turbulent transition in airfoil flows

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J.; Noerkaer Soerensen, J.


    The prediction of the location of transition is important for low Reynolds number airfoil flows. The laminar/turbulent properties of the flow field have an important influence on skin friction and separation and therefore on lift and drag characteristics. In the present study transition is predicted using the more general transition prediction method, the e{sup n} model, and compared to the simple empirical Michel criterion. The flow is computed using an incompressible Navier-Stokes solver and the turbulent region is computed with the two-equation {kappa} - {omega}, SST model. The e{sup n} method is based on linear stability analysis employing the Orr-Sommerfeld equation to determine the growth of spatially developing waves. In order not to compute growth rates for each velocity profile, a database on stability has been established. The problem of determining boundary layer properties using a Navier-Stokes solver, is solved using a two-equation integral formulation, which is solved using a direct/inverse Newton-Raphson method. The test cases under investigation are incompressible transitional flows around airfoils at low and moderate Reynolds numbers, at fixed angles of attack, varying from attached flow through light stall. At high Reynolds numbers no large difference is observed between the two transition models. But for lower Reynolds numbers, the e{sup n} method shows better agreement with experiments. Furthermore it has shown to be more stable. It is therefore preferable to the empirical transition model. (au) 18 refs.

  8. Dental imaging using laminar optical tomography and micro CT (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva


    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  9. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming


    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  10. The Effect Of Initial Temperature On Burning Velocity Of Methane, Propane, Lpg And Iso Butane - Air Mixtures


    Hamid, M. N.; Said, Arkan F.


    In present work, the burning velocity of a fuel - air mixtures varies with equivalence ratio, temperature and number of carbon atoms. Laminar flame speed have been measured experimentally inside a tube using the optical technique. The experimental work was carried out in a pre-pressure period in order to use density ratio method for calculation of laminar burning velocity. Mixture strength, unbumed mixture temperature and number of carbon atoms dependence of burning velocity is represented by...

  11. The Revolutionary Vertical Lift Technology (RVLT) Project (United States)

    Yamauchi, Gloria K.


    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at

  12. Assessment of the presumed mapping function approach for the stationary laminar flamelet modelling of reacting double scalar mixing layers (United States)

    El Sayed, Ahmad; Mortensen, Mikael; Wen, John Z.


    This paper assesses the Presumed Mapping Function (PMF) approach in the context of the Stationary Laminar Flamelet Modelling (SLFM) of a reacting Double Scalar Mixing Layer (DSML). Starting from a prescribed Gaussian reference field, the PMF approach provides a presumed Probability Density Function (PDF) for the mixture fraction that is subsequently employed to close the Conditional Scalar Dissipation Rate (CSDR) upon doubly-integrating the homogeneous PDF transport equation. The PMF approach is unique in its ability to yield PDF and CSDR distributions that capture the effect of multiple fuel injections of different composition. This distinct feature overcomes the shortcomings of the classical SLFM closures (the β-distribution for the PDF and the counterflow solution for the CSDR). The current study analyses the impact of the binary (two-stream) and trinary (three-stream) PMF approaches on the structure of laminar flamelets in a DSML formed by the mixing of a fuel stream and an oxidiser stream separated by a pilot. The conditions of a partially-premixed methane/air piloted jet flame are considered. A parametric assessment is performed by varying the local mixing statistics and the findings are compared to those of the classical SLFM approach. Further, the influence of the PMF approach on flamelet extinction and transport by means of differential diffusion is thoroughly investigated. It is shown that the trinary PMF approach captures the influence of the pilot stream as it is capable of yielding bimodal CSDR and trimodal PDF distributions. It is further demonstrated that, when the influence of the pilot is significant, flamelets generated using the trinary CSDR closure extinguish at higher strain levels compared to flamelets generated using the binary and counterflow closures. Lastly, it is shown that the trinary PMF approach can be critical for accurate SLFM computations of DSMLs when differential diffusion effects are important.

  13. A numerical study of the influence of solidity on the performance of vertical axis turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa


    Full Text Available The paper is developed in the framework of CFD to study the performance of Vertical Axis Turbines (VAT. One direct application is to establish design trends regarding the solidity. The model is validated with benchmarks from the literature for fluvial turbine. As for turbulence models, transitional SST version of k-w is used. The model includes two additional conservation equations for intermittency and critical Reynolds that establishes the transition from laminar to turbulent. Flow pattern are analyzed at intermediate positions along the revolution. A reduction in solidity increases the operation conditions.

  14. Convective Flow of a Colloidal Suspension in a Vertical Slot Heated from Side Wall (United States)

    Cherepanov, I. N.; Smorodin, B. L.


    Convective flows and the transport of nanoparticles are numerically investigated in the vertical slot filled with a colloidal suspension and heated from the side. The thermodiffusion and gravitational sedimentation of the nanoparticles are taken into account. Two different regimes of laminar flow are found. The intensity of the first regime is much lower than in molecular liquids (the magnitudes of the convective and diffusion fluxes have the same order). The second regime is more intensive. The transitions between these two regimes are investigated. It is shown that intensive convective flow completely mixes the colloidal suspension to a homogeneous state as a result of the long transient process.

  15. Boundary layer flow adjacent to a permeable vertical plate with constant surface temperature (United States)

    Najib, Najwa; Bachok, Norfifah; Md Arifin, Norihan


    The effects of suction/injection on the laminar boundary layer flow adjacent to a vertical wall with constant surface temperature are considered. The governing partial differential equations are first transformed into ordinary differential equations before being solved numerically by a finite difference method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that the solution was unique for the assisting flow, while dual solutions exist for the opposing flow. The results indicate that the range of known dual solutions increases with suction and decreases with injection.

  16. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.


    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  17. Exploring Soot Particle Concentration and Emissivity by Transient Thermocouples Measurements in Laminar Partially Premixed Coflow Flames

    Directory of Open Access Journals (Sweden)

    Gianluigi De Falco


    Full Text Available Soot formation in combustion represents a complex phenomenon that strongly depends on several factors such as pressure, temperature, fuel chemical composition, and the extent of premixing. The effect of partial premixing on soot formation is of relevance also for real combustion devices and still needs to be fully understood. An improved version of the thermophoretic particle densitometry (TPD method has been used in this work with the aim to obtain both quantitative and qualitative information of soot particles generated in a set of laminar partially-premixed coflow flames characterized by different equivalence ratios. To this aim, the transient thermocouple temperature response has been analyzed to infer particle concentration and emissivity. A variety of thermal emissivity values have been measured for flame-formed carbonaceous particles, ranging from 0.4 to 0.5 for the early nucleated soot particles up to the value of 0.95, representing the typical value commonly attributed to mature soot particles, indicating that the correct determination of the thermal emissivity is necessary to accurately evaluate the particle volume fraction. This is particularly true at the early stage of the soot formation, when particle concentration measurement is indeed particularly challenging as in the central region of the diffusion flames. With increasing premixing, an initial increase of particles is detected both in the maximum radial soot volume fraction region and in the central region of the flame, while the further addition of primary air determines the particle volume fraction drop. Finally, a modeling analysis based on a sectional approach has been performed to corroborate the experimental findings.

  18. The effect of operating lights on laminar flow: an experimental study using neutrally buoyant helium bubbles. (United States)

    Refaie, R; Rushton, P; McGovern, P; Thompson, D; Serrano-Pedraza, I; Rankin, K S; Reed, M


    The interaction between surgical lighting and laminar airflow is poorly understood. We undertook an experiment to identify any effect contemporary surgical lights have on laminar flow and recommend practical strategies to limit any negative effects. Neutrally buoyant bubbles were introduced into the surgical field of a simulated setup for a routine total knee arthroplasty in a laminar flow theatre. Patterns of airflow were observed and the number of bubbles remaining above the surgical field over time identified. Five different lighting configurations were assessed. Data were analysed using simple linear regression after logarithmic transformation. In the absence of surgical lights, laminar airflow was observed, bubbles were cleared rapidly and did not accumulate. If lights were placed above the surgical field laminar airflow was abolished and bubbles rose from the surgical field to the lights then circulated back to the surgical field. The value of the decay parameter (slope) of the two setups differed significantly; no light (b = -1.589) versus one light (b = -0.1273, p < 0.001). Two lights touching (b = -0.1191) above the surgical field had a similar effect to that of a single light (p = 0. 2719). Two lights positioned by arms outstretched had a similar effect (b = -0.1204) to two lights touching (p = 0.998) and one light (p = 0.444). When lights were separated widely (160 cm), laminar airflow was observed but the rate of clearance of the bubbles remained slower (b = -1.1165) than with no lights present (p = 0.004). Surgical lights have a significantly negative effect on laminar airflow. Lights should be positioned as far away as practicable from the surgical field to limit this effect. Cite this article: Bone Joint J 2017;99-B:1061-6. ©2017 The British Editorial Society of Bone & Joint Surgery.

  19. Direct numerical simulation of a laminar vortex ring (United States)

    James, S.; Madnia, C. K.


    Results are presented of direct numerical simulations (DNS) of a viscous, laminar ring. The effects of different generator configurations and velocity programs on the formation and post-formation characteristics of the ring are studied. It is shown that during the formation phase of the ring, total circulation and impulse in the flowfield are approximately the same for the ``nozzle'' and ``orifice'' generators. It is also found that throughout this period the slug flow model under-predicts the total circulation in the flow. During the formation phase, the simulation results for the time evolution of total circulation and location of the vortex spiral center are in agreement with the experimental findings of Didden [J. Appl. Mech. Phys. (ZAMP) 30, 101 (1979)]. The results of the flow visualization studies show that during the post-formation phase a vortex bubble is formed. As the bubble propels itself forward a wake is formed in the rear of the bubble. The impulse and vorticity from the bubble are continuously shed into this wake. It is found that the total value of the circulation in the flow varies as (t1*)-0.33 which is consistent with Maxworthy's [J. Fluid Mech. 81, 465 (1977)] prediction of the decay of circulation for a vortex ring. The transport of a passive Shvab-Zeldovich scalar variable is used to study the mixing and to obtain the maximum product formation in a chemical reaction of the type A+B→Products in a vortex ring. It is found that as the bubble containing the fuel propels itself forward, the outside oxidizer flow is entrained into it and reacts to form a product. Some of this product then is de-entrained into the wake of the bubble.

  20. Laminar Shear Stress Promotes Mitochondrial Homeostasis in Endothelial Cells. (United States)

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny Ling


    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNF α treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Cálculo no lineal de estructuras reticuladas y laminares

    Directory of Open Access Journals (Sweden)

    Ortiz Herrera, Jesús


    Full Text Available By many of electronic calculus it is possible to approach the non linear analysis of bar constructions efficiently and without the limitations of the traditional plastic Calculus. In order to prove this statement, the author presents certains structural analysis that have been carried out by means of techniques and calculation programs of his own. Further, the non linear analysis of revolving sheets is presented to which algorithms of great formal similarity to those in the case of bar constructions are applicable. Both for these latter ones as weil as for laminated structures the programs elaborated by the author allow a great variety of anelastic analyses (and as a special case, of elastic analysis.Con la ayuda del cálculo electrónico, el análisis no lineal de estructuras de barras es abordable con eficiencia y sin caer en las limitaciones del cálculo plástico tradicional. Con objeto de probar esta afirmación, se presentan determinados análisis estructurales realizados mediante técnicas y programas de cálculo propios. Se presenta asimismo el análisis no lineal de láminas de revolución, a las cuales son aplicables algoritmos de gran similitud formal con los del caso de estructuras de barras. Tanto para estas últimas como para las estructuras laminares, los programas desarrollados por el autor permiten efectuar gran variedad de análisis inelásticos (y elásticos como caso particular.

  2. History of Suction-Type Laminar-Flow Control with Emphasis on Flight Resrearch: Monographs in Aerospace History Number 13 (United States)

    Braslow, A. L.


    The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.

  3. Laminar-flow Liquid-to-air Heat Exchangers - Energy-efficient Display Cabinet Applications


    Haglund Stignor, Caroline


    Provisions are stored and displayed in supermarkets and grocery stores, at a temperature lower than the ambient, in display cabinets, which are responsible for a significant amount of the energy use in this sector. During the 1990s, major changes in the regulations governing the use of synthetic refrigerants took place in Sweden. This resulted in many refrigeration systems being converted to systems with indirect cooling by means of a liquid secondary refrigerant. The cooling coil is an impor...

  4. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries


    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  5. Feasibility and benefits of laminar flow control on supersonic cruise airplanes (United States)

    Powell, A. G.; Agrawal, S.; Lacey, T. R.


    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.

  6. Vertical profile measurements of lower troposphere ionisation


    Harrison, R. G.; Nicoll, K.A.; Aplin, K. L.


    Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during 2013-2014, the Regener-Pfotzer ionisation maximum was at an altitude equivalent to a pressure of (63.1±2.4) hPa, or, expressed in terms of the local air density, (0.101±0.005) kgm−3. The measured ionisation profiles have been evaluated against the Usoskin-Kovaltsov model and, separately, surface neu...

  7. Probability distribution of vertical longitudinal shear fluctuations. (United States)

    Fichtl, G. H.


    This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-

  8. Experimental analysis of the shock dynamics on a transonic laminar airfoil (United States)

    Brion, V.; Dandois, J.; Abart, J.-C.; Paillart, P.


    This paper describes an experimental analysis of the buffet phenomenon on a two-dimensional (2D), transonic, and laminar airfoil at a Reynolds number around 3 · 106. Investigations are carried out in ONERA's S3Ch transonic wind tunnel. The experimental setup allows to vary the Mach number, the angle of attack, and the state of the boundary layer upstream of the shock which can be turbulent or laminar depending on the presence of artificial tripping. Buffet occurs when either the angle of attack or the Mach number is set above a given threshold, which depends upon the particular airfoil, and, as shown here, on the state of the boundary layer. Above the threshold, the boundary layer / shock interaction destabilizes, causing the oscillation of the entire flow field. In the turbulent case, the shock wave moves back and forth over a significant portion of the chord at a frequency of about 75 Hz corresponding to a chord based on Strouhal number St ≃ 0.07, in agreement with previous researches on this phenomenon. In the laminar case, a similar unsteady situation occurs but at a frequency much higher, about 1130 Hz, which corresponds to a Strouhal number of about St ≃ 1. Flow oscillations are limited to the shock foot, the shock itself moving only lightly. The turbulent and laminar bu¨et thresholds are provided. An attempt to apply the classical feedback loop scenario to explain the unsteadiness of the flow in the laminar case is carried out but shows a deceptive agreement with the experimental data. Two other mechanisms of unsteadiness are additionally explored, one based on vortex shedding behind the airfoil and the other on the possible breathing of the laminar separation bubble, which give valuable insights into the §ow physics.

  9. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. (United States)

    Simons, Erin L R; O'connor, Patrick M


    Wing bone histology in three species of birds was characterized in order to test hypotheses related to the relationship between skeletal microstructure and inferred wing loading during flight. Data on the degree of laminarity (the proportion of circular vascular canals) and the occurrence of secondary osteons were obtained from three species that utilize different primary flight modes: the Double-crested cormorant, a continuous flapper; the Brown pelican, a static soarer; and the Laysan albatross, a dynamic soarer. Laminarity indices were calculated for four quadrants for each of the three main wing elements. Ulnae and carpometacarpi were predicted to exhibit quadrant specific patterns of laminarity due to hypothesized differences in locally applied loads related to the attachment of flight feathers. However, few differences among the quadrants were identified. No significant differences were identified among the three elements, which is notable as different bones are likely experiencing different loading conditions. These results do not support the concept of bone functional adaptation in the primary structure of the wing elements. Significant differences in laminarity were found among the three primary flight modes. The dynamic soaring birds exhibited significantly lower laminarity than the flapping and static soaring birds. These results support the proposed hypothesis that laminarity is an adaptation for resisting torsional loading. This may be explained by overall wing shape: whereas dynamic soaring birds have long slender wings, flappers and static soaring birds have broader wings with a larger wing chord that would necessarily impart a higher torsional moment on the feather-bearing bones. Copyright © 2012 Wiley Periodicals, Inc.

