WorldWideScience

Sample records for vertical core-annular flow

  1. Pressure Drop in Vertical Core-Annular Flow

    OpenAIRE

    Prada,José Walter Vanegas; Bannwart,Antonio Carlos

    2001-01-01

    An experimental apparatus for the study of core annular flows of heavy oil and water at room temperature has been set up and tested at laboratory scale. The test section consists of a 2.75 cm ID galvanized steel pipe. Tap water and a heavy oil (17.6 Pa.s; 963 kg/m³) were used. Pressure drop in a vertical upward test section was accurately measured for oil flow rates in the range 0.297 - 1.045 l/s and water flow rates ranging from 0.063 to 0.315 l/s. The oil-water input ratio was in the range ...

  2. Direct numerical simulation of turbulent core-annular flow in a vertical pipe

    Science.gov (United States)

    Kim, Kiyoung; Choi, Haecheon

    2014-11-01

    The core-annular flow has been considered as a useful tool to effectively transport highly viscous oil by having lower viscous fluid such as water near the pipe surface. There have been several studies to investigate turbulent core-annular flows but most of them have been conducted experimentally. We solve the three-dimensional Navier-Stokes equations in a cylindrical coordinate and use the level-set method for interface tracking between two fluids (oil and water). A few different flow parameters such as the superficial velocity of fluids and mean pressure gradient are considered in a vertical pipe. The results show that the oil core region is nearly a plug flow and the water region experiences high shear rates, which generate turbulence structures different from those of single phase flow. The interface wave suppresses the near-wall coherent structures but produces complex fluid motions caused by its interaction with the wall. The phenomenon of maximum drag reduction and the effect of water turbulence on total drag will be discussed at the presentation. We gratefully acknowledge financial support from the NRF Programs (No. 2012M2A8A4055647), Mest, Korea.

  3. Review of oil water core annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Mandal, T.K.; Das, G. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-10-15

    The emerging energy efficient technology in the field of high viscous oil transportation is water-lubricated transport of heavy oil, known as core annular flow or CAF. This paper provides a brief review of the past studies on oil-water core annular flows - including studies on hydrodynamics as well as stability of flow. (author)

  4. Simple Model For Pressure Drop In Horizontal Core Annular Flow

    OpenAIRE

    Bannwart A.C.

    1999-01-01

    Based upon experimental data for heavy oil-water flow inside steel (26.7 mm ID) and cemented (23.9 mm ID) horizontal tubes, a very simple model for pressure drop in the core annular flow pattern was developed. The experiments were run at room temperature and the fluids used were a fuel oil (μ = 2.7 Pa.s, ρ = 989 kg/m3) and tap water, both drawn from a separator tank. First, it is shown that for both tubes the so-called 'perfect core annular flow' approach (shortly PCAF) poorly correlates the ...

  5. Elastic instability in stratified core annular flow.

    Science.gov (United States)

    Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie

    2011-06-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  6. A comparison between numerical predictions and theoretical and experimental results for laminar core-annular flow

    OpenAIRE

    Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.

    2014-01-01

    high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is that it is very well possible to simulate laminar core-annular flow in a pipe using the volume-of-fluid method.

  7. Stationary core-annular flow through a horizontal pipe.

    Science.gov (United States)

    Ooms, G; Poesio, P

    2003-12-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity annular liquid layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a possible density difference between the core and the annular layer, is counterbalanced. From earlier studies it is known that at the core surface ripples are present that have the shape of "bamboo" waves or "snake" waves. They generate pressure variations and secondary flows in the annular layer that can cause a net hydrodynamic force on the core. Using hydrodynamic-lubrication theory (assuming the core to be rigid) it has been shown that for snake waves the lubrication force can counterbalance the buoyancy force. For bamboo waves that is not the case.

  8. Characterization of interfacial waves in horizontal core-annular flow

    Science.gov (United States)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  9. Stability of three-layered core-annular flow

    Science.gov (United States)

    Pillai, Dipin; Pushpavanam, Subramaniam; Sundararajan, T.

    2016-11-01

    Stability of a three-layered core-annular flow is analyzed using the method of modal linear stability analysis. A temporal analysis shows that the flow becomes unstable to two modes of instability when inertial effects are negligible. An energy budget analysis reveals that these two modes correspond to capillary instability associated with each fluid-fluid interface. With an increase in Reynolds number, the system exhibits additional Reynolds stress modes of instabilities. These modes correspond to the Tollmien-Schlichting type of waves associated with high Reynolds number shear flows, and are considered precursor to transition to turbulence. An investigation of the parameter space reveals that the system may simultaneously show up to 5 distinct modes of instability, viz., the two capillary modes at each interface and three Reynolds stress modes in the bulk of each phase. In addition, a spatio-temporal analysis shows that the Reynolds stress modes are always convectively unstable whereas the capillary modes may undergo a transition from convective to absolute instability with decrease in Weber number. To obtain encapsulated droplets in experiments, the operating parameters must be chosen such that the system lies in the regime of convective instability. MHRD-Govt of India, NSF 0968313.

  10. Numerical Simulation of Non-Newtonian Core Annular Flow through Rectangle Return Bends

    OpenAIRE

    Fan Jiang; Yun Long; Yijun Wang; Zhenzhang Liu; Conggui Chen

    2016-01-01

    The volume of fluid (VOF) model together with the continuum surface stress (CSS) model is proposed to simulate the core annular of non-Newtonian oil and water flow through the rectangle return bends (∏-bends). A comprehensive investigation is conducted to generate the profiles of volume fraction, pressure and velocity. The influences of oil properties, flow direction, and bend geometric parameters on hydrodynamic of nonNewtonian oil and water core annular flow in ∏-bends are discusse...

  11. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  12. Restart time correlation for core annular flow in pipeline lubrication of high-viscous oil

    National Research Council Canada - National Science Library

    Livinus, Aniefiok; Yeung, Hoi; Lao, Liyun

    ... in a 5.5-m-long PVC horizontal pipe with internal diameter of 26 mm are first presented. A new correlation for the prediction of the restart time of a shutdown core annular flow line is then formulated...

  13. Experimental Study on Pressure Loss of Horizontal Core-Annular Flow

    Science.gov (United States)

    Asiegubu, Chukwuemeka Peter; Asakura, Kuniomi

    In this study, pressure losses associated with a core-annular flow (CAF) through three horizontal pipes of 25 mm, 52.7 mm and 80.1 mm in internal diameter are measured. The working fluids for the core-annular flow are two immiscible fluids, highly viscous oil and water. Oils with viscosities of 2.82 Pa·s at 20°C and 8.92 Pa·s at 20°C are used in the experiment. The oil-water flow rate ratios (ratio of oil flow rate to water flow rate) are set at 2.6, 3.0, 3.4, 4.0 and 4.6 for the pipe of 25 mm in diameter and at 4.0 for the pipes of 52.7 mm and 80.1 mm in diameter. Based on the results of the experiment, a simple model for the pressure loss of a core-annular flow is derived. This model is used to estimate pressure losses of core-annular flows at various flow rate ratios and pipe diameters. To validate the model, the pressure loss data from the experiment are compared with those of the model. The comparison shows that this model is useful for predicting pressure loss of a CAF when oil does not wet the pipe wall extensively. In addition, it is observed in the experiment that pressure loss of CAF with the two viscous liquids is slightly higher than that of single-phase water. This indicates that pressure loss of a CAF is largely independent of oil viscosity.

  14. Core-annular miscible two-fluid flow in a slippery pipe: A stability analysis

    Science.gov (United States)

    Chattopadhyay, Geetanjali; Usha, Ranganathan; Sahu, Kirti Chandra

    2017-09-01

    This study is motivated by the preliminary direct numerical simulations in double-diffusive (DD) core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters and increases the phase speed. This increased our curiosity to have a thorough understanding of the linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The present study, therefore, addresses the linear stability of viscosity-stratified core-annular Poiseuille flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD system are explained through an energy budget analysis. The differences and similarities between core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored. The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers is destabilized in the presence of moderate to large inertial effects. Both the longwave and shortwave are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability analysis. The present study reveals that it may be possible to control the instabilities in core-annular pressure driven pipe flows by imposing a velocity slip at the walls.

  15. Corrugated interfaces in multiphase core-annular flow

    CERN Document Server

    Shum, Ho Cheung; Fernandez-nieves, Alberto; Stone, Howard A; Weitz, David A

    2012-01-01

    Microfluidic devices can be used to produce highly controlled and monodisperse double or multiple emulsions. The presence of inner drops inside a jet of the middle phase introduces deformations in the jet, which leads to breakup into monodisperse double emulsions. However, the ability to generate double emulsions can be compromised when the interfacial tension between the middle and outer phases is low, leading to flow with high capillary and Weber numbers. In this case, the interface between the fluids is initially deformed by the inner drops but the jet does not break into drops. Instead, the jet becomes highly corrugated, which prevents formation of controlled double emulsions. We show using numerical calculations that the corrugations are caused by the inner drops perturbing the interface and the perturbations are then advected by the flow into complex shapes.

  16. Spatiotemporal Dynamic of Two-dimensional core annular flow in square channel

    Science.gov (United States)

    Latrache, N.; Nsom, B.; Decruppe, J.-P.

    2013-04-01

    In this work, we study the spatiotemporal dynamics of a two-dimensional core-annular flow (CAF) in a square channel of an oil/water system. The flow rate of oil is fixed at Qo=0.19 l/s and the flow rate of water Qw is varied from 0.20 l/s to 0.46 l/s. For large values of Qw (typically Qw>0.23l/s), the CAF is unstable, and it becomes stable for low values of Qw (typically Qwflow rate Qw. Theses characteristics are used to explain the pressure drop as function of the water flow rate.

  17. Spatiotemporal Dynamic of Two-dimensional core annular flow in square channel

    OpenAIRE

    Nsom B.; Latrache N.; Decruppe J-P.

    2013-01-01

    In this work, we study the spatiotemporal dynamics of a two-dimensional core-annular flow (CAF) in a square channel of an oil/water system. The flow rate of oil is fixed at Qo=0.19 l/s and the flow rate of water Qw is varied from 0.20 l/s to 0.46 l/s. For large values of Qw (typically Qw>0.23l/s), the CAF is unstable, and it becomes stable for low values of Qw (typically Qw

  18. Simulation of non-Newtonian oil-water core annular flow through return bends

    Science.gov (United States)

    Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei

    2017-07-01

    The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.

  19. Core-annular flow through a horizontal pipe: hydrodynamic counterbalancing of buoyancy force on core

    OpenAIRE

    Ooms, G.; Vuik, C.; Poesio, P.

    2008-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference between the core and the annular layer, is counterbalanced. From earlier studies it is known that at the interface between the annular layer and the core waves are present that move with respect to the ...

  20. Spatiotemporal Dynamic of Two-dimensional core annular flow in square channel

    Directory of Open Access Journals (Sweden)

    Nsom B.

    2013-04-01

    Full Text Available In this work, we study the spatiotemporal dynamics of a two-dimensional core-annular flow (CAF in a square channel of an oil/water system. The flow rate of oil is fixed at Qo=0.19 l/s and the flow rate of water Qw is varied from 0.20 l/s to 0.46 l/s. For large values of Qw (typically Qw>0.23l/s, the CAF is unstable, and it becomes stable for low values of Qw (typically Qw<0.23l/s. The spatiotemporal diagram technique is used to determine the characteristics of the water-oil interface, namely the entry length, height, parallel length, frequency, wavenumber, phase velocity, amplitude and spatial growth rate of wave amplitudeas function of the water flow rate Qw. Theses characteristics are used to explain the pressure drop as function of the water flow rate.

  1. On the levitation force in horizontal core-annular flow with a large viscosity ratio and small density ratio

    NARCIS (Netherlands)

    Ooms, G.; Pourquie, M.J.B.M.; Beerens, J.C.

    2013-01-01

    A numerical study has been made of horizontal core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a density difference between

  2. On the nonlinear interfacial instability of rotating core-annular flow

    Science.gov (United States)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  3. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  4. Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows

    Science.gov (United States)

    Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh

    2017-08-01

    We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive

  5. On the levitation force in horizontal core-annular flow with a large viscosity ratio and small density ratio

    OpenAIRE

    Ooms, G.; Pourquie, M.J.B.M.; Beerens, J.C.

    2013-01-01

    A numerical study has been made of horizontal core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a density difference between the core and the annular layer, is counterbalanced. The volume-of-fluid method is used to calculate the velocities and pressures in the two liquids. At the start of the calculation the core is in ...

  6. On the levitation force in horizontal core-annular flow with a large viscosity ratio and small density ratio

    Science.gov (United States)

    Ooms, G.; Pourquie, M. J. B. M.; Beerens, J. C.

    2013-03-01

    A numerical study has been made of horizontal core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question how the buoyancy force on the core, caused by a density difference between the core and the annular layer, is counterbalanced. The volume-of-fluid method is used to calculate the velocities and pressures in the two liquids. At the start of the calculation the core is in a concentric position. Thereafter the core starts to rise under the influence of buoyancy until it reaches an eccentric equilibrium position where the buoyancy force is counterbalanced by hydrodynamic forces generated by the movement of a wave at the core-annular interface with respect to the pipe wall. At high Reynolds number of the flow in the annular layer core levitation is due to inertial forces, whereas at low Reynolds number viscous (lubrication) forces are responsible for levitation. We carried out two types of calculation. In the first we assume the interface to be smooth (without wave) at the start of the calculation and study how the wave develops during the rising period of the core. In the second a wave is already present at the start of the calculation.

  7. Experimental study of core annular flow in the ultra viscous oil lift; Estudo experimental do escoamento anular oleo-agua (core flow) na elevacao de oleos ultraviscosos

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Jose Walter Vanegas

    1999-07-01

    The increase in importance of heavy oil in the energy scenario makes it viable the exploitation of initially unprofitable reservoirs. This leads to the search of technologies capable to improve the development of heavy oil fields. In view of this scenario the present work proposes a new technology for heavy oil lift by using the core annular flow pattern (shortly 'coreflow'). This flow arrangement can be induced through the lateral injection of relatively small quantities of water, in order to get a lubricated oil core in the pipe. With this objective in mind, an experimental apparatus was built and tested at a laboratory scale (1 in. vertical pipe) with an 17.6 Pa.s oil and water at room temperatures. The experiments were quite successful. The core-flow allowed to reduce the friction pressure drop by more than 1000 times with respect to single phase oil flow and is of the same order as the flow of water alone at same total flow rate. The total pressure drop was reduced 93 times with respect to single phase oil flow. Finally, a physically based correlation for friction pressure drop in upward core flow was developed and validated with our measurements. Comparison of this correlation with data from another source gave excellent results. Besides the fluid properties and rates, the correlation requires the volumetric fraction of the oil, which is determined from another correlation. (author)

  8. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    Science.gov (United States)

    Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.

    1994-01-01

    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.

  9. A comparison between numerical predictions and theoretical and experimental results for laminar core-annular flow

    NARCIS (Netherlands)

    Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.

    2014-01-01

    high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is

  10. Immiscible displacement of oil by water in a microchannel: asymmetric flow behavior and nonlinear stability analysis of core-annular flow.

    Science.gov (United States)

    Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S; Kawaji, Masahiro

    2012-02-01

    The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of 1/sqrt[1-a(o)/2(We(w) + We(o)a(o)(2)/1-a(o)(2))] where We(w) and We(o) are the Weber numbers of the water and the oil phases, respectively, and a(o) is the unperturbed water core radius made dimensionless by the channel radius.

  11. Immiscible displacement of oil by water in a microchannel: Asymmetric flow behavior and nonlinear stability analysis of core-annular flow

    Science.gov (United States)

    Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S.; Kawaji, Masahiro

    2012-02-01

    The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of (1)/(1-(ao)/(2)(Wew+Weo(ao2)/(1-ao2))) where Wew and Weo are the Weber numbers of the water and the oil phases, respectively, and ao is the unperturbed water core radius made dimensionless by the channel radius.

  12. A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe

    Science.gov (United States)

    Ooms, G.; Segal, A.; Vanderwess, A. J.; Oliemans, R. V. A.

    1982-07-01

    The mechanism by which the buoyancy force on the core, resulting from any density difference between oil and water, is counterbalanced in a theoretical model of core-annular flow of a viscous oil core and a water annulus through a pipe was analyzed. Oil viscosity was assumed to be so high that any flow in the core may be neglected, therefore there is no variation with time of the oil-water interface form. The core was assumed to be solid and the interface to be a solid-liquid interface. By means of the hydrodynamic lubrication theory, it is proved that, due to the movement of ripples present in the core surface with respect to the pipe wall, pressure variations occur in the annular layer, which exert a force on the core. This force can be so large that the buoyancy force is counterbalanced.

  13. Behaviour of steel pipe exposed to fouling by heavy oil during core-annular flow; Comportamento de tubo de aco exposto a sujeira de oleo pesado durante escoamento nucleo-anular

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Adriana; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2004-07-01

    The use of water-assisted technologies such as core-annular flow to the pipelines of viscous oils has been proposed as an attractive alternative for production and transportation of heavy crudes in both onshore and offshore scenarios. Usually, core-annular flow can be created by injecting a relatively small water flow rate laterally in the pipe, so as to form a thin water annulus surrounding the viscous oil, which is pumped through the center. The reduction in friction losses obtained thanks to lubrication by water is significant, since the pressure drop in a steady state core flow becomes comparable to water flow only. For a complete assessment of core flow technology, however, unwanted effects associated with possible oil adhesion onto the pipe wall should be investigated, since these may cause severe fouling of the wall and pressure drop increase. It has been observed that oil adhesion on metallic surfaces may occur for certain types of crude and oilphilic pipe materials. In this work we present results of pressure drop monitoring during 35 hour-operation of a heavy oil-water core annular flow in a 26.08 mm. i.d. horizontal steel pipe. The oil used is described in terms of its main components and the results of static wet ability tests are also presented for comparison (author)

  14. Applying CFD in the analysis of heavy oil - water two-phase flow in joints by using core annular flow technique

    Directory of Open Access Journals (Sweden)

    T Andrade

    2016-09-01

    Full Text Available In the oil industry the multiphase flow occur throughout the production chain, from reservoir rock until separation units through the production column, risers and pipelines. During the whole process the fluid flows through the horizontal pipes, curves, connections and T joints. Today, technological and economic challenges facing the oil industry is related to heavy oil transportation due to its unfavourable characteristics such as high viscosity and high density that provokes high pressure drop along the flow. The coreflow technique consists in the injection of small amounts of water into the pipe to form a ring of water between the oil and the wall of the pipe which provides the reduction of friction pressure drop along the flow. This paper aim to model and simulate the transient two-phase flow (water-heavy oil in a horizontal pipe and T joint by numerical simulation using the software ANSYS CFX® Release 12.0. Results of pressure and volumetric fraction distribution inside the horizontal pipe and T joint are presented and analysed.

  15. Exchange flows of two immiscible Newtonian liquids in a vertical tube: From falling drops to falling slugs

    Science.gov (United States)

    Varges, P. R.; Fonseca, B. S.; Naccache, M. F.; de Souza Mendes, P. R.

    2017-06-01

    We present an experimental study of buoyancy-driven flows of two immiscible Newtonian liquids in a vertical tube where initially the heavier and more viscous one is placed on the top of the lighter one. Flow visualization was performed using a digital camera, and inversion velocities were determined through image analysis. The influence of the governing parameters on the speed and flow regime was examined for pairs of liquids with small density differences. Two different flow regimes were observed, namely, falling drops and falling slugs. In the first regime, spherical and ellipsoidal drops are obtained, depending on the ratio between the drop and tube diameters. The falling slug regime is a core-annular flow pattern above a critical value of interfacial tension, while no flow is noticed below this critical value. The experimental results are in good agreement with model predictions from the literature. Indeed, the results showed that terminal velocity can be estimated by empirical correlations for falling spheres.

  16. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    Although past investigations establish the effect of various parameters on scour around vertical submerged structures for live and clear water condition, yet further studies are required to analyze the scour around group of submerged structures for various bed sediments, understand the flow physics around the group and ...

  17. Magnetohydrodynamic mixed convection flow in vertical concentric ...

    Indian Academy of Sciences (India)

    This work reports an analytical solution for fully developed mixed convection flow of viscous,incompressible, electrically conducting fluid in vertical concentric annuli under the influence of a transverse magnetic field, where the outer surface of inner cylinder is heated sinusoidally and the inner surface of outercylinder is kept ...

  18. Vertically integrated flow in stratified aquifers

    Science.gov (United States)

    Strack, Otto D. L.

    2017-05-01

    We present a set of continuous discharge potentials that can be used to determine the vertically integrated flow in stratified aquifers. The method applies to cases where the boundaries are vertical and either the hydraulic head is given, or the boundary is a seepage face, or the integrated discharge is given. The approach is valid for cases of given recharge through the upper and/or lower boundaries of the aquifer. The method is valid for any values of hydraulic conductivity; there are no limitations of the contrast for the method to be valid. The flows in the strata may be either confined or unconfined, and locally perched conditions may exist, but the effect of capillarity is not included. The hydraulic head is determined by applying the Dupuit-Forchheimer approximation. The main advantage of the approach is that very complex conditions in stratified aquifer systems, including locally perched conditions and extremely complex flow systems can be treated in a relatively straight forward approach by considering only the vertically integrated flow rates. The approach is particularly useful for assessing groundwater sustainability, as a model to be constructed prior to developing a fully three-dimensional numerical model.

  19. Effect of bubble deformability on the vertical channel bubbly flow

    OpenAIRE

    Dabiri, Sadegh; Lu, Jiacai; Tryggvason, Gretar

    2012-01-01

    This article describes the fluid dynamics video: "Effect of bubble deformability on the vertical channel bubbly flow". The effect of bubble deformability on the flow rate of bubbly upflow in a turbulent vertical channel is examined using direct numerical simulations. A series of simulations with bubbles of decreasing deformability reveals a sharp transition from a flow with deformable bubbles uniformly distributed in the middle of the channel to a flow with nearly spherical bubbles with a wal...

  20. Similarity solution for rarefied flow over a vertical stretched surface

    Science.gov (United States)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.

    2017-07-01

    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  1. Convectively driven flow past an infinite moving vertical cylinder with ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... find application in nuclear reactor cooling system, underground energy transport system and oceanography. Sparrow and Gregg [1] first studied the heat transfer from vertical cylinders. Sub- sequently, Goldstein and Briggs [2] presented an analytical study of the transient, free convective flow past a vertical ...

  2. Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...

    African Journals Online (AJOL)

    This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...

  3. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  4. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...

  5. Free Convective Flow of a Reacting Fluid between Vertical Porous ...

    African Journals Online (AJOL)

    This study investigates free convective flow between vertical porous plates. The energy and momentum equations which arise from the definitions of temperature and velocity are written in dimensionless forms. The resulting second order equations are solved to obtain expressions for the velocity, temperature, mass transfer ...

  6. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  7. Experimental study of ``laminar'' bubbly flows in a vertical pipe

    Science.gov (United States)

    Kashinsky, O. N.; Timkin, L. S.; Cartellier, A.

    1993-09-01

    Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.

  8. Bubble motion in sudden expansion in vertical pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Koichi [Marine Technical College, Ashiya, Hyogo (Japan); Yoshida, Kenji; Matsumoto, Tadayoshi; Okawa, Tomio; Kataoka, Isao [Osaka Univ., Suita, Osaka (Japan)

    2002-07-01

    Experimental studies were made on the multi-dimensional behavior of upward gas-liquid two-phase flow through the vertical round tube with an axisymmetric sudden expansion, which is one of the typical multi-dimensional channel geometry. The direct observation using high-speed video camera was performed and revealed the multi-dimensional dynamic flow behavior affected by the sudden expansion. Characteristic phenomena were observed such as bubble break-up, deformation due to the strong share of liquid flow, or liquid micro jet penetration through the gas-slug, and so on. From these results, the flow regime map at the below or above of the sudden expansion part was classified. The phase distributions in sudden expansion were also showed in detail that how the two-phase flow develops along the direction of the downstream of the sudden expansion. (J.P.N.)

  9. Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jun; Park, Sang Kyoo; Yang, Hei Cheon [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

  10. Numerical modeling and experimental analysis of volatile contaminant removal from vertical flow filters

    NARCIS (Netherlands)

    De Biase, C.

    2012-01-01

    Vertical flow filters (unplanted) and vertical flow constructed wetlands (planted), simple and inexpensive technologies to treat effectively volatile organic compounds (VOCs) contaminated water, consist of containers filled with granular material which is intermittently fed with contaminated water.

  11. Debris flow runup on vertical barriers and adverse slopes

    Science.gov (United States)

    Iverson, Richard M.; George, David L.; Logan, Matthew

    2016-01-01

    Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.

  12. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  13. Two-phase flow modelling for oxygen renewal estimation in vertical flow filter: luxury or necessity?

    Science.gov (United States)

    Forquet, N; Wanko, A; Molle, P; Mosé, R; Sadowski, A-G

    2009-01-01

    Scientists and practitioners exhibit an increasing interest on effluent transfer and degradation modelling in Vertical Flow Sand Filters (VFSF) and Vertical Flow Constructed Wetland (VFCW). Modelling software used to this purpose is mainly monophasic: in the unsaturated zone, only water flow is taken into account and air phase influence is assumed to be negligible. In hydrology, many studies have point out the limitations of this assumption in order to quantify air phase movement but little has been done in the modelling of vertical flow filter. Despite its complexity, two-phase flow modelling allows to overcome these difficulties. In this work, we describe the complex air and water flows in the particular case of vertical flow filter fed intermittently using both numerical and experimental results. Complete different behaviour is observed depending on ponding occurs or not. If it does, flow is clearly influenced by air entrapment which is responsible of a reduction of the infiltration speed and of the drainage of a part of the water kept at the interface between the sand and the drainage layer. Finally, we study the dependency of oxygen income by convection on hydraulic load and compare numerical results with experimental results obtained on oxygen consumption.

  14. Vertical structure of turbulence in offshore flow during RASEX

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Edson, J.

    2001-01-01

    with height and downward transport of turbulence energy toward the surface. With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained......-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study. The buoyancy generation of turbulence is small compared to shear generation...... and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly...

  15. Buoyancy induced Couette-Poiseuille flow in a vertical microchannel

    Science.gov (United States)

    Narahari, M.

    2017-10-01

    The fully developed buoyancy-induced (natural convective) Couette-Poiseuille flow in a vertical microchannel is investigated with the velocity slip and temperature jump boundary conditions. Closed form analytical solutions for the velocity and temperature fields are obtained. The effects of the fluid-wall interaction parameter, wall-ambient temperature difference ratio, Knudsen number, mixed convection parameter, and the dimensionless pressure gradient on the velocity, temperature, volume flow rate, heat flux between the plates and the Nusselt number have been discussed in detail through graphs. The outcomes of the investigation indicate that the volume flow rate increases with increasing values of mixed convection parameter, wall-ambient temperature difference ratio, and Knudsen number.

  16. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes

    NARCIS (Netherlands)

    De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter.

  17. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    Science.gov (United States)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  18. Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands.

    Science.gov (United States)

    Hua, Guofen; Kong, Jun; Ji, Yuyu; Li, Man

    2017-10-25

    Vertical flow constructed wetlands are widely used for removing pollutants from wastewater. Substrate clogging is an operational challenge of constructed wetlands, which can result in impeded water flow and finally a significant decline in the ability of the system to treat the wastewater. The entire clogging process in a vertical flow constructed wetland (VFCW) was quantitatively analyzed by measurements of hydraulic conductivity. Tracer tests and model simulations were carried out to investigate internal flow patterns during the clogging and resting processes. This analysis revealed that hydraulic conductivity gradually decreased with operation time. Further, the distribution time of the flow field was different under different degrees of clogging. Non-uniformity in water flow was primarily observed in the first 400min after adding the tracer (NaCl) in the early clogging stage, as opposed to the last 400min in the late clogging stage. Variation in water flow divergence was closely correlated with piston flow; the reaction efficiency was highest in the early stages of clogging. In the later stages, stronger flow mixing was observed. Resting operations can reduce the dispersion of internal flow and improve reaction efficiency. After resting for approximately 15days, tracer concentration fluctuations decreased and internal flow back-mixing was alleviated. A simulation further described the internal flow pattern and elaborated and validated the tracer experiment. The outcomes of this study will assist in understanding how internal flow behavior varies in response to the clogging process and reveal details of the internal clogging mechanism in VFCWs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flow-blade interaction in a Vertical Axis Wind Turbine

    Science.gov (United States)

    Dominguez, Roberto; Piedra, Saul; Ramos, Eduardo

    2014-11-01

    We present an analysis of the interaction between an incoming wind and three airfoils symmetrically located, and free to rotate around a common axis. The geometrical configuration considered is a two dimensional model of Vertical Axis Wind Turbine. The model is based in the conservation equations of the fluid coupled with the Newton-Lagrange equations for the interaction with the airfoils. The presence of the rigid body in the fluid is simulated using immersed boundary conditions. The interaction of the wind with the airfoil located further upstream generates a force on the airfoil and vortices that are swept downstream and collide with the other airfoils. This effect generates a complex interplay of dynamical forces whose resultant is a torque that sets the system in motion. We describe the flow around the airfoils and examine the efficiency of the system as a function of geometric variables. Our conclusions are potentially useful for the design of VAWT's.

  20. Performance of a vertical subsurface flow constructed wetland under different operational conditions

    National Research Council Canada - National Science Library

    Abdelhakeem, Sara G; Aboulroos, Samir A; Kamel, Mohamed M

    2016-01-01

    The performance of a vertical subsurface flow constructed wetland (VSSFCW) for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation...

  1. Flow regime transition criteria for two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique, E-mail: bolivar@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I., Campus de Riu Sec, 12071 Castellon (Spain); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-10-15

    Highlights: > Flow regime transition model is presented for two-phase flows in a vertical annulus. > The transition criteria is easy to be implemented in computational codes. > Final equations do not need experimental input. > New developed model shows better predicting capabilities than existing correlations. > New developed model shows good predicting capabilities in boiling flow. - Abstract: In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug-bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been

  2. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-02-15

    In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s < < 30 m/s and 0.2 m/s < < 3.5 m/s where and are, respectively, superficial gas and liquid velocities. The local flow regime has been classified into four categories: bubbly, cap-slug, churn-turbulent and annular flows. In order to study the radial and axial development of flow regime the measurements have been performed at five radial locations. The three axial positions correspond to z/D{sub H} = 52, 149 and 230, where z represents the axial position. The flow regime indicator has been chosen as some statistical parameters of local bubble chord length distributions and self-organized neural networks have been used as mapping system. This information has been also used to compare the results given by the existing flow regime transition models. The local flow regime is characterized basically by the void fraction and bubble chord length. The radial development of flow regime shows partial and complete local flow regime combinations. The radial development is controlled by axial location and superficial liquid velocity. The radial flow regime transition is always initiated in the center of the flow channel and it is propagated towards the channel boundaries. The axial development of flow regime is observed in all the flow maps and it is governed by superficial liquid velocity and radial location. The prediction results of the models are compared for each flow regime transition.

  3. Vertical cross-spectral phases in atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2014-01-01

    . The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance...

  4. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  5. Investigation on Effect of Flow Direction on Hydrodynamics for vertical Channel Bubbly Flow

    Directory of Open Access Journals (Sweden)

    M Pang

    2016-12-01

    Full Text Available In order to fully understand hydrodynamics of the bubbly flow laden with microbubbles, the effect of flow direction on the phase distribution and the liquid–phase turbulence modulation in a vertical channel flow laden with microbubbles was detailedly investigated with a developed numerical method, where the liquid–phase velocity field was solved by direct numerical simulations and the microbubble trajectories were tracked by Newtonian equations of motion. The present investigations show the flow direction has the key influence on the phase distribution and the liquid–phase turbulence modulation; for the bubbly upflow, the overwhelming majority of microbubbles accumulate near the channel wall, the phase distribution display approximately the double–peaked distribution patter, and the liquid–phase turbulence was suppressed; for the bubby downflow, however, the microbubbles are far away from the channel wall to move towards the channel centre, the phase distribution shows roughly the off–center–peaked distribution pattern, and the liquid–phase turbulence was enhanced.