  10. Wing bone laminarity is not an adaptation for torsional resistance in bats

    Directory of Open Access Journals (Sweden)

    Andrew H. Lee


    Full Text Available Torsional loading is a common feature of skeletal biomechanics during vertebrate flight. The importance of resisting torsional loads is best illustrated by the convergence of wing bone structure (e.g., long with thin walls across extant bats and birds. Whether or not such a convergence occurs at the microstructural level is less clear. In volant birds, the humeri and ulnae often contain abundant laminar bony tissue in which primary circumferential vascular canals course concentrically about the long axis of the bone. These circumferential canals and the matrix surrounding them presumably function to resist the tissue-level shear stress caused by flight-induced torsion. Here, we assess whether or not laminar bone is a general adaptive feature in extant flying vertebrates using a histological analysis of bat bones. We sampled the humeri from six adult taxa representing a broad phylogenetic and body size range (6–1,000 g. Transverse thick sections were prepared from the midshaft of each humerus. Bone tissue was classified based on the predominant orientation of primary vascular canals. Our results show that humeri from bats across a wide phylogenetic and body size range do not contain any laminar bone. Instead, humeri are essentially avascular in bats below about 100 g and are poorly vascularized with occasional longitudinal to slightly radial canals in large bats. In contrast, humeri from birds across a comparable size range (40–1,000 g are highly vascularized with a wide range in bone laminarity. Phylogenetically-informed scaling analyses reveal that the difference in vascularity between birds and bats is best explained by higher somatic relative growth rates in birds. The presence of wing bone laminarity in birds and its absence in bats suggests that laminar bone is not a necessary biomechanical feature in flying vertebrates and may be apomorphic to birds.

  11. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones (United States)

    Danielsen, Edwin F.


    The STEP tropical objectives were successfully met during the flight experiments conducted from Darwin, Australia, January 16 to February 16, 1987. Necessary and sufficient measurements were made in, above, and downwind from very cold cirrus clouds, produced by three convective cloud types, to demonstrate irreversible mass transports into and dehydration in the lower tropical stratosphere. The three types are defined and described in terms of the physical processes that produce them and illustrated by examples derived from in situ and remote measurements. Intense solar heating is shown to produce, in addition to the usual vertical, sea breeze circulations normal to the coastline, an unusual pair of continental spanning, horizontal circulations. An upper tropospheric-lower stratospheric anticyclonic circulation, inclined upward toward the tropics, contributes to the dehydration of dissipating cirrus anvils and intensifies the upper level, tropical easterlies. The lower tropospheric cyclonic circulation with tropical westerlies and extratropical easterlies is in direct conflict with the normal tropical easterlies and extratropical westerlies. Impulsive switches between these two opposing lower-level wind systems create conditions favorable for each of these cloud types and explain the summer season's aperiodic variability.

  12. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander


    composition, and it is truly commonplace in today’s communication with the diversity of VPNs and secure browser sessions. In fact, it is normal that we have several layers of secure channels: For instance, on top of a VPN-connection, a browser may establish another secure channel (possibly with a different...... end point). Even using the same protocol several times in such a stack of channels is not unusual: An application may very well establish another TLS channel over an established one. We call this selfcomposition. In fact, there is nothing that tells us that all these compositions are sound, i.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  13. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent


    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  14. Suppression of a laminar separation by a spark discharge at a supersonic Mach number (United States)

    Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.


    The paper deals with control the shock wave / laminar boundary layer interaction (SWBLI) by a spark discharge. Incident shock wave generated by a wedge induced the separation of the boundary layer developed on the flat plate at M=1.43. The inflow boundary layer state was laminar. The quantitative measurements were performed by PIV. It was found that a turbulent spot generated by a spark discharge suppresses the separation zone. But the thermal spot increases the loss of total pressure in the boundary layer. The effect of the discharge power on the zone of SWBLI has been studied.

  15. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef


    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  16. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard


    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  17. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers (United States)

    Stock, H. W.


    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  18. Protective Vertical Shelters. (United States)


    strengths of 27.6 MPa and 41.1 MPa, respectively. The mix proportions are reported in Table 1. Type II high - early portland cement was used in the...of a shelter transition section, thickness-to-radius ratio (t/r) of the shelter tube section, and concrete strength ) on shelter response. In addition...kilograms Water , in kilograms 189 155 Pozzoligh, in milliliters 1183 1124 Entrained air, as a percentage 3 3 Slump, in millimeters 127 127 Water / cement

  19. Dynamics of the collision of a vortex ring with a vertical heated wall (United States)

    Gelderblom, G.; Palacios-Morales, C. A.; Zenit, R.; Solorio-Ordaz, F. J.


    We study the dynamics of the impact of a vortex ring with a vertical heated plate (at constant temperature). Laminar vortex rings were generated with a piston cylinder arrangement. The vertical wall is heated by a thermal bath which is held at constant temperature producing a laminar and stable thermal boundary layer. Measurements of the 2D velocity field were obtained with a PIV technique. The experimental results for the isothermal case are in agreement with previous investigations reported in the literature. To avoid azimuthal instabilities, we mainly conducted experiments for L /D0 = 1 (where L is the piston displacement and D0 is the cylinder inner diameter) with different wall temperatures and vortex translation velocities. For this case, secondary vortices were not observed. Using ink visualization we observed the evolution of the vortex shape. The initial circular shape evolves into a ``cat head'' shape after reaching the wall. The top and bottom regions of the vortex reduce and increase their vorticity, respectively. The sides are stretched and convected. An analysis of the different mechanisms leading to this shape evolution is presented and discussed.

  20. Numerical Study of Laminar Forced Convection of Water/Al2o3 Nanofluid in an Annulus with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Amin Kashani


    Full Text Available Laminar forced convection of a nanofluid consisting of water and Al2O3 in a horizontal annulus has been studied numerically. Two-phase mixture model has been used to investigate thermal behaviors of the nanofluid over constant temperature thermal boundary condition and with different volume concentration of nanoparticles. Comparisons with previously published experimental and analytical works on flow behavior in horizontal annulus show good agreements between the results as volume fraction is zero. In general convective heat transfer coefficient increases with nanoparticle concentration. ABSTRAK: Kertaskerja ini mengkaji secara numerik olakan paksa bendalir lamina yang menganduangi air dan Al2O3 didalam anulus mendatar. Model campuran dua fasa digunakan bagi mengkaji tingkah laku haba bendalir nano pada keadaan suhu malar dengan kepekatan nanopartikel berbeza. Perbandingan dengan karya eksperimen dan analitikal yang telah diterbitkan menunjukkan bahawa kelakuan aliran didalm anulus mendatar adalah baik apabila pecahan isipadu adalah sifar. Pada amnya, pekali pemindahan haba olakan meningkat dengan kepekatan nanopartikel. KEYWORDS: nanofluid; volume concentration; heat transfer enhancement; laminar flow convection; annulus

  1. Vertical allometry: fact or fiction? (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold


    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  2. Laminar fMRI : What can the time domain tell us?

    NARCIS (Netherlands)

    Petridou, Natalia; Siero, Jeroen C W

    The rapid developments in functional MRI (fMRI) acquisition methods and hardware technologies in recent years, particularly at high field (≥7 T), have enabled unparalleled visualization of functional detail at a laminar or columnar level, bringing fMRI close to the intrinsic resolution of brain

  3. Quantitative Determination of Glucose Transfer Between Cocurrent Laminar Water Streams in a H-Shaped Microchannel

    NARCIS (Netherlands)

    van Leeuwen, Michiel; Li, Xiaonan; Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Ottens, Marcel; van der Wielen, Luuk A.M.; Heijnen, Joseph J.; van Gulik, Walter M.


    To explore the applicability of a laminar fluid diffusion interface (LFDI) for the controlled feeding of microbioreactors, glucose diffusion experiments were carried out in a rounded H-shaped microstructure etched in a glass substrate. The diffusion channel of the microstructure had a length of 4 mm

  4. Laminar flow heat transfer studies in a twisted square duct for ...

    Indian Academy of Sciences (India)

    The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range ...

  5. Wave model for longitudinal dispersion: application to the laminar-flow tubular reactor

    NARCIS (Netherlands)

    Kronberg, Alexandre E.; Benneker, A.H.; Benneker, A.H.; Westerterp, K.R.


    The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model

  6. Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications (United States)

    Somers, Dan M.


    A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.

  7. A cortical vascular model for examining the specificity of the laminar BOLD signal

    NARCIS (Netherlands)

    Markuerkiaga, I.; Barth, M.; Norris, David Gordon


    Blood oxygenation level dependent (BOLD) functionalMRI has been used for inferring layer specific activation in humans. However, intracortical veins perpendicular to the cortical surface are suspected to degrade the laminar specificity as they drain blood fromthemicrovasculature and BOLD signal is

  8. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model (United States)

    Lynde, Michelle N.; Campbell, Richard L.


    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  9. Influence of main parameters of a parallel-plate dialyzer under laminar flow conditions

    NARCIS (Netherlands)

    Kolev, S.D.; Kolev, Spas D.; van der Linden, W.E.


    A mathematical model describing the mass transfer in a parallel-plate dialyser with co-current laminar flow in both channels based on the Navier-Stokes equations and Fick's second law was developed. Numerical solutions are presented for pulse- and stepwise concentration changes of the solute in one

  10. Laminar imaging of positive and negative BOLD in human visual cortex at 7T. (United States)

    Fracasso, Alessio; Luijten, Peter R; Dumoulin, Serge O; Petridou, Natalia


    Deciphering the direction of information flow is critical to understand the brain. Data from non-human primate histology shows that connections between lower to higher areas (e.g. retina→V1), and between higher to lower areas (e.g. V1←V2) can be dissociated based upon the distribution of afferent synapses at the laminar level. Ultra-high field scanners opened up the possibility to image brain structure and function at an unprecedented level of detail. Taking advantage of the increased spatial resolution available, it could theoretically be possible to disentangle activity from different cortical depths from human cerebral cortex, separately studying different compartments across depth. Here we use half-millimeter human functional and structural magnetic resonance imaging (fMRI, MRI) to derive laminar profiles in early visual cortex using a paradigm known to elicit two separate responses originating from an excitatory and a suppressive source, avoiding any contamination due to blood-stealing. We report the shape of laminar blood level oxygenation level dependent (BOLD) profiles from the excitatory and suppressive conditions. We analyse positive and negative %BOLD laminar profiles with respect to the dominating linear trend towards the pial surface, a confounding feature of gradient echo BOLD fMRI, and examine the correspondence with the anatomical landmark of input-related signals in primary visual cortex, the stria of Gennari. Copyright © 2017. Published by Elsevier Inc.

  11. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao


    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  12. Laminar dispersion in parallel plate sections of flowing systems used in analytical chemistry and chemical engineering

    NARCIS (Netherlands)

    Kolev, S.D.; Kolev, Spas D.; van der Linden, W.E.


    An exact solution of the convective-diffusion equation for fully developed parallel plate laminar flow was obtained. It allows the derivation of theoretical relationships for calculating the Peclet number in the axially dispersed plug flow model and the concentration distribution perpendicular to


    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  14. Unsteady Characteristics of Laminar Separation Bubbles; An Experimental and Numerical Investigation

    NARCIS (Netherlands)

    Baragona, M.


    Laminar separation bubbles may occur in a wide range of engineering applications such as turbomachinery flows, wind turbines, hydrofoils etc. Much attention has been given to their effect on the flow over airfoils because of the importance for an accurate prediction of lift, drag and heat transfer.

  15. Experimental study of the laminar-turbulent transition on a blunt cone (United States)

    Aleksandrova, E. A.; Novikov, A. V.; Utyuzhnikov, S. V.; Fedorov, A. V.


    Results of an experimental study of the laminar-turbulent transition in a hypersonic flow around cones with different bluntness radii at a zero angle of attack, free-stream Mach number M ∞ = 6, and unit Reynolds number in the interval Re ∞,1 = 5.79 · 106-5.66 · 107 m-1 are presented. Flow regimes in which a reverse of the laminar-turbulent transition (decrease in the length of the laminar segment with increasing bluntness radius) are studied. Heat flux distributions over the model surface are obtained with the use of temperature-sensitive paints. Lines of the beginning of the transition in the boundary layer are analyzed by using heat flux fields. The critical Reynolds number Re ∞,R ≈ 1.3 · 105 beginning from which the laminar-turbulent transition substantially depends on uncontrolled disturbances, such as the model tip roughness, is found. In supercritical regimes, the line of the transition beginning is shifted in most cases toward the model tip (reverse of the transition). The results obtained are compared with available experimental data.

  16. Subcortical laminar heterotopia in two sisters and their mother : MRI, clinical findings and pathogenesis

    NARCIS (Netherlands)

    van der Valk, PHM; Snoeck, [No Value; Meiners, LC; des Portes, [No Value; Chelly, J; Pinard, JM; Ippel, PF; van Nieuwenhuizen, O

    MR imaging, clinical data and underlying pathogenesis of subcortical laminar heterotopia (SCLH), also known as band heterotopia, in two sisters and their mother are presented. On MR imaging a different degree of SCLH was found in all three affected family-members. The inversion recovery sequence was


    Directory of Open Access Journals (Sweden)

    Є.О. Гаєв


    Full Text Available  Mathematical model has been suggested and investigation carried out of laminar flow through a round tube with a porous insertion (easily penetrable roughness, EPR in its middle along the axis. Velocity and shear fields have been found analytically for stable flow region, as well as hydraulic resistance as functions of EPR density and its height.

  18. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function

    Directory of Open Access Journals (Sweden)

    Sindy Giebe


    This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The identified molecular mechanisms might be useful for development of alternative therapy concepts.

  19. Optimization of the THz radiation from superconductor at non-laminar regime

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mehdi, E-mail:


    Highlights: • The terahertz radiation of a mesa structure at non laminar regime is considered here. • The non-laminarity of this media is modeled. • The equation of vortex motion and electromagnetic field is solved. • The radiated power is obtained and the parameter optimization for maximize the radiated power is done. - Abstract: The THz radiation due to the flux flow in a superconductor slab at non-laminar regime has been investigated and the radiated power spectrum has been calculated. The parameter (τ) is defined to show amount of non-laminarity. The results reveal that for small values of τ, the system radiated at the harmonics of famous washboard frequency. However, for large values of τ, the radiation spectrum will be changed and for extreme values of τ, the peaks will be flat. Therefore the washboard picture is not valid anymore. The results show that the radiation power is optimum for the special value of τ. Also, the results compared with other theoretical and experimental data.

  20. The effect of blowing or suction on laminar free convective heat transfer on flat horizontal plates

    NARCIS (Netherlands)

    Brouwers, Jos


    In the present paper laminar free convective heat transfer on flat permeable horizontal plates is investigated. To assess the effect of surface suction or injection on heat transfer a correction factor, provided by the film model (or ldquofilm theoryrdquo), is applied. Comparing the film model

  1. Turbulent - laminar transition in the propagation of height-contained hydraulic fracture. (United States)

    Zia, Haseeb; Lecampion, Brice


    Fluid flow is usually assumed to be laminar in the modelling of hydraulic fracture propagation. This approximation can however break down in certain cases where a low viscosity fluid (e.g. water) is injected at a high rate resulting in Reynolds numbers well into the turbulent flow regime. This is notably the case of hydraulic fracture propagation at glacier beds where Reynolds numbers above 100,000 are expected (Tsai and Rice 2010). Recent trend of high injection rate slickwater treatment for the hydraulic fracturing of oil and gas wells has also called the validity of the laminar flow assumption into question. Ames & Bunger (2015) recently investigated the effect of fully rough turbulent flow on the propagation of a height contained hydraulic fracture (Perkins & Kern 1961, Nordgren 1972). They have shown via dimensional analysis that the characteristic pressure should be larger and length shorter in the fully turbulent-rough regime compared to the laminar case. However, in practice, the range of Reynolds numbers for a typical slickwater treatment is expected to be from 1000 to 100,000 which coincides with the transition range from the fully laminar to fully turbulent-rough flows. Moreover, the Reynolds number is also expected to drop significantly in the tip region of a hydraulic fracture as the fracture width tends to zero. We present a numerical model that accommodates the complete laminar-turbulent transition of the flow and its impact on the propagation of a height contained hydraulic fracture. The numerical model is based on an explicit non-oscillatory central scheme for the solution of the coupled system of equations governing fluid flow and fracture elastic deformation. A volume of fluid method is used for tracking of the fracture front. The accuracy of the scheme is validated against the classical solution for the laminar flow regime. The relevance of the different limiting approximations (i.e. fully laminar versus fully turbulent regime) to simulate

  2. Protected Vertices in Motzkin trees


    Van Duzer, Anthony


    In this paper we find recurrence relations for the asymptotic probability a vertex is $k$ protected in all Motzkin trees. We use a similar technique to calculate the probabilities for balanced vertices of rank $k$. From this we calculate upper and lower bounds for the probability a vertex is balanced and upper and lower bounds for the expected rank of balanced vertices.

  3. Estimating noctural ecosystem respiration from the vertical turbulent flux and change in storange of CO2

    NARCIS (Netherlands)

    Gorsel, van E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.; Chen, J.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grünwald, T.; Gu, L.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S.