  6. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.

    1965-07-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.

  7. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  8. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...

  9. Radiative Fluid Flow Between Fixed Vertical Plates With Suction ...

    African Journals Online (AJOL)

    Radiating MHD free convective slip flow with mass transfer and chemical reaction is presented. The governing particles are solved by perturbation method. The temperature, velocity and concentration profiles are presented graphically. The effects of magnetic, Prandtl, Schmidt, radiation, chemical, wave numbers are ...

  10. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  11. Steady magnetohydrodynamic radiating flow past a vertical porous ...

    African Journals Online (AJOL)

    Approximate solutions to the coupled non-linear equations governing the steady velocity, temperature, skin friction and rate of heat transfer are obtained invoking a perturbative series expansion in terms of the Eckert number Ec, since the Eckert, number Ec for all incompressible flows is small. We notice that the rate of heat ...

  12. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    Science.gov (United States)

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation.

  13. An experimental study of naturally driven heated air flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Mostafa; Bayat, Mohammad Mehdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2011-01-15

    Specifications of warm air flow within a vertical pipe which is induced by the buoyancy effect were investigated in this study. Air from surroundings was directed into a heating chamber connected to a vertical pipe to establish a flow within the pipe. The temperature and the velocity were measured at different points within the stable flow and the mean values of these parameters were computed. Mass flow rate of air was evaluated using ideal gas assumption. In order to investigate the effect of the thermal boundary condition of the pipe, two tests were conducted; once for the pipe exposed to the surroundings and then for the pipe with a thermal insulation. A model for predicting the induced flow rate of warm air was developed and the predictions of the model were compared with the experimental data over the tested range of the parameters. (author)

  14. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei

    2017-12-01

    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  15. Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2018-01-01

    We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium-indium-tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.

  16. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  17. Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Banowski, M.; Beyer, M.; Lucas, D.; Hoppe, D.; Barthel, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung

    2016-12-15

    For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used. Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well. This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.

  18. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment

    NARCIS (Netherlands)

    Meuleman, Arthur F M; Van Logtestijn, Richard; Rijs, Gerard B J; Verhoeven, Jos T A

    To estimate the nutrient and organic matter (Biological Oxygen Demand (BODs) and Chemical Oxygen Demand (COD)) removal capacity of a constructed vertical-flow wetland in The Netherlands, a water and nutrient budget study was conducted. Also bacterial water quality enhancement was measured. The

  19. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    The laminar fully developed flow in a vertical double passage channel filled with clear fluid has been discussed using Robin boundary conditions. The thin perfectly conductive baffle is inserted in the channel. The governing equations of the fluid which are coupled and nonlinear are solved analytically by the perturbation ...

  20. Measurement and Calculation of Vertical Temperature Gradients in Rooms with Convective Flows

    DEFF Research Database (Denmark)

    Overby, H.

    The paper deals with experimental and theoretical examinations of the vertical temperature gradient in rooms with convective flows under transient conditions. The measurements are carried out in a laboratory test room of three different sizes. A small room (7.25 m2) with a normal room height of 2...

  1. Free convection of Walter's fluid flow in a vertical double-passage ...

    African Journals Online (AJOL)

    user

    Huilgol, R.R. and Phan-Thien, N., 1997. Fluid mechanics of viscoelasticity, Elsevier, Amsterdam. Malashetty, M.S., Umavathi, J.C. and Leela, V., 2001. Magnetoconvective flow and heat transfer between vertical wavy wall and a parallel flat wall, Int. J. of Applied Mechanics and Engineering, Vol. 6, No. 2, pp. 437-456. Ostrich ...

  2. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with traveling thermal waves. ... Results for a wide range of governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, and traveling thermal temperature are plotted for different values of ...

  3. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  4. VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT

    Science.gov (United States)

    A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...

  5. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C alternifolius species

    Science.gov (United States)

    Ying Ouyang; Lihua Cui; Gary Feng; John Read

    2015-01-01

    Vertical flow constructed wetland (VFCW) is a promising technique for removal of excess nutrients and certain pollutants from wastewaters. The aim of this study was to develop a STELLA (structural thinking, experiential learning laboratory with animation) model for estimating phosphorus (P) removal in an artificial VFCW (i.e., a substrate column with six zones) grown...

  6. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)

    2009-11-15

    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  7. Three-dimensional flow observation on the air entrainment into a vertical-wet-pit pump

    Science.gov (United States)

    Hirata, K.; Maeda, T.; Nagura, T.; Inoue, T.

    2016-11-01

    The authors consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the “vertical wet-pit pump,” and has many practical advantages in construction, maintenance and operation. Most of the flows appearing in various industrial and environmental problems like the present suction- sump flow become often complicated owing to both of their unsteadiness with poor periodicity and their fully-three-dimensionality. In order to understand the complicated flow inside a suction sump in the vertical-wet-pit-pump configuration, the authors experimentally observe the flow using the three-dimensional particle tracking velocimetry (3D-PTV) technique, which includes more unknown factors in accuracy and reliability than other established measuring techniques. So, the authors examine the simultaneous measurement by the 3D-PTV with another velocimetry the ultrasonic velocity profiler. As a result, under the suitable condition with high accuracy, the authors have revealed the complicated flow.

  8. Numerical investigation of flow and scour around a vertical circular cylinder

    DEFF Research Database (Denmark)

    Baykal, Cüneyt; Sumer, B. Mutlu; Fuhrman, David R.

    2015-01-01

    Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynoldsaveraged Navier–Stokes equations. The model incorporates (i) k-ω turbulence closure, (ii) vortexshedding processes, (iii) sediment transport...... (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment...... transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter...

  9. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor

    2016-01-01

    the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...... to thermal stresses and subsequent loss of well integrity, and it is therefore crucial to employ models that can predict this accurately. In this work, we present a model for vertical well flow that includes both two-phase flow and heat conduction. The flow is described by a two-fluid model, where mass...

  10. Boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn-Jea [School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of); Kim, Kwang-Su [SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746 (Korea, Republic of)

    2007-02-15

    Transient free convective boundary layer flow of micropolar fluids past an impulsively started infinite vertical plate is investigated. The transformed dimensionless governing equations for the flow, microrotation and heat transfer characteristics are solved by using the Laplace transform technique. In particular, the relevant solution of the coupled governing equations was found with the second kind of the Volterra integral equation. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow and temperature fields from these parameters is discussed.

  11. Convective Flow of a Colloidal Suspension in a Vertical Slot Heated from Side Wall

    Science.gov (United States)

    Cherepanov, I. N.; Smorodin, B. L.

    2017-12-01

    Convective flows and the transport of nanoparticles are numerically investigated in the vertical slot filled with a colloidal suspension and heated from the side. The thermodiffusion and gravitational sedimentation of the nanoparticles are taken into account. Two different regimes of laminar flow are found. The intensity of the first regime is much lower than in molecular liquids (the magnitudes of the convective and diffusion fluxes have the same order). The second regime is more intensive. The transitions between these two regimes are investigated. It is shown that intensive convective flow completely mixes the colloidal suspension to a homogeneous state as a result of the long transient process.

  12. Boundary layer flow adjacent to a permeable vertical plate with constant surface temperature

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Md Arifin, Norihan

    2013-04-01

    The effects of suction/injection on the laminar boundary layer flow adjacent to a vertical wall with constant surface temperature are considered. The governing partial differential equations are first transformed into ordinary differential equations before being solved numerically by a finite difference method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that the solution was unique for the assisting flow, while dual solutions exist for the opposing flow. The results indicate that the range of known dual solutions increases with suction and decreases with injection.

  13. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field

    Science.gov (United States)

    Chen, Jui-Sheng; Jang, Cheng-Shin; Cheng, Chung-Ting; Liu, Chen-Wuing

    2010-09-01

    SummaryThis study presents a novel mathematical model for describing the transport of the remedial reagent in a vertical circulation flow field in an anisotropic aquifer. To develop the mathematical model, the radial and vertical components of the pore water velocity are calculated first by using an analytical solution for steady-state drawdown distribution near a vertical circulation well. Next, the obtained radial and vertical components of the pore water velocity are then incorporated into a three-dimensional axisymmetrical advection-dispersion equation in cylindrical coordinates from which to build the reagent transport equation. The Laplace transform finite difference technique is applied to solve the three-dimensional axisymmetrical advection-dispersion equation with spatial variable-dependent coefficients. The developed mathematical model is used to investigate the effects of various parameters such as hydraulic conductivity anisotropy, longitudinal and transverse dispersivities, the placement of the extraction and injection screened intervals of the vertical circulation well and the injection modes on the transport regime of the remedial reagent. Results show that those parameters have different degrees of impacts on the distribution of the remedial reagent. The mathematical model provides an effective tool for designing and operating an enhanced groundwater remediation in an anisotropic aquifer using the vertical circulation well technology.

  14. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    Science.gov (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  15. Radiative Walter's memory flow along a vertical cone in induced magnetic field with thermophoretic effect

    Science.gov (United States)

    Islam, Md. Manjiul; Haque, Md. Mohidul

    2017-06-01

    A radiative heat and mass transfer study of Walter's memory flow along a vertical cone with thermophoresis is completed in the presence of induced magnetic field. A mathematical model of Walter's memory flow is developed from the basis of studying Magnetohydrodynamics(MHD). Some dimensionless quantities have been used to transform the model to non-dimensional system of equations. The dimensionless unsteady, coupled and non-linear partial differential conservation equations for the boundary layer regime are solved by an efficient, accurate and unconditionally stable finite difference scheme of the Crank-Nicolson type. The features of the flow, heat and mass transfer characteristics within the boundary layer are analyzed by plotting graphs and the physical aspects are discussed in detail. The obtained results show that the impact of flow variables plays an important role in the Walter's memory flow. Last of all, some important findings of the present problem are concluded in this work.

  16. Vertical velocity distribution in open-channel flow with rigid vegetation.

    Science.gov (United States)

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding.

  17. Numerical investigations of passive flow control elements for vertical axis wind turbine

    Science.gov (United States)

    Frunzulica, Florin; Dumitrache, Alexandru; Suatean, Bogdan

    2014-12-01

    In this paper we numerically investigate the possibilities to control the dynamic stall phenomenon, with application to vertical axis wind turbines. The dynamic stall appears at low tip speed ratio (TSRCFD 2D analysis of the dynamic stall phenomenon around NACA 0012 airfoil equipped with a passive flow control device, in pitching motion at relative low Reynolds number (˜105). Three passive flow control devices are numerically investigated: a turbulence promoter mounted on the leading edge, a thin channel and a step on the upper surface of the airfoil. For the present studies, the unsteady Reynolds averaged Navier-Stokes (RANS) model is the suitable approach to perform the dynamic stall simulations with an acceptable computational cost and reasonable accuracy. The results are compared to those of an existing experimental case test for unmodified NACA 0012 airfoil. The capability of this device was investigated numerically on a vertical axis wind turbine (2D model), where blades are generated with NACA 0018 airfoil.

  18. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  19. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.

    2009-07-01

    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  20. Unsteady thin film flow of a fourth grade fluid over a vertical moving and oscillating belt

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2016-09-01

    Full Text Available This article studies the unsteady thin film flow of a fourth grade fluid over a moving and oscillating vertical belt. The problem is modeled in terms of non-nonlinear partial differential equations with some physical conditions. Both problems of lift and drainage are studied. Two different techniques namely the adomian decomposition method (ADM and the optimal homotopy asymptotic method (OHAM are used for finding the analytical solutions. These solutions are compared and found in excellent agreement. For the physical analysis of the problem, graphical results are provided and discussed for various embedded flow parameters.

  1. Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate

    CERN Document Server

    Abdel-Khalek, M M

    2003-01-01

    A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.

  2. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    Science.gov (United States)

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  3. Buoyancy and Pressure Induced Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Jaluria, Yogesh; Tamm, Gunnar Olavi

    2014-11-01

    An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.

  4. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Directory of Open Access Journals (Sweden)

    Ge Y.T.

    2013-04-01

    Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  5. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  6. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  7. Propagation of Local Bubble Parameters of Subcooled Boiling Flow in a Pressurized Vertical Annulus Channel

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In-Cheol; Lee, Seung Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    CMFD (Computation Multi-Fluid Dynamics) tools have been being developed to simulate two-phase flow safety problems in nuclear reactor, including the precise prediction of local bubble parameters in subcooled boiling flow. However, a lot of complicated phenomena are encountered in the subcooled boiling flow such as bubble nucleation and departure, interfacial drag of bubbles, lateral migration of bubbles, bubble coalescence and break-up, and condensation of bubbles, and the constitutive models for these phenomena are not yet complete. As a result, it is a difficult task to predict the radial profile of bubble parameters and its propagation along the flow direction. Several experiments were performed to measure the local bubble parameters for the validation of the CMFD code analysis and improvement of the constitutive models of the subcooled boiling flow, and to enhance the fundamental understanding on the subcooled boiling flow. The information on the propagation of the local flow parameters along the flow direction was not provided because the measurements were conducted at the fixed elevation. In SUBO experiments, the radial profiles of local bubble parameters, liquid velocity and temperature were obtained for steam-water subcooled boiling flow in a vertical annulus. The local flow parameters were measured at six elevations along the flow direction. The pressure was in the range of 0.15 to 0.2 MPa. We have launched an experimental program to investigate quantify the local subcooled boiling flow structure under elevated pressure condition in order to provide high precision experimental data for thorough validation of up-to-date CMFD codes. In the present study, the first set of experimental data on the propagation of the radial profile of the bubble parameters was obtained for the subcooled boiling flow of R-134a in a pressurized vertical annulus channel. An experimental program was launched for an in-depth investigation of a subcooled boiling flow in an elevated

  8. Vertically stratified two-phase flow in a curved channel: Insights from a domain perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garg, P. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Picardo, J. R.; Pushpavanam, S., E-mail: spush@iitm.ac.in [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2014-07-15

    In this work, we investigate the fully developed flow field of two vertically stratified fluids (one phase flowing above the other) in a curved channel of rectangular cross section. The domain perturbation technique is applied to obtain an analytical solution in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio of the width of the channel to its radius of curvature). The accuracy of this solution is verified by comparison with numerical simulations of the nonlinear equations. The flow is characterized by helical vortices within each fluid, which are driven by centrifugal forces. The number of vortices and their direction of circulation varies with the parameters of the system (the volume fraction, viscosity ratio, and Reynolds numbers). We identify nine distinct flow patterns and organize the parameter space into corresponding flow regimes. We show that the fully developed interface between the fluids is not horizontal, in general, but is deformed by normal stresses associated with the circulatory flow. The results are especially significant for flows in microchannels, where the Reynolds numbers are small. The mathematical results in this paper include an analytical solution to two coupled biharmonic partial differential equations; these equations arise in two-phase, two-dimensional Stokes flows.

  9. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    Science.gov (United States)

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Shiqian Nie

    2017-01-01

    Full Text Available The fractional advection-diffusion equation (fADE model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.

  11. Scrutiny of mixed convection flow of a nanofluid in a vertical channel

    Directory of Open Access Journals (Sweden)

    M. Fakour

    2014-11-01

    Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.

  12. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  13. Mixed convective flow of immiscible fluids in a vertical corrugated channel with traveling thermal waves

    Directory of Open Access Journals (Sweden)

    J.C. Umavathi

    2014-01-01

    Full Text Available Fully developed laminar mixed convection in a corrugated vertical channel filled with two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have different viscosities and thermal conductivities. Separate solutions are matched at the interface using suitable matching conditions. The velocity, the temperature, the Nusselt number and the shear stress are analyzed for variations of the governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpendicular to the flow direction.

  14. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  15. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  16. Two-Phase Pressure Drop of a Refrigerant Flowing Vertically Downward in a Mini-channel

    Science.gov (United States)

    Miyata, Kazushi; Enoki, Koji; Mori, Hideo; Hamamoto, Yoshinori

    Experiments were performed on two-phase pressure drop of a refrigerant R-410A flowing vertically downward in small copper circular tubes with 0.5-2.0 mm I.D., and small copper rectangular and triangular tubes with 1.04 and 0.88 mm inner hydraulic equivalent diameter, respectively, for the development of a high-performance heat exchanger using small tubes or multi-port extruded tubes for air conditioning systems.Pressure drops were measured and flow patterns were observed in the range of mass flux from 30 to 400 kg/(m2s)and quality from 0.1 to 0.9 at the saturation temperature of 10 °C. Characteristics of measured pressure drops were examined for different flow channel geometries. In high quality region or relatively high mass flux condition, the frictional pressure drop was reproduced well by the Lockhart-Martinelli correlation used together with a new correlation for Chisholm's parameter C as a function of hydraulic equivalent diameter. In low mass flux and low quality region, the frictional pressure drop was also reproduced well by multiplying the Chisholm two-phase multiplier factor by modified coefficient. In addition, flow pattern was observed with 0.5 and 2.0 mm I.D circular glass tubes. Slug flow and annular flow patterns were observed at lower and higher quality, respectively.

  17. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  18. Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons.

    Science.gov (United States)

    Al-Isawi, R H K; Sani, A; Almuktar, S A A A N; Scholz, M

    2015-01-01

    The aim was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand (COD) loading) variables on the long-term and seasonal performance of vertical-flow constructed wetland filters operated in tidal flow mode before and after a one-off spill of diesel. Ten different vertical-flow wetland systems were planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). Approximately 130 g of diesel fuel was poured into four wetland filters. Before the spill, compliance with secondary wastewater treatment standards was achieved by all wetlands regarding ammonia-nitrogen (NH4-N), nitrate-nitrogen (NO₃-N) and suspended solids (SS), and non-compliance was recorded for biochemical oxygen demand and ortho-phosphate-phosphorus (PO₄-P). Higher COD inflow concentrations had a significantly positive impact on the treatment performance for COD, PO₄-P and SS. The wetland with the largest aggregate size had the lowest mean NO₃-N outflow concentration. However, the results were similar regardless of aggregate size and resting time for most variables. Clear seasonal outflow concentration trends were recorded for COD, NH4-N and NO₃-N. No filter clogging was observed. The removal efficiencies dropped for those filters impacted by the diesel spill. The wetlands system shows a good performance regarding total petroleum hydrocarbon (TPH) removal.

  19. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    Science.gov (United States)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m‑2·s‑1 to 70 kg·m‑2·s‑1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  20. On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2018-01-01

    Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.

  1. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  2. Experiences with pre-precipitation of phosphorus in a vertical flow constructed wetland in Austria.

    Science.gov (United States)

    Lauschmann, Robert E; Lechner, Markus; Ertl, Thomas; Langergraber, Guenter

    2013-01-01

    Using constructed wetlands (CWs) with vertical flow and intermittent loading, high organic matter and ammonium removal can be achieved. In the case of additional requirements for phosphorus removal, which in Austria often occurs if the treated wastewater is discharged into small sensitive receiving waters, additional measures have to be taken. The objective of this work was to investigate the applicability of conventional phosphorus pre-precipitation with sodium aluminate for a CW system. The experiment was carried out at a full-scale CW in Oberwindhag in Lower Austria, a two-stage vertical flow CW with intermittent loading designed for a size of 60 person equivalents (PE). The goal was to reach the required value of 1.6 mg/L PO4-P for the effluent of the system. Prior to the experiments the plant was in operation for 3 years without measures for phosphorus removal. After pre-precipitation with sodium aluminate was activated, three different dosages were investigated. Satisfying results in the preliminary treatment chambers were not obtained until a high dosage (ß = 3.5, i.e. 3.5 times the dose required from stoichiometry) was applied. After an adaptation time of several months the required effluent concentration of 1.6 mg PO4-P/L could be reached and maintained. However, the additional phosphorus pre-precipitation increases the yearly operating costs of a vertical flow CW system significantly, e.g. for 60 and 25 PE, by 15 and 38%, respectively, thus indicating the need for optimizing the dosing of the chemical.

  3. Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.

    Science.gov (United States)

    Gul, Taza; Islam, Saed; Shah, Rehan Ali; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.

  4. Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    2016-04-01

    Full Text Available The effects of partial slip on stagnation-point flow and heat transfer due to a stretching vertical sheet is investigated. Using a similarity transformation, the governing partial differential equations are reduced into a system of nonlinear ordinary differential equations. The resulting equations are solved numerically using a shooting method. The effect of slip and buoyancy parameters on the velocity, temperature, skin friction coefficient and the local Nusselt number are graphically presented and discussed. It is found that dual solutions exist in a certain range of slip and buoyancy parameters. The skin friction coefficient decreases while the Nusselt number increases as the slip parameter increases.

  5. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  6. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... quantities of phytoplankton algae were removed in the CWs but abundance of toxic algae such as Microcystis was low. It is concluded that particularly vertical flow CWs have great potential for treatment of fishpond water in recirculating aquaculture systems in the tropics as the discharge of polluted water...

  7. An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Persson, P.

    1963-06-15

    A method of predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis predicts that the burnout conditions are independent of the L/d-ratio and the inlet temperature, and that the burnout steam quality decreases with increasing surface heat flux and increasing mass velocity. It was also found that the burnout steam quality at low pressures increases with the pressure and reaches a maximum at approximately 70 kg/cm, and thereafter decreases with a further increase of the pressure. The theoretical result compares very well with experimental data from different sources.

  8. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  9. Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid

    Directory of Open Access Journals (Sweden)

    Nor Azizah Yacob

    2013-01-01

    Full Text Available The characteristics of fluid flow and heat transfer over a stretching vertical sheet immersed in a nanofluid are investigated numerically in this paper. Three different types of nanoparticles, namely, copper Cu, alumina Al2O3, and titania TiO2, are considered, using water as the base fluid. It is found that nanofluid with titania nanoparticles has better enhancement on the heat transfer rate compared to copper and alumina nanoparticles. For a particular nanoparticle, increasing the nanoparticle fraction is to reduce the skin friction coefficient and the heat transfer rate at the surface.

  10. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray or segregated flow

    Science.gov (United States)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2015-11-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').

  11. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.

    Science.gov (United States)

    Murata, T; Secomb, T W

    1989-01-01

    The flow properties of aggregating red cell suspensions flowing at low rates through vertical tubes with diameters from 30 microns to 150 microns are analyzed using a theoretical model. Unidirectional flow is assumed, and the distributions of velocity and red cell concentration are assumed to be axisymmetric. A three-layer approximation is used for the distribution of red cells, with a cylindrical central core of aggregated red cells moving with uniform velocity, a cell-free marginal layer near the tube wall, and an annular region located between the core and the marginal layer containing suspended non-aggregating red cells. This suspension is assumed to behave approximately as a Newtonian fluid whose viscosity increases exponentially with red cell concentration. Physical arguments concerning the mechanics of red cell attachment to, and detachment from the aggregated core lead to a kinetic equation for core formation. From this kinetic equation and the equation for conservation of red cell volume flux, a relationship between core radius and pressure gradient is obtained. Then the relative viscosity is calculated as a function of pseudo-shear rate. At low flow rates, it is shown that the relative viscosity decreases with decreasing flow and that the dependence of relative viscosity on shear rates is more pronounced in larger tubes. It is also found that the relative viscosity decreases with increasing aggregation tendency of suspension. These theoretical predictions are in good qualitative and quantitative agreement with experimental results.

  12. Characteristics of slug flow in narrow rectangular channels under vertical condition

    Science.gov (United States)

    Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui

    2013-07-01

    Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL≥1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.

  13. Performance of a two-phase gas/liquid flow model in vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, C.S.; Hasan, A.R. (Chevron Oil Field Research Co., La Habra, CA (USA))

    1990-07-01

    Application of a recently developed method for predicting two-phase gas/oil pressure-drop in vertical oil wells is presented. The new method, which is flow-pattern based, is capable of handling flow in both circular and annular channels. Five principal flow regimes, bubbly, dispersed bubbly, slug, churn and annular, are recognized while developing appropriate correlations for predicting void fraction and pressure-drop in each flow regime. Standard oilfield correlations are used for estimating PVT properties of oil and gas: Standing's correlation for solution gas-oil ratio; Katz's correlation for oil formation volume factor; Standing's, and Chew and Connally's correlations for dead and live oil viscosities, respectively; and Lee et al.'s correlation for gas viscosity. A finite-difference algorithm is developed to compute pressure gradient in a wellbore. Computations performed on 115 field tests, involving all the two-phase flow regimes, suggest that the new method performs better than the Aziz et al. correlation. Further comparison of the new method's performance with other standard methods, such as, Orkiszewski, Duns and Ros, Beggs and Brill, Hagedorn and Brown, and Chierci et al., reveals its consistency and improved performance. The test data bank used in this study is that previously used by other authors; thus, validation of the new method is demonstrated with an independent data set. 4 figs., 42 refs., 7 tabs.

  14. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  15. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    Science.gov (United States)

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  16. Effect of Periodic Surface Air Temperature Variations on Subsurface Thermal Structure with Vertical Fluid flow

    Science.gov (United States)

    D, R. V.; Ravi, M.; Srivastava, K.

    2016-12-01

    The influence of climate change on near subsurface temperatures is an important research topic for global change impact assessment at the regional scale. The varying temperature of the air over the surface in long term will disturb subsurface thermal structure. Groundwater flow is another important process which perturbs the thermal distribution into the subsurface. To investigate the effect of periodic air temperature on nonisothermal subsurface, one dimensional transient heat conduction-advection equation is solved numerically using finite element method. Thermal response of subsurface for periodic variations in surface air temperature (SAT) with robin type boundary condition on the surface with vertical ground water flow are calculated and the amplitude attenuation of propagation of surface temperature information in the subsurface for different scenarios of advection and convective coefficient are discussed briefly. The results show the coupled response of trigonometric variation in air temperature with surface temperatures along with ground water velocity has significant implications for the effects of climate change.

  17. On Convective Dusty Flow Past a Vertical Stretching Sheet with Internal Heat Absorption

    Directory of Open Access Journals (Sweden)

    Raj Nandkeolyar

    2013-01-01

    Full Text Available The steady two-dimensional boundary layer flow of a viscous, incompressible, and electrically conducting dusty fluid past a vertical permeable stretching sheet under the influence of a transverse magnetic field with the viscous and Joule dissipation is investigated. The fluid particles are assumed to be heat absorbing and the temperature at the surface of the sheet is a result of convective heating. The governing nonlinear partial differential equations are transformed to a set of highly nonlinear coupled ordinary differential equations using a suitable similarity transformation and the resulting system is then solved numerically. It is found inter alia that the contributions of viscous and Joule dissipation in the flow are to increase the thickness of the thermal boundary layer.

  18. Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Adnan Saeed; Munawar, Sufian; Ali, Asif [Quaid i Azam Univ., Islamabad (Pakistan); Meh Mood, Ahmer [International Islamic Univ., Islamabad (Pakistan)

    2012-09-15

    The present article aims to report the effects of hydrodynamic slip on entropy generation in the boundary layer flow over a vertical surface with convective boundary condition. Suitable similarity transformations are used to transform the fundamental equations of hydrodynamic and thermal boundary layer flow into ordinary differential equations. The governing equations are then solved numerically using the shooting method and the velocity and the temperature profiles are obtained for various values of parameters involved in the governing equations. The expressions for the entropy generation number and the Bejan number are presented and the results are discussed graphically and quantitatively for the slip parameter, the local Grashof number, the Prandtl number, the local convective heat transfer parameter, the group parameter and the local Reynolds number. It is observed that due to the presence of slip, entropy production in a thermal system can be controlled and reduced.

  19. Lorentz force effect on mixed convection micropolar flow in a vertical conduit

    Science.gov (United States)

    Abdel-wahed, Mohamed S.

    2017-05-01

    The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.

  20. Effect of Flow and Fluid Structures on the Performance of Vertical River Hydrokinetic Turbines

    Science.gov (United States)

    Birjandi, Amir Hossein

    Field and laboratory measurements characterize the performance of vertical axis hydrokinetic turbines operating in uniform and non-uniform inflow conditions for river applications. High sampling frequency velocity measurements, taken at 200 Hz upstream of a stopped and operating 25-kW H-type vertical axis hydrokinetic turbine in the Winnipeg River, show the existence of large eddies with an order of magnitude of the turbine's diameter. Scaling laws allow modeling river conditions in the laboratory for more detailed investigations. A small-scale, 30 cm diameter, squirrel-cage vertical turbine designed, manufactured and equipped with a torque and position sensors is investigated for the detail behavior of the turbine subjected to different inflow conditions in a laboratory setting to study the effect of flow and fluid structures. The adjustable design of the laboratory turbine enables operations with different solidities, 0.33 and 0.67, and preset pitch angles, 0°, +/-2.5°, +/-5° and +/-10°. Tests are first performed with uniform inflow condition to measure the sensitivity of the turbine to solidity, preset pitch angle, free-surface, and Reynolds number to obtain the optimum operating conditions. During the free-surface testing a novel dimensionless coefficient, clearance coefficient, is introduced that relates the change in turbine efficiency with change in the free-surface height. High-speed imaging at 500 fps of semi-submerged blades visualizes the vortex-shedding pattern behind the blades and air entrainment. High-speed imaging results of large eddy pattern behind the vertical turbine are consistent with theory and measurements. Subsequently, cylinders of different diameters create non-uniform inflow conditions in the water tunnel by placing them at different longitudinal and lateral locations upstream of the model turbine. Thus, the effects of non-uniform inflow generated under controlled settings shows the impact of eddies and wake on the turbine

  1. Nitrogen removal and ammonia-oxidising bacteria in a vertical flow constructed wetland treating inorganic wastewater.

    Science.gov (United States)

    Domingos, Sergio S; Dallas, Stewart; Skillman, Lucy; Felstead, Stephanie; Ho, Goen

    2011-01-01

    Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.

  2. Vertical alignment of stagnation points in pseudo-plane ideal flows

    Science.gov (United States)

    Sun, Che

    2017-09-01

    Recent studies of pseudo-plane ideal flow (PIF) reveal a ubiquitous presence of vortex alignment in both homogeneous and stratified fluids, and in both inertial and rotating reference frames as well. The exact solutions of a steady-state PIF model suggest that stagnation points tend to be vertically aligned and the concentric structure represents a fixed-point phenomenon of the Euler equations. Exception occurs in the rotating frame when a flow holds inertial period and skew center becomes possible. Properties of stagnation points based on Morse theory are obtained, leading to a topological explanation of vertical alignment via pressure Hessian. The study thus uncovers a new aspect of vortex behavior in ideal fluid that requires vortex center to align with the direction of gravity when vortex evolution reaches a laminar end state characterized by steady pseudo-plane velocities. Though the phenomenon arises from the constraint of the Euler equations, under specific conditions the topological theory is applicable to viscous fluid and explains the curvilinear tilting of von Kármán swirling vortex.

  3. PHOSPHORUS REMOVAL IN A VERTICAL FLOW CONSTRUCTED WETLAND USING DOLOMITE POWDER AND CHIPPINGS AS FILTER MEDIA

    Directory of Open Access Journals (Sweden)

    Gražina Žibienė

    2015-12-01

    Full Text Available Different kinds of natural and artificial filter media are able to retain phosphorus in the constructed wetlands. Due to the fact that the constructed wetland needs huge amounts of the filter media, it is very important to find locally available material which distinguishes itself by its ability to retain phosphorus. The materials found in Lithuania were considered and dolomite was chosen. Two dolomite fractions, dolomite powder (1–2 mm and dolomite chippings (2–5 mm, and sand media were used in the laboratory- scale installed for the comparative experiments. The laboratory-scale with dolomite as the filter media was on average by 21% more efficient in total phosphorus removal in comparison with the sand media. Based on the laboratory research pilot–scale vertical flow constructed wetland of 160 m2 was installed and planted with reed Phragmites australis. The dolomite chippings as filter media were chosen in order to avoid the danger of the clogging of constructed wetland. Efficiency of total phosphorus removal in the pilot-scale vertical flow constructed wetland was on average 95.7%, phosphates removal – 94.8% within one year.

  4. Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay.