    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be

  4. Addition of Vertical Velocity to a One-Dimensional Aerosol and Trace Gas Model

    National Research Council Canada - National Science Library

    Hoppel, William A; Caffrey, Peter; Frick, Glendon M


    ... (Coupled Ocean Atmosphere Meteorological Prediction System). The aerosol model is run along an air-mass trajectory generated from the output of COAMPS that includes vertical profiles of meteorological data required by the aerosol model...

  5. Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. (United States)

    Grossberg, Stephen


    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of preattentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how

  6. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON

    KAUST Repository

    Mannaa, Ossama


    The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.

  7. Experimental study on propane/oxygen and natural gas/oxygen laminar diffusion flames in diluting and preheating conditions

    Directory of Open Access Journals (Sweden)

    Kashir Babak


    Full Text Available In the present study, propane/oxygen and natural gas/oxygen diffusion flames within laminar regime have been investigated experimentally to determine the effects of oxidant preheating and diluting. This research has been divided into two parts. At first, effect of oxygen dilution with nitrogen and carbon dioxide gases has been investigated. In this section, stability and flame configuration variations are studied. Furthermore, it is inferred that combustion of natural gas and propane with pure oxygen can increase flame stability against increasing the fuel jet velocities through increasing burning velocity of the flame as compared with the combustion of natural gas or propane with normal air. In the other part, oxidant stream preheating up to 480 K and contemporaneous diluting with nitrogen or carbon dioxide are investigated and results are compared with non-preheating tests. Preheating causes more flame stability with respect to dilution process. Also, Due to combustion products temperature rise and also reduction in ignition delay time in preheating, these flames are more stable and also visually more luminous in comparison with normal temperature flames.

  8. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate (United States)

    Cook, W. J.


    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  9. In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame (United States)

    Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V.


    Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame ( T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10-5 OD (1 σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm-1 of up to 2.1 ppmṡm. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.

  10. A parametric study of AC electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames

    KAUST Repository

    Xiong, Yuan


    This study presents an experimental work investigating the controlling parameters on the formation of an electrically-induced inner toroidal vortex (ITV) near a nozzle rim in small, laminar nonpremixed coflow flames, when an alternating current is applied to the nozzle. A systematic parametric study was conducted by varying the flow parameters of the fuel and coflowing-air velocities, and the nozzle diameter. The fuels tested were methane, ethylene, ethane, propane, n-butane, and i-butane, each representing different ion-generation characteristics and sooting tendencies. The results showed that the fluid dynamic effects on ITV formation were weak, causing only mild variation when altering flow velocities. However, increased fuel velocity resulted in increased polycyclic aromatic hydrocarbon (PAH) formation, which promoted ITV formation. When judging the ITV-formation tendency based on critical applied voltage and frequency, it was qualitatively well correlated with the PAH concentration and the relative location of PAHs to the nozzle rim. The sooting tendency of the fuels did not affect the results much. A change in the nozzle diameter highlighted the importance of the relative distance between the PAH zone and the nozzle rim, indicating the role of local electric-field intensity on ITV formation. Detailed onset conditions, characteristics of near-nozzle flow patterns, and PAH distributions are also discussed.

  11. Validation of the iPhone app using the force platform to estimate vertical jump height. (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge


    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  12. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP) (United States)

    Sohn, Jeong L.


    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  13. A Stochastic Model for Infective Events in Operating Room Caused by Air Contamination (United States)

    Abundo, Paolo; Rosato, Nicola; Abundo, Mario


    We propose a simple stochastic model for the movement of a potentially infective particle in operating room in which the local air contamination level is reduced by using a double laminar flow. Numerical simulation is used to obtain qualitative scenario analysis, in order to prevent infection, i.e. impact of the infective particle with the surgical wound, during the operation.

  14. Planet-disc interaction in laminar and turbulent discs (United States)

    Stoll, Moritz H. R.; Picogna, Giovanni; Kley, Wilhelm


    In weakly ionised discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets are affected by a stochastic component in the torques acting on them, which can impact their migration. In this work we study the interplay between a growing planet embedded in a protoplanetary disc and the VSI turbulence. We performed a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses. We study planets embedded in an inviscid disc that is VSI unstable, becomes turbulent, and generates angular momentum transport with an effective α = 5 × 10-4. This is compared to the corresponding viscous disc using exactly this α-value. In general we find that the planets have only a weak impact on the disc turbulence. Only for the largest planet (100 M⊕) does the turbulent activity become enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30,100 M⊕) in the turbulent disc equal exactly that of the corresponding viscous case, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations for the VSI disc. At the gap edges vortices are generated that are stronger and longer-lived in the VSI disc. Low mass planets (with Mp ≤ 10 M⊕) do not open gaps in the disc in either case, but generate for the turbulent disc an overdensity behind the planet that exerts a significant negative torque. This can boost the inward migration in VSI turbulent discs well above the Type I rate. Owing to the finite turbulence level in realistic 3D discs the gap depth will always be limited and migration will not stall in inviscid discs.

  15. Stability of a laminar flame front propagating within a tube

    Energy Technology Data Exchange (ETDEWEB)

    Salamandra, G.D.; Maiorov, N.I.


    The present study examines the deformation of a flame propagating in a semi-closed horizontal tube under the action of perturbations artificially created on the flame surface by brief action of a transverse electrical field on the combustion zone. The fuel mixture used was a dry methane-air mixture containing 10% CH4, which produced a flame front with relatively low convexity. Flame front propagation was recorded by high-speed photographic methods. Interpretation of the photographs reveals that the magnitude of the perturbations increases by an exponential law; fine scale perturbations on the flame surface are suppressed by coarse scale perturbations, while the stable curved form of the flame front in the tube is ensured by the stabilizing action of the tube walls.


    Directory of Open Access Journals (Sweden)

    Jan Havlík


    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  17. The Turbulent-Laminar Transition on the Rocket Surface During the Injection

    Directory of Open Access Journals (Sweden)

    I. I. Yurchenko


    Full Text Available The variety of turbulent-laminar transition criteria in such environments as the launch vehicle injection points to the essential influence of spherical nose roughness, which is included in one form or another in the critical Reynolds numbers for a lot of explorers of blunt bodies. Some of researchers of the reentry bodies have founded the correlation functions between the momentum thickness Reynolds number and Max number as the transition criteria.In this article we have considered results of flight tests carried out using launch vehicles to define boundary layer regime on the payload fairing surface. The measurements were carried out using specially designed complex of gages consisted of calorimeters, surface temperature gages, and pressure gages. The turbulent-laminar transition was defined in accordance with the sharp change of calorimeter readings and flow separation pressure gages indication.The universal criterion of turbulent-laminar transition has been identified for blunted payload fairings i.e. Reynolds number Reek based on the boundary layer edge parameters in the sonic point of the payload fairing spherical nose and surface roughness height k, which gives the best correlation of all data of flight experiment conducted to define turbulent-laminar transition in boundary layer. The criterion allows defining time margins when boundary layer regime is turbulent at Reek=20±14 existing on space head surfaces and at Reek=6±5 the boundary layer regime is totally laminar.It was defined that under conditions when there are jointly high background disturbances of free stream flux at operation of main launch vehicle engines and influence of the surface roughness the critical value of Reynolds number is an order-diminished value as compared to the values obtained in wind tunnels and in free flight.It was found that with decreasing of roughness influence in growing boundary layer the flow disturbances evolution wide apart the payload fairing

  18. Air Research (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  19. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all......We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-good...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  20. Horizontal and Vertical Line Designs. (United States)

    Johns, Pat


    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  1. Vertical axis wind turbine airfoil (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich


    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  2. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.


    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices....... Contaminant removal effectiveness and air change efficiency were used to evaluate ventilation effectiveness. No significant risk of thermal discomfort due to vertical air temperature differences or draught was found. When the room was heated by warm air, buoyancy forces were important for ventilation...

  3. Backward integration, forward integration, and vertical foreclosure


    Spiegel, Yossi


    I show that partial vertical integration may either alleviates or exacerbate the concern for vertical foreclosure relative to full vertical integration and I examine its implications for consumer welfare.

  4. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. (United States)

    Kwan, Kenneth Y; Sestan, Nenad; Anton, E S


    The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.

  5. The coefficientof hydraulic friction of laminar open flows in smooth channels

    Directory of Open Access Journals (Sweden)

    Borovkov Valeriy Stepanovich


    Full Text Available The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200. Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. The article declares that the coefficient of hydraulic friction λ in the zone of the laminar flow depends on the relative width of the channels with smooth bottom. In the article it is also shown that the Charny formula satisfactorily agrees with the theoretical formula and with the experimental data.

  6. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Sofia Fertuzinhos


    Full Text Available The hallmark of the cerebral neocortex is its organization into six layers, each containing a characteristic set of cell types and synaptic connections. The transcriptional events involved in laminar development and function still remain elusive. Here, we employed deep sequencing of mRNA and small RNA species to gain insights into transcriptional differences among layers and their temporal dynamics during postnatal development of the mouse primary somatosensory neocortex. We identify a number of coding and noncoding transcripts with specific spatiotemporal expression and splicing patterns. We also identify signature trajectories and gene coexpression networks associated with distinct biological processes and transcriptional overlap between these processes. Finally, we provide data that allow the study of potential miRNA and mRNA interactions. Overall, this study provides an integrated view of the laminar and temporal expression dynamics of coding and noncoding transcripts in the mouse neocortex and a resource for studies of neurodevelopment and transcriptome.

  7. Optimization on a Network-based Parallel Computer System for Supersonic Laminar Wing Design (United States)

    Garcia, Joseph A.; Cheung, Samson; Holst, Terry L. (Technical Monitor)


    A set of Computational Fluid Dynamics (CFD) routines and flow transition prediction tools are integrated into a network based parallel numerical optimization routine. Through this optimization routine, the design of a 2-D airfoil and an infinitely swept wing will be studied in order to advance the design cycle capability of supersonic laminar flow wings. The goal of advancing supersonic laminar flow wing design is achieved by wisely choosing the design variables used in the optimization routine. The design variables are represented by the theory of Fourier series and potential theory. These theories, combined with the parallel CFD flow routines and flow transition prediction tools, provide a design space for a global optimal point to be searched. Finally, the parallel optimization routine enables gradient evaluations to be performed in a fast and parallel fashion.

  8. Histopathological hoof laminar changes in horses with Pituitary Pars Intermedia Adenoma: cases report

    Directory of Open Access Journals (Sweden)

    L. M. Laskoski


    Full Text Available ABSTRACTLaminitis in horses is often associated with endocrine disorders, especially the pituitary pars intermedia dysfunction (PPID in older animals. Morphologic exams of the laminar tissue of the hoof were performed in two horses with suspected PPID, with no clinical signs of laminitis. Changes compatible with laminitis of endocrine origin were observed, such as rounding of the nuclei of the basal cells, thinning and stretching of the secondary epidermal laminae and tissue proliferation. PPID horses with no clinical signs of laminitis may be affected by lesions of the laminar tissue of the hoof that compromise the integrity of the dermal-epidermal junction and may develop clinical symptoms of the disease. It has been suggested that the development stage of endocrine laminitis is longer, but further studies should be conducted to confirm it.

  9. A numerical investigation of laminar forced convection in a solar collector with non-circular duct

    Directory of Open Access Journals (Sweden)

    Teleszewski Tomasz Janusz


    Full Text Available This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition. Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM. Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.

  10. Experimental Investigation of a Synthetic Jet Array in a Laminar Channel Flow

    Directory of Open Access Journals (Sweden)

    Trávníček Z.


    Full Text Available The paper deals with an impinging synthetic jet, namely on the case of a synthetic jet array interacting with a laminar channel flow. This arrangement can be useful in many micro-scale applications, such as cooling of micro-electronics. The flow regime in micro-scale is usually laminar with very small Reynolds numbers; therefore synthetic jet array can be used for the profile disturbance and heat transfer enhancement. The paper focuses on the low Reynolds number (in order 102. The working fluid is water and a piezoceramic transducer is used as a moving membrane in the synthetic jet actuator. Experiments are performed with four experimental methods (tin ion visualization, hot wire anemometry in constant temperature mode, laser Doppler vibrometry and particle image velocimetry in three laboratories (at the Eindhoven University of Technology, Netherlands, at the Institute of Thermodynamics CAS, v.v.i. and Technical University of Liberec, both Czech Republic.

  11. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    CERN Document Server

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L


    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  12. A numerical investigation of laminar forced convection in a solar collector with non-circular duct (United States)

    Janusz Teleszewski, Tomasz


    This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape) featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition). Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM). Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.

  13. Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis

    CERN Document Server

    Chattopadhyay, Amit K; Sugavanam, Srikanth; Tarasov, Nikita; Churkin, Dmitry


    Loss of coherence with increasing excitation amplitudes and spatial size modulation is a fundamental problem in designing Raman fiber lasers. While it is known that ramping up laser pump power increases the amplitude of stochastic excitations, such higher energy inputs can also lead to a transition from a linearly stable coherent laminar regime to a non-desirable disordered turbulent state. This report presents a new statistical methodology, based on first passage statistics, that classifies lasing regimes in Raman fiber lasers, thereby leading to a fast and highly accurate identification of a strong instability leading to a laminar-turbulent phase transition through a self-consistently defined order parameter. The results have been consistent across a wide range of pump power values, heralding a breakthrough in the non-invasive analysis of fiber laser dynamics.

  14. Horizontal projections of area 17 in Cebus monkeys: metric features, and modular and laminar distribution

    Directory of Open Access Journals (Sweden)

    A.K.J. Amorim


    Full Text Available Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb a, IIIb ß and IIIc. Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates

  15. Cars temperature measurements in sooting, laminar diffusion flames (United States)

    Boedeker, L. R.; Dobbs, G. M.


    Temperature distributions have been measured in axisymmetric ethylene-air diffusion flames using high spatial resolution coherent anti-Stokes Raman spectroscopy. As ethylene flow increased and the flame approached a smoke-point condition, the temperatures attained in the upper part of the flame were reduced by about 300K below the maximum radial temperatures low in the flame. Addition of diluent N2 to ethylene caused a reduction in temperature low in the flame but increased temperature higher in the flame. Maximum temperatures attained in all ethylene flames were between 0.84 and 0.89 of respective adiabatic flame temperatures (AFT). The upper temperature of the near-smoke-point flame was only 0.76 of AFT. Results are compared with the generalized flame front model of Mitchell. MIE scattering measurements are also discussed. Brief studies with propane and a nonsooting, CO flame are reported; maximum axial and radial temperatures were between 0.84 and 0.87 of AFT. Results indicate the importance of thermal loss from soot radiation, radial transport processes and fuel pyrolysis. Nonluminous radiation and finite reaction rates are other possible factors. The upper luminous part of the highly sooting ethylene flame is likely above the primary flame front and is a soot burnout zone.

  16. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline


    Vilalta Guillermo; Silva Mário; Blanco Alejandro


    The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the F...

  17. A computational study of particle deposition patterns from a circular laminar jet


    Feng, James Q.


    Particle deposition patterns on the plate of inertial impactor with circular laminar jet are investigated numerically with a Lagrangian solver implemented within the framework of the OpenFOAM$^{\\circledR}$ CFD package. Effects of taper angle of the nozzle channel and jet-to-plate distance are evaluated. The results show that tapered nozzle tends to deposit more particles toward the circular spot edge than straight nozzle. At jet Reynolds number $Re = 1132$, a tapered nozzle deposits particles...

  18. Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers


    Malverti, L.; Lajeunesse, E.; Métivier, F.


    International audience; [1] The use of microscale experimental rivers (with flow depths of the order of a few millimeters) to investigate natural processes such as alluvial fans dynamics, knickpoints migration, and channel morphologies, such as meandering and braiding has become increasingly popular in recent years. This raises the need to address the issue of how to extrapolate results from the experimental microscale at which flow is laminar to the scale of natural turbulent rivers. We addr...

  19. Modified Laminar Bone in Ampelosaurus atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology


    Nicole Klein; Martin Sander, P.; Koen Stein; Jean Le Loeuff; Carballido, Jose L.; Eric Buffetaut


    BACKGROUND: Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. METHODOLOGY/PRINCIPAL FINDINGS: Ampelosaurus retains the laminar vascular organization of basal Sauropoda...

  20. Influence of open trailing edge on laminar aerofoils at low Reynols number


    Sant Palma, Rodolfo; Ayuso Moreno, Luis Manuel; Meseguer Ruiz, José


    This article deals with the effect of open trailing edge on the aerodynamic characteristics of laminar aerofoils at low Reynolds numbers, the attention being focussed on the influence of such a trailingedge imperfection on the aerodynamic efficiency. Wind tunnel tests have been performed at different Reynolds numbers and angles of attack, and global aerodynamic as well as pressure distributions were measured (in these tests two types of open trailing edges, either sharp or rounded were consid...

  1. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane (United States)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.


    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  2. Mechanical and statistical study of the laminar hole formation in transitional plane Couette flow (United States)

    Rolland, Joran


    This article is concerned with the numerical study and modelling of two aspects the formation of laminar holes in transitional turbulence of plane Couette flow (PCF). On the one hand, we consider quenches: sudden decreases of the Reynolds number R which force the formation of holes. The Reynolds number is decreased from featureless turbulence to the range of existence of the oblique laminar-turbulent bands [ R g; R t]. The successive stages of the quench are studied by means of visualisations and measurements of kinetic energy and turbulent fraction. The behaviour of the kinetic energy is explained using a kinetic energy budget: it shows that viscosity causes quasi modal decay until lift-up equals it and creates a new balance. Moreover, the budget confirms that the physical mechanisms at play are independent of the way the quench is performed. On the other hand we consider the natural formation of laminar holes in the bands, near R g. The direct numerical simulations (DNS) show that holes in the turbulent bands provide a mechanism for the fragmented bands regime and orientation fluctuations near R g. Moreover the analysis of the fluctuations of kinetic energy toward low values demonstrates that the disappearance of turbulence in the bands can be described within the framework of large deviations. A large deviation function is extracted from the probability density function of the kinetic energy.

  3. Laminar Organization of Encoding and Memory Reactivation in the Parietal Cortex. (United States)

    Wilber, Aaron A; Skelin, Ivan; Wu, Wei; McNaughton, Bruce L


    Egocentric neural coding has been observed in parietal cortex (PC), but its topographical and laminar organization is not well characterized. We used multi-site recording to look for evidence of local clustering and laminar consistency of linear and angular velocity encoding in multi-neuronal spiking activity (MUA) and in the high-frequency (300-900 Hz) component of the local field potential (HF-LFP), believed to reflect local spiking activity. Rats were trained to run many trials on a large circular platform, either to LED-cued goal locations or as a spatial sequence from memory. Tuning to specific self-motion states was observed and exhibited distinct cortical depth-invariant coding properties. These patterns of collective local and laminar activation during behavior were reactivated in compressed form during post-experience sleep and temporally coupled to cortical delta waves and hippocampal sharp-wave ripples. Thus, PC neuron motion encoding is consistent across cortical laminae, and this consistency is maintained during memory reactivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fan Beam Emission Tomography for Estimating Scalar Properties in Laminar Flames (United States)

    Lim, Jongmook; Sivathanu, Yudaya; Feikema, Douglas


    A new method of estimating temperatures and gas species concentrations (CO2 and H2O) in a laminar flame is reported. The path-integrated, spectral radiation intensities emitted from a laminar flame at multiple wavelengths and view angles are calculated using a narrow band radiation model. Synthetic data, in the form of radial profiles of temperature and gas concentrations, are used in these calculations. The calculations mimic measurements that would theoretically be obtained using a mid-infrared spectrometer with a scanner. The path integrated spectral radiation intensities are deconvoluted using a maximum likelihood estimation method in conjunction with an iterative scheme. The deconvolution algorithm accounts for the self-absorption of radiation by the intervening gases, and provides the local temperature and gas species concentrations. The deconvoluted temperatures and gas concentrations are compared with the synthetic data used for calculating the spectral radiation intensities. The deconvoluted temperatures and gas species concentrations are within 0.5 % of the synthetic data. The deconvolution algorithm is expected to provide combustion researchers with an easy method of obtaining the radial profiles of major gas species concentrations and temperatures in laminar flames non-intrusively using a mid-infrared spectrometer with a scanner.

  5. Treatment of seizures in subcortical laminar heterotopia with corpus callosotomy and lamotrigine. (United States)

    Vossler, D G; Lee, J K; Ko, T S


    Focal and generalized cortical dysgeneses are sometimes seen on the magnetic resonance images (MRI) of patients with epilepsy. Subcortical laminar heterotopia are bilateral collections of gray matter in the centrum semiovale that resemble a band or "double cortex" on MRI. We studied one male and two female patients with subcortical laminar heterotopia who had moderate to severe developmental delay, early-onset epilepsy, and medically refractory seizures. Atonic, atypical absence, tonic, myoclonic, complex partial, and generalized tonic-clonic seizures were recorded. Interictal and ictal electroencephalographic patterns were generalized and, less commonly, multifocal. Two years after corpus callosotomy, one patient was free of generalized tonic-clonic and atonic seizures, but the other patient who had undergone callosotomy had no significant reduction in seizure frequency. With lamotrigine treatment, the patient who had not had surgery had complete cessation of monthly episodes of status epilepticus and a dramatic reduction of generalized tonic-clonic seizures, and the other patient who received lamotrigine had a 50% reduction of her atonic seizures. In patients with subcortical laminar heterotopia, atonic and generalized tonic-clonic seizures can be substantially reduced or eliminated by corpus callosotomy or treatment with lamotrigine.

  6. Influence of rheology on laminar heat transfer to viscoelastic fluids in a rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, C.; Hartnett, J.P. (Energy Resources Center, Univ. of Illinois at Chicago, Chicago, IL (US))


    Experimental studies of the laminar pressure drop and heat-transfer behavior of two types of aqueous polymer solutions were carried out in a 2:1 rectangular channel. The fluids studied were 1000 wppm of neutralized Carbopol 934 in deionized water and 1000 wppm of Separan AP-273 in tap water. Three difference thermal boundary conditions were studied. The experimental friction factors for the two polymer solutions agree with the value predicted for a purely viscous power law fluid. The measured Nusselt values for the two polymer solutions were considerably higher than the corresponding values for a power law fluid and higher than the experimental values for water. In this paper it is postulated that these high heat-transfer values are the result of secondary flows which arise from normal stress differences imposed on the boundaries of viscoelastic fluids in laminar flow through noncircular geometries. In addition, it is hypothesized that under laminar flow conditions the low frequency oscillatory behavior determines the relative elasticity, which in turn influences the heat-transfer performance of such fluids.

  7. Change of Fate and Staminodial Laminarity as Potential Agents of Floral Diversification in the Zingiberales. (United States)

    PIñeyro-Nelson, Alma; Almeida, Ana Maria Rocha De; Sass, Chodon; Iles, William James Donaldson; Specht, Chelsea Dvorak


    The evolution of floral morphology in the monocot order Zingiberales shows a trend in which androecial whorl organs are progressively modified into variously conspicuous "petaloid" structures with differing degrees of fertility. Petaloidy of androecial members results from extensive laminarization of an otherwise radially symmetric structure. The genetic basis of the laminarization of androecial members has been addressed through recent candidate gene studies focused on understanding the spatiotemporal expression patterns of genes known to be necessary to floral organ formation. Here, we explore the correlation between gene duplication events and floral and inflorescence morphological diversification across the Zingiberales by inferring ancestral character states and gene copy number using the most widely accepted phylogenetic hypotheses. Our results suggest that the duplication and differential loss of GLOBOSA (GLO) copies is correlated with a change in the degree of the laminarization of androecial members. We also find an association with increased diversification in most families. We hypothesize that retention of paralogs in flower development genes could have led to a developmental shift affecting androecial organs with potential adaptive consequences, thus favoring diversification in some lineages but not others. © 2017 Wiley Periodicals, Inc.

  8. Evaluation of vertical profiles to design continuous descent approach procedure (United States)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  9. Vertical saccades in dyslexic children. (United States)

    Tiadi, Aimé; Seassau, Magali; Bui-Quoc, Emmanuel; Gerard, Christophe-Loïc; Bucci, Maria Pia


    Vertical saccades have never been studied in dyslexic children. We examined vertical visually guided saccades in fifty-six dyslexic children (mean age: 10.5±2.56 years old) and fifty-six age matched non dyslexic children (mean age: 10.3±1.74 years old). Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT®, e(ye)BRAIN). Dyslexic children showed significantly longer latency than the non dyslexic group, also the occurrence of anticipatory and express saccades was more important in dyslexic than in non dyslexic children. The gain and the mean velocity values were significantly smaller in dyslexic than in non dyslexic children. Finally, the up-down asymmetry reported in normal population for the gain and the velocity of vertical saccades was observed in dyslexic children and interestingly, dyslexic children also reported an up-down asymmetry for the mean latency. Taken together all these findings suggested impairment in cortical areas responsible of vertical saccades performance and also at peripheral level of the extra-ocular oblique muscles; moreover, a visuo-attentionnal bias could explain the up-down asymmetry reported for the vertical saccade triggering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan


    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  11. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing. (United States)

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho


    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  12. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee


    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  13. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  14. Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jun; Park, Sang Kyoo; Yang, Hei Cheon [Chonnam National University, Gwangju (Korea, Republic of)


    The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

  15. Waves, circulation and vertical dependence (United States)

    Mellor, George


    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  16. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik


    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  17. Air Pollution (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  18. Laminar Flame Characteristics of C1–C5 Primary Alcohol-Isooctane Blends at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Qianqian Li


    Full Text Available The laminar combustion characteristics of blends of isooctane and C1–C5 primary alcohols (i.e., methanol, ethanol, n-propanol, n-butanol and n-pentanol were investigated using the spherical expanding flame methodology in a constant volume chamber at various equivalence ratios and volume fractions of alcohol. The stretch effect was removed using the nonlinear methodology. The results indicate that the laminar flame speeds of alcohol-isooctane blends increase monotonously with the increasing volume fraction of alcohol. Among the five alcohols, the addition of methanol is identified to be the most effective in enhancing laminar flame speed. The addition of ethanol results in an approximately equivalent laminar flame speed enhancement rate as those of n-propanol, n-butanol and n-pentanol at ratios of 0.8 and 1.5, and a higher rate at 1.0 and 1.2. An empirical correlation is provided to describe the laminar flame speed variation with the volume fraction of alcohol. Meanwhile, the laminar flame speed increases with the mass content of oxygen in the fuel blends. At the equivalence ratio of 0.8 and fixed oxygen content, similar laminar flame speeds are observed with different alcohols blended into isooctane. Nevertheless, with the increase of equivalence ratio, heavier alcohol-isooctane blends tend to exhibit higher values. Markstein lengths of alcohol-isooctane blends decrease with the addition of alcohol into isooctane at 0.8, 1.0 and 1.2, however they increase at 1.5. This is consistent with the behavior deduced from the Schlieren images.

  19. Numerical Investigation of Deviation of Phase Change Characteristics of Horizontal and Vertical Flat Heat Pipe Configurations

    Directory of Open Access Journals (Sweden)

    Rakesh Hari


    Full Text Available The flow characteristics in the porous wick of a flat heat pipe subjected to boiling and condensation are analysed here using two-phase mixture model. Steady laminar boundary layer flow in the capillary wick structure is considered for both vertical and horizontal orientations. The governing boundary layer partial differential equations are simplified using similarity transformation. The transformed equations are then solved numerically by using shooting iterative technique. Investigation was carried out for the effects of the involved parameters such as saturation and temperature across the boundary layer. The behaviour of non-dimensional numbers due to the orientation of the heat pipe is also discussed. The study confirms that orientation plays a significant role in flow and temperature field.

  20. Scrutiny of mixed convection flow of a nanofluid in a vertical channel

    Directory of Open Access Journals (Sweden)

    M. Fakour


    Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.

  1. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    Directory of Open Access Journals (Sweden)

    Kashif Ali


    Full Text Available In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.

  2. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif; Ahmad, Shabbir; Ahmad, Shahzad, E-mail:; Ashraf, Muhammad; Asif, Muhammad [Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan (Postal Code: 60800) (Pakistan)


    In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.

  3. A Computational and Experimental Investigation of a Delta Wing with Vertical Tails (United States)

    Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.


    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  4. Mixed convective flow of immiscible fluids in a vertical corrugated channel with traveling thermal waves

    Directory of Open Access Journals (Sweden)

    J.C. Umavathi


    Full Text Available Fully developed laminar mixed convection in a corrugated vertical channel filled with two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have different viscosities and thermal conductivities. Separate solutions are matched at the interface using suitable matching conditions. The velocity, the temperature, the Nusselt number and the shear stress are analyzed for variations of the governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpendicular to the flow direction.

  5. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)


    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  6. Physics and the Vertical Jump (United States)

    Offenbacher, Elmer L.


    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  7. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang


    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  8. Effect of supply air temperature on air distribution in a room with radiant heating and mechanical ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Fang, Lei


    The present study focused on the effect of supply air temperature on air distribution in a room with floor heating (FH) or ceiling heating (CH) and mixing ventilation (MV) or displacement ventilation (DV). The vertical distribution of air temperature and velocity in the occupied zone and the hori......The present study focused on the effect of supply air temperature on air distribution in a room with floor heating (FH) or ceiling heating (CH) and mixing ventilation (MV) or displacement ventilation (DV). The vertical distribution of air temperature and velocity in the occupied zone...... are relevant to the design and control of the hybrid systems with radiant heating systems and mechanical ventilation systems....

  9. Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model

    Energy Technology Data Exchange (ETDEWEB)

    Byrkjedal, Oeyvind [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway); Kjeller Vindteknikk, PO-Box 122, Kjeller (Norway); Esau, Igor [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); Nansen Environmental and Remote Sensing Center, Bergen (Norway); Kvamstoe, Nils G. [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway)


    The current state-of-the-art general circulation models, including several of those used by the IPCC, show considerable biases in the simulated present day high-latitude climate compared to observations and reanalysis data. These biases are most pronounced during the winter season. We here employ ideal vertical profiles of temperature and wind from turbulence-resolving simulations to perform a priori studies of the first-order eddy-viscosity closure scheme employed in the ARPEGE/IFS model. This reveals that the coarse vertical resolution (31 layers) of the model cannot be expected to realistically resolve the Arctic stable boundary layer. The curvature of the Arctic inversion and thus also the vertical turbulent-exchange processes cannot be reproduced by the coarse vertical mesh employed. To investigate how turbulent vertical exchange processes in the Arctic boundary layer are represented by the model parameterization, a simulation with high vertical resolution (90 layers in total) in the lower troposphere is performed. Results from the model simulations are validated against data from the ERA-40 reanalysis. The dependence of the surface air temperature on surface winds, surface energy fluxes, free atmosphere stability and boundary layer height is investigated. The coarse-resolution run reveals considerable biases in these parameters, and in their physical relations to surface air temperature. In the simulation with fine vertical resolution, these biases are clearly reduced. The physical relation between governing parameters for the vertical turbulent-exchange processes improves in comparison with ERA-40 data. (orig.)

  10. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure

    Directory of Open Access Journals (Sweden)

    Ioan eOpris


    Full Text Available Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs were trained in a visual delayed match-to-sample (DMS task while the activity of prefrontal cortical neurons (areas 46, 8 and 6 was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match response in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional` interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine administration.