    Science.gov (United States)

    Oh, Young Kyoung; Joung, Hyou-Arm; Kim, Sanghyo; Kim, Min-Gon

    2013-03-07

    A highly rapid, one-step immunoassay of high sensitivity C-reactive protein (hsCRP) using a biosensor with a vertical flow immunoassay (VFA) was developed. The VFA biosensor was primarily composed of a sample pad, conjugate pad, FTH film and nitrocellulose (NC) membrane, which were all vertically stacked upon one another. Anti-hsCRP and secondary antibodies were consecutively immobilized on the NC membrane at the position below the holes. Gold nanoparticles (AuNPs) conjugated with another anti-hsCRP antibody were encapsulated in the conjugation pad. Various assay conditions, including the size of the hole and the sample volume, were optimized. Under optimized conditions, hsCRP concentrations from 0.01 to 10 μg mL(-1) were detected within 2 min. In comparison with a lateral flow assay (LFA) system, the VFA sensor showed a gradual increase of signal in a concentration-dependent manner without a hook effect in the tested range.

  5. Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system.

    Science.gov (United States)

    Kantawanichkul, Suwasa; Boontakhum, Walaya

    2012-01-01

    In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.

  6. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  7. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    Science.gov (United States)

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  8. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  9. Eulerian-Lagrangian Simulations of Bubbly Flows in A Vertical Square Duct

    Science.gov (United States)

    Liu, Rui; Vanka, Surya P.; Thomas, Brian G.

    2013-11-01

    We report results of Eulerian-Lagrangian simulations of developing upward and downward bubbly flows in a vertical square duct with a bulk Reynolds number of 5000. The continuous fluid is simulated with DNS, solving the Navier-Stokes equations by a second-order accurate finite volume fractional step method. Bubbles of sizes comparable to the Kolmogorov scale are injected at the duct entrance with a mean bulk volume fraction below 10-2. A two-way coupling approach is adopted for the interaction between the continuous fluid phase and dispersed bubble phase. The bubbles are tracked by a Lagrangian method including drag and lift forces due to buoyancy and Saffman lift. A in-house code, CU-FLOW, implemented on Graphic Processing Unit (GPU) is used for simulations in this work. The preferential distributions of bubbles and their impact on local turbulence structures and their effects on turbulent kinetic energy budgets are studied. Results between an upward flow and a downward flow with the bubbles are compared. Work Supported by Continuous Casting Consortium at UIUC.

  10. Effect of drag-reducing polymers on Tubing Performance Curve (TPC) in vertical gas-liquid flows

    NARCIS (Netherlands)

    Shoeibi Omrani, P.; Veltin, J.; Turkenburg, D.H.

    2014-01-01

    This paper discusses the effect of drag reducing polymers on the Tubing Performance Curve (TPC) of vertical air-water flows at near atmospheric conditions. The effect of polymer concentration, liquid and gas flow rates on the pressure drop curve (Tubing Performance Curve) was investigated

  11. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  12. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    Science.gov (United States)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  13. Film stability in a vertical rotating tube with a core-gas flow.

    Science.gov (United States)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.

  14. Development of a SERS-Based Rapid Vertical Flow Assay for Point-of-Care Diagnostics.

    Science.gov (United States)

    Clarke, O J R; Goodall, B L; Hui, H P; Vats, N; Brosseau, C L

    2017-02-07

    Point-of-care (POC) diagnostic testing platforms are a growing sector of the healthcare industry as they offer the advantages of rapid provision of results, ease of use, reduced cost, and the ability to link patients to care. While many POC tests are based on chromatographic flow assay technology, this technology suffers from a lack of sensitivity along with limited capacity for multiplexing and quantitative analysis. Several recent reports have begun to investigate the feasibility of coupling chromatographic flow platforms to more advanced read-out technologies which in turn enable on-site acquisition, storage, and transmission of important healthcare metrics. One such technology being explored is surface-enhanced Raman spectroscopy or SERS. In this work, SERS is coupled for the first time to a rapid vertical flow (RVF) immunotechnology for detection of anti-HCV antibodies in an effort to extend the capabilities of this commercially available diagnostic platform. High-quality and reproducible SERS spectra were obtained using reporter-modified gold nanoparticles (AuNPs). Serial dilution studies indicate that the coupling of SERS with RVF technology shows enormous potential for next-generation POC diagnostics.

  15. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.

  16. Vertical Variations In Heat Flow Inferred From Experiments In Deep Boreholes

    Science.gov (United States)

    Popov, Y.; Romushkevich, R.; Gorobtsov, D.; Korobkov, D.

    2012-04-01

    Deep scientific and parametric continental boreholes allow to obtain representative experimental data on combination of the geothermal parameters of the crust - temperature, temperature gradient, rock thermal properties, and, as the result, heat flow density values - which are more reliable compared to the previous data from shallow boreholes. Special advantages of the scientific boreholes include also a possibility for many repeated temperature logging during long time intervals (several years often) after a finish of the drilling that allowed (1) to determine temperatures and temperature gradient values corresponding to thermal equilibrium of the formations studied, (2) to study temporal regularities in temperature and temperature gradient behaviour within different formation layers during the formation recovery process. Scientific boreholes are drilled with numerous coring (often - with continuous coring) that provides the possibility to obtain detailed information on a distribution of rock thermal conductivity along the borehole. As a result, the scientific deep and super-deep boreholes provided the unique possibility for the determination of vertical distributions of the heat flow density that can not be reached normally in other boreholes. Experimental geothermal and petrothermal investigations performed for the super-deep boreholes Kola, Ural, Vorotilovo, Tyumen, Yen-Yakha (all - Russia), Saatly (Azerbaidzhan), and deep scientific and parametric boreholes Kolva, Timano-Pechora, Tyrnyaus, (all - Russia), Krivoy Rog (Ukraine), Muruntau (Uzbekistan), Nordlingen-72 (Germany), Yaxcopoil-1 (Mexico) allowed us to establish the following important peculiarities in geothermal parameters of the crustal blocks studied with scientific deep drilling were established from the investigations: (1) temperature gradient recovery up to undisturbed values occurs essentially faster than it was assumed earlier; (2) a rate of temperature gradient recovery was found to be different

  17. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  18. Unsteady nonlinear convective Darcy flow of a non-Newtonian fluid over a rotating vertical cone

    Science.gov (United States)

    Madhu Mohana Raju, A. B.; Raju, G. S. S.; Mallikarjuna, B.

    2017-11-01

    A numerical model on unsteady nonlinear convective flow of a Casson fluid past a vertical rotating cone in a porous medium has been developed. The conservations laws are transformed into non-linear problem using convenient similarity transformations. The resultant equations are solved numerically using Runge-Kutta based shooting technique for the velocity, temperature and concentration distributions, highlighted by physical parameters, Casson fluid parameter, unsteady parameter, non-linear temperature and concentration effects and discussed in detailed with graphical aid. Increasing non-linear temperature and concentration parameters accelerates the tangential velocity while normal and azimuthal velocities are decreased. Temperature and concentration distributions are also decreased as well. This study finds applications in industries like pharmaceutical industries, aerospace technology and polymer production etc.

  19. Boiling Heat Transfer of a Refrigerant Flowing Vertically Downward in a Mini-channel

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Hamamoto, Yoshinori

    Experiments were performed on boiling heat transfer of a refrigerant R-410A flowing vertically downward in a copper rectangular tube and a triangular tube of 1.04 mm and 0.88 mm inside hydraulic diameter, respectively,for the development of a high-performance heat exchanger using small tubes or multi-port extruded tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200kg/(m2s), heat fluxes from 1 to 20 kW/m2 and quality from 0.05 to 1 at the evaporation temperature of 10 °C.Characteristics of the heat transfer coefficient and dryout quality were clarified by comparing the measurements with the data for the circular tube of 1.0 mm inside diameter previously obtained.

  20. Flows and Stratification of an Enclosure Containing Both Localised and Vertically Distributed Sources of Buoyancy

    Science.gov (United States)

    Partridge, Jamie; Linden, Paul

    2013-11-01

    We examine the flows and stratification established in a naturally ventilated enclosure containing both a localised and vertically distributed source of buoyancy. The enclosure is ventilated through upper and lower openings which connect the space to an external ambient. Small scale laboratory experiments were carried out with water as the working medium and buoyancy being driven directly by temperature differences. A point source plume gave localised heating while the distributed source was driven by a controllable heater mat located in the side wall of the enclosure. The transient temperatures, as well as steady state temperature profiles, were recorded and are reported here. The temperature profiles inside the enclosure were found to be dependent on the effective opening area A*, a combination of the upper and lower openings, and the ratio of buoyancy fluxes from the distributed and localised source Ψ =Bw/Bp . Industrial CASE award with ARUP.

  1. Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate

    Science.gov (United States)

    Tippa, Sowmya; Narahari, Marneni; Pendyala, Rajashekhar

    2016-11-01

    Numerical analysis is performed to investigate the unsteady natural convection flow of a nanofluid past a semi-infinite isothermal vertical plate. Five different types of water based nanofluids are considered in this investigation where Silver (Ag), Copper (Cu), Copper Oxide (CuO), Alumina (Al2O3) and Titanium Oxide (TiO2) are the nanoparticles. The governing non-dimensional partial differential equations are solved by employing an implicit finite-difference method of Crank-Nicolson type. Numerical results are computed for different values of pertinent parameters. The results for nanofluid temperature, velocity, local Skin friction and Nusselt number, average Skin friction and Nusselt number are discussed through graphs. The present numerical results for local Nusselt number have been compared with the well-established pure fluid correlation results for the limiting case and the comparison shows that the results are in excellent agreement.

  2. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  3. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  4. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  5. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)

    Adelė VAIDELIENĖ

    2014-09-01

    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4871

  6. Temperature Impact of Nitrogen Transformation in Technological System: Vertical Flow Constructed Wetland and Polishing Pond

    Directory of Open Access Journals (Sweden)

    Myszograj Sylwia

    2016-12-01

    Full Text Available The article describes the results of the research, purpose of which was to evaluate influence of the temperature on the effectiveness of nitrification and denitrification in the sewage treatment system consisting of vertical flow constructed wetland and polishing pond. During the analysed period, the efficiency of removing total nitrogen was low and amounted to 12.7%. In the polishing pond in the summer period, content of total nitrogen in treated sewages was further decreased by nearly 50%. In the winter period, the polishing pond fulfilled mainly retention role and thus did not improve effectiveness of the whole system. Temperature coefficients, calculated on the basis of single first-order kinetics, for nitrification process in the filter bed (N-NH4+ and denitrification process in the polishing pond (N-NO3− amounted to 1.039 and 1.089, respectively.

  7. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. EXPERIMENTAL STUDY OF WAVE FLOWS AROUND THE FINITE LENGTH VERTICAL WALL

    Directory of Open Access Journals (Sweden)

    Tran Long Giang

    2012-10-01

    Full Text Available Construction of breakwater structures of modern seaports requires computational models describing interaction of waves with structural elements of ports. The model should be based on numerical hydrodynamic models that contemplate all constituents of interaction between waves and structures, including those at various stages of construction. The above model makes it possible to have construction works performed in accordance with the pre-developed plan. Experimentalresearch of the behaviour of breakwater structures is to be conducted in laboratories. A scaled natural model is to be used for the above purpose to verify the model behaviour. The authors consider the methodology and results of experiments involving models of wave loads produced on vertical breakwater structures at various stages of their construction. On the basis of the experiments conducted by the authors, it is discovered that the value of the total wave force, that the vertical wall is exposed to, increases along with the wall length in the event of a constant wave mode, which is natural. However, the per-meter value of the wave force increases along with the increase in the length of the wall until it reaches the value of the length of a transverse obstacle divided by the length of waves equal to 0.28; thereafter, the wave force goes down. The authors assume that this phenomenon is caused by the change in the nature of interaction between waves and an obstacle and a transition from a diffraction-free flow to a diffraction flow. The authors believe that further researches are necessary to explore the phenomenon.

  9. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    Science.gov (United States)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  10. Studi Penurunan Kandungan Total Coliform dengan Menggunakan Kombinasi Vertical Flow Roughing Filter (Vrf) dan Horizontal Flow Roughing Filter (Hrf) pada Air Buangan Domestik Artifisial

    OpenAIRE

    Suryanti, Irma; Samudro, Ganjar; Sumiyati, Sri

    2013-01-01

    This research is aims to reduce the content of total coliform bacteria in domestic wastewater using a combination of vertical flow roughing filter (VRF) and horizontal flow roughing filter (HRF) for each variation of flow rate, the type and the size of filter media. Domestic wastewater influent is used as an artificial wastewater containing total coliform bacteria sample 2400 MPN/100 ml. The results of the best drop reaches 0 MPN/100 ml sample contained in VRF combination with medium-sized fi...

  11. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  12. Further development of vertical-flow final sedimentation tanks; Weiterentwicklung vertikal durchstroemter Nachklaerbecken

    Energy Technology Data Exchange (ETDEWEB)

    John, K.; Purschke, A.; Schuessler, I. [Mannesmann Seiffert GmbH, Berlin (Germany)

    1999-07-01

    Because of scarcity of space, the last extension stage of the Berlin-Ruhleben sewage treatment plant was executed with vertical-flow final sedimentation tanks with a square surface. The sedimentation efficiency of these tanks in permanent operation is excellent. In the year past, the operation of such a tank at the limits of its capacity was tested under long-term conditions as a master thesis project with a view to further optimization. Subsequently, this Berlin-type tank was developed further into a multi-cell final sedimentation tank, whose effectiveness was verified by means of flow-technical simulation. (orig.) [German] Im KW Berlin-Ruhleben kamen in der letzten Ausbaustufe infolge sehr begrenzter Bauflaeche vertikal durchstroemte Nachklaerbecken mit quadratischer Oberflaeche zum Einsatz. Diese Becken zeigen im Dauerbetrieb eine hervorragende Klaerwirkung, und im vorigen Jahr wurde im Rahmen einer Diplomarbeit zwecks weiterer Optimierung langfristig unter Betriebsbedingungen die Fahrweise eines solchen Beckens an der Auslegungsgrenze getestet. Unter dem Gesichtspunkt der Kostenreduzierung wurde anschliessend der Typ Berliner Becken zum Mehrzellen-Nachklaerbecken weiterentwickelt und seine Wirksamkeit mittels stroemungstechnischer Simulation ueberprueft. (orig.)

  13. Vertical multiphase flow correlations for high production rates and large tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Aggour, M.A.; Al-Yousef, H.Y. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Muraikhi, A.J.

    1996-02-01

    Numerous correlations exist for predicting pressure drop in vertical multiphase flow. These correlations, however, were all developed and tested under limited operating conditions that do not match the high production rates and large tubulars normally found in the Middle East fields. This paper presents a comprehensive evaluation of existing correlations and modifications of some correlations to determine and recommend the best correlation or correlations for various field conditions. More than 400 field data sets covering tubing sizes from 2 3/8 to 7 inches, oil rates up to 23,200 B/D, water cuts up to 95%, and gas/oil ratio (GOR) up to 927 scf/STB were used in this study. Considering all data combined, the Beggs and Brill correlation provided the best pressure predictions. However, the Hagedorn and Brown correlation was better for water cuts above 80%, while the Hasan and Kabir model was better for total liquid rates above 20,000 B/D. The Aziz correlation was significantly improved when the Orkiszewski flow-pattern transition criteria were used.

  14. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.

    2008-01-01

    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  15. Prolate spheroidal particles' behavior in a vertical wall-bounded turbulent flow

    Science.gov (United States)

    Arcen, B.; Ouchene, R.; Khalij, M.; Tanière, A.

    2017-09-01

    Direct numerical simulations (DNSs) have been performed to examine the inertia, shape, and gravity field effects on the dynamics of ellipsoidal particles within a vertical turbulent channel flow. To investigate the effects induced by the particle inertia and shape, computations have been conducted for three aspect ratios and two response times. The influence of gravity has been examined through a comparison with DNS data provided in earlier studies without gravity. The originality of this study is that the prediction of the hydrodynamic force and pitching torque acting on the non-spherical particles has been carried out with recent expressions valid outside the Stokes flow regime. With the data extracted from the DNS, a statistical analysis of the particle spatial distribution, orientation, and translational and angular velocities is carried out. Results show that the presence of a significant mean relative velocity between the dispersed and continuous phases greatly modifies the dynamics of non-spherical particles. Without gravity, the dynamics of ellipsoids is close to that of spheres, whereas it becomes strongly dependent on the particle shape with gravity.

  16. The structure of turbulent flow around vertical plates containing holes and attached to a channel bed

    Science.gov (United States)

    Basnet, K.; Constantinescu, G.

    2017-11-01

    High-resolution, 3-D large eddy simulations are conducted to study the physics of flow past 2-D solid and porous vertical plates of height H mounted on a horizontal surface (no bottom gap) with a fully developed, turbulent incoming flow. The porous plate consists of an array of spanwise-oriented, identical solid cylinders of rectangular cross section. The height of the solid cylinders and the spacing between the solid cylinders, corresponding to the plate's "holes," are kept constant for any given configuration, as the present study considers only plates of uniform porosity. The paper discusses how the mean flow and turbulence structure around the vertical plate, the unsteady forces acting on the plate, the dynamics of the large-scale turbulent eddies, the spectral content of the wake, and the distribution of the bed friction velocity on the horizontal channel bed vary as a function of the plate porosity (0% forming at the top of the plate and the wake structure. It is found that the main recirculation eddy in the wake remains attached to the plate for P forms away from the porous plate. The energy of the billows advected in the SSL decays monotonically with increasing plate porosity. For cases when the recirculation eddy remains attached to the plate, the larger billows advected in the downstream part of the SSL are partially reinjected inside the main recirculation eddy as a result of their interaction with the channel bed. This creates a feedback mechanism that induces large-scale disturbances of the spanwise-oriented vortex tubes advected inside the upstream part of the SSL. Results also show that the mean drag coefficient and the root-mean-square of the drag coefficient fluctuations increase mildly with increasing d/H. Meanwhile, varying d/H has a negligible effect on the position and size of the main recirculation eddy. The presence of large-scale roughness elements (2-D ribs) at the bed results in the decrease of the mean drag coefficient of the plate and

  17. Heat transfer regimes for a flow of water at supercritcal conditions in vertical channels

    Science.gov (United States)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.; Baisov, A. M.

    2017-11-01

    Heat transfer regimes observed in experiments with water at supercritical conditions flowing in vertical channels of various cross-sections (such as round pipes, annulus, or rod bundles) are analyzed. In accordance with the established practice, the normal and the deteriorated heat transfer regimes were singled out as the basic regimes specific for heat carriers with highly variable properties. At the same time, it has been established that most published experimental data on supercritical pressure water heat transfer along the length of test sections demonstrate combined (or transient) heat transfer regimes. The features can be presented as a superposition of characteristics of the above-mentioned basic regimes. The combined regimes are not stable in certain ranges of water flow conditions in which sudden transitions between the basic regimes can occur. A system of similarity criteria governing heat transfer rate in the vicinity of the critical point is examined. As applicable to cores of water-cooled reactors, due to a small hydraulic diameter of cooling channels, buoyancy forces acting in these channels are negligible as compared with the inertia effects caused by thermal acceleration of the flow and viscous force. This concept yields two integrated criteria whose use in the correction factors for the basic heat transfer equation, which we proposed previously for the normal regimes, adequately (with an error of 20-25%) describes the specific of the heat transfer coefficient in the normal, deteriorated, and combined regimes. A system of equations is proposed for design calculation of heat transfer in channels of nuclear reactors cooled with supercritical pressure water.

  18. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  19. A gas flow model for layered landfills with vertical extraction wells.

    Science.gov (United States)

    Feng, Shi-Jin; Zheng, Qi-Teng; Xie, Hai-Jian

    2017-08-01

    This paper developed a two-dimensional axisymmetric analytical model for layered landfills with vertical wells. The model uses a horizontal layered structure to describe the waste non-homogeneity with depth in gas generation, permeability and temperature. The governing equations in the cylindrical coordinate system were transformed to dimensionless forms and solved using a method of eigenfunction expansion. After verification, the effects of different well boundary conditions and gas extraction systems on recovery efficiency were investigated. A dimensionless double-layer system, consisting of a cover and a waste layer, was also explored. The results show that a constant vacuum pressure boundary condition can be enough to describe a perforated pipe surrounded by drainage gravel with a reasonable value of well radius, such as half the radius of gravel fill. Also, the 7 independent variables (one marked with an asterisk is dimensionless) of a double-layer system can be integrated into 3 dimensionless ones: Cover permeability Kv1∗/(Vertical gas permeability of waste Kv2∗×Cover thickness h1∗),-Vacuum pressure pw×PatmKv2∗/(μRgT2×Gas generation rate of waste s2) and ln(Well radius rw∗)/(Anisotropy degree of waste k2∗). The integration is based on the inherent mechanism of this flow system with certain simplification. The effects of these variables are then quantitatively characterized for a better understanding of gas recovery efficiency. Same recovery efficiency can be achieved with different variable combinations. For example, increasing h1∗ (such as doubling it) has the same effect with decreasing Kv1∗ (such as halving it). Along with the reduction of variables by half, the integration can facilitate the preliminary design, and is a small but important advance in the consideration of MSW non-homogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Monferrer, C., E-mail: cmonfer@upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain); Passalacqua, A., E-mail: albertop@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chiva, S., E-mail: schiva@emc.uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, 12080 Castelló de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain)

    2016-05-15

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM{sup ®} software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM{sup ®} and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  1. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    Science.gov (United States)

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  2. Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation

    National Research Council Canada - National Science Library

    SUDO, Yukio; USUI, Tohru; KAMINAGA, Masanori

    1991-01-01

    Counter-current-flow limitation (CCFL) experiments were carried out for both vertical rectangular channels and vertical circular tubes varying in size and in configuration of their cross sections to clarify CCFL characteristics...

  3. Bubble detachment and lift-off diameters at a vertical heated wall for subcooled boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Montout, Michael; Haynes, Pierre-Antoine; Peturaud, Pierre [EDF, R and D Division, Fluid Dynamics, Power Generation and Environnement Department, 6 quai Watier, 78401 Chatou Cedex (France); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Allee du Professeur Camille Soula, 31400 Toulouse (France)

    2008-07-01

    Full text of publication follows: In the framework of the NEPTUNE project jointly carried on by EDF, CEA, AREVA NP and IRSN (Guelfi et al. (2007)), the development of the NEPTUNE-CFD code aims at (among others) improving the prediction of the Departure from Nucleate Boiling (DNB) in Pressurized Water Reactors (PWRs). In this prospect, the modeling of boiling flows up to the DNB is of prime importance, and this presentation is devoted to one major related phenomenon, the wall-to-flow heat transfer in subcooled boiling flow. Computational Fluid Dynamics (CFD) modeling of subcooled nucleate boiling has to provide the net vapor generation rate at the heated wall, as well as its related geometrical characteristic - either bubble diameter or interfacial area concentration (its velocity might also be useful). For this purpose, mechanistic models are used. Previous models (such as the widely used Kurul and Podowski model (1990)) are based on the bubble lift-off diameter, diameter from which the bubble leaves the wall to be swept along the bulk liquid flow. However, for a few years, new models (Basu et al. (2005) or Yeoh et al. (2008)) account for a finer phenomenology (bubble sliding along the heated wall) and require the knowledge of the bubble detachment diameter, diameter from which the bubble leaves its nucleation site to slide along the heated wall. Modeling these diameters is still an issue. On the one hand, several (semi-) empirical correlations are available in the open literature making it possible to provide the liftoff diameter (Uenal (1976), for instance), but they are still questionable; on the other hand, there is a great lack of information with respect to the evaluation of the detachment diameter. Therefore to progress on these concerns, an analytical work has been carried out. In a first step, a methodology providing detachment and lift-off diameters is proposed and applied. This approach is based on the resolution of a force balance model acting on a

  4. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  5. Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment.

    Science.gov (United States)

    Fountoulakis, M S; Sabathianakis, G; Kritsotakis, I; Kabourakis, E M; Manios, T

    2017-04-01

    Recent findings show that halophytes have the ability to accumulate salts in their tissues, making them a very interesting group of plants for domestic wastewater treatment in constructed wetlands (CWs). In that case, it might be possible to reduce the salinity of the final effluent, which is a crucial parameter for wastewater reuse in agriculture. During this study three halophytes, Atriplex halimus, Juncus acutus and Sarcocornia perennis, were tested for phyto-desalination of domestic wastewater in a vertical flow constructed wetland (VFCW) and compared with common reeds (Phragmites australis). In addition, the effect of this alternative vegetation on the overall performance of the system regarding organic matter, nutrients, boron and pathogen removal was monitored. The organic loading rate (OLR) was about 21gCOD/m2/d and the hydraulic loading rate (HLR) was 95mm/d in both cases. Promising results were obtained for A. halimus, which shows high biomass productivity and significant capability to accumulate salts, mainly Na, in its tissues. A positive effect on pathogen removal efficiency was also recorded. However, nitrogen concentration in the effluent of the VFCW planted with halophytes was found to be higher than in the effluent of the VFCW planted with reeds. Finally, no significant effect on organic matter and phosphorus removal efficiency was observed from the use of halophytes in place of reeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Nitrogen removal under the condition of carbon source supplement in integrated vertical-flow constructed wetland].

    Science.gov (United States)

    She, Li-Hua; He, Feng; Xu, Dong; Lin, Ji-Dong; Wu, Zhen-Bin

    2009-11-01

    Carbon source is the main factor influencing biological denitrification efficiency. In most cities of China, carbon content in sewage was observed to be low, herein carbon source supplement should be considered to provide electron donors needed in biological denitrification process. The influence of adding different carbon sources through aeration pipe of integrated vertical-flow constructed wetland (IVCW) on nitrogen removal had been studied. Carbon source supplement to the bottom of IVCW could improve microbe conditions and intensify nitrogen removalfunction of IVCW. The results showed that glucose as external carbon source was better than carboxymethyl cellulose (CMC) on denitrification. Nitrogen removal had significant difference between adding glucose and no carbon source in IVCW system (p < 0.05). By the experiments of adding different quantity of glucose, the dose of 1.5 g glucose under 60 L x d(-1) hydraulic load was the optimization for denitrification. C6H12O6:NO3(-) -N was 4.3 and far lower than that by adding in inflow. So carbon source supplement to the bottom of IVCW through aeration pipe could save carbon source supplement cost. Additionally, adding glucose for four hours before influent feeding could improve nitrogen removal.

  7. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang

    2015-01-01

    In this study, the removal performances of organic pollutants and nitrogen in vertical flow constructed wetlands (VFCWs) with and without intermittent aeration fed with different strengths of influent were evaluated as a possible treatment for decentralized domestic wastewater in northern China. The intermittent aeration strategy not only significantly increased removal efficiencies of organic pollutants and ammonium nitrogen (NH4(+)-N), but also successfully created alternate aerobic and anaerobic conditions resulting in high total nitrogen (TN) removal. Moreover, increasing influent strength did not affect the removal efficiencies of organic matters and nitrogen in aerated VFCWs. Compared with non-aerated VFCWs, much higher removal of organic pollutants (96%), NH4(+)-N (98%), and TN (85%) was obtained simultaneously in intermittent aeration VFCWs, especially at high influent strengths. The results suggest that the intermittent aeration could be an appropriate strategy for achieving the high removal performance in VFCWs, especially for in-situ treatment of high strength decentralized domestic wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  9. Afocal optical flow sensor for reducing vertical height sensitivity in indoor robot localization and navigation.

    Science.gov (United States)

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2015-05-13

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  10. Natural Convection Flow of Fractional Nanofluids Over an Isothermal Vertical Plate with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2017-03-01

    Full Text Available The studies of classical nanofluids are restricted to models described by partial differential equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by differential equations with Caputo time derivatives, are able to describe the influence of memory on the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a uniform temperature and thermal radiation, are analytically and graphically studied. Closed form solutions are determined for the dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms of the Wright function or its fractional derivatives, have also been reduced to the known solutions of ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt number, and skin friction coefficient, is graphically underlined and discussed. The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the nanoparticle volume fraction.

  11. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Directory of Open Access Journals (Sweden)

    Wenli Cai

    Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  12. Treatment of domestic wastewater by vertical flow constructed wetland planted with umbrella sedge and Vetiver grass.

    Science.gov (United States)

    Kantawanichkul, Suwasa; Sattayapanich, Somsiri; van Dien, Frank

    2013-01-01

    The aim of this study was to investigate the efficiency of wastewater treatment by vertical flow constructed wetland systems under different hydraulic loading rates (HLR). The comparison of two types of plants, Cyperus alternifolius (Umbrella sedge) and Vetiveria zizanioides (Vetiver grass), was also conducted. In this study, six circular concrete tanks (diameter 0.8 m) were filled with fine sand and gravel to the depth of 1.23 m. Three tanks were planted with Umbrella sedge and the other three tanks were planted with Vetiver grass. Settled domestic wastewater from Chiang Mai University (chemical oxygen demand (COD), NH4(+)-N and suspended solids (SS) of 127.1, 27.4 and 29.5 mg/L on average, respectively) was intermittently applied for 45 min and rested for 3 h 15 min. The HLR of each tank was controlled at 20, 29 and 40 cm/d. It was found that the removal efficiency of the Umbrella sedge systems was higher than the Vetiver grass systems for every parameter, and the lowest HLR provided the maximum treatment efficiency. The removal efficiency of COD and nitrogen in terms of total Kjeldahl nitrogen (TKN) was 76 and 65% at 20 cm/d HLR for Umbrella sedge compared to only 67 and 56% for Vetiver grass. Nitrogen accumulation in plant biomass was also higher in Umbrella sedge than in Vetiver grass in every HLR. Umbrella sedge was thus proved to be a suitable constructed wetland plant in tropical climates.

  13. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland.

    Science.gov (United States)

    Fu, Guiping; Huangshen, Linkun; Guo, Zhipeng; Zhou, Qiaohong; Wu, Zhenbin

    2017-01-01

    The effects of supplementing plant-based carbon sources, fermented tissues of Arundo donax and Pontederia cordata, and a combination of the two plants, on the nitrogen removal efficiency and microbial composition in a vertical flow constructed wetland (VFCW) were examined. The results showed that the addition of the composite carbon source produced the highest removal efficiencies of NH 4 + -N 91.5%, NO 3 - -N 94.5% and TN 92.8% in VFCW. The detected abundance of amoA, nirS, and nxrA genes indicated that ammonia oxidation bacteria and denitrifying bacteria were more abundant than the nitrite oxidation bacteria. Furthermore, the addition of the composite carbon source significantly promoted the growth of the denitrifying bacteria in VFCW. The results indicated that supplementing the system with plant-based carbon sources achieved partial nitrification and denitrification, as well as classic denitrification in VFCWs. The study suggested that multiple nitrogen removal pathways were required to feasibly and efficiently remove nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Performance assessment of a vertical flow constructed wetland treating unsettled combined sewer overflow.

    Science.gov (United States)

    Pálfy, T G; Gerodolle, M; Gourdon, R; Meyer, D; Troesch, S; Molle, P

    2017-06-01

    The performance of a vertical flow constructed wetland for combined sewer overflow treatment (CSO CW) has been evaluated. The full-scale site has been monitored for 3 years for major pollutants and for two load events for a range of micropollutants (metals, metalloids and polycyclic aromatic hydrocarbons (PAHs)). Performance were predominantly high (97% for total suspended solids (TSS), 80% for chemical oxygen demand (COD), 72% for NH4-N), even if several loads were extremely voluminous, pushing the filter to its limits. Two different filter materials (a 4:1 mixture of sand and zeolite and natural pozzolana) showed similar treatment performance. Furthermore, environmental factors were correlated with COD removal efficiency. The greatest influencers of COD removal efficiency were the inlet dissolved COD concentrations and the duration and potential evapotranspiration during inter-event periods. Furthermore, sludge was analysed for quality and a sludge depth map was created. The map, and calculating the changes in sludge volume, helped to understand solid accumulation dynamics.

  15. Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines and flow phenomena analysis

    Science.gov (United States)

    Guillaud, N.; Balarac, G.; Goncalvès, E.; Zanette, J.