  11. Laminar shear stress prevents simvastatin-induced adhesion molecule expression in cytokine activated endothelial cells. (United States)

    Rossi, Joanna; Rouleau, Leonie; Emmott, Alexander; Tardif, Jean-Claude; Leask, Richard L


    In addition to lowering cholesterol, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, have been shown to modulate gene expression in endothelial cells. The effect of statins on cell adhesion molecule expression is unclear and largely unexplored in endothelial cells exposed to shear stress, an important regulator of endothelial cell function. In this study, the effect of simvastatin on vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was evaluated in human abdominal aortic endothelial cells (HAAEC) conditioned with various levels of laminar wall shear stress with or without tumor necrosis factor alpha (TNFα). As expected, TNFα alone greatly enhanced both VCAM-1 and ICAM-1 mRNA and protein. In static culture, simvastatin potentiated the TNFα-induced increase in VCAM-1 and ICAM-1 mRNA but not total protein at 24 h. Mevalonate, a precursor to cholesterol biosynthesis, eliminated the effect of simvastatin. Exposure of endothelial cells to elevated levels of laminar shear stress during simvastatin treatment prevented the potentiating effect of simvastatin on cell adhesion molecule mRNA. A shear stress of 12.5 dyn/cm² eliminated the increase in VCAM-1 by simvastatin, while 25 dyn/cm² was needed for ICAM-1. We conclude that simvastatin enhances VCAM-1 and ICAM-1 gene expression in TNFα-activated endothelial cells through inhibition of HMG-CoA reductase. High levels of laminar shear stress prevented the upregulation of VCAM-1 and ICAM-1 by simvastatin suggesting that an induction of cell adhesion molecules by statins may not occur in endothelial cells exposed to shear stress from blood flow. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Extension of Golay's plate height equation from laminar to turbulent flow I - Theory. (United States)

    Gritti, Fabrice


    The reduced plate height (RPH) equation of Golay derived in 1958 for open tubular columns (OTC) is extended from laminar to turbulent-like flow. The mass balance equation is solved under near-equilibrium conditions in the mobile phase for changing shapes of the velocity profile across the OTC diameter. The final expression of the general RPH equation is: [Formula: see text] where ν is the reduced linear velocity, k is the retention factor, D m is the bulk diffusion coefficient in the mobile phase, D a ¯ is the average axial dispersion coefficient, D r ¯ is the average radial dispersion coefficient, D s is the diffusion coefficient of the analyte in the stationary film of thickness d f , D is the OTC inner diameter, and n≥2 is a positive number controlling the shape of the flow profile (polynomial of degree n). The correctness of the derived RPH equation is verified for Poiseuille (n=2), turburlent-like (n=10), and uniformly flat (n→∞) flow profiles. The derived RPH equation is applied to predict the gain in speed-resolution of a 180μm i.d.×20m OTC (d f =2μm) from laminar to turbulent flow in supercritical fluid chromatography. Using pure carbon dioxide as the mobile phase at 297K, k=1, and increasing the Reynolds number from 2000 (laminar) to 4000 (turbulent), the OTC efficiency is expected to increase from 125 to 670 (×5.4) while the hold-up time decreases from 19 to 9s (×0.5). Despite the stronger resistance to mass transfer in the stationary phase, the projected improvement of the column performance in turbulent flow is explained by the quasi-elimination of the resistance to mass transfer in the mobile phase while axial dispersion remains negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modified laminar bone in Ampelosaurus atacis and other Titanosaurs (Sauropoda): implications for life history and physiology. (United States)

    Klein, Nicole; Sander, P Martin; Stein, Koen; Le Loeuff, Jean; Carballido, Jose L; Buffetaut, Eric


    Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. Ampelosaurus retains the laminar vascular organization of basal Sauropoda, but throughout most of cortical growth, the scaffolding of the fibrolamellar bone, which usually is laid down as matrix of woven bone, is laid down as parallel-fibered or lamellar bone matrix instead. The remodeling process by secondary osteons is very extensive and overruns the periosteal bone deposition before skeletal maturity is reached. Thus, no EFS is identifiable. Compared to the atypical bone histology of Ampelosaurus, the large titanosaur Alamosaurus shows typical laminar fibrolamellar bone. The titanosaurs Phuwiangosaurus, Lirainosaurus, and Magyarosaurus, although differing in certain features, all show this same low amount or absence of woven bone from the scaffolding of the fibrolamellar bone, indicating a clear reduction in growth rate resulting in a higher bone tissue organization. To describe the peculiar primary cortical bone tissue of Phuwiangosaurus, Ampelosaurus, Lirainosaurus, and Magyarosaurus, we here introduce a new term, "modified laminar bone" (MLB). Importantly, MLB is as yet not known from extant animals. At least in Lirainosaurus and Magyarosaurus the reduction of growth rate indicated by MLB is coupled with a drastic body size reduction and maybe also a reduction in metabolic rate, interpreted as a result of dwarfing on the European islands during the Late Cretaceous. Phuwiangosaurus and Ampelosaurus both show a similar reduction in growth rate but not in body size, possibly indicating also a reduced metabolic rate. The large titanosaur Alamosaurus, on the other hand, retained the

  14. On the estimation of population-specific synaptic currents from laminar multielectrode recordings

    Directory of Open Access Journals (Sweden)

    Sergey L Gratiy


    Full Text Available Multielectrode array recordings of extracellular electrical field potentials along the depth axis of the cerebral cortex is an up-and-coming approach for investigating activity of cortical neuronal circuits. The low-frequency band of extracellular potential, i.e., the local field potential (LFP, is assumed to reflect the synaptic activity and can be used to extract the current source density (CSD profile. However, physiological interpretation of CSD profiles is uncertain because the analysis does not disambiguate synaptic inputs from passive return currents. Here we present a novel mathematical framework for identifying excited neuronal populations and for separating synaptic input currents from return currents based on LFP recordings. This involves a combination of the linear forward model, which predicts population-specific laminar LFP in response to sinusoidal synaptic inputs applied at different locations along the population cells having realistic morphologies and the linear inverse model, which reconstructs laminar profiles of synaptic inputs from the Fourier spectrum of the laminar LFP data based on the forward prediction. The model allows reconstruction of synaptic input profiles on a spatial scale comparable to known anatomical organization of synaptic projections within a cortical column. Assuming spatial correlation of synaptic inputs within individual populations, the model decomposes the columnar LFP into population-specific contributions. Constraining the solution with a priori knowledge of the spatial distribution of synaptic connectivity further allows prediction of active projections from the composite LFP profile. This modeling framework successfully delineates the main relationships between the synaptic input currents and the evoked LFP and can serve as a foundation for modeling more realistic processing of active dendritic conductances.

  15. Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery. (United States)

    Månsson, Emeli; Hellmark, Bengt; Sundqvist, Martin; Söderquist, Bo


    Molecular characterization of Staphylococcus epidermidis isolates from prosthetic joint infections (PJIs) has demonstrated a predominance of healthcare-associated multi-drug resistant sequence types (ST2 and ST215). How, and when, patients acquire these nosocomial STs is not known. The aim was to investigate if sequence types of S. epidermidis associated with PJIs are found in the air during prosthetic joint surgery. Air sampling was undertaken during 17 hip/knee arthroplasties performed in operating theaters equipped with mobile laminar airflow units in a 500-bed hospital in central Sweden. Species identification was performed using MALDI-TOF MS and 16S rRNA gene analysis. Isolates identified as S. epidermidis were further characterized by MLST and antibiotic susceptibility testing. Seven hundred and thirty-five isolates were available for species identification. Micrococcus spp. (n = 303) and coagulase-negative staphylococci (n = 217) constituted the majority of the isolates. Thirty-two isolates of S. epidermidis were found. S. epidermidis isolates demonstrated a high level of allelic diversity with 18 different sequence types, but neither ST2 nor ST215 was found. Commensals with low pathogenic potential dominated among the airborne microorganisms in the operating field during prosthetic joint surgery. Nosocomial sequence types of S. epidermidis associated with PJIs were not found, and other routes of inoculation are therefore of interest in future studies. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  16. The impact of viscosity on the combined heat, mass and momentum transfer in laminar liquid falling films (United States)

    Mittermaier, M.; Ziegler, F.


    In this article we present a model describing a laminar film flow over a vertical isothermal plate whilst heat and mass transfer is occurring. We focus on a formulation where most common assumptions, such as constant property data and constant film thickness, have been cancelled. The hydrodynamic model results in longitudinal and transversal velocity components and their evolution in the entrance region. Heat and mass transfer occurs simultaneously and is modelled with respect to release of differential heat of solution as well as heat flow due to interdiffusion. The numerical solution is obtained by utilising a Newton-Raphson method to solve the finite difference formulation of the governing equations. Mass transfer across the film affects the development of both longitudinal and transversal velocity components. The hydrodynamics are modelled using a boundary layer approximation of the Navier-Stokes equations. The significance of simplifications on the hydrodynamic model are illustrated and discussed using a fully developed velocity profile (Nusselt flow) and a plug flow at the inlet for comparison. Even if a Nusselt profile is assumed, it develops further since mass is absorbed or desorbed. It is found that the onset of absorption occurs at shorter flow length when applying a plug flow at the inlet. If the film is initially in equilibrium, this results in a 9.3% increase in absorbed mass over a length of 0.03 m as compared with the Nusselt flow. A fluid with a viscosity five times the one of lithium bromide solution but sharing comparable properties apart from that, leads to lower overall heat and mass transfer rates. If the respective fluids are saturated at the inlet, the accumulated mass flux absorbed by lithium bromide solution is 2.2 times higher than the one absorbed by a high viscous fluid. However, when a plug flow is applied and the fluid is sub-cooled, ab initio the absorbed mass flux is slightly higher for a high viscous fluid. Assuming a sub

  17. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)


    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  18. Generation of localized disturbances by surface vibrations behind the ledge in the laminar flow (United States)

    Pavlenko, A. M.; Katasonov, M. M.; Kozlov, V. V.; Dovgal, A. V.


    The occurrence and development of hydrodynamic perturbations generated by low-frequency vibrations of a local section of a streamlined surface in a separated flow behind a rectangular ledge on a flat plate are investigated in the wind tunnel. The results were obtained by the hot-wire anemometry method at a low subsonic flow velocity. It is established that vibrations of the wall generate perturbations of the separation zone, which are streaky structures, and accompanying wave packets of oscillations. The separation of the laminar boundary layer promotes the growth of wave packets with subsequent turbulence of the wall flow.

  19. Proteomic Analysis of Vascular Endothelial Cells-Effects of Laminar Shear Stress and High Glucose


    Wang, Xiao-Li; Fu, Alex; Spiro, Craig; Lee, Hon-Chi


    This study directly measured the relative protein levels in bovine aortic endothelial cells (BAEC) that were cultured for two weeks in normal (5 mM, NG) or high (22 mM, HG) glucose and then were subjected to laminar shear stress at 0 or 15 dynes/cm2. Membrane preparations were labeled with one of the four isobaric tagging reagents (iTRAQ), followed by LC-MS/MS analysis. The results showed that HG and/or shear stress induced alterations in various membrane associated proteins involving many si...

  20. An Inverse Boundary-Layer Method for Compressible Laminar and Turbulent Flows (United States)


    Comparison of calculated and expo.rimental results for the flow 5300. (a) Velocity profiles and externa ~l velocity distribution. 294 3.0 H 2.0 1.00 INVERSE ...TR-75-1le 4 TITLE Te’ YtPuI Q REPCIRT e, PF!OO C V fL AN INVERSE BOUNDARY-LAYER METHOD FOR Final Technical Report COMPR~ESSIBLE LAMINAR AND TURBULENT...19 KEY WORDS (Conhin. on r-.e8e aide It neceober) md identify by block -. 51 Inverse boundary layers Lamiulnar flows NATIONAL TECHN’ICAL Turbuent fows

  1. Laminar gas jet with extreme jet-to-ambient desity ratios


    Sánchez Sanz, Mario


    En esta tesis se analiza la estructura de chorros laminares cuya densidad es muy diferente a la del ambiente en el que descargan debido a que, bien su temperatura o bien su peso molecular, son muy distintos. El estudio se centra en valores del número de Reynolds Re moderadamente grandes en los que el chorro continua siendo esbelto y estable. En este régimen, los términos correspondientes a la difusión axial y las variaciones transversales de presión pueden despreciarse en prime...

  2. Laminar distribution of phase-amplitude coupling of spontaneous current sources and sinks

    Directory of Open Access Journals (Sweden)

    Roberto C Sotero


    Full Text Available Although resting-state functional connectivity is a commonly used neuroimaging paradigm, the underlying mechanisms remain unknown. Thalamo-cortical and cortico-cortical circuits generate oscillations at different frequencies during spontaneous activity. However, it remains unclear how the various rhythms interact and whether their interactions are lamina-specific. Here we investigated intra- and inter-laminar spontaneous phase-amplitude coupling (PAC. We recorded local-field potentials using laminar probes inserted in the forelimb representation of rat area S1. We then computed time-series of frequency-band- and lamina-specific current source density (CSD, and PACs of CSD for all possible pairs of the classical frequency bands in the range of 1–150 Hz. We observed both intra- and inter-laminar spontaneous PAC. Of 18 possible combinations, 12 showed PAC, with the highest measures of interaction obtained for the pairs of the theta/gamma and delta/gamma bands. Intra- and inter-laminar PACs involving layers 2/3–5a were higher than those involving layer 6. Current sinks (sources in the delta band were associated with increased (decreased amplitudes of high-frequency signals in the beta to fast gamma bands throughout layers 2/3–6. Spontaneous sinks (sources of the theta and alpha bands in layers 2/3 to 4 were on average linked to dipoles completed by sources (sinks in layer 6, associated with high (low amplitudes of the beta to fast-gamma bands in the entire cortical column. Our findings show that during spontaneous activity, delta, theta, and alpha oscillations are associated with periodic excitability, which for the theta and alpha bands is lamina--dependent. They further emphasize the differences between the function of layer 6 and that of the superficial layers, and the role of layer 6 in controlling activity in those layers. Our study links theories on the involvement of PAC in resting-state functional connectivity with previous work that

  3. An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil (United States)

    Somers, Dan M.


    A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.

  4. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision


    Stephen eGrossberg


    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in s...

  5. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision


    Cao, Yongqiang; Grossberg, Stephen


    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision ...

  6. Laminar heat transfer in a moving bed channel using a two energy equation model

    Energy Technology Data Exchange (ETDEWEB)

    Pivem, Ana Cristina; Lemos, Marcelo J.S. de [Departamento de Energia, IEME, Instituto Tecnologico de Aeronautica - ITA, Sao Jose dos Campos, SP (Brazil)], E-mails:,


    The objective of this work is to present simulations for laminar heat transfer in a porous reactor, in which both the permeable bed and the working fluid moves with respect to the fixed bounding walls. For simulating the flow and heat transfer, a two-energy equation model is applied in addition to a mechanical model. Transport equations are discretized using the control-volume method and the system of algebraic equations are relaxed via the SIMPLE algorithm. The effects of solid-to-fluid thermal conductivity and solid-to-fluid ratio of thermal capacity are analyzed. (author)

  7. Bryozoan filter feeding in laminar wall layers: flume experiments and computer simulation

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Matlok, Simon; Riisgård, Hans Ulrik


    gradient (1-4 s-1). The laminar wall layer simulated viscous sublayers found in the field for smooth surfaces. Incurrents to lines of 3-10 zooids typically distort paths of particles approaching the colony at heights 1-2 mm above the level of lophophore inlets and theycapture particles from paths 0...... line colony to be about 16 times the frontal area of a simulated lophophore. Fluid particles were captured from paths about 1.3 mm above the sink. At twice the flowrate, the area cleared of particles reduced to about 7 times the frontal area while feeding rate increased by about 19%.KEY WORDS: ambient...

  8. Síntesis de silicatos sódicos cristalinos laminares


    Lobato Bajo, Justo


    En el presente trabajo se han estudiado y optimizado las principales variables de síntesis de silicatos sódicos cristalinos laminares para su uso en detergentes. La síntesis de dichos silicatos se llevo a cabo en régimen discontinuo en un horno mufla, tanto a partir de silicato amorfo solido y en disolución, además, se sintetizo el &-na2si2o5 en régimen continuo en un horno tubular rotatorio. Los diferentes productos de cristalización obtenidos fueron caracterizados por diferentes técn...

  9. A Hybrid Analytical-Numerical Solution to the Laminar Flow inside Biconical Ducts

    Directory of Open Access Journals (Sweden)

    Thiago Antonini Alves


    Full Text Available In this work was presented a hybrid analytical-numerical solution to hydrodynamic problem of fully developed Newtonian laminar flow inside biconical ducts employing the Generalized Integral Transform Technique (GITT. In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform was used to change the domain into a more suitable coordinate system. Thereafter, the GITT was applied on the momentum equation to obtain the velocity field. Numerical results were obtained for quantities of practical interest, such as maximum and minimum velocity, Fanning friction factor, Poiseuille number, Hagenbach factor and hydrodynamic entry length.

  10. Effects of compressibility on design of subsonic fuselages for natural laminar flow (United States)

    Vijgen, P. M. H. W.; Dodbele, S. S.; Holmes, B. J.; Van Dam, C. P.


    Compressible linear boundary-layer stability analyses of two representative axisymmetric fuselage geometries indicate that a favorable effect will be exerted on the characteristics of a fuselage's axisymmetric boundary layer by compressibility. A freestream Mach number increase from 0.6 to 0.8 significantly reduces TS wave growth rates in the laminar boundary layer of the fuselages analyzed. The generally destabilizing effect of increasing length Re number on boundary layer stability can be overpowered by the favorable effects of compressibility on the fluid.

  11. An investigation of the interaction of vortex rings and a laminar free jet flow (United States)

    Basfeld, M.


    Generation and alteration of vortex rings in water translating along the axis of symmetry of a laminar free jet flow against the vortex ring tube, were studied by flow visualization. Translation velocity and diameter of vortices as a function of definite generation conditions were measured within and outside free jet flow. Velocity distributions in the jet flow were measured. It is concluded that the characteristic phases of vortex alteration can be parameterized and that the alteration of vortex circulation during the second phase can be estimated.

  12. Effects of an aft facing step on the surface of a laminar flow glider wing (United States)

    Sandlin, Doral R.; Saiki, Neal


    A motor glider was used to perform a flight test study on the effects of aft facing steps in a laminar boundary layer. This study focuses on two dimensional aft facing steps oriented spanwise to the flow. The size and location of the aft facing steps were varied in order to determine the critical size that will force premature transition. Transition over a step was found to be primarily a function of Reynolds number based on step height. Both of the step height Reynolds numbers for premature and full transition were determined. A hot film anemometry system was used to detect transition.

  13. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos


    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  14. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)



    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  15. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)


    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.


    Directory of Open Access Journals (Sweden)

    Furia Donatella


    Full Text Available During the last decades, market segmentation and intra-industry trade have become increasingly relevant. The underlying hypothesis of our work is that distinct articles have heterogeneous potential for vertical differentiation, implying that different patterns of international specialization should be identifiable. We carry out an analysis on revealed comparative advantage (through the Lafay Index in specific sectors of interest. Then we highlight the emergence of diverse degrees of product quality differentiation among sectors (through the Relative Quality Index. Results confirm our hypothesis. Indeed it appears that only certain goods, for which the pace of either creative or technological innovation (or both is particularly fast, present a high degree of vertical differentiation and market segmentation. This allows countries to specialize in a particular product variety and gain market power position for that variety. These findings should be taken in due consideration when designing trade policies.

  17. Poligonación Vertical

    Directory of Open Access Journals (Sweden)

    Esteban Dörries


    Full Text Available La poligonación vertical es un método de medición de diferencias de altura que aprovecha las posibilidades de las estaciones totales. Se presta fundamentalmente para líneas de nivelación entre nodos formando red. El nombre se debe a que las visuales sucesivas se proyectan sobre aristas verticales en lugar de un plano horizontal, como ocurre en la poligonación convencional.

  18. Vertical Launch System Loadout Planner (United States)


    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...mathematically complex and require training to operate the software. A Visual Basic for Applications ( VBA ) Excel (Microsoft Corporation, 2015...lockheed/data/ms2/documents/laun chers/MK41 VLS factsheet.pdf Microsoft Excel version 14.4.3, VBA computer software. (2011). Redmond, WA: Microsoft

  19. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-economy property rights theory of the firm using firm-level data. Finally, we notice that our model's sorting pattern is in line with recent evidence when the wage difference across countries is not too big....

  20. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions (United States)

    Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina


    Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nventilated vertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  1. Prophylaxis of vertical HBV infection. (United States)

    Pawlowska, Malgorzata; Pniewska, Anna; Pilarczyk, Malgorzata; Kozielewicz, Dorota; Domagalski, Krzysztof


    An appropriate management of HBV infection is the best strategy to finally reduce the total burden of HBV infection. Mother-to-child transmission (MTCT) is responsible for more than one third of chronic HBV infections worldwide. Because HBV infection in infancy or early childhood often leads to chronic infection, appropriate prophylaxis and management of HBV in pregnancy is crucial to prevent MTCT. The prevention of HBV vertical transmission is a complex task and includes: universal HBV screening of pregnant women, administration of antivirals in the third trimester of pregnancy in women with high viral load and passive-active HBV immunoprophylaxis with hepatitis B vaccine and hepatitis B immune globulin in newborns of all HBV infected women. Universal screening of pregnant women for HBV infection, early identification of HBV DNA level in HBV-infected mothers, maternal treatment with class B according to FDA antivirals and passive/active anti-HBV immunoprophylaxis to newborns of HBV-positive mothers are crucial strategies for reducing vertical HBV transmission rates. Consideration of caesarean section in order to reduce the risk of vertical HBV transmission should be recommend in HBV infected pregnant women with high viral load despite antiviral therapy or when the therapy in the third trimester of pregnancy is not available.

  2. Stratospheric Air Sub-sampler (SAS) and its application to analysis of Delta O-17(CO2) from small air samples collected with an AirCore

    NARCIS (Netherlands)

    Mrozek, Dorota Janina; van der Veen, Carina; Hofmann, Magdalena E. G.; Chen, Huilin; Kivi, Rigel; Heikkinen, Pauli; Rockmann, Thomas


    We present the set-up and a scientific application of the Stratospheric Air Sub-sampler (SAS), a device to collect and to store the vertical profile of air collected with an AirCore (Karion et al., 2010) in numerous sub-samples for later analysis in the laboratory. The SAS described here is a 20m

  3. Analysis for the application of hybrid laminar flow control to a long-range subsonic transport aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Arcara, P.C. Jr.; Bartlett, D.W.; Mccullers, L.A. (NASA, Langley Research Center, Hampton, VA (United States) Vigyan, Inc., Hampton, VA (United States))


    The FLOPS aircraft conceptual design/analysis code has been used to evaluate the effects of incorporating hybrid laminar flow control (HLFC) in a 300-passenger, 6500 n. mi. range, twin-engine subsonic transport aircraft. The baseline configuration was sized to account for 50 percent chord laminar flow on the wing upper surface as well as both surfaces of the empennage airfoils. Attention is given to the additional benefits of achieving various degrees of laminar flow on the engine nacelles, and the horsepower extraction and initial weight and cost increments entailed by the HLFC system. The sensitivity of the results obtained to fuel-price and off-design range are also noted. 6 refs.

  4. Effects of internal heat generation, thermal radiation and buoyancy force on a boundary layer over a vertical plate with a convective surface boundary condition


    Tasawar Hayat; Awatif A. Hendi; Jacob A. Gbadeyan; Philip O. Olanrewaju


    In this paper we analyse the effects of internal heat generation, thermal radiation and buoyancy force on the laminar boundary layer about a vertical plate in a uniform stream of fluid under a convective surface boundary condition. In the analysis, we assumed that the left surface of the plate is in contact with a hot fluid whilst a stream of cold fluid flows steadily over the right surface; the heat source decays exponentially outwards from the surface of the plate. The similarity variable m...

  5. Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method (United States)

    Reddy, Ch. Ram; Kaladhar, K.; Srinivasacharya, D.; Pradeepa, T.


    This paper analyzes the laminar, incompressible mixed convective transport inside vertical channel in an electrically conducting fluid saturated porous medium. In addition, this model incorporates the combined effects of Soret, Hall current and Joule heating. The nonlinear governing equations and their related boundary conditions are initially cast into a dimensionless form using suitable similarity transformations and hence solved using Adomian Decomposition Method (ADM). In order to explore the influence of various parameters on fluid flow properties, quantitative analysis is exhibited graphically and shown in tabular form.

  6. Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kinyanjui, M.; Kwanza, J.K.; Uppal, S.M. [Jomo Kenyatta University of Agriculture and Technology, Nairobi (Cayman Islands). Dept. of Mathematics and Statistics


    Simultaneous heat and mass transfer in unsteady free convection flow with radiation absorption past an impulsively started infinite vertical porous plate subjected to a strong magnetic field is presented. The governing equations for the problem are solved by a finite difference scheme. The influence of the various parameters on the convectively cooled or convectively heated plate in the laminar boundary layer are considered. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles, as well as skin friction and the rates of mass and heat transfer, is done with the aid of graphs and tables. (author)

  7. Analytical solutions of heat transfer for laminar flow in rectangular channels

    Directory of Open Access Journals (Sweden)

    Rybiński Witold


    Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.

  8. Distinct superficial and deep laminar domains of activity in thevisual cortex during rest and stimulation

    Directory of Open Access Journals (Sweden)

    Alexander Maier


    Full Text Available Spatial patterns of spontaneous neural activity at rest have previously been associated with specific networks in the brain, including those pertaining to the functional architecture of the primary visual cortex (V1. However, despite the prominent anatomical differences between cortical layers, little is known about the laminar pattern of spontaneous activity in V1. We address this topic by investigating the amplitude and coherence of ongoing local field potential (LFP signals measured from different layers in V1 of macaque monkeys during rest and upon presentation of a visual stimulus in the receptive field. We used a linear microelectrode array to measure LFP signals at multiple, evenly spaced positions throughout the cortical thickness. Analyzing both the mean LFP amplitudes and between-contact LFP coherences, we identified two distinct zones of activity, roughly corresponding to superficial and deep layers, divided by a sharp transition near the bottom of layer 4. The LFP signals within each laminar zone were highly coherent, whereas those between zones were not. This functional compartmentalization was found not only during rest, but also when the neuron’s receptive field was stimulated during a visual task. These results demonstrate the existence of distinct superficial and deep functional domains of coherent LFP activity in V1 that we suggest, based on the pattern of known anatomical connections, may reflect the intrinsic interplay of V1 microcircuitry with cortical and subcortical targets, respectively.

  9. Computational design of natural laminar flow wings for transonic transport application (United States)

    Waggoner, Edgar G.; Campbell, Richard L.; Phillips, Pamela S.; Viken, Jeffrey K.


    Two research programs are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wind planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first program supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. Boundary-layer and static-pressure data will be measured on this design during the supporting wind-tunnel and flight tests. These data will then be analyzed and used to infer the relationship between crossflow and Tollmein-Schlichting disturbances on laminar boundary-layer transition. A wing was designed computationally for a corporate transport aircraft in the second program. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs. Wing surface pressure distributions, which support the design objective and were derived from transonic three-dimensional analyses codes, are also presented. Current status of each of the research programs is included in the summary.

  10. Three-dimensional measurement of the laminar flow field inside a static mixer (United States)

    Speetjens, Michel; Jilisen, Rene; Bloemen, Paul


    Static mixers are widely used in industry for laminar mixing of viscous fluids as e.g. polymers and food stuffs. Moreover, given the similarities in flow regime, static mixers often serve as model for compact mixers for process intensification and even for micro-mixers. This practical relevance has motivated a host of studies on the mixing characteristics of static mixers and their small-scale counterparts. However, these studies are primarily theoretical and numerical. Experimental studies, in contrast, are relatively rare and typically restricted to local 2D flow characteristics or integral quantities (pressure drop, residence-time distributions). The current study concerns 3D measurements on the laminar flow field inside a static mixer using 3D Particle-Tracking Velocimetry (3D-PTV) Key challenges to the 3D-PTV image-processing procedure are the optical distortion and degradation of the particle imagery due to light refraction and reflection caused by the cylindrical boundary and the internal elements. Ways to tackle these challenges are discussed and first successful 3D measurements in an actual industrial static mixer are presented.

  11. Certification aspects of airplanes which may operate with significant natural laminar flow (United States)

    Gabriel, Edward A.; Tankesley, Earsa L.


    Recent research by NASA indicates that extensive natural laminar flow (NLF) is attainable on modern high performance airplanes currently under development. Modern airframe construction methods and materials, such as milled aluminum skins, bonded aluminum skins, and composite materials, offer the potential for production of aerodynamic surfaces having waviness and roughness below the values which are critical for boundary layer transition. Areas of concern with the certification aspects of Natural Laminar Flow (NLF) are identified to stimulate thought and discussion of the possible problems. During its development, consideration has been given to the recent research information available on several small business and experimental airplanes and the certification and operating rules for general aviation airplanes. The certification considerations discussed are generally applicable to both large and small airplanes. However, from the information available at this time, researchers expect more extensive NLF on small airplanes because of their lower operating Reynolds numbers and cleaner leading edges (due to lack of leading-edge high lift devices). Further, the use of composite materials for aerodynamic surfaces, which will permit incorporation of NLF technology, is currently beginning to appear in small airplanes.

  12. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. (United States)

    Wang, Pei-Jen; Chang, Chia-Yuan; Chang, Ming-Lang


    MHD micro-pumps circumvent the wear and fatigue caused by high pressure-drop across the check valves of mechanical micro-pumps in micro-fluidic systems. Early analyses of the fluid flow for MHD micro-pumps were mostly made possible by the Poiseuille flow theory; however, this conventional laminar approach cannot illustrate the effects of various channel sizes and shapes. This paper, therefore, presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory to investigate the characteristics of a MHD pump. Inside the pump, flowing along the channel is the electrically conducting fluid flowing driven by the Lorentz forces in the direction perpendicular to both dc magnetic field and applied electric currents. The Lorentz forces were converted into a hydrostatic pressure gradient in the momentum equations of the MHD channel flow model. The numerical simulations conducted with the explicit finite difference method show that the channel dimensions and the induced Lorentz forces have significant influences on the flow velocity profile. Furthermore, the simulation results agree well with the experimental results published by other researchers.

  13. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    Directory of Open Access Journals (Sweden)

    Vilalta Guillermo


    Full Text Available The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the Finitely Extensible Nonlinear Elastic model closing with Peterlin model. To taking in account the viscous effects 50≤Re≤2000 values were used. In addition, for the polymer concentration analysis it was used values which depend on the polymers molecular weight and the solution concentration that ranged from 0≤Cw≤20. The molecular elasticity and extensibility were maintained at constant values. The results showed that the addition of polymers regardless of their molecular weight in laminar flow regime causes no change in power dissipation. This result, which is consistent with the literature, is a significant advance in defining a credible and appropriate methodology to viscoelastic fluid flow study by UDF implementation of constituent models that characterize these fluids.


    Directory of Open Access Journals (Sweden)

    Kelvin Ho Choon Seng


    Full Text Available The   heat  transfer   problem  in   magnetocaloric regenerators  during  magnetization  has  been  described  and investigated for convective heat transfer by means of axial flow in part I of this series.   This work will focus on enhancing the unsteady heat  transfer using swirling laminar flow generated using axial vanes.   The governing parameters for this  studyare,  the  D*  ratio  (Inner  diameter/Outer  diameter  and  the swirl number, S.   The study is conducted  using  dimensional analysis and commercial CFD codes provided by ANSYS CFX. The  hydrodynamics and the  heat transfer of the  model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords-  Annular ducts; unsteady heat transfer;  magnetic refrigeration/cooling;   swirling   laminar    flow;    dimensional analysis.

  15. Laminar thermally developing flow in rectangular channels and parallel plates: uniform heat flux (United States)

    Smith, Andrew N.; Nochetto, Horacio


    Numerical simulations were conducted for thermally developing laminar flow in rectangular channels with aspect ratios ranging from 1 to 100, and for parallel plates. The simulations were for laminar, thermally developing flow with H1 boundary conditions: uniform heat flux along the length of the channel and constant temperature around the perimeter. In the limit as the non-dimensional length, x* = x/(D h RePr), goes to zero, the Nusselt number is dependent on x* to the negative exponent m. As the non-dimensional length goes to infinity the Nusselt number approaches fully developed values that are independent of x*. General correlations for the local and mean heat transfer coefficients are presented that use an asymptotic blending function to transition between these limiting cases. The discrepancy between the correlation and the numerical results is less than 2.5 % for all aspect ratios. The correlations presented are applicable to all aspect ratios and all non-dimensional lengths, and decrease the discrepancy relative to existing correlations.

  16. Study on double-shaft mixing paddle undergoing planetary motion in the laminar flow mixing system

    Directory of Open Access Journals (Sweden)

    Jiaqi Zhang


    Full Text Available This article has studied the impact of double-shaft mixing paddle undergoing planetary motion on laminar flow mixing system using flow field visualization experiment and computational fluid dynamics simulation. Digital image processing was conducted to analyze the mixing efficiency of mixing paddle in co-rotating and counter-rotating modes. It was found that the double-shaft mixing paddle undergoing planetary motion would not produce the isolated mixing regions in the laminar flow mixing system, and its mixing efficiency in counter-rotating modes was higher than that in co-rotating modes, especially at low rotating speed. According to the tracer trajectory experiment, it was found that the path line of the tracer in the flow field in co-rotating modes was distributed in the opposite direction to the path line in counter-rotating modes. Planetary motion of mixing paddle had stretching, shearing, and folding effects on the trajectory of the tracer. By means of computational fluid dynamics simulation, it was found that axial flows and tangential flows produced in co-rotating and counter-rotating modes have similar flow velocity but opposite flow directions. It is deduced from the distribution rule of axial flow, radial flow, and tangential flow in the flow field that axial flow is the main reason for causing different mixing efficiencies between co-rotating and counter-rotating modes.

  17. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing. (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou


    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  18. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel (United States)

    Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin


    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386

  19. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.

    Directory of Open Access Journals (Sweden)

    Tae Joon Kwak

    Full Text Available The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.

  20. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.