    2016-11-01

    Large Eddy Simulations have been performed on a Vertical Axis Hydrokinetic Turbine (VAHT) at various tip speed ratios. The turbine power coefficient and the flow through the turbine show good agreement with experimental data. To better understand the evolution of the VAHT power coefficient through the tip speed ratios the contribution of the VAHT main regions to the global power coefficient has been evaluated. At the optimal tip speed ratio (λ = 2) blade tip vortex and blade/arm connection drag generate losses and decrease the efficiency of the regions around the blade tip and blade/arm connection. The region around the blade tip is the most degraded. When the tip speed ratio decreases to λ = 1, deep dynamic stall with the presence of a Leading Edge Vortex is observed at early angular positions and leads to the power coefficient drop. The power coefficient drop around the blade tip and the blade/arm connection happens at higher angular position than on the middle part of the blade. For a tip speed ratio higher than optimal, the region around the blade/arm connection shows the highest decrease in efficiency. Despite its small height compared to the blade this region is responsible for about 36% of the VAHT power coefficient decrease at λ = 2.5.

  16. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-15

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 < p < 37. 3 kg/cm{sup 2}; Inlet subcooling 56 < {delta}t{sub sub} < 212 deg C; Steam quality 0. 20 < x{sub BO} < 0.95; Heat Flux 50 < q/A < 515 W/cm{sup 2}; Mass velocity 100 < m'/F < 1890 kg/m{sup 2}s; Heated length 600 < L < 2500 mm; Duct diameter d = 10 mm. The results are presented in diagrams, where for a certain geometry, the burnout steam qualities, x{sub BO} , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than {+-} 5 per cent. In the ranges investigated, the observed steam quality at burnout, X{sub BO} generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm{sup 2}.

  17. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  18. Evaluation of extremely shallow vertical subsurface flow constructed wetland for nutrient removal.

    Science.gov (United States)

    Taniguchi, T; Nakano, K; Chiba, N; Nomura, M; Nishimura, O

    2009-01-01

    Mesocosm-scale vertical subsurface flow constructed wetlands (SSF, 0.5 m length, 0.3 m width) with different reed-bed thickness, including standard SSF (SD, 0.6 m deep), shallow SSF (S, 0.3 m deep) and extremely shallow SSF (ES, 0.075 m deep) were set up at sewage treatment plant and their nutrient removal efficiencies from the sewage plant effluent were compared under three hydraulic loading rate (HLR) conditions of 0.15, 0.45 and 0.75 m(3) m(-2) d(-1). A very interesting characteristics was found for the extremely shallow SSF, in which a high nitrogen removal efficiency was obtained despite the effective hydraulic retention time was only 1/8 times as long as the standard SSF. The results of kinetic analysis confirmed that the high volumetric nitrogen removal efficiency observed in the extremely shallow SSF did not depend on high response against the water temperature but on much higher basic nitrogen removal activity compared with other SSF. The phosphorus removal depending on the adsorption to sand in the reed-bed filter was, however, the lowest in the extremely shallow SSF although the volumetric removal efficiency was much higher compared with other SSF. Results of morphological analysis of rhizosphere collected from respective reed-bed suggested that the extremely shallow SSF lead to a very high-density rhizosphere, resulting in a high basic nitrogen removal activity and volumetric phosphorus removal efficiency.

  19. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  20. Clogging of vertical-flow constructed wetlands treating urban wastewater contaminated with a diesel spill.

    Science.gov (United States)

    Al-Isawi, Rawaa; Scholz, Miklas; Wang, Yu; Sani, Abdulkadir

    2015-09-01

    Clogging often leads to a decrease of the treatment performance of wetlands. The aims of this study were to compare the impact of different design and operational variables on the treatment efficiency and clogging processes and to model suspended solid (SS) accumulation within the saturated wetland zone using the Wang-Scholz model. Different vertical-flow constructed wetlands were operated from June 2011 until April 2014. Four treatment periods were assessed: set-up, first year after set-up period, second year after set-up period and diesel spill (for selected filters only). The filter with the highest chemical oxygen demand (COD) loading but no diesel contamination performed the best in terms of COD and biochemical oxygen demand (BOD) removal for the fourth and final treatment period. Filters contaminated by diesel performed worse in terms of COD and BOD but considerably better regarding nitrate-nitrogen removal. Serious clogging phenomena impacting negatively on the treatment performance and the hydraulic conductivity were not observed. Modelling results were generally poor for the set-up period, adequate for the first 2 years after the set-up period and variable after the diesel spill. The Wang-Scholz model performed well for less complex operations.

  1. Effectiveness of septage pre-treatment in vertical flow constructed wetlands.

    Science.gov (United States)

    Karolinczak, Beata; Dąbrowski, Wojciech

    2017-11-01

    Septage is wastewater stored temporarily in cesspools. A periodic supply of its significant quantities to small municipal wastewater treatment plants (WWTPs) may cause many operational problems. In the frame of the research, it has been proposed to utilize vertical flow constructed wetlands for pre-treatment of septage prior to its input to the biological stage of a WWTP. The aim of the work was to assess the effectiveness of pre-treatment in relation to factors such as: seasonality, hydraulic load, pollutants load of the VF bed and interactions between these factors. The results proved that application of a VF bed to septage pre-treatment can significantly reduce the concentration of pollutants (biochemical oxygen demand (BOD5): 82%, chemical oxygen demand (COD): 82%, total suspended solids (TSS): 91%, total nitrogen (TN): 47%, ammonia nitrogen (NH4-N): 70%), and thus decrease the loading of the biological stage of a WWTP. The mathematical models of mass removal process were created. They indicate that in case of all analysed parameters, removed load goes up with the increase of load in the influent. However, with the increase of hydraulic load, a decrease of the removed BOD5, COD, TSS and total phosphorus, and in vegetation period an increase of TN, can be observed in terms of load. There are no statistically significant effects of seasonality.

  2. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Science.gov (United States)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  3. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Downward in a Small Diameter Tube

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    Experiments were performed on boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically downward in a copper smooth tube of 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and quality from 0.1 to over 1 at evaporation temperature of 10°C. Pressure drops were measured and flow patterns were observed at mass fluxes from 30 to 200 kg/(m2•s) and quality from 0.1 to 0.9. The characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified by comparing the measurements with the data for the vertically upward flow previously obtained.

  4. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps

    Directory of Open Access Journals (Sweden)

    Krupička Jan

    2014-06-01

    Full Text Available Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are discussed in the light of the proposed methodology. Experimentally determined vertical profiles of concentration are presented for slurry flows of four different fractions of glass beads. The tomographic application of the radiometric device is demonstrated on a measured concentration map and a suitable image reconstruction method is tested. High reliability of measured concentration distributions is proved except for regions near the pipe wall. The radiometric method is shown to be a useful tool for measurement of concentration distribution in slurry flow through a pipe.

  5. Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems

    Science.gov (United States)

    Akturk, Ali

    The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at

  6. Radioactive Particle Tracking Technique with Concentrated {sup 68}Ga Source for Visualization of Water Flows in Digester with Vertical Impeller

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang-Guen; Moon, Jinho; Lim, Jaecheong; Jung, Sung-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    It is very important to understand the dynamic behavior of mixing flow for operating digesters. Therefore, there have been incessant studies over the world to investigate hydrodynamic parameters of flows in digesters experimentally. In Korea, researchers at the Korea Atomic Energy Research Institute (KAERI) have been studying radioactive particle tracking (RPT) technique to tracks the trajectory of a single radioactive particle flowing along with flow current and then, hydrodynamics parameters are calculated based on the trajectory of particle. In this study, the RPT technique was carried out for the digester mixed by a vertical impeller to visualize water flow. In this study, the RPT technique was carried out to investigate water flows in digester mixed by vertical impeller. We used a {sup 68}Ga generator source as a radioactive particle by concentrating eluate for RPT to be independent of reactors, and that is the first attempt in the world. The reconstructed particle trajectory will be used to calculate hydrodynamics parameters to understand the dynamic behavior of flows in digester.

  7. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  8. Oscillatory free-convective flow of an elastico-viscous fluid past an impulsively started infinite vertical porous plate. II

    Science.gov (United States)

    Singh, A. K.

    1984-10-01

    The author presents the two-dimensional free-convective flow of an elastico-viscous fluid past an infinite vertical porous plate for the Stokes problem when the flow is subjected to a constant suction velocity through the porous plate. As the mean steady flow has been presented in Part I, only the solution for the transient velocity profiles, transient temperature profiles, the amplitude and the phase of the skin-friction and the rate of heat transfer are presented in this work. As in the case of mean steady flow, the influence of various parameters on the unsteady flow field is discussed for both the cases cooling and heating of the porous plate by free-convection currents.

  9. Performance of hybrid vertical up- and downflow subsurface flow constructed wetlands in treating synthetic high-strength wastewater.

    Science.gov (United States)

    Zhao, Yong-Jun; Cheng, Pu; Pei, Xi; Zhang, Hui; Yan, Cheng; Wang, Shou-Bing

    2013-07-01

    The performance and temporal variation of hybrid vertical-subsurface flow constructed wetlands (VFCWs) in response to two-stage combinations of vertical upflow (VUF) and vertical downflow (VDF) were analyzed in this research. The results of high carbon (C) treatment and high nitrogen (N) treatment were similar. The Lythrum salicaria treatment showed higher removal efficiency than CWs planted with Acorus calamus. Under high C- and N-loading treatments, the optimum two-stage combination was VDF-VUF VFCWs planted with A. calamus. Furthermore, the highest nutrient removal efficiencies were achieved in late summer (July and August) and early autumn (September). The chemical oxygen demand and total nitrogen removal efficiencies were significantly affected (P wetland plant.

  10. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes.

    Science.gov (United States)

    Huang, Xu; Liu, Chaoxiang; Li, Ke; Su, Jianqiang; Zhu, Gefu; Liu, Lin

    2015-03-01

    Antibiotics and antibiotic resistance genes (ARGs) pollution in animal feeding farms received more public attention recently. Livestock wastewater contains large quantities of antibiotics and ARGs even after traditional lagoon treatment. In this study, the performance of vertical up-flow constructed wetlands (VUF-CWs) on swine wastewater containing tetracycline compounds (TCs) and tet genes was evaluated based on three aspects, TCs and tet genes removal efficiencies, residual TCs and tet genes in soils and plants, and the effect of TCs accumulation on nutrients removal and tet genes development. High removal efficiencies (69.0-99.9%) were achieved for oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) with or without OTC spiked in the influent additionally. TCs concentrations in surface soils increased at first two sampling periods and then decreased after plants were harvested. Satisfactory nutrients removal efficiencies were also obtained, but TN and NH4-N removal efficiencies were significantly negative correlated with total concentration of TCs (∑TCs) in the soils (p < 0.01). The absolute abundances of all the target genes (tetO, tetM, tetW, tetA, tetX and intI1) were greatly reduced with their log units ranging from 0.26 to 3.3. However, the relative abundances of tetO, tetM and tetX in some effluent samples were significantly higher than those in the influent (p < 0.05). The relative abundances of tet genes except for tetO were significantly correlated with ∑TCs in the soils (p < 0.05). In summary, the proposed VUF-CWs are effective alternative for the removal of TCs and tet genes. But it is of great importance to prevent large accumulation of TCs in the soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands.

    Science.gov (United States)

    Hussein, Amjad; Scholz, Miklas

    2017-12-21

    The release of untreated dye textile wastewater into receiving streams is unacceptable not only for aesthetic reasons and its negative impacts on aquatic life but also because numerous dyes are toxic and carcinogenic to humans. Strategies, as of now, used for treating textile wastewaters have technical and economical restrictions. The greater part of the physico-chemical methods, which are used to treat this kind of wastewater, are costly, produce large amounts of sludge and are wasteful concerning some soluble dyes. In contrast, biological treatments such as constructed wetlands are cheaper than the traditional methods, environmental friendly and do not produce large amounts of sludge. Synthetic wastewater containing Acid Blue 113 (AB113) and Basic Red 46 (BR46) has been added to laboratory-scale vertical-flow construction wetland systems, which have been planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). The concentrations 7 and 208 mg/l were applied for each dye at the hydraulic contact times of 48 and 96 h. Concerning the low concentrations of BR46 and AB113, the unplanted wetlands are associated with significant (ρ < 0.05) reduction performances, if compared with planted wetlands concerning the removal of dyes. For the high concentrations of AB113, BR46 and a mixture of both of them, wetlands with long contact times were significantly (ρ < 0.05) better than wetlands that had short contact times in terms of dye, colour and chemical oxygen demand reductions. Regarding nitrate nitrogen (NO 3 -N), the reduction percentage rates of AB113, BR46 and a mixture dye of both of them were between 85 and 100%. For low and high inflow dye concentrations, best removals were generally recorded for spring and summer, respectively.

  12. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  13. Comparison of vertical-flow constructed wetlands with and without supplementary aeration treating decentralized domestic wastewater.

    Science.gov (United States)

    Zhu, Liandong; Takala, Josu; Hiltunen, Erkki; Li, Zhaohua; Kristianto, Yohanes

    2013-01-01

    Constructed wetlands (CWs) are efficient in reducing excessive contamination from wastewaters. However, oxygen inside CW beds is frequently low especially when substrate clogging problems appear after long-term operation, and this may become a limited factor for the treatment of wastewaters. Aimed at dealing with the issue of a low oxygen content in CW systems, two laboratory-scale vertical-flow constructed wetlands (VFCWs) with and without an aeration device (called VFCW-a and VFCW-c, respectively) were designed in this study to test the contribution of supplementary aeration to the treatment of decentralized domestic wastewater. Results showed that under the intermittent operation of about 45 days, two VFCW units were successfully started up by using activated sludge as seed sludge. Compared to VFCW-c, VFCW-a had a better resistance ability to organic shock loads and its removal function could be effectively recovered within a short period after the introduction of organic shock loads. Under intermittent operation with a 12 h idling time, the ideal hydraulic retention time (HRT) of VFCW-a was 42 h, about 6 h shorter than that of VFCW-c. Likewise, under intermittent operation with 42 h HRT, the ideal idling time of VFCW-a was 12 h, still about 6 h shorter than that of VFCW-c. Under intermittent operation with HRT-42 h and an idling time of 12 h, SS, COD, TN and TP removal efficiencies in VFCW-a could reach 81.2%, 85%, 89.9% and 77.9%, respectively. The VFCW unit with supplementary aeration is an efficient innovation for the treatment of decentralized domestic wastewater.

  14. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d-1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4+ 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  15. Performance of a vertical subsurface flow constructed wetland under different operational conditions

    Directory of Open Access Journals (Sweden)

    Sara G. Abdelhakeem

    2016-09-01

    Full Text Available The performance of a vertical subsurface flow constructed wetland (VSSFCW for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation (the presence or absence of common reeds “Phragmites australis”, media type (gravel or vermiculite, and mode of sewage feeding (continuous or batch. Plants had a significant effect (P < 0.05 on the removal efficiency and mass removal rate of all pollutants, except phosphorous. The average removal efficiencies of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS, ammonium (NH4 and total-P (TP were 75%, 84%, 75%, 32% and 22% for the planted beds compared to 29%, 37%, 42%, 26% and 17%, respectively, for the unplanted beds. The VSSFCW was ineffective in removing nitrate (NO3. The effect of either media type or feeding mode system on the removal efficiency of COD and BOD was insignificant. Vermiculite media significantly (P < 0.05 increased the efficiency of the wetland in removing NH4, TP and dissolved phosphorous (DP when compared with gravel particularly in the planted beds. The batch mode was more effective in removing TSS and NH4 compared to the continuous mode. Volumetric rate constant (kV was different for various pollutants and significantly increased due to the presence of plants. Media type had no significant effect on the values of kV for COD, BOD and TSS, while kV for NH4 and TP under vermiculite in the planted beds and kV for P in the unplanted beds were significantly higher than those under gravel.

  16. [Removal nitrogen of integrated vertical-flow constructed wetland under aeration condition].

    Science.gov (United States)

    Tao, Min; He, Feng; Xu, Dong; Zhou, Qiao-Hong; Liang, Wei; Chen, Shui-Ping; Wu, Zhen-Bin

    2011-03-01

    Oxygen is an important limit factor of nitrogen removal in constructed wetlands, so it is the key point for improving nitrogen removal efficiency of constructed wetlands that the optimization of oxygen distribution within wetlands. Therefore, oxygen status, nitrogen removal and purification mechanism of integrated vertical-flow constructed wetland (IVCW) under aeration condition in summer and winter have been studied. The results showed that both oxygen levels and aerobic zones were increased in the wetland substrates. The area of oxic zone I (expressing with depth) extended from 22 cm, 17 cm to 53 cm, 44 cm, in summer and winter, respectively. The electric potential (Eh) profiling demonstrated that artificial aeration maintained the pattern of sequential oxic-anoxic-oxic (O-A-O) redox zones within the aerated IVCW in winter, while only two oxic-anoxic (O-A) zones were present inside the non-aerated IVCW in the cold season. The decomposition of organic matter and nitrification were obviously enhanced by artificial aeration since the removal efficiency of COD, TN and NH4(+) -N were increased by 12.2%, 6.9% and 15.1% in winter, respectively. There was no significant accumulation of NO3(-) -N in the effluent with an aeration cycle of 8 h on and 16 h off in this experiment. Moreover, we found that oxic zone I was the main region of pollutants removal in IVCW system, and artificial aeration mainly acted to enhance the purification capacity of this oxic zone in the aerated IVCW. These results suggest that aeration is important for optimization and application of IVCW system.

  17. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands.

    Science.gov (United States)

    A, Dan; Oka, Masao; Fujii, Yuta; Soda, Satoshi; Ishigaki, Tomonori; Machimura, Takashi; Ike, Michihiko

    2017-04-15

    Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes

    OpenAIRE

    Shi, Jing; Gourma, Mustapha; Yeung, Hoi

    2017-01-01

    Simulation of horizontal oil-water flow with matched density and medium viscosity ratio (μo/μw=18.8) in several different flow regimes (core annular flow, oil plugs/bubbles in water and dispersed flow) was performed with the CFD package FLUENT in this study. The volume of fluid (VOF) multiphase flow modeling method in conjunction with the SST k-ω scheme was applied to simulate the oil-water flow. The influences of the turbulence schemes and wall contact angles on the simulation results were i...

  19. Kinematics and statistics of dense, slow granular flow through vertical channels

    Science.gov (United States)

    Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.

    We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying

  20. French vertical flow constructed wetlands: a need of a better understanding of the role of the deposit layer.

    Science.gov (United States)

    Molle, Pascal

    2014-01-01

    French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.

  1. Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation

    Directory of Open Access Journals (Sweden)

    Isaac Lare Animasaun

    2016-06-01

    Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.

  2. CHEMICAL REACTION AND THERMAL RADIATION EFFECTS ON UNSTEADY MHD FLOW OF AN INCOMPRESSIBLE VISCOUS FLUID PAST A MOVING VERTICAL CYLINDER

    OpenAIRE

    B R Sharma*, Nabajyoti Dutta

    2016-01-01

    In the present study, the effects of chemical reaction and thermal radiation on unsteady MHD flow of a viscous, electrically conducting and incompressible fluid mixture past a moving vertical cylinder is studied. The fluid is a gray, absorbing-emitting but non scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless coupled non-linear partial differential equations are solved numerically using finite di...

  3. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    OpenAIRE

    N. Vedavathi; K Ramakrishna; K. Jayarami Reddy

    2015-01-01

    This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with ...

  4. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    Science.gov (United States)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  5. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    Science.gov (United States)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  6. A self-standing two-fluid CFD model for vertical upward two-phase annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: yang_liu@mail.dlut.edu.c [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China); Li, W.Z.; Quan, S.L. [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China)

    2011-05-15

    Research highlights: A mathematic model for two-phase annular flow is established in this paper. Pressure loss and wall shear stress increase with inlet gas and liquid flow velocities. Droplet mass fraction distribution exhibits a concave profile radially. - Abstract: In this paper, a new two-fluid CFD (computational fluid dynamics) model is proposed to simulate the vertical upward two-phase annular flow. This model solves the basic mass and momentum equations for the gas core region flow and the liquid film flow, where the basic governing equations are accounted for by the commercial CFD package Fluent6.3.26. The liquid droplet flow and the interfacial inter-phase effects are accounted for by the programmable interface of Fluent, UDF (user defined function). Unlike previous models, the present model includes the effect of liquid roll waves directly determined from the CFD code. It is able to provide more detailed and, the most important, self-standing information for both the gas core flow and the film flow as well as the inner tube wall situations.

  7. [Variation of diversity and activity of ammonia-oxidizing bacteria community in the integrated vertical-flow constructed wetlands].

    Science.gov (United States)

    Huang, De-feng; Li, Tian

    2008-08-01

    The activity of ammonia-oxidizing bacteria (AOB) in different layers of Integrated vertical-flow constructed wetlands (IVCW) treating eutrophic scenic water was measured, and the diversity and spatial distribution of AOB community structure in IVCW was investigated using PCR-DGGE. The results indicated that because of the integrated influence of competition of plant rhizodeposition, heterotrophic bacteria, DO and ammonia concentration, there were significant spatial differences in the activity and diversity of AOB along the flow direction of wetland. The activity of AOB was 0.79 mg x (kg x h)(-1) (in NO3- -N, the same below) near the surface of down-flow system in IVCW. From the surface of down-flow system to up-flow system, the activity of AOB decreased gradually, and slightly increased to 0.17 mg x (kg x h)(-1) near the surface of up-flow system. The spatial variation of diversity of AOB showed the similar change trend with the activity in IVCW and the diversity index in down-flow system (1.92) were higher than those in up-flow system (1.65). Most of AOB belong to oligotrophic bacterium in IVCW, and the population of ammonia-oxidizing bacteria showed a higher percentage of Nitrosomonas-like sequences from the wetland samples. Uncultured beta proteobacterium, Comamonas sp., Nitrosomonas oligotropha were also detected. The variation of the AOB community demonstrated spatial pattern in IVCW, which might be related to different wetland environment.

  8. The large low velocity province and the vertical flow beneath the Pacific

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Tsuchiya, T.

    2010-12-01

    % faster than the transverse (SH) component in the depth range from about 200-400 km above the core-mantle boundary (CMB). The major mineralogical components above the D" discontinuity in this depth range are Mg-perovskite (pv) and ferropericlase (fp). The observed anisotropy could be interpreted as due to lattice preferred orientation (LPO) of either pv, fp, or both in the lowermost mantle induced by vertical flow due to thermal buoyancy, which might be related to the root of the Hawaiian hotspot.

  9. Vertical biomass distribution drives flow through vegetation: An experiment under unidirectional currents

    Science.gov (United States)

    Villanueva, Raul; Paul, Maike; Vogt, Miriam; Schlurmann, Torsten

    2017-04-01

    Seagrass meadows are one of many soft measures of coastal protection nowadays not in focus of modern soft coastal protection attempts, despite their steady decline during the last decades. Accurate quantitative prediction of the effectiveness of seagrass meadows as a measure of coastal protection has not yet been achieved. Additionally, restoration attempts have proven difficult due to the bolstered hydrodynamic conditions found on non-vegetated areas, which do not allow resettlement of seeds; consequently no growth can take place. The industry has applied artificial vegetation as a measure of scour-protection for pipelines; such applications, however, rely on high-density meadows to achieve maximized sediment capture, thus leaving no place for regrowth of actual vegetation. Nevertheless, this suggests a solution through the deployment of artificial meadows which emulate the effect of vegetation on hydrodynamic conditions, thus supporting sedimentation, seed resettlement and a resultant sprouting of vegetation. This study aims to assess the interaction between currents and artificial seagrass resembling the characteristics of Zostera marina, one of the most common species of seagrass found in the European North Atlantic, as well as the Baltic Sea, in order to evaluate the possibility of optimizing and utilizing artificial meadows as means of restoration of actual seagrass. The effect of artificial elements emulating vegetation on flow is measured in a circular track flume of maximum 1 m depth and 1 m width. Sedimentation is measured within the flume with the help pf a mobile sand bed. An Acoustic Doppler Velocimeter (ADV) is then utilized to measure velocity profiles in front, within and behind the meadows in different submergence depths to capture the characteristic flow profiles induced by vegetation. The tests include velocities ranging from 0.1 - 0.9 m/s, which are tested individually, allowing to provide an insight into the changes in the velocity profile

  10. Natural convection air flow in vertical upright-angled triangular cavities under realistic thermal boundary conditions

    Directory of Open Access Journals (Sweden)

    Sieres Jaime

    2016-01-01

    Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.

  11. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    Science.gov (United States)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  12. Simulating shifting vertical and lateral flow path conditions in periglacial cover beds of a small-scale low mountainous catchment

    Science.gov (United States)

    Bestian, Konrad; Kraft, Philipp; Breuer, Lutz

    2017-04-01

    Periglacial cover beds are widely spread in European low mountain regions. This concept is based on three main types of sedimentary layers differing in texture properties: The main layer containing silty material (aeolian loess sedimentation), the basal layer containing gravel and decayed bedrock material (frost weathering of bedrock) and sometimes the intermediate layer in between containing mixed material from main and basal layer. Each layer type is characterized by specific hydraulic properties related to the climatic conditions during sedimentation. Recent research shows a shifting effect on runoff generation depending on the water content of the periglacial layers. Under low water content the basal layer impedes vertical flow whereas at high water content it becomes a preferential flow path for interflow. Reproducing these shifting vertical and lateral flow path effects will increase the credibility of rainfall-runoff models. The objective of this work was to implement these shifting effects in runoff modelling. We used the Catchment Modeling Framework (CMF) as modular toolkit. First we created a hillslope model to reproduce the effect of shifting flow path. Secondly, we built a semi-distributed catchment runoff model using Hydrological Response Units (HRU) defined by expert-knowledge based on topography, land use and groundwater information. The model was set up in a way that it provides the possibility to implement shifting vertical and lateral flow paths in later model runs. We performed several field experiments in the small-scale agricultural Schwingbach observatory (1.28 km2 AEO, Hessen, Germany) to gain expert-knowledge. For instance, we identified the spatial distribution of periglacial cover beds, measured hydraulic soil properties and installed 13 piezometers. We further ran conductivity tests of the groundwater body in the piezometer using slug and bail tests. Climate data were used as forcing data and discharge data for calibration and validation

  13. Comparison of Experimental and Computational Fluid Dynamics (CFD Studies of Slug Flow in a Vertical 90° Bend

    Directory of Open Access Journals (Sweden)

    M. Abdulkadir

    2013-12-01

    Full Text Available This paper presents the results of comparison of experimental and CFD studies of slug flow in a vertical 90° bend using validated models. For the experimental part, Electrical Capacitance Tomography (ECT, Wire Mesh Tomography (WMS, and high-speed videos were used to monitor an air-silicone oil mixture flowing in a vertical 90o bend. The ECT probes were mounted before the bend whilst the WMS was positioned either immediately upstream or immediately downstream of the bend. The downstream pipe was maintained horizontal whilst the upstream pipe was maintained vertical. The bend (R/D = 2.3 was made of transparent acrylic resin. Parallel to the experiments, simulations were carried out for same experiment set-up using the commercial software package Star-CD and Star-CCM+. The condition was simulated with the Volume of Fluid (VOF model. The simulation predictions were validated against the experimental data. A reasonably good agreement was observed for the results of the experiment and CFD.

  14. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  15. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  16. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  17. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  18. Modeling High Rate Phosphorus and Nitrogen Removal in a Vertical Flow Alum Sludge based Constructed Wetlands

    Science.gov (United States)

    Jeyakumar, Lordwin; Zhao, Yaqian

    2014-05-01

    Increased awareness of the impacts of diffuse pollution and their intensification has pushed forward the need for the development of low-cost wastewater treatment techniques. One of such efforts is the use of novel DASC (Dewatered Alum Sludge Cakes) based constructed wetlands (CWs) for removing nutrients, organics, trace elements and other pollutants from wastewater. Understanding of the processes in CWs requires a numerical model that describes the biochemical transformation and degradation processes in subsurface vertical flow (VF) CWs. Therefore, this research focuses on the development of a process-based model for phosphorus (P) and nitrogen (N) removal to achieve a stable performance by using DASC as a substrate in CWs treatment system. An object-oriented modelling tool known as "STELLA" which works based on the principle of system dynamics is used for the development of P and N model. The core objective of the modelling work is oriented towards understanding the process in DASC-based CWs and optimizes design criteria. The P and N dynamic model is developed for DASC-based CWs. The P model developed exclusively for DASC-based CW was able to simulate the effluent P concentration leaving the system satisfactorily. Moreover, the developed P dynamic model has identified the major P pathways as adsorption (72%) followed by plant uptake (20%) and microbial uptake (7%) in single-stage laboratory scale DASC-based CW. Similarly, P dynamic simulation model was developed to simulate the four-stage laboratory scale DASC-based CWs. It was found that simulated and observed values of P removal were in good agreement. The fate of P in all the four stages clearly shows that adsorption played a pivotal role in each stage of the system due to the use of the DASC as a substrate. P adsorption by wetland substrate/DASC represents 59-75% of total P reduction. Subsequently, plant uptake and microbial uptake have lesser role regarding P removal (as compared to adsorption).With regard

  19. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Recently the interest in developing vertical axis wind turbines (VAWTs) for offshore application has been increasing. Among the aerodynamic models of VAWTs, double multi-streamtube (DMST) and actuator cylinder (AC) models are two favorable methods for fully coupled modeling and dynamic analysis...

  20. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    National Research Council Canada - National Science Library

    Mohammad Mahfuzul Islam; Md. M. Alam; M. M. Parvez; M. A. Rahman

    2015-01-01

    Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature...

  1. Flow Patterns Transition Law of Oil-Water Two-Phase Flow under a Wide Range of Oil Phase Viscosity Condition

    OpenAIRE

    Wei Wang(College of William and Mary); Wei Cheng; Kai Li; Chen Lou; Jing Gong

    2013-01-01

    A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high vis...

  2. Optimization of liquid and gas flow rates for aerated drilling fluids considering hole cleaning for vertical and low inclination wells

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, M.E. [Middle East Univ., Metn (Lebanon)

    2009-07-01

    One of the most widely used technologies in depleted and/or low pressured formations is underbalanced drilling. Drilling fluids are usually gasified in order to achieve underbalanced conditions. The most commonly used drilling fluids during underbalanced drilling are pure gas, gas-liquid mixtures, and foams. This paper presented a study that focused on gas-liquid mixtures. The purpose of this paper was to express two-phase flow in vertical wellbores, and determine required flow rates for liquid and gas phase by considering formation pressure and hole cleaning properties. It was assumed that the liquid phase is the major contributor for cuttings transport, and that the gas phase only influences the bottom hole pressure. The paper introduced a mechanistic model for estimating the hydraulic behaviour of gas-liquid mixture drilling fluids under different flow patterns. Based on the bottom hole pressure and effective hole cleaning point of view, an algorithm was proposed for estimating the optimum required flow rates for liquid and gas phases based on the introduced mechanistic model. The model also predicts the required backpressure that must be applied. It was concluded that since the liquid flow rate is only dependent on proper hole cleaning, gas flow rate can be adjusted to achieve a bottomhole pressure equal to formation pressure. Also, backpressure should not be kept constant at the same value for static and dynamic conditions. Otherwise, bottomhole pressure cannot be kept constant. 14 refs., 9 figs., 1 appendix.

  3. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  4. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Science.gov (United States)

    Prasad, K. V.; Mallikarjun, P.; Vaidya, H.

    2017-02-01

    The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux). The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM) and regular perturbation method (PM). The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM) and regular perturbation method (PM) methods shows the versatility of the Differential Transform Method (DTM). The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  5. Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. finite enclosures

    CERN Document Server

    Authie, G; Tagawa, T

    2003-01-01

    Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383-398), we model analytically the Ha...

  6. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang

    2017-03-01

    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  7. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  8. Gas-Liquid Two-Phase Flow in Up and Down Vertical Pipes

    OpenAIRE

    Almabrok, Almabrok Abushanaf

    2013-01-01

    Multiphase flows occurring in pipelines with a serpentine configuration is an important phenomenon, which can be encountered in heat exchangers used in a variety of industrial processes. More specifically, in many industrial units such as a large cracking furnace in a refinery, the tubes are arranged in a serpentine manner and are relatively short. As flow negotiates round the 180o bend at the ends of the tubes, the generated centrifugal force could cause flow maldistribution creating local d...

  9. Characterization Of oil/ gas flow pattern in vertical pipes using electrical capacitance tomography

    OpenAIRE

    Abdulkareem, Lokman A.; Azzopardi, Barry J.; Hamid, Sarbast A,; Abdulkahdir, M.