    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  1. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek


    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  2. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab


    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  3. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip. (United States)

    Deng, Bin; Tian, Yu; Yu, Xu; Song, Jian; Guo, Feng; Xiao, Yuxiu; Zhang, Zhiling


    A novel microfluidic chip with simple design, easy fabrication and low cost, coupled with high-sensitive laser induced fluorescence detection, was developed to provide continuous single-cell analysis based on dynamic cell manipulation in flowing streams. Making use of laminar flows, which formed in microchannels, single cells were aligned and continuously introduced into the sample channel and then detection channel in the chip. In order to rapidly lyse the moving cells and completely transport cellular contents into the detection channel, the angle of the side-flow channels, the asymmetric design of the channels, and the number, shape and layout of micro-obstacles were optimized for effectively redistributing and mixing the laminar flows of single cells suspension, cell lysing reagent and detection buffer. The optimized microfluidic chip was an asymmetric structure of three microchannels, with three microcylinders at the proper positions in the intersections of channels. The microchip was evaluated by detection of anticancer drug doxorubicin (DOX) uptake and membrane surface P-glycoprotein (P-gp) expression in single leukemia K562 cells. An average throughput of 6-8 cells min(-1) was achieved. The detection results showed the cellular heterogeneity in DOX uptake and surface P-gp expression within K562 cells. Our researches demonstrated the feasibility and simplicity of the newly developed microfluidic chip for chemical single-cell analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Serial MR observation of cortical laminar necrosis caused by brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T. [Department of Neurosurgery, Osaka City General Hospital (Japan)


    To examine the chronological changes characteristic of cortical laminar necrosis caused by brain infarction, 16 patients were repeatedly examined using T1-, T2-weighted spin-echo, T2{sup *}-weighted gradient echo, fluid attenuated inversion recovery (FLAIR) images, and contrast enhanced T1-weighted images at 1.0 or 1.5 T. High intensity cortical lesions were visible on the T1-weighted images from 2 weeks after ictus and became prominent at 1 to 3 months, then became less apparent, but occasionally remained at high intensity for 2 years. High intensity cortical lesions on FLAIR images became prominent from 1 month, and then became less prominent from 1 year, but occasionally remained at high intensity for 2 years. Subcortical lesions did not display high intensity on T1-weighted images at any stage. On FLAIR images, subcortical lesions initially showed slightly high intensity and then low intensity from 6 months due to encephalomalacia. Cortical lesions showed prominent contrast enhancement from 2 weeks to 3 months, but subcortical lesions were prominent from 2 weeks only up to 1 month. T2*-weighted images disclosed haemosiderin in 3 of 7 patients, but there was no correlation with cortical short T1 lesions. Cortical laminar necrosis showed characteristic chronological signal changes on T1-weighted images and FLAIR images. Cortical short T1 lesions were found not to be caused by haemorrhagic infarction. (orig.) With 5 figs., 1 tab., 9 refs.

  5. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers (United States)

    Duan, L.; Choudhari, M.; Li, F.


    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  6. The Study on Re Effect Correction for Laminar Wing with High Lift

    Directory of Open Access Journals (Sweden)

    Yao Jieke


    Full Text Available In the past years, Reynolds number (Re effect correction is carried out by varied Re experiment. The experiment can obtain double logarithm linear curve between the least drag and Re, and the least drag in flying Re is got by linear exploration. However, Re effect exerts a great influence on transition position for laminar wing with high lift. Therefore, the lift, drag and longitudinal moment can’t be acquired by traditional Re effect correction. In this paper, the transition prediction simulations for laminar wing high lift are carried to obtain unconstrained transition position in different Re by adopting γ-Reθ transition prediction model. An agreement with experiment for transition position is achieved. According to the result of transition perdition and unconstrained transition test, Re effect correction in different height for the data of wind tunnel test is done. This method makes up for the traditional method, which Re effect correction for battle-plane is done for only drag. In present paper, Re effect correction for the lift, drag and longitudinal moment is done to acquire more accurate experimental data to ensure everything in flight.

  7. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation (United States)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.


    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  8. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall (United States)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team


    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  9. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. (United States)

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca


    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

  10. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari


    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  11. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed


    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  12. Validity of classical scaling laws in laminar channel flow with periodic spacer-like obstacles (United States)

    Rohlfs, Wilko; Lienhard, John H.


    Laminar channel flows with periodic obstacles occur in different technical applications involving heat and mass transfer. They are present in membrane technologies such as electro-dialysis or spirally wound membrane modules. For process design, classical scaling laws of heat and mass transfer are typically used. The laws scale the transfer (Sherwood) number, Sh , to the hydrodynamic Reynolds, Re , the fluid specific Schmidt number, Sc , and to some dimensionless geometric parameters, G, in a classical form like Sh = CReα ScβGγ . However, the validity of those classical scaling laws is limited to the region where the concentration boundary layer develops as it is well known that the transfer numbers approach a constant (Reynolds and Schmidt independent) value in the developed region of a laminar channel flow. This study examines numerically the validity of the scaling laws if the channel flow is interrupted periodically by cylindrical obstacles of different size and separation distance. In the developed region, a Schmidt and Reynolds number dependency is found and associated to wall-normal flow induced by the obstacles, for which this dependency varies with obstacle size and separation distance. Funding for WR was provided by the German Academic Exchange Service DAAD.

  13. [Vertical fractures: apropos of 2 clinical cases]. (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R


    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  14. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)


    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  15. Measurement of the Vertical Distribution of Reflected Solar Radiation

    Directory of Open Access Journals (Sweden)

    Tetsu Aoki


    Full Text Available The purpose of this study was to develop a devicefor measuring the vertical distribution of the reflected radiation to the inside of a room from terrace to building.The proposed device is attached to aluminum plates that are painted matte black at intervals of 20 cm on polystyrene insulation. The surface temperature of the aluminum plate, called the SAT (sol-air temperature, is used as an indicator of the quantity of solar radiation. In order to compare terrace materials, two of the measuring devices were located facing south.Concrete tile, artificial turf, and wood chips were selected as materials to be comparedfor the surface of the terrace and were laid in front of the measuring devices. The results indicate that the SAT reflected onto a vertical plane was higher closer to the ground for all materials. Hourly fluctuations of the vertical distribution of the reflected solar radiation differed, depending on the terrace surface material. When concrete tiles of different thicknesses were compared, the temporal heating patterns varied due to differences in heat capacity. These results lead us to the conclusion that using the developed measuringdevice enables grasping the effect of vertical distribution of reflected solar radiation from a terrace.

  16. Frontiers in x-ray components for high-resolution spectroscopy and imaging laminar type varied-line-spacing holographic gratings for soft x-ray

    CERN Document Server

    Sano, K


    Laminar-type varied-line-spacing gratings have been widely used for soft x-ray monochromator recently because of the features of low stray lights and higher order lights. We have developed and advanced holographic recording and an ion-beam etching methods for the laminar type varied-line spacing gratings. This report describes a short review of the soft x-ray spectrometers using varied-line-spacing gratings, the fabrication process of the laminar-type holographic gratings, and the performance of the flat field spectrographs equipped with the laminar type varied-line spacing gratings comparing with the mechanically ruled replica gratings. It is concluded that, for the sake of the advanced design and fabrication processes and excellent spectroscopic performance, laminar-type holographic gratings will be widely used for soft x-ray spectrometers for various purposes in the near future. (author)

  17. ?Vertical Sextants give Good Sights? (United States)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.



    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú


    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  19. Binocular responses and vertical strabismus

    Directory of Open Access Journals (Sweden)

    Risović Dušica


    Full Text Available Background/Aim. Elevation in adduction is the most common pattern of vertical strabismus, and it is mostly treated with surgery. The results of weaking of inferior oblique muscle are very changeable. The aim of this study was to evaluate binocular vision using sensory tests before and one and six months after the surgery. Methods. A total of 79 children were divided in two groups: the first, with inferior oblique muscle of overaction (n = 52, and the second with dissociated vertical deviation (DVD, and primary inferior oblique muscle overaction (n = 27. We tested them by polaroid mirror test (PMT, Worth test at distance and near, fusion amplitudes on sinoptofore, Lang I stereo test and Wirt-Titmus stereo test. We examined our patients before and two times after the surgery for vertical strabismus. Results. Foveal suppression in the group I was found in 60.5% of the patients before, and in 56.4% after the surgery. In group II Foveal suppression was detected in 64.7% of the patients before, but in 55.6% 6 months after the surgery with PMT. Worth test revealed suppression in 23.5% of the patients before, and in 40.7% after the vertical muscle surgery. Parafoveal fussion persisted in about 1/3 of the patients before the surgery, and their amplitudes were a little larger after the surgery in the group I patients. Lang I stereo test was negative in 53.9% before and 51.9% after the surgery in the group I, and in 48.2% of the patients before and after the surgery in the group II patients. Wirt-Titmus stereo test was negative in 74.5% of the patients before and in 72.9% after the surgery in the group I, but in the group II it was negative in 70.8% before and in 68.0% of the patients 6 months after the surgery. Conclusion. Binocular responses were found after surgery in 65.7% of the patients the group I and in 55.6% patients the group II. There was no significant difference between these two groups, but binocular responses were more often in the patients

  20. The vertical oscillations of coupled magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li Kewei; Lin Jiahuang; Kang Zi Yang [Raffles Institution, 1 Raffles Institution Lane, Singapore 575954 (Singapore); Liang, Samuel Yee Wei [Anglo-Chinese School Independent, 121 Dover Road, Singapore 139650 (Singapore); Juan, Jeremias Wong Say, E-mail: [NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)


    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  1. Transverse vertical dispersion in groundwater and the capillary fringe. (United States)

    Klenk, I D; Grathwohl, P


    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  2. Realization of an Automated Vertical Warp Stop Motion Positioning

    Directory of Open Access Journals (Sweden)

    Frederik Cloppenburg


    Full Text Available The tension in the warp yarns is a critical variable in the weaving process. If the warp tension is too high or too low the weaving process will be interrupted. A parameter that directly affects the warp tension is the vertical warp stop motion position. The position of the warp stop motion must be set for every produced new article. The setting procedure is performed completely manual. In this paper we present a mechatronic modification of an air jet-weaving machine to adjust the vertical warp stop motion position with the help of actuators. The parameters for the automated movement are determined and an open loop control, which uses a PLC, is proposed.

  3. Vertically stacked nanocellulose tactile sensor. (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun


    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10(4) loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  4. Evaporation and diffusion of ammonia in a gaseous mixture of hydrogen inside a vertical open tube in laminar natural convection - a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.; Pereira, J. T. V.


    Natural convection flow and heat and mass transfer resulting from the combined effects of thermal and mass diffusion occurring in the evaporator of a triple-fluid (NH{sub 3}-H{sub 2}O-H{sub 2}) absorption refrigeration system was studied by modelling. Significant similarities between the boundary conditions of constant heat flux and convective condition with similar heat flux densities were observed. Overall results led to the conclusion that the geometric parameters of the tube, such as length and radius, are by far the most important influencing parameters in the characteristics of the buoyancy flow induced inside the tube. The absorber of this this type of refrigeration system also has been studied by modelling. In this case the attention was focused on counter-current fluid flow. It was suggested that the model described here could be used as an efficient tool in designing, simulating and optimizing evaporators in absorption refrigeration systems. 22 refs., 14 figs.

  5. Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows

    National Research Council Canada - National Science Library

    Shuai Shao; Cheng Xiang; Kairong Qin; Aziz Ur Rehman Aziz; Xiaoling Liao; Bo Liu

    ..., and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes...

  6. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer


    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  7. The MEXICO rotor aerodynamic loads prediction : ZigZag tape effects and laminar-turbulent transition modeling in CFD

    NARCIS (Netherlands)

    Zhang, Y.; van Zuijlen, A.H.; van Bussel, G.J.W.


    This paper aims to provide an explanation for the overprediction of aerodynamic loads by CFD compared to experiments for the MEXICO wind turbine rotor and improve the CFD prediction by considering laminar-turbulent transition modeling. Large deviations between CFD results and experimental

  8. Effect of 3D stall‑cells on the pressure distribution of a laminar NACA64‑418 wing

    NARCIS (Netherlands)

    Ragni, D.; Simao Ferreira, C.


    A 3D stall-cell flow-field has been studied in a 4.8 aspect-ratio wing obtained by linear extrusion of a laminar NACA64-418 airfoil profile. The span-wise change in the velocity and pressure distribution along the wing has been quantified with respect to the development of cellular structures from

  9. Vertical alignment of stagnation points in pseudo-plane ideal flows (United States)

    Sun, Che


    Recent studies of pseudo-plane ideal flow (PIF) reveal a ubiquitous presence of vortex alignment in both homogeneous and stratified fluids, and in both inertial and rotating reference frames as well. The exact solutions of a steady-state PIF model suggest that stagnation points tend to be vertically aligned and the concentric structure represents a fixed-point phenomenon of the Euler equations. Exception occurs in the rotating frame when a flow holds inertial period and skew center becomes possible. Properties of stagnation points based on Morse theory are obtained, leading to a topological explanation of vertical alignment via pressure Hessian. The study thus uncovers a new aspect of vortex behavior in ideal fluid that requires vortex center to align with the direction of gravity when vortex evolution reaches a laminar end state characterized by steady pseudo-plane velocities. Though the phenomenon arises from the constraint of the Euler equations, under specific conditions the topological theory is applicable to viscous fluid and explains the curvilinear tilting of von Kármán swirling vortex.

  10. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.


    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  11. Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers (United States)

    Gokoglu, S. A.; Rosner, D. E.


    Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.

  12. Proteomic Analysis of Vascular Endothelial Cells-Effects of Laminar Shear Stress and High Glucose. (United States)

    Wang, Xiao-Li; Fu, Alex; Spiro, Craig; Lee, Hon-Chi


    This study directly measured the relative protein levels in bovine aortic endothelial cells (BAEC) that were cultured for two weeks in normal (5 mM, NG) or high (22 mM, HG) glucose and then were subjected to laminar shear stress at 0 or 15 dynes/cm(2). Membrane preparations were labeled with one of the four isobaric tagging reagents (iTRAQ), followed by LC-MS/MS analysis. The results showed that HG and/or shear stress induced alterations in various membrane associated proteins involving many signaling pathways. While shear stress induced an increase in heat shock proteins and protein ubiquitination, which remained enhanced in HG, the effects of shear stress on the mechanosensing and protein phosphorylation pathways were altered by HG. These results were validated by Western blot analysis, suggesting that HG importantly modulates shear stress-mediated endothelial function.

  13. Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature (United States)

    Hojjat, M.; Etemad, S. Gh.; Bagheri, R.; Thibault, J.


    Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.

  14. Esquemas operativos laminares en el Musteriense final de la cueva de El Castillo (Puente Viesgo, Cantabria

    Directory of Open Access Journals (Sweden)

    Victoria Cabrera Valdés


    Full Text Available Se presentan una serie de evidencias de la presencia de esquemas operativos laminares y microlaminares en los niveles musterienses de la Cueva del Castillo. Su presencia confirma nuestras hipótesis relativas a la transición del Paleolítico Medio al Superior en la Región Cantábrica y refuerza la idea del papel de los Neandertales en las transformaciones culturales que dieron lugar al Auriñaciense.We present hiere some evidences of the blade/bladelet production in Mousterian levéis of Cueva del Castillo. This presence confirm our hypothesis in the continuity between the Middie to Upper Palaeolithic in Cantabrian Spain. Also provide us of new data on the role of Neanderthals in the Early Upper Palaeolithic and the formation of the Aurignacian.

  15. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe (United States)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin


    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  16. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection (United States)

    Streett, C. L.


    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  17. POD analysis of laminar flow in a two-dimensional 180-degree sharp bend with bypass (United States)

    Chandramouli, Koushik; Arul Prakash, K.


    A Proper Orthogonal Decomposition analysis on laminar flow physics in a 180-degree sharp bend with bypass is demonstrated. The unsteadiness in the flow field observed downstream of thebend and the bypass is captured. The data for POD analysis has been obtained by solving mass, momentum and energy equations in Cartesian framework using Streamline Upwind/Petrov-Galerkin Finite element method. A parameter called IOR (Inlet to Outlet Ratio) is defined based on the inlet and outlet domain heights, with a bypass in the divider at 3 different locations. The fluid flow involves steady, periodic unsteady and chaotic unsteadiness and POD is conducted for the transient cases. The presence of the bypass increases the interaction of the vortices with the fluid from the bypass. The simulated results demonstrate the understanding of the vortices interaction with the walls and each other and thus the enhancement in the heat transfer.