    2015-01-01

    Electrical Capacitance Tomography provides the opportunity to visualize the contents of a process of many applications such as pipeline and obtain information on the flow configuration. Multiphase flow is an extremely complex field of fluid mechanics; the characteristics of the operations of many equipmentin different areas of industry such as oil and power generation are determined by the nature of flow of two phase or multiphase. In this study, a twin plane Electrical capacitance tomography...

  10. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent

    Directory of Open Access Journals (Sweden)

    Wilson Treger Zydowicz Sousa

    2011-04-01

    Full Text Available Vertical flow constructed wetlands, planted with and without Spartina alterniflora, were tested for the treatment of mariculture wastewater. Wetlands with and without the emergent macrophyte produced reductions of 89 and 71% for inorganic solids, 82 and 96% for organic solids, 51 and 63% for total nitrogen, 82 and 92% for ammoniacal nitrogen, 64 and 59% for orthophosphate, and 81 and 89% for turbidity, respectively. Wetlands with S. alterniflora showed denitrification tendencies, while wetlands without S. alterniflora had higher oxygen levels leading to nitrification. The results suggest the fundamental role of oxygen controlling the purification processes as well as the potential of constructed wetlands to treat mariculture effluents.

  11. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  12. Analysis of unsteady natural convective radiating gas flow in a vertical channel by employing the Caputo time-fractional derivative

    Science.gov (United States)

    Ahmad, Bakhtiar; Ali Shah, Syed Inayat; Ul Haq, Sami; Ali Shah, Nehad

    2017-09-01

    In this paper the exact solution of the unsteady natural convection radiating flow in an open ended vertical channel is studied. The channel is stationary with non-uniform temperature. The governing equations are fractional differential equations with the Caputo time-fractional derivative. Closed form analytical solutions for the temperature and velocity fields are obtained by using the Laplace transform technique. These solutions are expressed with the Wright function, the Robotnov and Hartley function. The effects of the fractional order and physical parameters on temperature and fluid velocity are presented graphically.

  13. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  14. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc. In the present paper, chemical reaction effect on a viscous, incompressible and electrically conducting fluid with unsteady MHD flow past an ...

  15. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part I. Analysis of boundary layers and vertical circulation

    Science.gov (United States)

    Iga, Keita

    2017-12-01

    Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments.

  16. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    Directory of Open Access Journals (Sweden)

    Hanus Robert

    2015-01-01

    Full Text Available The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  17. Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt.

    Science.gov (United States)

    Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan

    2014-01-01

    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.

  18. Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt.

    Directory of Open Access Journals (Sweden)

    Taza Gul

    Full Text Available This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM and Optimal Homotopy Asymptotic Method (OHAM. The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.

  19. Natural convection flow of Cu-H2O nanofluid along a vertical wavy surface with uniform heat flux

    Science.gov (United States)

    Habiba, Farjana; Molla, Md. Mamun; Khan, M. A. Hakim

    2016-07-01

    A numerical study on natural convection flow of Cu-Water nanofluid along a vertical wavy surface with uniform heat flux has been carried out. The governing boundary layer equations are transformed into parabolic partial differential equations by applying a suitable set of variables. The resulting nonlinear system of equations are then mapped into a regular rectangular computational domain and solved numerically by using an implicit finite difference method. Numerical results are thoroughly discussed in terms of velocity and temperature distributions, surface temperature distribution, skin friction coefficient and Nusselt number coefficient for selected key parameters such as solid volume fraction of nanofluid (ϕ) and amplitude (α) of surface waviness. In addition, velocity vectors, streamlines and isotherms are plotted to visualize momentum and thermal flow pattern within the boundary layer region.

  20. NUMERICAL STUDY OF MICROPOLAR FLUID FLOW HEAT AND MASS TRANSFER OVER VERTICAL PLATE: EFFECTS OF THERMAL RADIATION AND MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    REDHA ALOUAOUI

    2015-06-01

    Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation  as well as the skin friction coefficient and the both  local Nusselt and Sherwood numbers  are significantly influenced by Magnetic parameter, material parameter  and thermal radiation parameter.

  1. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  2. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  3. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Directory of Open Access Journals (Sweden)

    Abid Hussanan

    Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  4. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  5. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system.

    Science.gov (United States)

    Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F

    2015-01-01

    This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).

  6. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    Corresponding Author: e-mail: rajputneetulko@gmail.com. Abstract. Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc.

  7. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.

    Science.gov (United States)

    Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei

    2016-09-15

    In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A study on prediction methods of the critical heat flux for upward flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Jeong, Yong Hoon; Chang, Soon Heung

    2015-12-01

    Highlights: • The empirical CHF correlations for upward flow in a vertical narrow rectangular channel were reviewed, for high pressure condition over 40 bar. • New Correlation-A/B, which were derived by ACE algorithm, show much more improved prediction errors than other previous CHF correlations. • The Look-Up Table (LUT) of ACEL predicts CHF as well as New Correlations. • Comparative analysis shows that LUT with correction factors has potential application greater than New Correlations, for low pressure condition. - Abstract: The previous empirical CHF correlations for upward flow in a vertical narrow rectangular channel which is uniformly heated from both wide sides were reviewed and analyzed by using the experimental data points at pressure condition over 40 bar. The new correlations, that is, Simple Correlation and New Correlation-A/B were derived and proposed by using simple regression and ACE algorithm, and it was shown that they have more improved prediction errors than the other previous correlations. The Look-Up Table (LUT) of AECL also estimates CHF as well as New Correlation—A/B even though LUT was generated from the CHF data points in circular channels. As a result of comparative assessments of LUT and the empirical correlation of low pressure condition, it is reasonably concluded that for wider pressure condition, LUT with proper correction factors is the most pragmatic and universal CHF prediction method for rectangular channel in this study.

  9. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    Science.gov (United States)

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p nitrification potentials in December, which resulted in improving purifying capability.

  10. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m2/P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter® is one of the solutions developed in France by Epur Nature. Biho-Filter® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO3-N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  11. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M.

    1965-03-15

    An analysis for predicting the burnout conditions for flow of boiling water in vertical round ducts is presented. The analysis which is based on the Vanderwater flow model predicts that the burnout conditions are independent of the inlet subcooling and the heated length, and depends only on the local values at the burnout position of pressure, heat flux, steam quality and, mass velocity and the duct diameter. The results of an experimental investigation covering 811 burnout measurements in the pressure range from 41 to 101 kg/cm{sup 2} is presented. These results together with 488 of our earlier burnout measurements at the pressures of 2, 7, 10, 20 and 30 kg/cm{sup 2} were used to determine two constants in the analytical results. The final correlation predicted the burnout heat fluxes of the 1299 measurements within 8 per cent and with an RMS error of 5.3 per cent. The measurements covered the following ranges of variables Diameter d, 3.93-24.95 mm; Heated length L 400-3,500 mm; L/d-ratio L/d 40-890; Pressure p, 2.7-101 kg/cm{sup 2}; Inlet sub-cooling {delta}t{sub sub} 30-240 deg C; Mass velocity G 120-5450 kg/m{sup 3}/s; Heat flux q/A 35-686 W/cm{sup 3}; Burnout steam quality X{sub BO} 0-1.00. The Columbia data and the Winfrith data were also analysed in terms of the measured and predicted burnout heat fluxes and enthalpies, and it was found, that a very good agreement existed between the present results and the Columbia and the Winfrith data. The Columbia data were on the average 3 per cent lower comparing the measured and predicted burnout heat fluxes. The scatter of the data was within + 10 and - 15 per cent and the RMS error was 8.4 per cent. The Winfrith data were on the average 6 per cent higher than the predicted heat fluxes and the deviations of the measured heat fluxes were within + 25 and - 15 per cent of the predictions. The RMS error was 10.8 per cent.

  12. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    Directory of Open Access Journals (Sweden)

    Tuyen Quang Le

    2014-06-01

    Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  13. Numerical Simulations of Wave-Induced Flow Fields around Large-Diameter Surface-Piercing Vertical Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Giancarlo Alfonsi

    2015-08-01

    Full Text Available A computational analysis is performed on the diffraction of water waves induced by large-diameter, surface-piercing, vertical circular cylinder. With reference to linear-wave cases, the phenomenon is preliminarly considered in terms of velocity potential, a simplified theoretical framework in which both hypotheses of inviscid fluid and irrotational flow are incorporated. Then, and as a first-approximation analysis, the Euler equations in primitive variables are considered (a framework in which the fluid is still handled as inviscid, but the field can be rotational. Finally, the real-fluid behavior is analyzed, by numerically integrating the full Navier-Stokes equations (viscous fluid and rotational field in their velocity-pressure formulation, by following the approach of the Direct Numerical Simulation (DNS, no models are used for the fluctuating portion of the velocity field. For further investigation of the flow fields, the swirling-strength criterion for flow-structure extraction, and the Karhunen-Loève (KL decomposition technique for the extraction of the most energetic flow modes respectively, are applied to the computed fields. It is found that remarkable differences exist between the wave-induced fields, as derived within the different computing frameworks tested.

  14. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in a Small Diameter Tube

    Science.gov (United States)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    In the present study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically upward in a copper smooth tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and qualities from 0.1 to over 1 at evaporation temperature of 10°C, and pressure drops were also measured at mass fluxes of 100 and 200 kg/(m2•s) and qualities from 0.1 to 0.9. Three types of flow pattern were observed in the tube: A slug, a slug-annular and an annular flow. Based on the measurements, the characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified. The measured pressure drop and heat transfer coefficient were compared with correlations.

  15. Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder

    Directory of Open Access Journals (Sweden)

    Dinarvand Saeed

    2015-01-01

    Full Text Available This article deals with the study of the steady axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed external flow and surface temperature. By means of similarity transformation, the governing partial differential equations are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique namely homotopy analysis method (HAM. Expressions for velocity and temperature fields are developed in series form. In this study, three different types of nanoparticles are considered, namely alumina (, titania (, and copper ( with water as the base fluid. For copper-water nanofluid, graphical results are presented to describe the influence of the nanoparticle volume fraction on the velocity and temperature fields for the forced and mixed convection flows. Moreover, the features of the flow and heat transfer characteristics are analyzed and discussed for foregoing nanofluids. It is found that the skin friction coefficient and the heat transfer rate at the surface are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids.

  16. Characterizing fractured rock aquifers using heated Distributed Fiber-Optic Temperature Sensing to determine borehole vertical flow

    Science.gov (United States)

    Read, T. O.; Bour, O.; Selker, J. S.; Le Borgne, T.; Bense, V.; Hochreutener, R.; Lavenant, N.

    2013-12-01

    In highly heterogeneous media, fracture network connectivity and hydraulic properties can be estimated using methods such as packer- or cross-borehole pumping-tests. Typically, measurements of hydraulic head or vertical flow in such tests are made either at a single location over time, or at a series of depths by installing a number of packers or raising or lowering a probe. We show how this often encountered monitoring problem, with current solutions sacrificing either one of temporal or spatial information, can be addressed using Distributed Temperature Sensing (DTS). Here, we electrically heat the conductive cladding materials of cables deployed in boreholes to determine the vertical flow profile. We present results from heated fiber optic cables deployed in three boreholes in a fractured rock aquifer at the much studied experimental site near Ploemeur, France, allowing detailed comparisons with alternative methods (e.g. Le Borgne et al., 2007). When submerged in water and electrically heated, the cable very rapidly reaches a steady state temperature (less than 60 seconds). The steady state temperature of the heated cable, measured using the DTS method, is then a function of the velocity of the fluid in the borehole. We find that such cables are sensitive to a wide range of fluid velocities, and thus suitable for measuring both ambient and pumped flow profiles at the Ploemeur site. The cables are then used to monitor the flow profiles during all possible configurations of: ambient flow, cross-borehole- (pumping one borehole, and observing in another), and dipole-tests (pumping one borehole, re-injection in another). Such flow data acquired using DTS may then be used for tomographic flow inversions, for instance using the approach developed by Klepikova et al., (submitted). Using the heated fiber optic method, we are able to observe the flow response during such tests in high spatial detail, and are also able to capture temporal flow dynamics occurring at the

  17. Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel.

    Science.gov (United States)

    Tasadduq, Bushra; Lam, Wilbur; Alexeev, Alexander; Sarioglu, A Fatih; Sulchek, Todd

    2017-12-12

    High throughput size based separation and sorting of bioparticles and cells is critical to a variety of biomedical processing steps for medical diagnostics and pharmaceutical purification. Improving microfluidic size-based particle/cell sorting is a challenge to better address the need for generating more homogeneous subpopulations for study and use. We propose a novel advance to microfluidic sorting devices that uses three-dimensional focusing of the sample to optimally position particles to amplify the size-dependent differences in trajectories caused by differential secondary flows. The result is an increase in the purity of small particles by 35- fold and large particles by 8-fold in comparison to unfocused flow. Our simulated and experimental data reveal for the first time that positioning particles in three-dimensional space can be used to better leverage the differential lateral movement of particles with different sizes as they flow in microchannel with transverse secondary flows. The focusing approach may also be useful to improve positioning of particles with inertial channels with multiple equilibrium positions. This technique performs continuous-flow, high throughput size based sorting of millions of particles and cells in a minute without any pre and post-processing. We have also demonstrated improved enrichment and recovery of white blood cells from human blood.

  18. Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewaters.

    Science.gov (United States)

    Chang, Jun-Jun; Wu, Su-Qing; Liang, Kang; Wu, Zhenbin; Liang, Wei

    2015-03-01

    Microbial processes play a vital important role in the removal of contaminants in constructed wetland (CW). However, the microbial physiology and community structure can be influenced by environmental conditions. In this study, four pilot-scale integrated vertical-flow constructed wetlands (IVCWs) were employed to treat domestic and nitrified wastewaters. The microbial properties, along with their response to wastewater quality characteristics and seasonal variation, were determined. The results showed higher Shannon-Weiner diversity (H) and evenness (E) index of fatty acids (FAs), and relative abundances of signature FAs in down-flow cells and in the systems fed with domestic wastewater (DW). The relative abundances of fungi and gram-negative and aerobic bacteria were greater in up-flow cells. The dominant anaerobic bacteria found in most cells might be accounted for the prevailing anaerobic environment within the wetland beds, which could mean that the system fed with nitrified wastewater (NW) should perform better in nitrogen removal. The redundancy analysis (RDA) showed that pollutant concentrations, especially organic matter, influence the FA compositions greatly, and the most significant difference of microbial community structures was detected in down-flow cells fed with DW and up-flow ones with NW. The branched FAs, which could be used to represent anaerobic bacteria, were observed in down-flow cells treating DW and had a significant positive correlation with chemical oxygen demand (COD) concentration, probably suggesting the important role of anaerobic bacteria in organic matter degradation in the IVCWs. Seasonal variation, however, did not greatly influence the microbial community structure in the IVCWs.

  19. Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Andersen, Uffa; Rasmussen, Niels

    and in thin sections have been made via videos of the metal flow. Conventional bottom filling gating systems are shown to give relatively low control over the melt flow. The result is flow patterns being able to change radically from mould to mould due to minor fluctuations in the pouring conditions...... casting thin walled parts, as thin plate shaped ingates are used for casting many parts. This is illustrated with a brake disc. 6 layouts have been made. The filling sequences have been recorded on video. The trials show the difficult task to design a bottom filling system generating no splash during...... of gating systems investigated in this work, cannot be recommended for castings with high demands to the quality, as the variation in the filling patterns can be very large from mould to mould and hence the stability of the quality will be affected....

  20. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    Science.gov (United States)

    Adesanya, S. O.; Oluwadare, E. O.; Falade, J. A.; Makinde, O. D.

    2015-12-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow.

  1. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    user

    Buoyancy effects distort the velocity and temperature profiles relative to the forced convection case. This phenomenon is of ... temperatures and stability of the flow. Convective heat ... vaporization in combustion chambers, the finishing of painted walls and in reducing friction of drag on the hulls of ships and submarines.

  2. CFD Calculations of the Air Flow Along a Cold Vertical Wall with an Obstacle

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per

    This paper deals with the ability of Computational Fluid Dynamics to predict downdraught at a plane wall and at a wall with large obstacles. Quite simple boundary conditions were used in this study. Predictions of the main flow characteristics and the velocity levels in the occupied zone showed...

  3. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  4. Numerical modelling of temperature fields in the flow boiling liquid through a vertical minichannel with an enhanced heating surface

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents results of heat transfer research on flow boiling in a rectangular minichannel positioned vertically, with an enhanced surface. One of the channel walls was made of thin foil powered by direct current. This foil is enhanced on the side contacting fluid in the minichannel. It is possible to observe both surfaces of the minichannel through two openings covered with glass panes. One allows detecting temperature of the plain side of the foil by liquid crystal thermography. The opposite surface of the minichannel (from the enhanced side of the foil can be observed through the other glass pane. The observations of the flow structures allowed to calculate the void fraction for some cross-sections of selected two phase flow images. In mathematical modelling of the considered process stationary heat transfer in a glass pane, heating foil and boiling liquid can be described with Laplace equation, Poisson equation and energy equation, respectively. For completeness of the model a corresponding system of boundary conditions was given. The two-dimensional temperature fields of glass pane, heating foil and fluid was computed with the Trefftz method. The equalizing calculus used to smooth the measured data has reduced errors.

  5. Diffusion-thermo effect with hall current on unsteady hydromagnetic flow past an infinite vertical porous plate

    Directory of Open Access Journals (Sweden)

    J.R. Pattnaik

    2017-03-01

    Full Text Available An unsteady hydromagnetic flow past an infinite vertical porous plate has been analyzed to show the effect of an additional cross transport phenomenon, i.e. heat flux caused by concentration gradient in addition to the heat flux caused by temperature gradient. The effect of magnetic field on the fluid temperature and the heat transfer between fluid and wall is of considerable importance affecting the flow. Further, Hall current, an additional electric current density so generated perpendicular to both applied electric field and magnetic field has been taken into consideration in the present study. Moreover, the Dufour effect has been considered in energy equation leaving the equations of thermal diffusion and mass diffusion coupled. The coupled non-linear equations are solved by applying a special function Hhn(x. The effects of flow parameters are shown with the help of graphs and tables. A phenomenal observation, i.e. a radical change is marked near the plate in respect of Dufour number in the presence of suction. Further, it is to note that suction induces backflow in conjunction with opposing buoyancy forces. Hall current contributes to greater skin friction at the bounding surface.

  6. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    Directory of Open Access Journals (Sweden)

    Le Tuyen Quang

    2014-06-01

    Full Text Available In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR. First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  7. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei Nejad, Mehrzad [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Javaherdeh, K., E-mail: Javaherdeh@guilan.ac.ir [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Moslemi, M. [Ayandegan Institute of Higher Education, Tonekabon (Iran, Islamic Republic of)

    2015-09-01

    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors. - Highlights: • Magnetic field effects undermine the heat transfer for n<1 more markedly. • Magnetic field decreases the values of Nu number and C{sub f} downstream of the plat. • The magnetic field opposes the second harmonic in the curve of Nu number and C{sub f}. • The wavy geometry influences the pseudo-plastic fluids (n<1) more profoundly.

  8. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  9. Peculiarities of heat transfer at the liquid metal flow in a vertical channel in a coplanar magnetic field

    Science.gov (United States)

    Razuvanov, N. G.; Poddubnyi, I. I.; Kostychev, P. V.

    2017-11-01

    The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ∼1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) – Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur.

  10. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    Science.gov (United States)

    2014-09-19

    al. (2010) DNS Khoury et al. (2012) ur + ut + uz + IS-RSM RSM Figure 5: u+i for ReD = 12500 0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1 u i+ r...R Turbulent pipe flow ReD = 25000 Exp. Hosokawa et al. (2010) DNS Wu et al. (2012) ur + ut + uz + IS-RSM RSM Figure 6: u+i for ReD = 25000 ForReD...0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1 u i+ r/R Turbulent bubbly pipe flow at ReD = 25000 Exp. Hosokawa et al. (2010) ur + ut + uz + RSM

  11. Exact solutions for unsteady free convection flow of carbon nanotubes over an oscillating vertical plate

    Science.gov (United States)

    Khalid, Asma; Jiann, Lim Yeou; Khan, Ilyas; Shafie, Sharidan

    2017-04-01

    The purpose of this paper is to study the unsteady convection flow of carbon nanotubes (CNTs) induced by free convection with oscillating plate condition. Single-wall CNTs are used with water as base fluids. The governing partial differential equations and boundary conditions are transformed into a set of ordinary differential equations using suitable dimensionless variables. These equations are solved analytically using Laplace transform technique to obtain the velocity and temperature profiles. Results for velocity and temperature are shown in various graphs and discussed for the embedded flow parameters in detail. It is observed that, velocity decreases with increasing CNTs volume fraction and an increase in CNTs volume fraction increases the nanofluid temperature, which leads to an increase in the heat transfer rates.

  12. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded...... sizes of the dynamic and braking forces in the gating system.......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...

  13. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    Science.gov (United States)

    Kurylyk, Barret; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-01-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  14. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    Science.gov (United States)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  15. Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

    Science.gov (United States)

    Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos

    2012-08-01

    Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the

  16. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  17. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs).

    Science.gov (United States)

    Du, Lu; Chen, Qianru; Liu, Panpan; Zhang, Xia; Wang, Huihui; Zhou, Qiaohong; Xu, Dong; Wu, Zhenbin

    2017-11-01

    Phosphorous removal in adsorption had been extensively researched; however, the biological dephosphorization process and optimum operating parameters have not been discussed or quantified in Integrated Vertical-flow Constructed Wetlands (IVCWs). In this study, IVCWs planted with different plants were employed to evaluate total phosphorus (TP) treatment performance under different hydraulic retention times (HRTs), in summer and autumn. The results showed that the systems planted with Canna generalis showed the highest TP removal efficiency (77%) under a three-day HRT in autumn. The activities of exopolyphosphatase (PPX) and polyphosphate kinase (PPK) were determined, and it was found that PPK activity was seasonably variable and had been more active in autumn than that in summer (premoval efficiency (pphosphorus aerobic biological adsorption in IVCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    Science.gov (United States)

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  19. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu

    2011-01-01

    of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...... and hydraulic problems appeared. Mass removal rates and removal rate constants were much higher than reported in other studies probably because of the high-strength wastewater, the high loading rates and the tropical conditions. Planted systems removed pollutants much more efficiently than the unplanted...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...

  20. Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    N. Vedavathi

    2015-03-01

    Full Text Available This paper deals with the effects of heat and mass transfer on two-dimensional unsteady MHD free convection flow past a vertical porous plate in a porous medium in the presence of thermal radiation under the influence of Dufour and Soret effects. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are then solved numerically using shooting method along with Runge–Kutta fourth order integration scheme. The numerical results are displayed graphically showing the effects of various parameters entering into the problem. Finally, the local values of the skin-friction coefficient, Nusselt number and Sherwood number are also shown in tabular form.

  1. Three-phase flow (water, oil and gas in a vertical circular cylindrical duct with leaks: A theoretical study

    Directory of Open Access Journals (Sweden)

    W Santos

    2016-10-01

    Full Text Available This article describes the fluid dynamic behavior of a three-phase flow (water-oil-natural gas in a vertical pipe with or without leakage. The studied pipe has 8 meters in length, circular cross-section with 25 cm in diameter and a leak, which hole has a circular shape with 10mm diameter located in the center of pipe. The conservation equations of mass, momentum and energy for each phase (continuous phase - oil, dispersed phases - gas and water were numerically solved using ANSYS CFX software, in which the Eulerian-Eulerian model and the RNG - turbulence model were applied. Results of the pressure, velocity, temperature and volume fraction distributions of the involved phases are present and analyzed.

  2. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  3. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  4. An experimental study on critical heat flux in vertical annulus under low flow and low pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu; Nagy, Richárd, E-mail: nagy.richard@energia.mta.hu; Nagy, Imre, E-mail: imre.nagy@energia.mta.hu

    2016-12-15

    Highlights: • Critical heat flux experiments were carried out in internally heated vertical annulus. • Despite the uniform heating, in some cases, the CHF was detected at lower heater positions. • The experimental data were compared with five selected correlations. • The correlation of El-Genk et al. (1988) is the closest to our measured data with an RMS error of 8.2%. - Abstract: An experimental study was carried out to investigate the phenomenon of critical heat flux (CHF) at low flow and low pressure conditions in an internally heated vertical annulus. The rod heater of the test section was made of solid stainless steel with diameter of 6 mm and heated length of 454 mm. The unheated outer glass tube had an inner diameter of 16.3 mm. The pressure of the water coolant ranged between 116 and 228 kPa, the mass flux was varied in the range of 49.88–108.53 kg/(m{sup 2} s) and the inlet subcooling was kept at 3 °C below the saturation temperature. Among the 111 measured CHF data points 107 was detected at the uppermost thermocouple position, but four CHF were detected at lower thermocouple positions. Despite the uniform heating, the measurements showed that the CHF-location may shift from the uppermost position at L/D{sub he} = 11.86 (heated length/heated equivalent diameter) ratio if the mass flux is lower than 63.22 kg/(m{sup 2} s). Five selected correlations for the low flow and low pressure range were compared with our CHF data points.

  5. Fully developed natural convective micropolar fluid flow in a vertical channel with slip

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2015-10-01

    Full Text Available The problem of fully developed natural convective micropolar fluid flow is investigated. The slip boundary conditions for fluid velocity are applied. Non-dimensional variables are introduced. The closed form solutions of the field equations are represented graphically. As expected, it can be seen that the increase in micropolarity parameter results in a decrease in the velocity and an increase in the microrotation. Also, it is observed that the increase in the slip parameter increases the velocity and decreases the microrotation. The no slip case can be recovered as a limiting case of this work when the slip parameter goes to infinity.

  6. Numerical and experimental study of disturbance wave development in vertical two-phase annular flow

    Science.gov (United States)

    Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar

    2013-11-01

    The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.

  7. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    Science.gov (United States)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  8. A new stochastic hydraulic conductivity approach for modeling one-dimensional vertical flow in variably saturated porous media.

    Science.gov (United States)

    Vrettas, M. D.; Fung, I. Y.

    2014-12-01

    The degree of carbon climate feedback by terrestrial ecosystems is intimately tied to the availability of moisture for photosynthesis, transpiration and decomposition. The vertical distribution of subsurface moisture and its accessibility for evapotranspiration is a key determinant of the fate of ecosystems and their feedback on the climate system. A time series of five years of high frequency (every 30 min) observations of water table at a research site in Northern California shows that the water tables, 18 meters below the surface, can respond in less than 8 hours to the first winter rains, suggesting very fast flow through micro-pores and fractured bedrock. Not quite as quickly as the water table rises after a heavy rain, the elevated water level recedes, contributing to down-slope flow and stream flow. The governing equation of our model uses the well-known Richards' equation, which is a non-linear PDE, derived by applying the continuity requirement to Darcy's law. The most crucial parameter of this PDE is the hydraulic conductivity K(θ), which describes the speed at which water can move in the underground. We specify a saturation profile as a function of depth (i.e. Ksat(z)) and allow K(θ) to vary not only with the soil moisture saturation but also include a stochastic component which mimics the effects of fracture flow and other naturally occurring heterogeneity, that is evident in the subsurface. A large number of Monte Carlo simulation are performed in order to identify optimal settings for the new model, as well as analyze the results of this new approach on the available data. Initial findings from this exploratory work are encouraging and the next steps include testing this new stochastic approach on data from other sites and also apply ensemble based data assimilation algorithms in order to estimate model parameters with the available measurements.

  9. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  10. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    Science.gov (United States)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  11. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    Science.gov (United States)

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  12. Numerical investigation on fluid flow past transversely oscillating vertical rectangular cylinder

    Science.gov (United States)

    Kannan, Jeevananthan; Prakash, K. Arul

    2016-11-01

    In the present study, the rectangular cylinder was forced to vibrate for various flow configurations such as the AR (Aspect Ratio) ranging from 0.2 to 1 and Reynolds number based on (depth of the cylinder) as 100, 150, 200. The frequency ratio (excitation frequency, fe / natural shedding frequency, fns) chosen for the study was 0.5, 0.75, 1.0, 1.5 and 2.0. The vibrating amplitude 0.1, 0.2 and 0.3 of cylinder depth were also considered. For the slender aspect ratios (ARplane, lift, drag force etc. are presented and discussed. This Investigation has been sponsored by ARDB-Aerodynamics Panel, Grant No: (DARO /08/ 1031663/M/I Dated 08/08/2012), India.

  13. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation.

    Science.gov (United States)

    Kizito, Simon; Lv, Tao; Wu, Shubiao; Ajmal, Zeeshan; Luo, Hongzhen; Dong, Renjie

    2017-08-15

    Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrated that CB-CW and WB-CW provide significantly higher removal efficiencies for organic matter (>59%), NH4+-N (>76%), TN (>37%) and phosphorus (>71%), compared with G-CW (22%-49%). The higher pollutants removal ability of biochar-packed VFCWs was mainly attribute to the higher adsorption ability and microbial cultivation in the porous biochar media. Moreover, increasing the flooded/drained ratio from 4/8h to 8/4h of the tidal operation further improved around 10% of the removal of both organics and NH4+-N for biochar-packed VFCWs. The phosphorus removal was dependent on the media adsorption capacities through the whole experiment. However, the NH4+-N biodegradation by microbial communities was demonstrated to become the dominant removal mechanism in the long term treatment, which compensated the decreased adsorption capacities of the media. The study supported that the use of biochar would increase the treatment performance and elongate the lifespan of CWs under tidal operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    Science.gov (United States)

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  15. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  16. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  17. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    Science.gov (United States)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  18. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  19. Stability of viscous film flow coating the interior of a vertical tube with a porous wall

    Science.gov (United States)

    Liu, Rong; Ding, Zijing

    2017-05-01

    The stability of the gravity-driven flow of a viscous film coating the inside of a tube with a porous wall is studied theoretically. We used Darcy's law to describe the motion of fluids in a porous medium. The Beaver-Joseph condition is used to describe the discontinuity of velocity at the porous-fluid interface. We derived an evolution equation for the film thickness using a long-wave approximation. The effect of velocity slip at the porous wall is identified by a parameter β . We examine the effect of β on the temporal stability, the absolute-convective instability (AI-CI), and the nonlinear evolution of the interface deformation. The results of the temporal stability reveal that the effect of velocity slip at the porous wall is destabilizing. The parameter β plays an important role in determining the AI-CI behavior and the nonlinear evolution of the interface. The presence of the porous wall promotes the absolute instability and the formation of the plug in the tube.

  20. [Influence of image process on fractal morphology characterization of NAPLs vertical fingering flow].

    Science.gov (United States)

    Li, Hui-Ying; Du, Xiao-Ming; Yang, Bin; Wu, Bin; Xu, Zhu; Shi, Yi; Fang, Ji-Dun; Li, Fa-Sheng

    2013-11-01

    Dyes are frequently used to visualize fingering flow pathways, where the image process has an important role in the result analysis. The theory of fractal geometry is applied to give quantitative description of the stain patterns via image analysis, which is helpful for finger characterization and prediction. This description typically involves two parameters, a mass fractal dimension (D(m)) relative to the area, and a surface fractal dimension (D(s)) relative to the perimeter. This work detailed analyzes the influence of various choices during the thresholding step that transformed the origin color images to binary ones which are needed in the fractal analysis. One hundred and thirty images were obtained from laboratory two-dimension sand box infiltration experiments of four dyed non-aqueous phase liquids. Detailed comparisons of D(m) and D(s) were made respectively, considering a set of threshold algorithms and the filling of lakes. Results indicate that adjustments of the saturation threshold influence are less on both D(m) and D(s) in the laboratory experiments. The brightness threshold adjustments decrease the D(m) by 0.02 and increase the D(s) by 0.05. Filling lakes influence the D(m) less while the D(s) decrease by 0.10. Therefore the D(m) was recommended for further analysis to avoid subjective choices' influence in the image process.

  1. Flow Patterns Transition Law of Oil-Water Two-Phase Flow under a Wide Range of Oil Phase Viscosity Condition

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high viscousity, boundaries of core-annular flow are based on criteria proposed by Bannwart and Strazza et al. and neutral stability law ignoring that the velocity of the viscous phase is introduced for stratified flow. Comparisons between predictions and quantities of available data in both low and high viscosity oil-water flow from literatures show a good agreement. The framework provides extensive information about flow patterns transition of oil-water two-phase flow for industrial application.

  2. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Directory of Open Access Journals (Sweden)

    Sidra Aman

    2017-01-01

    Full Text Available Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs and multiple walls carbon nanotubes (MWCNTs in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil. Xue [Phys. B Condens. Matter 368, 302–307 (2005] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  3. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  4. Study of three-phase flow vertical patterns applied to the lift and transport of heavy oil; Estudo dos padroes de fluxo trifasico vertical aplicado a elevacao e transporte de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Fernando Fabris; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil)

    2003-07-01

    The E and P activity has a great importance in the oil industry. First, it assesses hydrocarbon reserves that can be recovered in order to provide the highest revenues. Second, it supplies the forecast oil and gas production through adequate lift and transportation methods. These flows become rather difficult and requires high investments for heavy oils, which can be understood as having density larger than 934 kg/m{sup 3} (API grade smaller than about 20) and viscosity higher than 100 cP at reservoir conditions. In this work, the flow of a heavy crude oil and air mixture was made viable by injecting water in the pipe, in order to lubricate the flow and reduce pressure drop, as in the core flow technique. The main objective is to observe the three-phase flow patterns formed in the vertical pipe at different mixture compositions, for application in artificial lift. The oil flow rate was measured through a mass flow meter. Water and gas flow rates were given by rotameters. A high-speed VHS camera (1000 frames/s) attached to the pipeline was used to record the experiments for the determination of the final patterns. These are described and represented in flow maps. (author)

  5. Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube

    Science.gov (United States)

    Sujumnong, Manit

    1998-09-01

    There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid

  6. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  7. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  8. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda

    2016-01-01

    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  9. Hall current effect on radiating span-wise fluctuating MHD convective flow through porous medium in a vertical porous channel

    Directory of Open Access Journals (Sweden)

    Dev Krishan Singh

    2015-01-01

    Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.

  10. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.

    Science.gov (United States)

    Yim, G J; Cheong, Y W; Hong, J H; Hur, W

    2014-10-01

    A vertical flow reactor (VFR) has been suggested for remediation of ferruginous mine drainage that passes down through an accreting bed of ochre. However, a VFR has a limited operation time until the system begins to overflow. In this study, a mathematical model was developed as a part of the effort to explore the operation of a VFR, showing dynamic changes in the head differences, ochre depths, and Fe(II)/Fe(III) concentrations in the effluent flow. The analysis showed that VFR operation time extended from 148.5 days to 163 days in an equally divided and to 168.4 days in asymmetrically (0.72:0.28) divided two-compartment VFR, suggesting that an optimum compartment ratio exists that maximizes the VFR operation time. A constant head filtration in the first compartment maximized filtration efficiency and thus prolonged VFR longevity in the two-compartment VFR. Fe(II) oxidation and ochre formation should be balanced with the permeability of the ochre bed to maximize the VFR operation time and minimize the residual Fe(II) in the effluent. Accelerated Fe(II) oxidation affected the optimum ratio of the compartment area and reduced the residual Fe(II) in the effluent. The VFR operation time can be prolonged significantly from 764 days to 3620 days by increasing the rate of ochre formation, much more than by accelerating the Fe(II) oxidation. During the prolonged VFR operation, ochre formed largely in the first compartment, while overflowing mine water with reduced iron content was effectively filtered in the second compartment. These results not only provide a better understanding of VFR operation but also suggest the direction of evolution of two-compartment VFR toward a compact and highly efficient facility integrated with an aerated cascade and with automatic coagulant feeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhou, Xu; Wang, Xuezhen; Zhang, Hai; Wu, Haiming

    2017-10-01

    Recently, vertical flow constructed wetlands (VFCWs) with intermittent aeration have been proven as an efficient technology to enhance removal efficiency of organics and nitrogen for wastewater treatment. However, the low denitrification effect in VFCWs was a problem for treating low carbon source wastewater. In this study, intermittent aeration and biochar, produced by biomass pyrolysis, was used to promote the nitrogen removal in VFCWs for low C/N domestic wastewater. Four systems, including non-aerated with non-biochar VFCW, non-aerated with biochar VFCW, aerated with non-biochar VFCW and aerated with biochar VFCW, were conducted for comparing their treatment performances. The results showed that much higher removal of COD (94.9%), NH4+-N (99.1%), TN (52.7%) and lower N2O emission (60.54μg·m-2·h-1) was obtained in aerated VFCW with biochar addition. The results suggested that adding biochar to intermittent aerated VFCWs could be an effective and appropriate strategy for low C/N wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of Plane Couette Flow on Natural Convection in a Vertical Slot with Side-Wall Heating

    Science.gov (United States)

    Tsunoda, Shuhei; Fujimura, Kaoru

    2018-01-01

    In a vertical slot with side-wall heating, and depending on the Prandtl number Pr, both steady and oscillatory modes are known to yield a critical condition. Linear stability analysis reveals that a superimposed plane Couette flow yields an instability of the third kind that arises with a Reynolds number in the range - 0.3 ≲ Re ≲ - 0.1 for Pr ≳ 2.15. We focus on this third instability mode. Weakly nonlinear analysis indicates a nonlinear degeneracy occurring on the linear critical curve in the (Re,Gr)-plane where Gr is the Grashof number. Near the upper bound of the Reynolds number range for the existence of the mode, bifurcation on a segment of the critical curve is subcritical. Fully-numerical analysis shows the solution branch extending far from the linearly unstable wavenumber band and exhibiting a complicated bifurcation structure. Near the lower bound, in contrast, bifurcation is supercritical and its characteristics are well explained using weakly nonlinear analyses.

  13. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  14. Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.; O' HERN,TIMOTHY J.; CECCIO,S.L.

    2000-03-28

    Experiments are presented in which electrical-impedance tomography (EIT) and gamma-densitometry tomography (GDT) measurements were combined to simultaneously measure the solid, liquid, and gas radial distributions in a vertical three-phase flow. The experimental testbed was a 19.05-cm diameter bubble column in which gas is injected at the bottom and exits out the top while the liquid and solid phases recirculate. The gas phase was air and the liquid phase was deionized water with added electrolytes. Four different particle classes were investigated for the solid phase: 40--100 {micro}m and 120--200 {micro}m glass beads (2.41 g/cm{sup 3}), and 170--260 {micro}m and 200--700 {micro}m polystyrene beads (1.04 g/cm{sup 3}). Superficial gas velocities of 3 to 30 cm/s and solid volume fractions up to 0.30 were examined. For all experimental conditions investigated, the gas distribution showed only a weak dependence on both particle size and density. Average gas volume fraction as a function of superficial gas velocity can be described to within {+-} 0.04 by curve passing through the center of the data. For most cases the solid particle appeared to be radically uniformly dispersed in the liquid.

  15. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  16. Effect of an inserted porous layer on heat and fluid flow in a vertical channel with mixed convection

    Directory of Open Access Journals (Sweden)

    Celik Hasan

    2015-01-01

    Full Text Available Temperature and velocity fields in a vertical channel partially filled with porous medium under mixed convection heat transfer condition are obtained. The heat transfer equation and equation of motion for clear and porous layer regions are written and solved analytically. The nondimensionalization of the governing equations yields two Grashof numbers as Grc and Grd for clear and porous sections where Grd=Da.Grc. The dimensionless governing parameters for the problem are Grc (or Grd, Da, thermal conductivity ratio (i.e., K and thickness of porous layer. The temperature and velocity profiles for different values of Grc, Da, K and thickness of porous layer are plotted and their changes with the governing parameters are discussed. Moreover, the variation of pressure drop with the governing parameters is investigated. The decrease of porous layer thickness or thermal conductivity ratio increases the possibility of the downward flows. Thermal conductivity ratio plays important role on pressure drop, particularly for the channels with high values of Grc/Re.

  17. Mixed Convection Boundary Layer Stagnation-Point Flow of a Jeffery Fluid Past a Permeable Vertical Flat Plate

    Science.gov (United States)

    Rahman, Mohammad M.; Ioan, Pop

    2014-12-01

    This paper analyzes the combined effects of buoyancy force, mass flux, and variable surface temperature on the stagnation point flow and heat transfer due to a Jeffery fluid over a vertical surface. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the function bvp4c from computer algebra software Matlab. Numerical results are obtained for skin friction coefficient, Nusselt number as well as dimensionless velocity and temperature profiles for various values of the controlling parameters namely mixed convection parameter λ, mass flux parameter s, elastic parameter (Deborah number) γ, and the ratio of relaxation and retardation time parameter λ1. The results indicate that dual solutions exist in a certain range of the mixed convection and mass flux parameters. In order to establish the physically realizable of these solutions, a stability analysis has also been performed. The results indicate that mixed convection and mass flux significantly affects the nature of the solutions, skin friction, and Nusselt number of a Jeffery fluid.

  18. Comparative Study on the Landfill Leachate Treatment in a Vertical Flow Wetland System With/Without Phragmites australis

    Directory of Open Access Journals (Sweden)

    Silviya Lavrova

    2017-06-01

    Full Text Available The landfill leachate treatment efficiency in a vertical-flow wetland system with and without planted Phragmites australis was investigated. The BOD/COD ratio of the landfill leachate was 0.38. Water samples were taken daily for determination of the COD, BOD, [NH4-N], [NO2-N], [NO3-N] and orthophosphates values. High COD and BOD removal efficiencies and discharge limits in both laboratory systems were achieved. Complete elimination of the ammonium nitrogen from the leachate in the nonvegetated wetland for 13 and 14 days was obtained at a recirculation ratio of 1:1 and 1:2, respectively, and for 9 and 7 days - in the vegetated wetland, at the same recirculation ratios. The initial nitrite nitrogen concentration in the landfill leachate was 17.2 ± 1.1 mg/L, which is 430 times over the discharge limit for these ions. After landfill leachate treatment in the nonvegetated wetland system at the recirculation ratios 1:1 and 1:2, nitrites removal efficiencies of 98.8% and 92.5%, respectively, were achieved. In the vegetated wetland system at the same recirculation ratios, nitrites removal efficiencies of 96.5% and 76.2%, respectively were achieved. Nitrates removal was not observed. The results show that the orthophosphates were assimilated better from the Phragmites australis at longer water resting period.

  19. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands.

    Science.gov (United States)

    A, Dan; Fujii, Daiki; Soda, Satoshi; Machimura, Takashi; Ike, Michihiko

    2017-02-01

    Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-09-01

    Full Text Available Analytical solution of thermal diffusion and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of thermal radiation and chemical reaction is obtained. Ramped wall temperature with ramped surface concentration, isothermal temperature with ramped surface concentration and isothermal temperature with constant surface concentration are taken into account. The governing non-dimensional equations are solved using Laplace transform technique and the solutions are presented in closed form. In order to get a perfect understanding of the physics of the problem we obtained numerical results using Matlab software and clarified with the help of graphical illustrations. With the help of velocity, temperature and concentration, Skin friction, Nusselt number and Sherwood number are obtained and represent through tabular form. Casson parameter is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the non-Newtonian fluid. The intensification in values of Soret number produces a raise in the mass buoyancy force which results an increase in the value of velocity.

  1. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-03-01

    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  2. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland.

    Science.gov (United States)

    Xu, Defu; Li, Yingxue; Howard, Alan; Guan, Yidong

    2013-06-01

    The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica>T. augustifolia>P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (Pnitrification potentials (r=913, Pnitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    Science.gov (United States)

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajesh

    2017-05-01

    The present study demonstrated the understating of municipal wastewater treatment in five types of CWs operated under semi continuous vertical flow mode. All CWs treatment conditions show the significantly lower pollutants concentrations. The average NH4+-N, TN, NO2--N, NO3--N, SO42-, and PO43- removal efficiency in the ISs-CWs were 83.60%, 82.43%, 15.61%, 48.93%, 80.45%, and 78.94% respectively. The average NO2--N removal efficiency shows that highest nitrite accumulation occurred in the Cont-CWs followed by C-CWs. The lowest increase in the biomass (127.5%) was observed in the Eichhornia crassipes planted in the ISs-CWs. The ISs filtration barrier created in the constructed wetlands was sufficient enough to remove all the pollutants. Principal components EFA 2D deformation plots show the distribution of the various nitrogenous species in the constructed wetlands along different components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Environmental impact of irrigation with greywater treated by recirculating vertical flow constructed wetlands in two climatic regions.

    Science.gov (United States)

    Gross, Amit; Alfiya, Yuval; Sklarz, Menachem; Maimon, Adi; Friedler, Eran

    2014-01-01

    Reuse of greywater (GW) has raised environmental and public health concerns. Specifically, these concerns relate to onsite treatment operated by non-professionals; systems must therefore be reliable, simple to use and also economically feasible if they are to be widely used. The aims of this study were to: (a) investigate GW treatment efficiency using 20 full-scale recirculating vertical flow constructed wetlands (RVFCWs) operated in households in arid and Mediterranean regions; and (b) study the long-term effects of irrigation with treated GW on soil properties. RVFCW systems were installed and monitored routinely over 3 years. Raw, treated and disinfected treated GW samples were analyzed for various physicochemical and microbial parameters. Native soil plots and nearby freshwater (FW) and treated GW irrigated soil plots were sampled twice a year - at the end of the winter and at the end of the summer. Soil samples were analyzed for various physicochemical and microbial parameters. Overall, the RVFCW proved to be a robust and reliable GW treatment system. The treated GW quality met strict Israeli regulations for urban irrigation. Results also suggest that irrigation with sufficiently treated GW has no adverse effects on soil properties. Yet, continued monitoring to follow longer term trends is recommended.

  6. Characterizing phosphorus removal from polluted urban river water by steel slags in a vertical flow constructed wetland.

    Science.gov (United States)

    Ge, Yuan; Wang, Xiaochang C; Dzakpasu, Mawuli; Zheng, Yucong; Zhao, Yaqian; Xiong, Jiaqing

    2016-01-01

    Phosphorus (P) removal in constructed wetlands (CWs) is often low unless special substrates with high sorption capacities are used. However, the use of special substrates in vertical flow (VF) CWs has not been proved to enhance P sorption. Thus, two VF wetlands were designed to evaluate the potential for enhanced P removal from polluted urban river water, one with slag as substrate and the other as a control with gravel as substrate. Findings from batch experiments showed P sorption capacities of 3.15 gP/kg and 0.81 gP/kg, respectively, for steel slag and gravel. Different organic matter fractions played different roles in P sorption, the effects of which were significant only at high concentrations. Over a 220 days' operation, the VF-slag removed 76.0% of the influent total phosphorus (TP) at 0.159 g/m(2)·d and PO4-P of 70.9% at 0.063 g/m(2)·d, whereas the VF-gravel removed 65.0% at 0.136 g/m(2)·d and 48.6% at 0.040 g/m(2)·d, respectively. Therefore, the merit of using a steel slag substrate in VF wetlands can be significant for the removal of PO4-P.

  7. Establishing a design for passive vertical flow constructed wetlands treating small sewage discharges to meet British Standard EN 12566.

    Science.gov (United States)

    Weedon, Christopher Michael; Murphy, Clodagh; Sweaney, Geoff

    2017-01-01

    Owing to legislation change (which made General Binding Rules effective from 1 January 2015) unless discharge is to specified environmentally sensitive sites, small sewage discharges (SSDs) in England - that is, wetlands, unless covered by an EP, because the cost of certification to EN 12566 for bespoke designs is prohibitive. EPs take up to four months to obtain. Therefore, the new legislation has created a commercial disadvantage for constructed wetlands treating SSDs, compared with mass-produced sewage treatment plants. However, the UK statutory pollution regulators have maintained a dialogue with the Constructed Wetland Association (CWA), with a view to assessing whether treatment of SSD using constructed wetlands might be allowable, without requiring EPs. This paper presents treatment performance data obtained over 15 years, from a variety of full-scale operational treatment wetlands, as supporting evidence for design guidelines, proposed by the CWA to the UK regulators, for the implementation of constructed wetlands continuously passively treating SSD to 20:30:20 mg l-1 BOD/SS/NH4-N under a wide range of loading rates. Relevant experience of UK designers, installers and operators since the early 1990s is included, resulting in recommended physical design criteria and loading rates for compact vertical flow reed beds, presented here as key elements of the draft guidelines.

  8. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.

    Science.gov (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L

    2018-01-02

    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  9. Development of a Convective Heat Transfer Correlation of a Supercritical CO{sub 2} with Vertical Downward Flow in Circular Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Pressure of coolant flowing through a SCWR core subchannel is supercritical and the heat transfer behavior is known to be quite different from those at a subcritical pressure. Therefore the heat transfer study in a supercritical pressure is required for the acquisition of a reliable heat transfer correlation. A downward flow as well as an upward flow occurs in a multi-pass reactor core. The heat transfer at a supercritical pressure in downward channel has been known to result in a quite different behavior from an upward flow. An experiment for a supercritical CO{sub 2} flowing vertically downward in circular tubes with inner diameters of 6.32 mm and 9 mm was performed by using SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation) at KAERI. The obtained test results are compared with the estimations from the existing correlations and an empirical formula for a downward flow is suggested.

  10. Magnetic field effects on unsteady convective flow along a vertical porous flat surface embedded in a porous medium with constant suction and heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S.; Das, P. [Department of Pysics, K B D A B College, Nirakarpur, Khurda-752 019 (Orissa) (India); Mohanty, J. [Department of Physics, ABIT, CDA, Sector-I, Bidanasi, Cuttack-753 014, (Orissa) (India)

    2011-07-01

    The magnetohydrodynamic unsteady convective flow of a viscous incompressible fluid along a vertical porous plate embedded in a porous medium with constant suction and heat sink is considered. Approximate solutions for velocity, temperature, skin friction and rate of heat transfer are obtained by solving the governing equations of the flow field using multi parameter perturbation technique. The effects of various flow parameters affecting the flow field are discussed with the help of figures and table. It is observed that a growing magnetic parameter or heat sink parameter retards the transient velocity of the flow field while the Grashof number or permeability parameter reverses the effect. Further, an increase in magnetic parameter or Prandtl number or heat sink parameter decreases the transient temperature of the flow field. A growing permeability parameter enhances the magnitude of skin friction and the rate of heat transfer at the wall, while the magnetic parameter reverses the effect.

  11. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    Science.gov (United States)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  12. Effect of step-feeding on the performance of lab-scale columns simulating vertical flow-horizontal flow constructed wetlands.

    Science.gov (United States)

    Torrijos, Verónica; Ruiz, Isabel; Soto, Manuel

    2017-10-01

    The effect of step-feeding (untreated wastewater by-pass) on the performance of lab-scale columns simulating a hybrid vertical flow (VF)-horizontal flow (HF) constructed wetland (CW) system was studied. Step-feeding strategies have been adopted in several kinds of CW, but this is the first report about the use of step-feeding in VF + HF hybrid systems treating domestic wastewater. Applied loading rates were 7-11 g BOD 5 /m 2  day and 2.1-3.4 g TN/m 2  day (overall system). Removal efficiency reached 98% TSS and COD and 99% BOD 5 on average, whilst a 50% by-pass improved TN removal from 31 to 50%. Maximum surface nitrification rate (5.5 g N/m 2  day) was obtained in VF unit, whilst maximum denitrification rate (1.8 g N/m 2  day) was observed in HF unit. Referred to the overall system, maximum surface nitrification and denitrification rates were 2.2 and 1.6 g N/m 2  day, respectively. However, potential nitrifying and denitrifying activities (batch assays) were 15.0 and 58.9 g N/m 2  day, respectively. Even at 50% by-pass, operational conditions in HF unit (dissolved oxygen, redox, COD/TN ratio) were not suitable enough for denitrification. However, methane emissions were not observed and nitrous oxide emissions were relatively low.

  13. Ductile Flow Accompanied by Vertical Thinning and Near-Isothermal Decompression in the Lhagoi Kangri Gneiss Dome, Southern Tibet

    Science.gov (United States)

    Diedesch, T.; Jessup, M. J.; Cottle, J. M.; Zeng, L.

    2016-12-01

    The North Himalayan antiform marks the location of a series of gneiss-cored domes along the southern Tibetan Plateau that record a history of Eocene to Oligocene crustal thickening and ductile flow followed by Miocene exhumation as the locus of India-Asia convergence was transferred southward. Key features common to these North Himalayan gneiss domes (NHGD) include: (1) a core of Precambrian to Cambrian granitic gneiss (+/- Miocene granite/granitic gneiss), (2) a carapace of Paleozoic to Mesozoic metasedimentary rocks that record Barrovian metamorphism, (3) fabrics that record crustal thickening (D1) and ductile shear with a component of vertical thinning (D2), and (4) an Oligocene to Miocene period of crustal melting and leucogranite emplacement. Our structural, petrologic, and geochronologic data from the Lhagoi Kangri dome (LKD) provide new constraints on the NHGD evolution and the early development of Himalayan middle crust. The LKD is a 25 x 40 km elliptical dome located 100 km NNW of Mt. Everest. Lhagoi Kangri is cored by orthogneiss nonconformably overlain by Paleozoic to Triassic mixed siliciclastic and carbonate metasedimentary rocks. At the highest structural levels deformation is characterized by km-scale N- and S-vergent folds and slaty cleavage (collectively, D1). A later generation of ductile deformation (D2) resulted in tightening of F1 folds and transposition of S1 cleavage at intermediate structural levels, while at deeper structural positions, D2 resulted in the formation of mylonitic foliation characterized by a pervasive LS fabric as well as C and C' shear bands filled by biotite, muscovite, and/or silliamanite laths. Pelitic intervals within the metasedimentary strata record concentric chlorite to sillimanite Barrovian metamorphic isograds (M1), and garnet- to sillimanite-zone rocks record high-temperature, nearly isothermal decompression (M2). Electron probe microanalysis and in-situ laser ablation split stream petrochronology of monazite from

  14. post chf vertical flow

    African Journals Online (AJOL)

    user

    penetration fraction. P(E1 ≥ E2) probability distribution function .... generated, applied to a control volume whose boundary is coincident with .... that a drop reaches the wall is given by the probability that (Eb1 ≥ Ew) or F(Eb1 ≥ Ew). A negative exponential relation is postulated flour this probability. Thus,. (Eb1 ≥ Ew) = (10).

  15. Ecoulements intermittents de gaz et de liquide en conduite verticale Intermittent Gas and Liquid Flows in a Vertical Pipe.

    Directory of Open Access Journals (Sweden)

    Line A.

    2006-11-01

    Full Text Available Le modèle présenté ici permet la pré-détermination du gradient de pression, du taux global de gaz, et de grandeurs caractéristiques de l'intermittence, dans un écoulement à poches et bouchons en conduite verticale. L'écriture des lois de conservation en moyenne phasique conditionnelle conduit à la définition d'une cellule moyenne équivalente. La fermeture du modèle est assurée par des lois de contrainte de cisaillement film-paroi, film-poche, bouchon-paroi, par une loi d'arrachage du gaz au culot de la poche, une loi de glissement du gaz dans les bouchons et par une loi de la vitesse moyenne de propagation des fronts de poches. Le calibrage et la qualification du modèle s'appuient sur deux banques de données, dont l'une a été obtenue avec des fluides pétroliers dans des conditions proches des situations industrielles (boucle diphasique de Boussens. The model described here can be used to predetermine the pressure gradient, the overall gas rate and the characteristic intermittence magnitudes in pocket and slug flow in a vertical pipe. The way governing equations in the conditional phase average are written defines an equivalent average cell. The model is closed by film/wall, film/pocket and slug/wall shear-stress laws, by a pulloff law for the gas at the bottom of the pocket, a slippage law for the gas in the slugs, and a mean propagation velocity law for the pocket fronts. The calibration and qualification of the model are based on two data banks, one of which contains data on petroleum fluids under conditions close to industrial situations (two-phase loop at Boussens.

  16. Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: effect of different design and operational parameters.

    Science.gov (United States)

    Bohórquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    2017-01-01

    This study assessed the treatment of domestic wastewater to find the optimum vertical flow-constructed wetland (VFCW) configuration under tropical conditions. Eight pilot-scale configurations units were studied to compare between fine sand and medium gravel used as substrate, two feeding frequencies (20 pulses d-1 and 10 pulses d-1), and the presence or absence of tropical plants (Heliconia psittacorum). The results showed that the sand beds were significantly more efficient in the removal of organic matter, ammonia nitrogen, and total suspended solids than gravel beds, presenting average removal rates of 48 and 24 g m-2 d-1 of COD; 35 and 16 g m-2 d-1 of BOD5; 7 and 4 g m-2 d-1 of [Formula: see text]; 9 and 0 g m-2 d-1 for sand and gravel, respectively. The oxygen consumption rates were calculated and a value of 65 g m-2 d-1 was obtained for sand beds while for the gravel beds the consumption rate was 30 g m-2 d-1. The assessment of different kinds of nitrogen showed interesting dynamics in the nitrification processes. The presence of H. psittacorum showed positive effects in the total nitrogen (TN) removal. The different loading frequencies applied did not show significant statistical differences in the removal of the tested contaminants. Preliminary results were found in the pathogen removal, where the sand is favorable as the substrate. This work represents the first step in the research of optimum VFWC design and operation parameters for Colombia as well as the use of plants of the genus Heliconia.

  17. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH4+-N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H2S, NH3, greenhouse gas (N2O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H2S, NH3 and N2O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Effect of intermittent artificial aeration on nitrogen and phosphorus removal in subsurface vertical-flow constructed wetlands].

    Science.gov (United States)

    Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang

    2008-04-01

    Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed.

  19. Heat transfer in vertical pipe flow at supercritical pressures of water; Waermeuebergang von Wasser in vertikalen Rohrstroemungen bei ueberkritischem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Loewenberg, M.F.

    2007-05-15

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations

  20. Optimal Design of Magnetohydrodynamic Mixed Convection Flow in a Vertical Channel with Slip Boundary Conditions and Thermal Radiation Effects by Using an Entropy Generation Minimization Method

    Directory of Open Access Journals (Sweden)

    Mohamad Yaghoub Abdollahzadeh Jamalabadi

    2015-02-01

    Full Text Available Investigation of the effect of thermal radiation on a fully developed magnetohydrodynamic (MHD convective flow of a Newtonian, incompressible and electrically conducting fluid in a vertical microchannel bounded by two infinite vertical parallel plates with constant temperature walls through a lateral magnetic field of uniform strength is presented. The Rosseland model for the conduction radiation heat transfer in an absorbing medium and two plates with slip-flow and no-slip conditions are assumed. In addition, the induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The non-dimensional governing equations are solved numerically using Runge–Kutta–Fehlberg method with a shooting technique. The channel is optimized based on the Second Law of Thermodynamics by changing various parameters such as the thermal radiation parameter, the temperature parameter, Hartmann number, Grashof to Reynolds ratio, velocity slip length, and temperature jump.

  1. Effects of radiation and thermal conductivity on MHD boundary layer flow with heat transfer along a vertical stretching sheet in a porous medium

    KAUST Repository

    Ferdows, M.

    2017-03-10

    A steady two-dimensional free convective flow of a viscous incompressible fluid along a vertical stretching sheet with the effect of magnetic field, radiation and variable thermal conductivity in porous media is analyzed. The nonlinear partial differential equations, governing the flow field under consideration, have been transformed by a similarity transformation into a systemof nonlinear ordinary differential equations and then solved numerically. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters. Finally, the effects of the pertinent parameters, which are of physical and engineering interest, are examined both in graphical and tabular form.

  2. Chemical reaction effect on an unsteady MHD free convection flow past a vertical porous plate in the presence of suction or injection

    Directory of Open Access Journals (Sweden)

    Shivaiah S.

    2012-01-01

    Full Text Available The objective of this paper is to analyze the effect of chemical reaction on unsteady magneto hydrodynamic free convective fluid flow past a vertical porous plate in the presence of suction or injection. The governing equations of the flow field are solved numerically by a finite element method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-friction coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.

  3. Heat and mass transfer on unsteady MHD free convection rotating flow through a porous medium over an infinite vertical plate with hall effects

    Science.gov (United States)

    Babu, D. Dastagiri; Venkateswarlu, S.; Reddy, E. Keshava

    2017-07-01

    In this paper, we have considered the unsteady MHD free convection flow of an incompressible electrically conducting fluid through porous medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a rotating system taking hall current into account. The flow through porous medium is governed by Brinkman's model for the momentum equation. In the undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and concentration are obtained making use of perturbation technique. The velocity expression consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi-layer character. The influence of various flow parameters on the velocity, temperature and concentration is analysed graphically, and computational results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms.

  4. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  5. The influence of chemical reaction and viscous dissipation on unsteady MHD free convection flow past an exponentially accelerated vertical plate with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2013-01-01

    Full Text Available A numerical study is presented on the effects of chemical reaction and magnetic field on the unsteady free convection flow, heat and mass transfer characteristics in a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate by taking into account the heat due to viscous dissipation. The problem is governed by coupled non-linear partial differential equations. The dimensionless equations of the problem have been solved numerically by the implicit finite difference method of Crank - Nicolson’s type. The effects of governing parameters on the flow variables are discussed quantitatively with the aid of graphs for the flow field, temperature field, concentration field, skin-friction, Nusselt number and Sherwood number. It is found that under the influence of chemical reaction, the flow velocity as well as concentration distributions reduce, while the viscous dissipation parameter leads to increase the temperature.

  6. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  7. Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction

    OpenAIRE

    Srinivasacharya D.; Kaladhar K.

    2013-01-01

    The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM). Profiles of dimensionless velocity, temperature...

  8. Experimental and CFD Simulations of Vertical Two-Phase Slug Flow for Gas-Newtonian and Non-Newtonian Liquids

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.

    Gas-liquid two-phase flows are presented everywhere in industrial processes (i.e. gas-oil pipelines). In spite of the common occurrence of these two-phase flows, their understanding is limited compared to single-phase flows. Different studies on two-phase flow have focus on developing empirical c...

  9. Contribution to the study of helium two-phase vertical flow; Contribution a l`etude des ecoulements verticaux d`helium diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Augyrond, L

    1998-04-01

    This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.) 83 refs.

  10. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.

    Science.gov (United States)

    Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan

    2014-10-01

    Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (pwetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF

  11. Estimations of Vertical Velocities Using the Omega Equation in Different Flow Regimes in Preparation for the High Resolution Observations of the SWOT Altimetry Mission

    Science.gov (United States)

    Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.

    2016-02-01

    Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.

  12. Effects of Ramped Wall Temperature on Unsteady Two-Dimensional Flow Past a Vertical Plate with Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2014-08-01

    Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.

  13. Lie Group Analysis and Similarity Solutions for Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching Vertical Sheet

    Directory of Open Access Journals (Sweden)

    Sarkhosh Seddighi Chaharborj

    2013-01-01

    Full Text Available An analysis for the mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet is carried out via symmetry analysis. By employing Lie group method to the given system of nonlinear partial differential equations, we can obtain information about the invariants and symmetries of these equations. This information can be used to determine the similarity variables that will reduce the number of independent variables in the system. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using fifth-order Improved Runge-Kutta Method (IRK5 coupled with shooting method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. This paper' results in comparison with known results are excellent.

  14. Time dependent Oldroyd-B liquid film flow over an oscillating and porous vertical plate with the effect of thermal radiation

    Science.gov (United States)

    Mohmand, Muhammad Ismail; Shah, Qayyum; Mamat, Mustafa Bin; Shah, Zahir; Khan, Abdul Samad

    2017-05-01

    In the current research work, a liquid film flow of Oldroyd-B fluid with internal heat in vertical porous medium in an oscillating belt is being examined in unsteady state. For this phenomenon, by using basic equations of fluid motion we get a mathematical model. The obtained model problem is solved for the exact analytic solutions by Optimal Homotopy Asymptotic Method (OHAM). Velocity, temperature fields with the mass flow-rate and heat transfer rate of the fluid flow at the belt are also calculated. The effect of pertinent parameters like κ1 relaxation time parameter, κ2 retardation time parameter, Λ porosity parameter, R radiation parameter and Pr temperature fields are also deliberated and then are presented graphically.