  18. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten


    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation...... in the laminar regime for the flow field, to a linear, time-harmonic acoustic equation in the low Mach number regime for the sound signal. B-splines are used both to represent the duct geometry and to approximate the flow and sound fields. This facilitates an exact representation of complex duct geometries...... are found when the acoustic pressure is approximated by higher order polynomials. Based on the model, we examine how the acoustic signal varies with sound frequency, flow speed and duct geometry. A combination of duct geometry and sound frequency is identified for which the acoustic signal is particularly...

  19. The multispecies modeling of the premixed, laminar steady-state ozone flame (United States)

    Heimerl, J. M.; Coffee, T. P.


    Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.

  20. Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility

    CERN Document Server

    Sarracino, A; Puglisi, A; Vulpiani, A


    We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We show, with extensive numerical simulations, that the force-velocity relation for the tracer, in the nonlinear regime, displays complex and rich behaviors, including negative differential and absolute mobility. These effects rely upon a subtle coupling between inertia and applied force which induce the tracer to persist in particular regions of phase space with a velocity opposite to the force. The relevance of this coupling is revisited in the framework of non-equilibrium response theory, applying a generalized Einstein relation to our system. The possibility of experimental observation of these results is also discussed.


    Directory of Open Access Journals (Sweden)



    Full Text Available Numerical simulations of the axisymmetric laminar flow characteristics past a rigid sphere impulsively started are presented for Reynolds numbers from 20 to 1000. The results are obtained by solving the complete time dependant Navier-Stokes equations in vorticity and stream function formulation. A fourth order compact method is used to discretize the Poisson equation of stream function while the vorticity transport equation is solved by an alternating direction implicit method. Time evolution of flow separation angle and length of the vortex behind the sphere are reported. Time variation of the axial velocity in the vortex and the wall vorticity around the sphere are also examined. Secondary vortices are seen to be initiated at Reynolds number of 610 and for dimensionless time t about 5. Comparisons with previously published simulations and experimental data for steady state conditions show very good agreement.

  2. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)


    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  3. Subcortical laminar heterotopia in two sisters and their mother: MRI, clinical findings and pathogenesis. (United States)

    van der Valk, P H; Snoeck, I; Meiners, L C; des Portes, V; Chelly, J; Pinard, J M; Ippel, P F; van Nieuwenhuizen, O; Peters, A C


    MR imaging, clinical data and underlying pathogenesis of subcortical laminar heterotopia (SCLH), also known as band heterotopia, in two sisters and their mother are presented. On MR imaging a different degree of SCLH was found in all three affected family-members. The inversion recovery sequence was considered most useful in the demonstration of the heterotopic band of gray matter and the assessment of cortical thickness. The younger sister presented with epileptic seizures at the age of five months and a delayed achievement of developmental milestones. The older sister of seven years had epileptic seizures since the age of one year, and developmental delay. Their mother has only had one seizure-like episode at the age of 39. Her psychomotor development had been normal. Investigation of DNA samples of the three female family-members revealed a mutation in the X-linked doublecortin gene. Within families with band heterotopia, this gene has also been related to male family members with lissencephaly.

  4. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer (United States)

    Zaman, K. B. M. Q.


    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  5. Laminar forced convection from a rotating horizontal cylinder in cross flow (United States)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.


    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  6. Active Control of Instabilities in Laminar Boundary Layers-Overview and Concept Validation (United States)

    Joslin, Ronald D.; Erlebacher, Gordon; Hussaini, M. Yoursuff


    This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitively shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed, the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for the work which will involve automated transition control, and for detailing the phenomena by-which the automated studies can be used to expand knowledge of flow control.


    Directory of Open Access Journals (Sweden)

    STANCIU Alexandru Lucian


    Full Text Available The article, as a new concept, analyzes the notion of « pulsating flow », the physical phenomenon seen when emptying bottles of PET or Tetra Pak; which do not have a disposal system of the vacuum created while emptying them, situation in which the fluid stream becomes oscillating in terms of the speed and the flow of the fluid passing through the drain area / section. Pulsating flow is a result of the vacuum created in the container, as opposed to laminar and turbulent flow whose existence is determined by the relative speed of the layers of fluid and the friction forces [2]. In the paper I present some new constructive solutions, designed by AutoCAD and created physically with rapid-prototyping

  8. Forced convection to laminar flow of liquid egg yolk in circular and annular ducts

    Directory of Open Access Journals (Sweden)

    M. Bernardi


    Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.

  9. Synthesis and electrochemical property of Bi2Se3 nanotubes with laminar surface. (United States)

    Mao, Shuling; Zhang, Shengyi; Niu, Helin; Song, Jiming; Jin, Baokang; Wu, Jieying; Tian, Yupeng


    A novel hydrothermal method has been developed for the preparation of Bi2Se3 nanotubes with the laminar surface. The method is based on the template-engaged synthesis in which the as-prepared Se nanotubes were used as template reagent. The morphology, constitution and crystalline phase of the products as-obtained were characterized by SEM, XRD and XPS. On the basis of a series of experiments and characterizations, the effect factors (such as the reaction temperature and the atom ratio of Bi and Se in the precursors) and the formation mechanism of the Bi2Se3 nanotubes were discussed. Furthermore, the electrochemical property of the Bi2Se3 nanotubes was determined by the voltammetric technique, and the significant results were obtained.

  10. Use of EARLINET climatology for validation of vertical model profiles (United States)

    Mortier, Augustin; Schulz, Michael


    For over a decade, intensive in-situ, ground-based and spaceborne remote observations are dedicated to the aerosols, a major component of the Earth atmosphere. These observations are mostly motivated by the high variability of the particles in space and time and their effect on the climate at a global scale, and at a regional scale on air quality. In the meantime, global and regional models provide aerosol concentrations (as projection, reanalysis or in near real time in chemical weather forecasting) respectively for the calculation of radiative effects and the assessment of air quality. The vertical distribution of the aerosol is a key-parameter since it affects its lifetime and reflects physical processes such as wet and dry deposition or chemical reactions. The aerosols present in low levels of the troposphere directly affect local air quality, while elevated aerosol layers can be transported long-range and contribute to pollution in remote regions. The evaluation of aerosol column and simulated vertical profiles are thus of particular interest for the performance characterisation of air quality models. The Copernicus Atmosphere Monitoring System (CAMS) delivers daily near real time aerosols products over Europe. In the framework of producing a regional a posteriori validation of the CAMS models, we propose, through this study, a validation exercise of the vertical aerosol profiles. This shall rely on the ACTRIS European Aerosol Research Lidar Network (EARLINET) measurements because of their quality and the opportunity to derive a climatology from long-term measurements. PM10 profiles are given from the models while mostly backscatter profiles are available from EARLINET database. After studying the representativeness of the EARLINET data (2006-2014), we present a comparison with the modeled vertical profiles (7 models and the Ensemble) at the location of measurement stations for the different seasons of the year 2016. The challenge of comparing the measured

  11. EN EL AIRE / In the air

    Directory of Open Access Journals (Sweden)

    Andrés López Fernández


    Full Text Available RESUMEN En el aire es un viaje a la primera mitad del siglo XX que nos tratará de acercar la frescura y oportunidad de las calles corredor y los jardines en la ciudad vertical. Se inicia en 1909 en Nueva York, con la publicación por la revista Life de La Torre del Globo, se acerca al Inmueble-Villas y al Plan Obus para Argel de Le Corbusier, y finaliza en 1952 con el proyecto para el conjunto residencial de Golden Lane en Londres de A. y P. Smithson. Fragmentos para la ciudad vertical que se construía sobre papel, tras el espejo, paralela en el tiempo, pero muy distinta a la ciudad real, con el objetivo entre otros de integrar arquitectura y naturaleza. Esas propuestas siguen teniendo hoy un gran valor, en un panorama en que el espacio público ligado a la vivienda colectiva, prácticamente ha desaparecido, y el esfuerzo que se demanda al arquitecto se centra, en tejer a modo de encaje de bolillos, una fachada que envuelva un programa de vivienda, funcional y espacialmente obsoleto.SUMMARY In the air, is a journey to the first half of the twentieth century that will try to bring us to the freshness and opportunity of the corridor streets and gardens in the vertical city. It begins in 1909 in New York, with the publication in Life magazine of the Globe Tower, it approaches the Immeubles-Villas and Plan Obus for Algiers by Le Corbusier, and ends in 1952 with the project for the Golden Lane Estate residential complex in London, by A. and P. Smithson. Fragments for the vertical city that was constructed on paper, behind the mirror, parallel in time, but was very different from the real city, with the aim, inter alia, of integrating architecture and nature. These proposals continue to have great value today, in a scenario where the public space linked to the collective home has virtually disappeared, and the effort that is demanded of the architect focuses on weaving a facade like bobbin lace around a functionally and spatially obsolete housing

  12. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.


    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  13. Convective heat transfer in foams under laminar flow in pipes and tube bundles. (United States)

    Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent


    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.

  14. Non-linear Phenomena of Wing Flutter and the Effect of Laminar-Turbulent Transition (United States)

    Marti, Ferran

    A Navier-Stokes Computational Fluid Dynamics (CFD) code is coupled with a Computa- tional Structural Dynamics (CSD) code to study the flutter boundary of the NACA64A010 airfoil using Isogai's structural model in transonic conditions. This model simulates aeroelas- tic conditions on a sweptback wing. A well-known feature, only present in the inviscid flutter boundary of this airfoil, is the existence of multiple flutter points for a fixed freestream Mach number. The fully-turbulent flutter boundary has not been studied by many researchers us- ing a Reynolds-Averaged Navier-Stokes approach. In the present study, the fully-turbulent flutter boundary reveals the existence of multiple equilibrium positions for a narrow range of flight conditions. The system moves away from the initial equilibrium position, finding a new set of equilibrium points and oscillating around it. This new set of equilibrium points reveals as stable or unstable for different structural properties of the wing. We then proceed to study the effect of turbulent transition on flutter boundary. A laminar- to-turbulent transition model is implemented in the CFD code and validated. The effect of using a free-transition CFD code vs. a fully-turbulent approach is evaluated on three airfoils with different characteristics for subsonic and transonic conditions. While free-transition does not affect the pressure distribution at subsonic conditions, the transonic simulations reveal a change in the shock-wave position when laminar-turbulent effects are included. The effect of transition on the flutter boundary of the NACA64A010 airfoil at transonic conditions is then investigated. A comparison between the free-transition, inviscid and fully-turbulent flutter boundaries reveals similarities between the inviscid and free-transition elastic re- sponses. Those similarities are due to the shift in the fully-turbulent shock-wave position, when accounting for free-transition effects, moving closer to the inviscid

  15. Evaluation of flamelet/progress variable model for laminar pulverized coal combustion (United States)

    Wen, Xu; Wang, Haiou; Luo, Yujuan; Luo, Kun; Fan, Jianren


    In the present work, the flamelet/progress variable (FPV) approach based on two mixture fractions is formulated for pulverized coal combustion and then evaluated in laminar counterflow coal flames under different operating conditions through both a priori and a posteriori analyses. Two mixture fractions, Zvol and Zchar, are defined to characterize the mixing between the oxidizer and the volatile matter/char reaction products. A coordinate transformation is conducted to map the flamelet solutions from a unit triangle space (Zvol, Zchar) to a unit square space (Z, X) so that a more stable solution can be achieved. To consider the heat transfers between the coal particle phase and the gas phase, the total enthalpy is introduced as an additional manifold. As a result, the thermo-chemical quantities are parameterized as a function of the mixture fraction Z, the mixing parameter X, the normalized total enthalpy Hnorm, and the reaction progress variable YPV. The validity of the flamelet chemtable and the selected trajectory variables is first evaluated in a priori tests by comparing the tabulated quantities with the results obtained from numerical simulations with detailed chemistry. The comparisons show that the major species mass fractions can be predicted by the FPV approach in all combustion regions for all operating conditions, while the CO and H2 mass fractions are over-predicted in the premixed flame reaction zone. The a posteriori study shows that overall good agreement between the FPV results and those obtained from detailed chemistry simulations can be achieved, although the coal particle ignition is predicted to be slightly earlier. Overall, the validity of the FPV approach for laminar pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.

  16. Performance evaluation of nebulizers based on aerodynamic droplet diameter characterization using the Direct Laminar Incidence (DLI

    Directory of Open Access Journals (Sweden)

    Luciana Martins Pereira de Araújo


    Full Text Available Abstract Introduction Optical microscope images can be useful to evaluate nebulizers considering the size of droplets produced by these devices. From this perspective, the proposed method was compared to the classic concept of Mass Median Aerodynamic Diameter (MMAD for the ideal droplet size between 0.5-5.5 µm. Methods We tested a sample of five home nebulizers sold on the Brazilian market. A high-speed camera coupled to a microscope obtained images of the droplets during the nebulization process, which allowed us to characterize the diameter of the aero-dispersed droplets. The Count Median Aerodynamic Diameter (CMAD was used as measurement parameter. Results The images obtained during the nebulization process with the five different nebulizers provided data to determine the frequency distribution of the aero-dispersed droplet population. Successive images were obtained in the range of 2.0s to evaluate the dynamic behavior of the droplets. The generated data also allowed the elaboration of histograms emphasizing the ideal diameter range of droplets between 0.5 and 5.5 μm. Conclusion The Direct Laminar Incidence (DLI model using digital image processing technique allowed the characterization of respirable particles. This model proposes the creation of a range of optimum absorption of the droplets by the respiratory tract. Although there is a technical limitation in the direct acquisition of images due to the depth of focus, presenting an error of 9.3%, the described method provides consistent results when compared to other droplets characterization techniques. Thus, the authors believe that Direct Laminar Incidence (DLI is a viable method to assess the performance of nebulizers despite the requirement of adjustments and possible improvements required to minimize measurement errors.

  17. Numerical Simulation of Laminar Forced Convection of Pin-Fin Heat-Sink Array in a Channel by Using Porous Approach

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng


    Full Text Available This work used a porous approach model to numerically investigate the fluid flow and heat transfer characteristics of the pin-fin heat-sink array in a rectangular channel with in-line arrangement. The air flow through the channel was laminar. The pin-fin heat sinks with various porosities and pin-fin numbers were employed. The relative center-to-center longitudinal and transverse distances between adjacent heat sinks were changed. The results indicate that the Nusselt number of various heat-sink arrays increased with decreasing the relative center-to-center transverse distance, but not varied with the relative center-to-center longitudinal distance. For the typical pin-fin heat-sink arrays, the Nusselt number changed slightly for the heat sinks with 0.358–0.556 porosity, but increased by 11.7%–24.8% when the porosity increased from 0.556 to 0.750, and then dropped obviously when the porosity exceeded 0.750. Increasing the number of pin fins continuously could increase Nusselt number. However, when the number of pin fins was large, the Nusselt number increased with the number of pin fins slowly. The present numerical simulation has been validated by the typical experiment. Finally, a semi-empirical correlation of Nusselt number for each heat sink in the heat-sink array was proposed.

  18. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed


    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  19. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris


    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  20. An investigation on the aerodynamic performance of a vertical axis wind turbine (United States)

    Vaishnav, Etesh

    Scope and Method of Study. The two dimensional unsteady flow around a vertical axis wind turbine (VAWT) comprising three rotating symmetric airfoils (NACA0018) was studied numerically with the consideration of the near wake. The flow around the wind turbine was simulated using ANSYS FLUENT 12.0.16 at Reynolds number of 106. ICEM CFD was used as a pre-processor to generate hexahedral grid and arbitrary sliding mesh technique was implemented to create a moving mesh. SST k-o turbulence model was employed for the analysis and simulation was set to run at several tip speed ratios ranging from 1 to 5. The variation of the performance coefficient (Cp) as a function of tip speed ratio (lambda) was investigated by plotting a graph between them. A validation was made by comparing CFD results with experimental results. Maximum Cp of 0.34 was obtained at lambda of 3.8. In addition, the effect of the rotor diameter on the VAWT's performance was investigated. In this regard, rotor diameter was halved and the angular velocity was doubled to keep the tip speed ratio constant. Furthermore, the effect of laminar boundary layer separation on Cp of a VAWT was studied by comparing the results of Laminar viscous model and RANS turbulence model. Apart from that, the effect of solidity on Cp was investigated by comparing the Cp obtained from six bladed turbine with the three bladed turbine. Findings and Conclusions. Influence of rotor diameter on the aerodynamic performance of a VAWT was investigated and found that Cp remained almost constant at the same value of lambda ranging from 1 to 5. This was due to the fact that the ratio of the chord length and the rotor radius were kept the same in both cases. For Laminar flow at low Reynolds number, Cp was found to be low due to the presence of leading edge separation bubble and reduced lift-to-drag ratio. Therefore, in order to increase Cp of a VAWT at low Reynolds numbers (e.g. small VAWT), different blade geometry (e.g. cambered) and