  15. Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction

    Directory of Open Access Journals (Sweden)

    Srinivasacharya D.

    2013-01-01

    Full Text Available The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM. Profiles of dimensionless velocity, temperature and concentration are shown graphically for various values of Dufour number, Soret number, Couple stress parameter and chemical reaction parameter.

  16. Measurement of vertical oil-in-water two-phase flow using dual-modality ERT–EMF system

    OpenAIRE

    Faraj, Yousef; Wang, Mi; Jia, Jiabin; Wang, Qiang; Xie, Cheng-gang; Oddie, Gary; Primrose, Ken; Qiu, Changhua

    2015-01-01

    Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography sys...

  17. Three-dimensional direct numerical simulations of co/counter-current vertical gas-Liquid annular flows

    Science.gov (United States)

    Farhaoui, Asma; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar

    2016-11-01

    We carry out three-dimensional numerical simulations of co/counter current Gas-Liquid annular flows using the parallel code, BLUE, based on a projection method for the resolution of the Navier-Stokes equations and a hybrid Front-Tracking/Level-Set method for the interface advection. Gas-Liquid annular flows and falling films in a pipe are present in a broad range of industrial processes. This configuration consists of an important multiphase flow regime where the liquid occupies the area adjacent to the internal circumference of the pipe and the gas flows in the pipe core. Experimentally, four distinctive flow regimes were identified ('dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes), that we attempt to simulate. In order to visualize these different regimes, various liquid (water) and gas (air) flow-rates are investigated. EPSRC UK Programme Grant EP/K003976/1.

  18. Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method

    Science.gov (United States)

    Reddy, Ch. Ram; Kaladhar, K.; Srinivasacharya, D.; Pradeepa, T.

    2016-02-01

    This paper analyzes the laminar, incompressible mixed convective transport inside vertical channel in an electrically conducting fluid saturated porous medium. In addition, this model incorporates the combined effects of Soret, Hall current and Joule heating. The nonlinear governing equations and their related boundary conditions are initially cast into a dimensionless form using suitable similarity transformations and hence solved using Adomian Decomposition Method (ADM). In order to explore the influence of various parameters on fluid flow properties, quantitative analysis is exhibited graphically and shown in tabular form.

  19. Mixed Convective Flow of an Elastico-Viscous Fluid Past a Vertical Plate in the Presence of Thermal Radiation and Chemical Reaction with an Induced Magnetic Field

    Science.gov (United States)

    Das, Utpal Jyoti

    2016-01-01

    The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.

  20. Effect of radiation on free convection heat and mass transfer flow through porous medium in a vertical channel with heat absorption/generation and chemical reaction

    Science.gov (United States)

    Lavanya, B.

    2017-07-01

    The present paper analyses a solution for the transient free flow on a viscous and incompressible fluid between two vertical walls as a result of heta and mass transfer. The perturbation technique ahs been used to find the solutions for the velocity and temperature fields by solving the governing partial differential equations. The temperature of the one plate is assumed to be fluctuating. The effcets of the various parametrs entering into the problem, on the velocity and the temprature are depivted graphically. The impact of various parameters (Da, Rv, Pr, R and S) on velocity and temperature fields are shown graphically. The expressions for skin friction at both walls are also obtained.

  1. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  2. Uniform coating of Ta2O5 on vertically aligned substrate: A prelude to forced flow atomic layer deposition

    Science.gov (United States)

    Mishra, Mrinalini; Kei, Chi-Chung; Yu, Yu-Hsuan; Liu, Wei-Szu; Perng, Tsong-Pyng

    2017-06-01

    Uniform tantalum oxide thin films, with a growth rate of 0.6 Å/cycle, were fabricated on vertically aligned, 10 cm-long, silicon substrates using an innovative atomic layer deposition (ALD) design. The ALD system, with a reaction chamber depth of 13.3 cm and 18 vertical enclosed channels (inner diameter 1.3 cm), was coupled with a shower-head type precursor conduit plate bearing 6 radial channels. This design enabled deposition on 6 silicon substrates at a time. The degrees of non-uniformity of deposits along the length of the silicon wafer and across different positions in the ALD chamber were found to be 1.77%-6.21% and 3.27%-5.45%, respectively. A further advantage of the design is that the conduit plate may be modified and the number of channels increased to process 18 substrates simultaneously, thus moving toward efficient and expedited ALD systems.

  3. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  4. Exchange flow of two immiscible fluids and the principle of maximum flux

    CERN Document Server

    Kerswell, R R

    2009-01-01

    The steady, coaxial flow in which two immiscible, incompressible fluids move past each other in a cylindrical tube has a continuum of possibilities due to the arbitrariness of the interface between the fluids. By invoking the presence of surface tension to at least restrict the shape of any interface to that of a circular arc or full circle, we consider the following question: which flow will maximise the exchange when there is only one dividing interface Gamma? Surprisingly, the answer differs fundamentally from the better-known co-directional two-phase flow situation where an axisymmetric (concentric) core-annular solution always optimises the flux. Instead, the maximal flux state is invariably asymmetric either being a `side-by-side' configuration where Gamma starts and finishes at the tube wall or an eccentric core-annular flow where Gamma is an off-centre full circle in which the more viscous fluid is surrounded by the less viscous fluid. The side-by-side solution is the most efficient exchanger for a sm...

  5. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    Directory of Open Access Journals (Sweden)

    Mohammad Mahfuzul Islam

    2015-08-01

    Full Text Available Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature. Stress work and heat generation effects on magneto-hydrodynamics natural convection flows are considered in this investigation. With a goal to attain similarity solutions of the problem the developed equations are made dimensionless by using suitable transformations. The non-dimensional equations are then transformed into non-similar forms by introducing non- similarity transformations. The resulting non-similar equations together with their corresponding boundary conditions based on conduction and convection are solved numerically by using the shooting method of Nachtsheim-swigert iteration technique and finite difference method together with Keller box Scheme. Numerically calculated velocity profiles and temperature profiles skin friction and the rate of heat transfer coefficient are shown on graphs for different values of the parameters entering into the problem.

  6. Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature

    Directory of Open Access Journals (Sweden)

    V. RAJESH

    2011-06-01

    Full Text Available A finite-difference analysis is performed to study the effects of thermal radiation and chemical reaction on the transient MHD free convection and mass transform flow of a dissipative fluid past an infinite vertical porous plate subject to ramped wall temperature. The fluid considered here is a gray, absorbing/ /emitting radiation but a non-scattering medium. The dimensionless governing equations are unsteady, coupled and non-linear partial differential equations. An analytical method fails to give a solution. Hence an implicit finite difference scheme of Crank-Nicolson method is employed. The effect of the magnetic parameter (M, chemical reaction parameter (K, radiation parameter (F, buoyancy ratio parameter (N, Schmidt number (Sc on the velocity field and skin friction for both air (Pr = 0.71 and water (Pr = 7 in the presence of both aiding (N>0 and opposing (N<0 flows are extensively discussed with the help of graphs.

  7. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2016-03-01

    Full Text Available The problem of conjugate effects of heat and mass transfer over a moving/stationary vertical plate has been studied under the influence of applied magnetic field, thermal radiation, internal heat generation/absorption and first order chemical reaction. The fluid is assumed to be electrically conducting water based Cu-nanofluid. The Tiwari and Das model is used to model the nanofluid, whereas Rosseland approximation is used for thermal radiation effect. Unified closed form solutions are obtained for the governing equations using Laplace transform method. The velocity, temperature and concentration profiles are expressed graphically for different flow pertinent parameters. The physical quantities of engineering interest such as skin friction, Nusselt number and Sherwood number are also computed. The obtained analytical solutions satisfy all imposed initial and boundary conditions and they can be reduced to known previous results in some limiting cases. It is found that, by varying nanoparticle volume fraction, the flow and heat transfer characteristics could be controlled.

  8. The influence of thermophoretic particle deposition on fully developed MHD mixed convective flow in a vertical channel with thermal-diffusion and diffusion-thermo effects

    Directory of Open Access Journals (Sweden)

    D. Lourdu Immaculate

    2015-06-01

    Full Text Available The present paper deals with the influence of thermophoretic particle deposition on the MHD mixed convective heat and mass transfer flow in a vertical channel in the presence of radiative heat flux with thermal-diffusion and diffusion-thermo effects. The resulting nonlinear coupled equations are solved under appropriate boundary conditions using the homotopy analysis method. The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is presented graphically. It is noted that fluid velocity is an increasing function of radiation parameter, Dufour number, Buoyancy ratio parameter and mixed convection parameter whereas the magnetic parameter, thermophoresis constant, Soret number and Schimidt number lead to suppress the velocity. The fluid temperature increases with increasing radiation parameter and Dufour number. The convergence of homotopy analysis method (HAM solutions is discussed and a good agreement is found between the analytical and the numerical solution.

  9. A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface

    Directory of Open Access Journals (Sweden)

    Motsa Sandile Sydney

    2015-01-01

    Full Text Available The behaviour of unsteady non-Darcian magnetohydrodynamic fluid flow past an impulsively started vertical porous surface is investigated. The effect of thermophoresis due to migration of colloidal particles in response to a macroscopic temperature gradient is taken into account. It is assumed that both dynamic viscosity and thermal conductivity are linear functions of temperature. The governing equations are non-dimensionalized by using suitable similarity transformation which can unravel the behaviour of the flow at short time and long time periods. A novel iteration scheme, called bivariate spectral local linearization method is developed for solving the corresponding systems of highly non-linear partial differential equations. The results of the numerical solutions obtained are presented graphically and analyzed for the effects of the various important parameters entering into the problem on velocity, temperature, and concentration field within the boundary layer.

  10. French vertical flow constructed wetlands: reed bed behaviour and limits due to hydraulic overloading on first stage filters

    OpenAIRE

    Molle, P.; Lienard, A.; Grasmick, A.; Iwema, A.

    2004-01-01

    Study of the hydraulic limits of reed beds, based on the knowledge of hydrodynamics in unsaturated porous media, shows the ability of the system to accept flow overloads. Measuring different parameters (flow, pollutant removal, infiltration rate (IR), pressure head profiles) in pilot and full?scale studies, we suggest new hydraulic limits with accompanying sizing rules and operational recommendations according to the level of deposit on the filter surface. Overloads of ten times the dry weath...

  11. Computational algorithm for predicting the pressure gradient in vertical wells by correlating multiphase flow Hagedorn and Brown

    OpenAIRE

    Luis Jose Duarte Bohorquez; María Duarte

    2015-01-01

    The accurate prediction of the pressure drop expected to occur during the multiphase flow of fluids in the flow string of a well is a widely recognized problem in the petroleum industry. There are many correlations and mechanistic models that estimate pressure gradients in wells as correlations: Duns & Ros (2008); Orkiszewski (1967); Hagedorn & Brown (1965), Beggs & Brill (1973), Govier & col. (1999), etc. Each one is based on application criteria that transform it into...

  12. Numerical analysis of natural convection of magnetohydrodynamic flow in vertical micro-channel with rarefaction effects and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available In this article, we present a comprehensive analysis of the flow and heat transfer characteristics of a fully developed incompressible, electrically conducting, and radiatively active fluid flow in micro-channel in the presence of transverse magnetic field. The Navier–Stokes and energy governing equations for magnetohydrodynamic flow, including thermal radiation and rarefaction effects, are considered to examine the wall properties (friction and heat transfer and the flow properties (temperature and velocity. Two rarefaction effects of velocity slip and temperature jump at the wall are modeled as the product of characteristic slip/jump length and the first derivatives of velocity and temperature, respectively. Since the natural convection of magnetohydrodynamic flow in channel is resulted from the competition between deriving forces by pressure gradient, temperature gradient, and magnetic field, its flow and heat transfer characteristics should be understood systematically. First, we obtain the system parameters representing thermal radiation, buoyancy, magnetic field, temperature difference, velocity slip length, and temperature jump length through the non-dimensionalization process, and then their influences are rigorously evaluated by solving the governing equations numerically using Runge–Kutta algorithm with shooting method.

  13. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...

  14. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  15. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Science.gov (United States)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  16. A Comparison of Flow Field Characteristics from PIV Experiment Measurement to Numerical Simulation behind a Spacer in a Vertical Pipe

    Directory of Open Access Journals (Sweden)

    Lávička D.

    2010-07-01

    Full Text Available This paper describes the topic of measurement using a modern laser method (PIV in an annular channel of very small dimensions. The annular channel simulates the flow area around a model of a fuel rod in the VVER nuclear reactor. The annular channel holds spacers which create obstacles to fluid flow. The spacers serve a number of important purposes. In the real nuclear reactor, the spacer holds a fuel rod in the fuel rod bundle. Another important function of the spacer is to influence the flow field characteristics, especially turbulence size, by the shape of the spacer. The value of the turbulence regulates the intensity of heat transfer between the fuel rod and the fluid. Therefore, it is very important to provide a correct description and analysis of the flow field behind the obstacle the spacer generates. The paper further looks into the solution of the same task using numerical simulation. The solution of this task consisted of setting the suitable boundary conditions and of setting the turbulence model for the numerical simulation. The result is a comparison of the flow field characteristics from the experimental measurement and the findings of the numerical simulation. The numerical simulation was carried out using commercial CFD software package, FLUENT.

  17. An Arduino microcontroller based digitalization of a vertical traversing mechanism used for the analysis of jet flows

    Science.gov (United States)

    Rahman, S. M. Rakibur; Roshid, S. M. Al Mamun Or; Nishan, Ishtiaque Ahmed

    2017-12-01

    This paper deals with the design of a drive system of traversing mechanism used to position the pitot tube in desired position of the jet flow field. In this system a stepper motor is driven by a `dual H bridge' motor driver and programmed Arduino microcontroller. The stepper motor is made to move in precise steps to obtain desired movement of the traversing mechanism. The jet flow is characterized in three distinct zones - initial zone, transition zone and developed zone. Each zone can be divided into required number of segments based on variation of velocity. By assigning number of segments, step range and number of steps in each segment as inputs, it is possible to collect data in all the flow zones according to our programmed schedule. The system will allow taking a large number of readings automatically.

  18. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico

    Science.gov (United States)

    Carrillo-Rivera, J. J.

    2000-09-01

    An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une

  19. Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    M. B. K. Moorthy

    2012-01-01

    Full Text Available The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subject to variable viscosity are numerically analyzed, by taking into account the diffusion-thermo (Dufour and thermal-diffusion (Soret effects. The governing equations of continuity, momentum, energy, and concentrations are transformed into nonlinear ordinary differential equations, using similarity transformations, and then solved by using Runge-Kutta-Gill method along with shooting technique. The parameters of the problem are variable viscosity, buoyancy ratio, Lewis number, Prandtl number, Dufour effect, Soret effect, and Schmidt number. The velocity, temperature, and concentration distributions are presented graphically. The Nusselt number and Sherwood number are also derived and discussed numerically.

  20. Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model

    NARCIS (Netherlands)

    Ritsema, C.J.; Oostindie, K.; Stolte, J.

    1996-01-01

    On four hill-slopes in the loess region of the Netherlands pressure heads were monitored during rain events with time intervals of five minutes. Water flow through these hill-slopes during erosive rain events in summer and winter was simulated two-dimensionally. These simulations showed that

  1. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitivene...

  2. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  3. DNB heat flux in forced convection of liquid hydrogen for a wire set in central axis of vertically mounted flow channel

    Science.gov (United States)

    Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.

    2017-12-01

    Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.

  4. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  5. Numerical investigation of MHD free convection flow of a non-Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and radiation absorption

    Directory of Open Access Journals (Sweden)

    M. Umamaheswar

    2016-09-01

    Full Text Available A numerical investigation is carried out on an unsteady MHD free convection flow of a well-known non-Newtonian visco elastic second order Rivlin-Erickson fluid past an impulsively started semi-infinite vertical plate in the presence of homogeneous chemical reaction, thermal radiation, thermal diffusion, radiation absorption and heat absorption with constant mass flux. The presence of viscous dissipation is also considered at the plate under the influence of uniform transverse magnetic field. The flow is governed by a coupled nonlinear system of partial differential equations which are solved numerically by using finite difference method. The effects of various physical parameters on the flow quantities viz. velocity, temperature, concentration, Skin friction, Nusselt number and Sherwood number are studied numerically. The results are discussed with the help of graphs. We observed that the velocity decreases with an increase in magnetic field parameter, Schmidt number, and Prandtl number while it increases with an increase in Grashof number, modified Grashof number, visco-elastic parameter and Soret number. Temperature increases with an increase in radiation absorption parameter, Eckert number and visco-elastic parameter while it decreases with increasing values of radiation parameter, Prandtl number and heat absorption parameter. Concentration increases with increase in Soret number while it decreases with an increase in Schmidt number and chemical reaction parameter.

  6. The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet

    Science.gov (United States)

    Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md.; Nazar, Roslinda; Bachok, Norfifah; Ali, Fadzilah Md

    2017-12-01

    A theoretical study that describes the magnetohydrodynamic mixed convection boundary layer flow with heat transfer over an exponentially stretching sheet with an exponential temperature distribution has been presented herein. This study is conducted in the presence of convective heat exchange at the surface and its surroundings. The system is controlled by viscous dissipation and internal heat generation effects. The governing nonlinear partial differential equations are converted into ordinary differential equations by a similarity transformation. The converted equations are then solved numerically using the shooting method. The results related to skin friction coefficient, local Nusselt number, velocity and temperature profiles are presented for several sets of values of the parameters. The effects of the governing parameters on the features of the flow and heat transfer are examined in detail in this study.

  7. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    OpenAIRE

    Das, S.; Banu, A.S.; Jana, R.N.; Makinde, O.D.

    2015-01-01

    This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD) pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC)–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fl...

  8. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke.

    Science.gov (United States)

    Slaboda, Jill C; Keshner, Emily A

    2012-12-01

    We explored how changes in visual attention impacted postural motor performance in healthy elders and adults post-stroke within a virtual reality environment, including when vestibular information was not perceptible. Visual dependence in 13 healthy (50-80 years) and 13 adults post-stroke (49-70 years) was assessed with a rod-and-frame task. Three degree support surface dorsiflexion tilts at 30°/s were combined with 30° and 45°/s continuous pitch rotations of the visual environment. The support surface remained tilted for 30 s followed by a 0.1°/s return to neutral during continued visual field rotation. Body displacement and ankle muscle responses were recorded, and wavelet transforms calculated. Muscle frequencies and kinematic measures were examined with functional principal component analysis, and weights compared through mixed model repeated measures ANOVA. Both populations exhibited increased backward sway with pitch upward visual field motion; adults post-stroke produced significantly larger muscle responses. Lateral sway was most regulated when visual flow velocity matched platform velocity. Visual flow summed with direction of support surface instability and visually dependent individuals produced more controlled lateral sway when viewing a dynamic visual field. Provoking postural instability within a dynamic visual flow field could serve as a training tool for postural stabilizing actions, particularly when visual dependence is exhibited.

  9. A model for the response of vertical axis wind turbines to turbulent flow: Parts 1 and 2

    Science.gov (United States)

    Malcolm, D. R.

    1988-07-01

    This report describes a project intended to incorporate the effects of atmospheric turbulence into the structural response of Darrieus rotor, vertical axis wind turbines. The basis of the technique is the generation of a suitable time series of wind velocities, which are passed through a double multiple streamtube aerodynamic representation of the rotor. The aerodynamic loads are decomposed into components of the real eigenvectors of the rotor and subsequently into full-power and cross-spectral densities. These modal spectra are submitted as input to a modified NASTRAN random load analysis and the power spectra of selected responses are obtained. This procedure appears to be successful. Results at zero turbulence agree with alternative solutions, and when turbulence is included, the predicted stress spectra for the Indal 6400 rotor are in good agreement with field data. The model predicts that the effect of turbulence on harmonic frequency peaks and on all lead-lag bending will not be great. However, it appears that only 11 percent turbulence intensity can almost double the rms of cyclic flatwise blade bending.

  10. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration. PMID:27419208

  11. Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate.

    Science.gov (United States)

    Mutuku-Njane, Winifred Nduku; Makinde, Oluwole Daniel

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (f w ), Biot number (Bi), and slip parameter ( β ), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  12. On the Influence of Soret and Dufour Effects on MHD Free Convective Heat and Mass Transfer Flow over a Vertical Channel with Constant Suction and Viscous Dissipation.

    Science.gov (United States)

    Uwanta, Ime Jimmy; Usman, Halima

    2014-01-01

    The present paper investigates the combined effects of Soret and Dufour on free convective heat and mass transfer on the unsteady one-dimensional boundary layer flow over a vertical channel in the presence of viscous dissipation and constant suction. The governing partial differential equations are solved numerically using the implicit Crank-Nicolson method. The velocity, temperature, and concentration distributions are discussed numerically and presented through graphs. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of physical parameters and are presented through tables. It has been observed that the velocity and temperature increase with the increase in the viscous dissipation parameter and Dufour number, while an increase in Soret number causes a reduction in temperature and a rise in the velocity and concentration.

  13. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  14. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  15. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  16. HEAT AND MASS TRANSFER EFFECTS ON FLOW PAST PARABOLIC STARTING MOTION OF ISOTHERMAL VERTICAL PLATE IN THE PRESENCE OF FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2013-06-01

    Full Text Available An exact solution of unsteady flow past a parabolic starting motion of the infinite isothermal vertical plate with uniform mass diffusion, in the presence of a homogeneous chemical reaction of the first order, has been studied. The plate temperature and the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace transform technique. The effect of velocity profiles are studied for different physical parameters, such as chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, and time. It is observed that velocity increases with increasing values of thermal Grashof number or mass Grashof number. The trend is reversed with respect to the chemical reaction parameter.

  17. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  18. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2007-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

  19. Experimental study on the low flow CHF in vertical 3x3 rod bundle with non-uniform axial heat flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Ki; Cho, Seok; Chun, Se Young; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Baek, Won Pil

    2004-05-01

    An experimental study of the Critical Heat Flux (CHF) has been performed for a water flow in a non-uniformly heated vertical 3x3 rod bundle under low flow and a wide range of pressure conditions. Since most of experimental studies on the low flow CHF have been performed under low pressure conditions, present study has investigated the effects of various parameters on the CHF under low flow and a wide range of pressure conditions. Especially, these experiments are focused on the CHF under Return-To-Power (RTP) conditions that are expected to occur in a main steam line break accident of Pressurized Water Reactors (PWRs). Using present CHF data, the applicability of conventional CHF correlations are investigated in a return-to-power condition. The CHF data have been collected for system pressures ranging from 0.47 to 15.06 MPa, mass flux from 49.66 to 654.44 kg/m{sup 2}s, inlet subcooling from 67.90 to 722.70 kJ/kg and exit quality from 0.36 to 1.29. In this study, the return-to-power conditions are defined as conditions with low mass flux less than 250 kg/m{sup 2}s, intermediated pressure between 6.0 MPa and 12.0 MPa, and high inlet subcooling greater than 200 kJ/kg. Total 299 CHF data including 93 CHF data in return-to-power conditions are obtained. The effects of various parameters on the CHF are consistent with previous understandings on the round tube CHF. Conventional CHF correlations predict the present return-to-power CHF data with reasonable accuracies. However, the prediction capabilities become worse in a very low mass flux below than about 100 kg/m{sup 2}s.

  20. Uso de leitos cultivados de fluxo vertical por batelada no pós-tratamento de efluente de reator anaeróbio compartimentado Post-treatment of effluent of anaerobic baffled reactor using batchwise vertical flow constructed wetland beds

    Directory of Open Access Journals (Sweden)

    Marcelo Mazzola

    2005-06-01

    Full Text Available Neste trabalho avaliou-se o desempenho de um Reator Anaeróbio Compartimentado (RAC de duas câmaras em série, seguido de três leitos cultivados (constructed wetlands de fluxo vertical por batelada. A unidade experimental, em escala piloto, foi instalada na Faculdade de Engenharia Agrícola - UNICAMP, Campinas, SP, Brasil. O volume total do reator era de 2,3 m³ (TDH de 12 h. O efluente do RAC foi tratado em três leitos, dois cultivados com macrófitas (gêneros Typha sp. e Eleocharis sp. e um utilizado como controle (não cultivado. Os leitos, com 2,0 m³ cada um e brita #2 (24 - 35 mm como meio suporte, operaram com fluxo vertical por batelada (com tempos de reação de 24, 48, 72 e 96 h. Na avaliação do RAC, observou-se tendência de estabilização dos parâmetros pH, alcalinidade, ácidos voláteis, sólidos sedimentáveis e suspensos totais, porém a remoção de DQO revelou-se limitada (50%. Nos leitos cultivados o aumento do tempo de reação (até 72 h foi acompanhado pelo aumento de remoção de turbidez, DQO, fósforo e nitrato. O melhor desempenho de remoção de fósforo total foi obtido no leito vegetado com Typha sp para os tempos de 72 e 96 h, respectivamente, de 30 e 25%.This study evaluated the performance of vertical constructed wetlands treating effluent of anaerobic baffled reactor. The anaerobic reactor volume was 2.3 m³; it was operated with daily flow of 4.6 m³ (12 hours Hydraulic Retention Time. The reactor effluent was split into three wetlands beds, two of them cultivated with macrophytes (Typha sp. and Eleocharis sp., and one control. The wetlands were operated as a batch reactor. The medium utilized was gravel, the size ranging from 7 to 12 mm. The reaction time for each cycle (filling - reaction - drainage was 24, 48, 72, and 96 h. The anaerobic reactor achieved the following removal rates: settable solids, 93%; suspended solids, 80%; and COD 39%. The increase in reaction time (up to 72 h for the constructed

  1. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  2. Assessment of Mass Transfer Coefficients in Coalescing Slug Flow in Vertical Pipes and Applications to Tubular Airlift Membrane Bioreactors

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Berube, P.R.; Nopens, I.

    2011-01-01

    higher shear stresses near the membrane surface, which generate high mass transfer coefficients from the surface to the bulk region. However, measuring the mass transfer coefficient is difficult in complex heterogeneous mixtures like activated sludge and existing techniques (e.g. electrochemical methods......) cannot be applied directly. As an alternative, in this work, a multidisciplinary approach was selected, by exploiting dimensionless analysis using the Sherwood number. Mass transfer coefficients were measured at various superficial velocities of gas and liquid flow in a tubular system. Due......). A semi-empirical relationship based on the Lévêque relationship for the Sherwood number (mass transfer coefficient) was formulated for the laminar regime. A test case comparison between water and activated sludge was performed based on full-scale airlift MBR operational conditions. It was found...

  3. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-09-01

    Full Text Available This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation, Bejan number as well as the shear stresses at the channel walls are presented graphically and analyzed in detail. It is possible to determine optimum values of magnetic parameter, power-law index, Eckert number and Boit number which lead to a minimum entropy generation rate.

  4. Viscoplastic sculpting in stable triple layer heavy oil transport flow

    Science.gov (United States)

    Sarmadi, Parisa; Hormozi, Sarah; A. Frigaard, Ian

    2017-11-01

    In we introduced a novel methodology for efficient transport of heavy oil via a triple layer core-annular flow. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from Visco-Plastic Lubrication are used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a viscoplastic fluid between the transported oil and the lubricating fluid layer to balance the density difference between the fluids. Here we address the sculpting of the shaped skin within a concentric inflow manifold. We use the quasi-steady model to provide inputs to an axisymmetric triple layer computation, showing the development of the streamwise skin profile and establishment of the flow. For this, we use a finite element discretization with the augmented-Lagrangian method to represent the yield surface behaviour accurately and a PLIC method to track the interface motion.

  5. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions

    Science.gov (United States)

    Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.

    2018-01-01

    In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.

  6. Application of two-phase mixture model to the unsaturated vertical flow through snow; Niso kongotai model no sekisetsunai fuhowa enchoku shinto eno tekiyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yatomi, C.; Ishida, H. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering; Hata, T. [Ishikawa College of Technology, Ishikawa (Japan)

    1995-02-15

    The unsaturated vertical flow through snow was analyzed with a model prepared to rationally express the progression of moisture movement through porous media. For the model, the moisture existing in the two-phase mixture was assumed to be composed of free phase and trapping phase. It was then presumed that the aqueous behavior complied with the conservation law of moisture in both phases and Darcy law expanded to the aqueous transfer in the free phase. The thus derived basic equation was analytically solved by linear approximation. The result of calculation was applied to the experimental result on the granulated snow samples which had considerably progressed in metamorphosis. As a result of application, it was known that the present model correctly reproduces the run-off from the snow sample, when it is more or less abundant after its rising. Pertaining to the parameters to structure the model, it was indicated that K, {alpha} and {beta} express the starting time of run-off, damping part of run-off, and trapping mechanism and flow characteristics, respectively. 8 refs., 5 figs., 2 tabs.

  7. Effect of radiation on transient MHD flow of micropolar fluid between porous vertical channel with boundary conditions of the third kind

    Directory of Open Access Journals (Sweden)

    D. Prakash

    2014-12-01

    Full Text Available The present work is devoted to investigate the effect of thermal radiation on fully developed flow of micropolar fluid flowing between the two infinite parallel porous vertical plates in the presence of transverse magnetic field. The fluid is considered to be a gray, absorbing–emitting but non-scattering medium, and the Cogley–Vincent–Gilles formulation is adopted to simulate the radiation component of heat transfer. The rigid plates are assumed to exchange the heat with an external fluid by convection. The governing equations are solved numerically by Crank–Nicolson implicit finite difference method. The effect of various physical parameters such as transient, Hartmann number, micropolar parameter, radiation parameter, Prandtl number, Biot number and Reynolds number on the velocity and temperature field are discussed graphically. The important finding of the present work is that the temperature of the fluid is reduced by applying thermal radiation. Further, the results obtained under the limiting conditions were found to be in good agreement with the existing one.

  8. Double dispersion effects on non-Darcy free convective boundary layer flow of a nanofluid over vertical frustum of a cone with convective boundary condition

    Science.gov (United States)

    RamReddy, Ch.; Venkata Rao, Ch.

    2017-12-01

    In this paper, a numerical analysis is performed to investigate the effects of double dispersion and convective boundary condition on natural convection flow over vertical frustum of a cone in a nanofluid saturated non-Darcy porous medium. In addition, Brownian motion and thermophoresis effects have taken into consideration, and the uniform wall nanoparticle condition is replaced with the zero nanoparticle mass flux boundary condition to execute physically applicable results. For this complex problem, the similarity solution does not exist and hence suitable non-similarity transformations are used to transform the governing equations along with the boundary conditions into non-dimensional form. The Bivariate Pseudo-Spectral Local Linearisation Method (BPSLLM) is used to solve the reduced non-similar, coupled partial differential equations. To test the accuracy of proposed method, the error analysis and convergence tests are conducted. The effect of flow influenced parameters on non-dimensional velocity, temperature, nanoparticle volume fraction, regular concentration field as well as on the surface drag, heat transfer, nanoparticle and regular mass transfer rates are analyzed.

  9. Numerical Simulation of Williamson Combined Natural and Forced Convective Fluid Flow between Parallel Vertical Walls with Slip Effects and Radiative Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available Numerical study of the slip effects and radiative heat transfer on a steady state fully developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls of a microchannel with isothermal walls in a porous medium is performed. The slip effects are considered at both boundary conditions. Radiative highly absorbing medium is modeled by the Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial differential equations formed a boundary problem are solved numerically using the fourth order Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction coefficient, the rate of heat transfer represented by the local Nusselt number were presented even as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip length, Darcy number, and temperature jump, on the flow field and temperature field and their effects on the boundaries are presented and discussed.

  10. Tracking of Bubble Trajectories in Vertical Pipes in Bubbly Flow Regime by Coupling Lagrangian, Eulerian and 3D Random Walks Models: Validation with Experimental Data

    Directory of Open Access Journals (Sweden)

    José L. Muñoz-Cobo

    2012-09-01

    Full Text Available A set of air-water experiments has been performed under isothermal upward concurrent flow conditions, in a vertical column. The interfacial velocity, the bubble interfacial area and the void fraction distributions have been measured. Numerical simulation of these experiments were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. In the Eulerian solver the velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS. The turbulent kinetic energy k, and the dissipation rate transport equations were simultaneously solved by using the k, epsilon model in a (r,z grid by the finite volume method and the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel and an iterative self-consistent method was developed. The turbulence induced by the bubbles is an important issue considered in this paper, in order to obtain good predictions of the void fraction distribution and the interfacial velocity at different gas and liquid flow conditions. The Eulerian Code was upgraded from an axisymmetric 2D code to a 3D code in order to improve the turbulence solution. The results of the 3D CFD code have been tested and show a good agreement with the experimental results. In this paper special attention is given to the coupling between the different models.

  11. Analytical study of MHD free convective, dissipative boundary layer flow past a porous vertical surface in the presence of thermal radiation, chemical reaction and constant suction

    Directory of Open Access Journals (Sweden)

    M.C. Raju

    2014-12-01

    Full Text Available An analytical solution of MHD free convective, dissipative boundary layer flow past a vertical porous surface in the presence of thermal radiation, chemical reaction and constant suction, under the influence of uniform magnetic field which is applied normal to the surface is studied. The governing equations are solved analytically using a regular perturbation technique. The expressions for velocity, temperature and concentration fields are obtained. With the aid of these, the expressions for the coefficient of skin friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are derived. Finally the effects of various physical parameters of the flow quantities are studied with the help of graphs and tables. It is observed that the velocity and concentration increase during a generative reaction and decrease in a destructive reaction. The same observed to be true for the behavior of the fluid temperature. The presence of magnetic field and radiation diminishes the velocity and also the temperature.

  12. Vertical pneumatic conveying in dilute and dense-phase flows: experimental study of the influence of particle density and diameter on fluid dynamic behavior

    Directory of Open Access Journals (Sweden)

    Narimatsu C.P.

    2001-01-01

    Full Text Available In this work, the effects of particle size and density on the fluid dynamic behavior of vertical gas-solid transport of Group D particles in a 53.4 mm diameter transport tube were studied. For the conditions tested, the experimental curves of pressure gradient versus air velocity presented a minimum pressure gradient point, which is associated with a change in the flow regime from dense to dilute phase. The increases in particle size from 1.00 to 3.68 mm and in density from 935 to 2500 kg/m³ caused an increase in pressure gradient for the dense-phase transport region, but were not relevant in dilute transport. The transition velocity between dense and dilute flow (Umin also increased with increasing particle density and diameter. An empirical equation was fitted for predicting transition air velocity for the transport of glass spheres. Additional experiments, covering a wider range of conditions and particles properties, are still needed to allow the fitting of a generalized equation for prediction of Umin.

  13. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.

    Science.gov (United States)

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian

    2013-04-01

    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.

  14. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji

    2008-02-15

    The SCWR(Super Critical Water-cooled Reactor) is one of the feasible options for the 4th generation nuclear power plant, which is being pursued by an international collaborative organization, the Gen IV International Forum(GIF). The major advantages of the SCWR include a high thermal efficiency and a maximum use of the existing technologies. In the SCWR, the coolant(water) of a supercritical pressure passes the pseudo-critical temperature as it flows upward through the sub-channels of the fuel assemblies. At certain conditions a heat transfer deterioration occurs near the pseudo-critical temperature and it may cause an excessive rise of the fuel surface temperature. Therefore, an accurate estimation of the heat transfer coefficient is necessary for the thermal-hydraulic design of the reactor core. A test facility, SPHINX(Supercritical Pressure Heat Transfer Investigation for the Next Generation), dedicated to produce heat transfer data and study flow characteristics, uses supercritical pressure CO{sub 2} as a surrogate medium to take advantage of the relatively low critical temperature and pressure: and similar physical properties with water. The produced data includes the temperature of the heating surface and the heat transfer coefficient at varying mass fluxes, heat fluxes, and operating pressures. The test section is a circular tube of ID 6.32 mm: it is almost the same as the hydraulic diameter of the sub-channel in the conceptional design presented by KAERI. The test range of the mass flux is 285 to 1200 kg/m{sup 2}s and the maximum heat flux is 170 kW/m{sup 2}. The tests were mainly performed for an inlet pressure of 8.12 MPa which is 1.1 times of critical pressure. With the test results of the wall temperature and the heat transfer coefficient, effects of mass flux, heat flux, inlet pressure, and the tube diameter on the heat transfer were studied. And the test results were compared with the existing correlations of the Nusselt number. In addition, New

  15. Dynamics of Prochlorococcus and Synechococcus at Station ALOHA Revealed through Flow Cytometry and High-Resolution Vertical Sampling

    Directory of Open Access Journals (Sweden)

    Ger J. van den Engh

    2017-11-01

    Full Text Available The fluorescence and scattering properties of Prochlorococcus and Synechococcus at Station ALOHA as measured by flow cytometry (termed the FCM phenotype vary with depth and over a variety of time scales. The variation in FCM phenotypes may reflect population selection or physiological acclimation to local conditions. Observations before, during, and after a storm with deep water mixing show a short-term homogenization of the FCM phenotypes with depth, followed by a return to the stable pattern over the time span of a few days. These dynamics indicate that, within the upper mixed-layer, the FCM phenotype distribution represents acclimation to ambient light. The populations in the pycnocline (around 100 m and below, remain stable and are invariant with light conditions. In samples where both cyanobacteria coexist, fluorescence properties of Prochlorococcus and Synechococcus are tightly correlated providing further evidence that FCM phenotype variability is caused by a common environmental factor or factors. Measurements of the dynamics of FCM phenotypes provide insights into phytoplankton physiology and adaptation. Alternatively, FCM phenotype census of a water mass may provide information about its origin and illumination history.

  16. LDV measurement of in-cylinder flow field including vertical vortex. ; Quantitative estimate of flow characteristics in cylinder and influence of intake pressure. Tateuzu wo fukumu cylinder nai ryudoba no LDV keisoku. ; Tsutsunai ryutai tokuseichi no teiryoteki hyoka to sorerani taisuru kyukiatsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, H.; Kono, S.; Matsuoka, T. (Mazda Motor Corp., Hiroshima (Japan))

    1990-04-25

    In-cylinder flow in an internal combustion engine is an important factor affecting the engine performance. This research aimed to measure in-cylinder flow including vertical votex generated by a variable swirl port with LDV to get some new knowledges on the generation and control. The engine used for this experiment was a motored single cylinder and two valves engine having a disk type combustion chamber. Ar laser was emitted after fitted quartz glass liner and glycerol solution as seed particles was supplied from the intake port. It was clarified from the fluid characteristics quantitatively determined that clear vertical vortex was formed along with the swirl intensification, that the change of turbulence could be explained definitely by considering not only the swirl but also the vertical vortex condition, and that the vertical vortex was effective to intensify the turbulence, indicating the necessity of generation of comparatively strong vertical vortex. 5 refs., 13 figs., 2 tabs.

  17. Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate.

    Science.gov (United States)

    Latrach, Lahbib; Ouazzani, Naaila; Hejjaj, Abdessamad; Mahi, Mustapha; Masunaga, Tsugiyuki; Mandi, Laila

    2017-10-13

    This paper investigates the removal efficiency of organic matter, nitrogen, phosphorus, coliforms and pathogens from rural domestic wastewater in a two-stage vertical flow multi-soil-layering (MSL) system. The effects of wastewater quality, season and arid climate conditions on pollutants removal efficiency by the system were examined for one year. The experimental setup included two similar MSL systems composed of two layers: soil-mixture-layers (SML) and gravel permeable layers (PL) that are arranged in a brick like pattern. The applied hydraulic loading rate was 1000Lm-2day-1. Results showed that most of the physicochemical contaminants elimination occurred while the wastewater percolated through the first MSL stage. The second stage demonstrated an improvement in the reduction of all pollutants, especially fecal bacteria indicators and pathogens. The mean overall removal rates performed by the two-stage MSL system were 97% for TSS, 96% for BOD5, 91% for COD, 96% for TN and 95% for TP. For bacterial indicators, the combination of two-stage MSL system achieved high log removals between 2.21 and 3.15 log units. Contaminants reduction processes in MSL technology are more dependent on internal than external environmental factors. The effectiveness of the two-stage MSL system to treat domestic wastewater was strongly influenced by wastewater quality. Significant relationships between influent contaminants level and their removal efficiency were found. The efficiency of MSL technology to reduce contaminants is not sensitive to season and air temperature fluctuations. This is due to the capacity of MSL system materials to withstand the air temperature variation, which highlights one of the advantages of MSL's technology. Wastewater quality is the most important factor affecting the removal of contaminants in the MSL, which could be a critical parameter to considered when designing MSL system. Two-stage MSL system achieved a high treated wastewater quality amenable for

  18. MHD free convection flow of Eyring–Powell fluid from vertical surface in porous media with Hall/ionslip currents and ohmic dissipation

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2016-06-01

    Full Text Available A mathematical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow, heat and mass transfer of non-Newtonian Eyring–Powell fluid from a vertical surface in a non-Darcy, isotropic, homogenous porous medium, in the presence of Hall currents and ionslip currents. The governing nonlinear coupled partial differential equations for momentum conservation in the x, and z directions, heat and mass conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ, η coordinate system in terms of dimensionless x-direction velocity (f′ and z-direction velocity (G, dimensionless temperature and concentration functions (θ and ϕ under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also heat and mass transfer rates. It is observed that with increasing ɛ, primary velocity, secondary velocity, heat and mass transfer rates are decreased whereas, the temperature, concentration and skin friction are increased. An increasing δ is found to increase primary and secondary velocities, skin friction, heat and mass transfer rates. But the temperature and concentration decrease. Increasing βe and βi are seen to increase primary velocity, skin friction, heat and mass transfer rates whereas secondary velocity, temperature and concentration are decreased. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

  19. A comparative study of vertical flow and free-water surface constructed wetlands for low C/N ratio domestic wastewater treatment and its greenhouse gases emission

    Science.gov (United States)

    Xu, K.; Liu, C.; Ebie, Y.; Inamori, Y.

    2008-12-01

    Constructed wetland (CW) systems are reliable, flexible in design, and can be built, operated, and maintained at lower costs compared to conventional methods of chemical treatment. Therefore, CW systems are widely used for controlling water-body eutrophication as an ease-operation and cost-effective ecological technology in developing countries. However, growing attention has been directed to its greenhouse side-effect and global-warming potential in recent years. In this study, two typical constructed wetlands: Vertical flow (VF) and Free-water surface (FWS) constructed wetlands were used not only to compare the nutrients removal performance for treatment of low C/N ratio loading domestic wastewater, but also to investigate and compare their CH4 and N2O greenhouse gases emission characteristics. The results indicated that the VF CW showed a comparatively good performance for nitrogen and phosphorus removal than FWS constructed wetland, which was 98.5, 95.9, 93.2 and 90.7 percent for BOD5, SS, NH4-N and TP under 6 days HRT, respectively. It was found that the FWS CW had the higher tendency to emit CH4 than the VF CW during four seasons of one year.

  20. Evaluation of the treatment performance of lab-scaled vertical flow constructed wetlands in removal of organic compounds, color and nutrients in azo dye-containing wastewater.

    Science.gov (United States)

    Dogdu, Gamze; Yalcuk, Arda

    2016-01-01

    The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57-63%, 94-99%, 44-48%, 39-44%, and 84-88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media.

  1. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems.

    Science.gov (United States)

    Liu, Shentan; Song, Hailiang; Wei, Size; Yang, Fei; Li, Xianning

    2014-08-01

    To optimize the performance of a vertical subsurface flow constructed wetland-microbial fuel cell (CW-MFC), studies of bio-cathode materials and reactor configurations were carried out. Three commonly used bio-cathode materials including stainless steel mesh (SSM), carbon cloth (CC) and granular activated carbon (GAC) were compared and evaluated. GAC-SSM bio-cathode achieved the highest maximum power density of 55.05 mWm(-2), and it was most suitable for CW-MFCs application because of its large surface area and helpful capillary water absorption. Two types of CW-MFCs with roots were constructed, one was placed in the anode and the other was placed in the cathode. Both planted CW-MFCs obtained higher power output than non-planted CW-MFC. Periodic voltage fluctuations of planted CW-MFCs were caused by light/dark cycles, and the influent substrate concentration significantly affected the amplitude of oscillation. The coulombic efficiencies of CW-MFCs decreased greatly with the increase of the influent substrate concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The use of palm kernel shell (PKS) as substrate material in vertical-flow engineered wetlands for septage treatment in Malaysia.

    Science.gov (United States)

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2015-01-01

    In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.

  4. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  5. An exact solution on unsteady MHD free convection chemically reacting silver nanofluid flow past an exponentially accelerated vertical plate through porous medium

    Science.gov (United States)

    Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.

    2017-11-01

    This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver–water nanofluid than in the other nanofluids.

  6. [Coating modification of anthracite substrates in vertical-flow constructed wetlands by LDHs synthesized from different metal compounds and the nitrogen removal efficiencies].

    Science.gov (United States)

    Zhang, Xiang-Ling; Guo, Lu; Chen, Jun-Jie; Liu, Xiao-Ting; Xu, Lu; Chen, Qiao-Zhen; Wang, Xiao-Xiao

    2014-08-01

    As one kind of vertical-flow constructed wetlands substrates, anthracite was selected in this experiment. LDHs (layered double hydroxides) were synthesized in alkaline conditions by co-precipitation of different kinds of metal compounds, such as CaCl2, ZnCl2, MgCl2, FeCl3, AlCl3, CoCl3. The synthesized LDHs were in-situ coated onto the surface of anthracite substrate to achieve the aim of modification. Simulated test columns were constructed to study the nitrogen removal efficiency of the urban sewage using the original anthracite substrates and 9 kinds of modified anthracite substrates. The results showed that: LDHs synthesized by all the 9 different kinds of methods could effectively modify the anthracite substrate by in-situ coating. With Mg2+ involved in the synthesis of modified substrates, good TN and ammonia nitrogen removal efficiencies were observed. The modified anthracite substrates coated with MgCo-LDHs had the optimal performance with average TN and ammonia nitrogen removal efficiencies of higher than 80% and 85%, respectively. The ammonia nitrogen removal efficiencies by the modified anthracite substrates coated by LDHs reacted with Mg2+ and Fe3+ were also high. The ammonia nitrogen removal efficiencies by modified anthracite substrates coated with CaFe-LDHs and MgFe-LDHs were higher than 85%.

  7. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  8. Chromium removal capability and photosynthetic characteristics of Cyperus alternifolius and Coix lacryma-jobi L. in vertical flow constructed wetland treated with hexavalent chromium bearing domestic sewage.

    Science.gov (United States)

    Li, Suli; Huang, Hailian; Li, Zhigang; Li, Zhengwen; He, Zhenli; Liang, He

    2017-10-01

    In this study, the chromium removal capability and photosynthetic capacity response of plants were investigated in vertical flow wetland microcosms (VFWM) treated with Cr(VI) bearing domestic sewage. Two plants, Cyperus alternifolius (C. alternifolius) and Coix lacryma-jobi L. (C. lacryma-jobi L.) grown in the VFWM enhanced the purification of Cr(VI) enriched domestic sewage. Cr concentration in the effluent fell below detection limit (<0.03 mg L-1), except for the C. alternifolius wetland treated with 40 mg L-1 Cr(VI). The biomasses of both plants species were increased at 10 and 20 mg L-1 Cr(VI) exposure but inhibited at 40 mg L-1 Cr(VI). The photosynthetic capacities of both plants were not affected at 10-40 mg L-1 Cr(VI) exposure during the days 20-60. However, they were inhibited significantly (P < 0.05) at 40 mg L-1 Cr(VI) exposure during days 80-100. These results demonstrated that a VFWM with C. alternifolius and/or C. lacryma-jobi L. was capable of maintaining its efficiency and recovering its vegetation. VFWM with C. alternifolius and/or C. lacryma-jobi L. was promising for purifying wastewater which contains low to medium concentrations of Cr(VI) (<20 mg L-1).

  9. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    Directory of Open Access Journals (Sweden)

    S. Bilal

    2016-12-01

    Full Text Available An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour and thermo-diffusion (Soret effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  10. Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates.

    Science.gov (United States)

    Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng

    2015-01-01

    This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.

  11. Comparative evaluations of organic matters and nitrogen removal capacities of integrated vertical-flow constructed wetlands: Domestic and nitrified wastewater treatment.

    Science.gov (United States)

    Chang, Jun J; Liang, Kang; Wu, Su Q; Zhang, Sheng H; Liang, Wei

    2015-01-01

    Two groups of integrated vertical-flow constructed wetland (IVCW) microcosms were established for treating two types of representative wastewater: domestic and nitrified wastewater under two loading rates (LRs) over about two years. Their removal capacities of organic substance and nitrogen as well as the effects of loading rate (LR), outflow temperature and dissolved oxygen (DO) concentration were investigated and compared. Efficient chemical oxygen demand (COD) eliminations were achieved by the IVCWs, with the mass removal rates increasing linearly with the increasing LRs strongly, achieving average value of 56.07 g m(-2) d(-1) at the highest loading rate. Nevertheless, the effluent COD concentrations also increased, with the average value exceeding Class I A discharge standard (wastewater treatment plants in China at the highest loading rate. Greater total nitrogen (TN) mass removal rates but lower efficiencies were obtained at the high LR for both types of wastewater, and better removal was achieved for nitrified wastewater (NW) in comparison to domestic wastewater (DW), probably due to the prevailing anoxic conditions inside the IVCW beds restricted nitrification process of DW. The influences of LR, temperature and DO on COD removal were slight, but all remarkable on TN reduction. As compared to DO, temperature was more crucial for nitrogen removal, and the temperature dependence coefficient for TN removal of low LR of NW was significantly greater than others.

  12. Influence of sand layer depth and percolate impounding regime on nitrogen transformation in vertical-flow constructed wetlands treating faecal sludge.

    Science.gov (United States)

    Panuvatvanich, Atitaya; Koottatep, Thammarat; Kone, Doulaye

    2009-06-01

    Four laboratory-scale units of vertical-flow constructed wetlands (VFCW) were fed once a week with faecal sludge (FS) at a constant solids loading rate (SLR) of 250 kg TS/(m2.year) (equivalent to 260-300 gN/(m2.week)) for a period of 12 weeks to study: i) the nitrification and denitrification potential of the sand layer of VFCWs and ii) the effect of percolate impounding regime (permanent or batch-impounding) on nitrogen transformation. The TN content of raw FS was characterised by 65% org-N, 34% NH4-N and 1% NOx-N. After FS application and a six-day impounding period, 8-13% TN were recovered in the percolate exhibiting the following composition: 70-80% NH4-N, 25-30% org-N and NH4-N were lost due to nitrification and volatilisation. In permanent impounding systems, 8-11% TN were recovered in the percolate versus 13% in batch-operated beds. N loss was increased with sand layer depth (20-40 cm) under permanent impounding regimes.

  13. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube

    Science.gov (United States)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.

    2013-07-01

    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  14. Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts

    Science.gov (United States)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2017-10-01

    conductive sub-layer δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL on the circular tubes with various twisted-tape inserts were determined on the basis of numerical solutions for the swirl velocities u sw ranging from 5.23 to 21.18 m/s. Correlations between the conductive sub-layer thickness δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL for twisted-tape-induced swirl-flow heat transfer in a vertical circular tube were derived.

  15. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: validation with experimental data using multi-sensor conductivity probes and laser doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Chiva, S. [Univ. Jaume I, Dept. of Mechnical Engineering and Construction, Castellon (Spain); Abd El Aziz Essa, M. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Mendes, S. [Univ. Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica (Mexico)

    2011-07-01

    A set of air-water experiments have been performed under isothermal upward concurrent flow in a vertical column. The interfacial velocity, interfacial area of the bubbles and the void fraction distributions was obtained. Numerical validation of these results for bubbly flow conditions were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. Both Lagrangian and Eulerian calculations were performed in parallel and iterative self-consistent method was developed. The bubbles-induced turbulence is an important issue considered, to obtain good predictions of experimental results. (author)

  16. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  17. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  18. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry; Badania teoretyczne i eksperymentalne kryzysu wrzenia w warunkach wrzenia przechlodzonego w przeplywie w kanale pionowym

    Energy Technology Data Exchange (ETDEWEB)

    Staron, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.

  19. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  20. Numerical model for gas-liquid two-phase mixture flow in a vertical pipe with a sudden enlargement in diameter; Kankei ga kyukakudai suru enchokukannai ni okeru kieki nisoryu no suchi model

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, N.; Fujimoto, H.; Takuda, H.; Omodaka, M.; Takatsu, T. [Kyoto Univ. (Japan)

    1998-07-25

    Airlift pumps are utilized to transport toxic and hazardous solutions in chemical industries and so on, and they are prospected to use for lifting deep seabed mineral resources. Therefore, recently, it is carried out actively to investigate to grasp the fluidity of airlift pumps. This paper is concerned with a numerical model for the steady-state flow characteristics of the gas-liquid two-phase mixture flowing upward in a vertical pipeline with an abrupt enlargement in cross sectional area. The system of governing equations used is based upon the multifluid model and the transitions of gas flow pattern are taken into consideration in the system of governing equations. For the case of an abrupt enlargement in diameter in a coaxial pipeline, the procedure of the numerical calculation to obtain the flow characteristics in the pipeline section after a sudden change in diameter has been proposed. At the same time, the experiments have also been performed using two kinds of lifting pipes in order to confirm the validity of the present numerical model. As a result of the comparison of the calculated results with the experimental data, it was confirmed the applicability of the system of governing equations as well as the validity of the procedure of the numerical calculation proposed here. 23 refs., 6 figs., 1 tab.

  1. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Peter Bachant

    2016-01-01

    Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.

  2. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared Against Experimental Data of Void Fraction

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby

    2013-01-01

    agreement was found between the experimental measurements, the CFD results and the empirical relationships. In terms of void fraction for Newtonian and non-Newtonian liquids, the empirical correlations perform much worse than the CFD simulations, errors of 48 and 25%, respectively, against the experimental...... (CFD) and comparing this directly with experimental measurements and empirical relationships found in literature. A vertical tube of 3.4 m with an internal diameter of 0.1905 m was used. The two-phase CFD model was implemented in Star CCM+ using the volume of fluid (VOF) model. A relatively good...... data. This shows that CFD can be used to predict void fraction relatively well for comparison against empirical correlations and they can be used for design and scale-up processes....

  3. Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

    Directory of Open Access Journals (Sweden)

    B. Jafarian

    2016-01-01

    Full Text Available In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimensional differential equations by taking suitable similarity variables and solved numerically using differential quadrature method (DQM. The interfacial (solid-liquid temperature distribution and the variations of velocity and temperature within boundary layer for different values of governing parameter in presence of uniform magnetic field have been presented and discussed. Our results demonstrate that heat transfer rate can enhance using nanofluid as well as porous medium, while magnetic field has no remarkable effect on the parameter. The computed results were also compared with those available in the existing literature and a good agreement was observed.

  4. Aerodynamic performance of axial-flow fan stage operated at nine inlet guide vane angles. [to be used on vertical lift aircraft

    Science.gov (United States)

    Moore, R. D.; Reid, L.

    1979-01-01

    The overall performance of a fan stage with nine inlet guide vane angle settings is presented. These data were obtained over the stable flow range at speeds from 60 to 120 percent of design for vane setting angles from -25 to 42.5 degrees. At design speed and design inlet guide vane angle, the stage has a peak efficiency of 0.892 at a pressure ratio of 1.322 and a flow of 25.31 kg/s. The stall margin based on peak efficiency and stall was 20 percent. Based on an operating line passing through the peak efficiency point at the design setting angle, the useful operating range of the stage at design speed is limited by stall at the positive setting angles and by choke at the negative angles. At design the calculated static thrust along the operating line varied from 68 to 114 percent of that obtained at design setting angle.

  5. Simulation-Based Optimization of a Vector Showerhead System for the Control of Flow Field Profile in a Vertical Reactor Chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-03-01

    Full Text Available Optimization of a vector showerhead in a vertical reactor involves thousands of holes on the showerhead face plate and the spatial distribution of physical fields, so parameterizing the geometry configuration of the holes in high resolution is very difficult, which makes the conventional optimization methods hard to deal with. To solve this problem, a profile error feedback (PEF optimization solution was proposed to optimize a vector showerhead gas delivery system for the control of mass transport. The gas velocity profile in the reactor and the continuous-feature impedance distribution profile on the showerhead face plate are defined as design objective and variables, respectively. A cyclic iterative approximation idea was implemented in this solution. The algorithm was started from a guessed initial design model and then cyclically adjusted the design variables by the constructed PEF iterative formula to generate a better model and to make the gas velocity profile in the critical domain of the new model continually approximate to the expected profile, until it could be accepted. Finally, the optimized impedance profile was mapped to the holes geometry configuration through the established equivalent impedance model for the showerhead face plate.

  6. Prediction of Average Void Fraction and Pdf of Void Fraction in Vertical 90o Bend for Air–Silicone Oil Flow Using Multilayer Perceptron (MLP Codes

    Directory of Open Access Journals (Sweden)

    Paul Onubi Ayegba

    2016-12-01

    Full Text Available Multilayer Perceptron (MLP models have been developed to predict twophase average void fraction and probability density function (PDF of void fraction in 90o bends. The Artificial Neural Network (ANN methodology was reported using MLP trained with 2 algorithms. Logarithmic sigmoid transfer function was used in a single hidden layer for both algorithms (Gradient descent (GDMV and Levenberg-Marquardt (LM algorithms. Both MLP models were optimised by varying the number of neurons in the hidden layer while monitoring the Mean Square Error (MSE. The performance of the models was evaluated using the Average Absolute Relative Error (AARE and Cross Correlation Coefficient (R. Both MLP models developed for the prediction of average void faction before the bend performed excellently well. However, the MLP model trained with LM algorithm having 3 neurons in the hidden layer gave better performance. Similarly, the MLP model trained with LM algorithm, having 11 neurons in the hidden layer for the prediction of PDF of void fraction before the bend gave excellent prediction. Model performance for the MLP models after the bend gave poor generalisation property. However, the MLP model based on GDMV algorithm gave better prediction for predicting average void fraction and PDF of void fraction after the bend. It was concluded that MLP models may with some confidence be used to predict the average void fraction and the PDFs of void fraction observed before a vertical 90o bend

  7. Investigation of the Optimal Omni-Direction-Guide-Vane Design for Vertical Axis Wind Turbines Based on Unsteady Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Behzad Shahizare

    2016-03-01

    Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.

  8. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

    Science.gov (United States)

    Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.

    2017-10-01

    In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

  9. Stability of Water Lubricated Flow of Yield Stress Fluid in Sloping Pipe

    Directory of Open Access Journals (Sweden)

    Decruppe J.

    2010-06-01

    Full Text Available To facilitate the transport of viscous crudes in a pipe, an immiscible lubricating liquid, usually water, is added. In such configuration, the water migrates into the regions of high shear at the pipe wall where it lubricates the flow. The pumping pressures being balanced by wall shear stresses in the water, the flow therefore requires pressures comparable to pumping water alone, at the same total throughput [1]. So significant savings in pumping power can be derived from this process provided that it is well monitored. Indeed, instabilities usually take place at the oil/water interface and they constitute an important source of energy dissipation. Precisely, a core annular flow is known to undergo a long-wave instability of capillary type, modified by shear occuring at low Reynolds. Above a given critical Reynolds number, the flow is unstable to shorter waves which leads to an emulsification system of water droplets in oil. In present work, an experimental study of the stability of sloping plane Poiseuille flow of well characterized viscoplastic mineral oils lubricated by water was performed. The investigation was carried out by means of image analysis based on spatiotemporal diagrams (STD. Notably indicated are the effects of bed slope, flow rates ratio and oil rheology on flow stability.

  10. Subsurface Vertical Flow Constructed Wetland for Tertiary Treatment of Effluent of Physical-Chemical Process of a Domestic Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Suárez-López Joaquín

    2013-04-01

    Full Text Available Alimentados con el efluente de un proceso físico-químico de una estación depuradora de aguas residuales (EDAR se explotaron 2 humedales de flujo vertical, uno sembrado con la especie Iris pseudacorus (HFV2 y el otro sin ningún tipo de vegetación (HFV4. La composición del lecho fue (en cm: 20 de arena, 10 de turba, 40 de gravilla y 10 de grava. Se realizaron 3 fases experimentales ensayándose las siguientes cargas hidráulicas (CH: 4.2; 8.3; y 16.6 cm/d (orden cronológico. La evaluación se realizó durante el estado estacionario del proceso. En el humedal con I. pseudacorus la eliminación media de DQO fue de 81%, mientras que en el lecho sin plantas fue de 68%. La eliminación de DQO se mantuvo cuasi-constante, independiente de la carga hidráulica y orgánica. El rango de eliminación de nitrógeno amoniacal fue de 75 a 96% en HFV2, y de 66 a 83% en HFV4. La mayor eliminación de amonio se obtuvo para la mínima CH. En las dos primeras fases, los rendimientos en eliminación de sólidos en suspensión (SS fueron muy bajos. La mayor eliminación de SS se observó con la máxima CH que fue la tercera y última de la serie. Esto sugiere que el lecho fue perdiendo porosidad, incrementando la eficacia de la retención de SS por filtración.

  11. Isothermal and non-isothermal water and oil two-phase flow (core-flow in curved pipes

    Directory of Open Access Journals (Sweden)

    T Andrade

    2016-09-01

    Full Text Available The occurrence of heavy oils in the world has increased substantially and points favorable to investment in exploration of mineral deposits and consequently, for the development of new technologies. Heavy oil has a high viscosity that varies from 100 to 10,000 times greater than the viscosity of water. The high pressure due to friction and viscous effects during the transport of heavy oil has been a major challenge, for itself to be economically viable for production or transportation. The core annular flow technique is a more recent technology favorable the explotation and transportation of heavy oils that provides a considerable reduction of pressure drop during the flow of these oils type. In this sense, this paper presents a 3D numerical study involving the heavy oil transportation in curved pipes, using the core-flow technique by CFD (ANSYS CFX® 12.0. Results of pressure, velocity, volume fraction and temperature distribution of the heavy oil are presented and analysed.

  12. Heat and Mass Transfer of Unsteady Hydromagnetic Free Convection Flow Through Porous Medium Past a Vertical Plate with Uniform Surface Heat Flux

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Yahya, Aishah S.

    2017-09-01

    Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

  13. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  14. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  15. Linear stability analysis of thin films in wall bounded shear flow

    Science.gov (United States)

    Kaffel, Ahmed; Riaz, Amir

    2013-11-01

    In this study we examine the stability of core annular flow of two fluids with large density and viscosity ratios to investigate the physical mechanisms associated to thin liquid films flow in microgap channels. Emphasis will be placed on predicting and controlling the growth of interfacial instabilities which can lead to the rupture of the thin liquid films encountered in annular flows. A multi-domain Chebyshev collocation spectral method along with QZ eigenvalue solver are used to solve the Orr-Sommerfeld stability equations in both layers. The algorithm is computationally efficient and accurate in reproducing the whole spectrum of the eigenvalues and associated eigenfunctions. The derivation of the asymptotics of these modes shows that the numerical eigenvalues are in agreement with the analytic formula obtained previously by Yih (1967), Orszag (1971), Higgins et al. (1988), Dongarra (1996) and Sahu et al. (2007). The numerical simulations and experiments are carried out to quantify unstable wave patterns with respect to the underlying fluid dynamic mechanism for various flows rates. We consider the case of isothermal, non-adiabatic, parallel flow of liquid and vapor phases. A parametric study is analyzed and the numerical stability results are presented and will be used later as a tool to validate the direct numerical solver and to identify the physical mechanisms in two-phase liquid vapor flows.

  16. A detailed characterization of viscous oil-water flows downward sudden contractions in horizontal pipes

    Science.gov (United States)

    Colombo, Luigi P. M.; Guilizzoni, Manfredo; Sotgia, Giorgio

    2014-11-01

    Two-phase flows of viscous oil and water through singularities such as sudden area contractions/expansions have been taken into limited consideration in the relevant scientific literature. Nevertheless, they play a role of primary importance in industrial systems, for instance, but not only, in the exploitation of oil wells and pipelines. The proposed work is based on the comparison of photographic images of the flow patterns taken from three points of view, i.e. upper, lower and frontal, thanks to a couple of mirrors ±45° inclined with respect to the horizontal plane. Oil-water flow regimes have been observed both upward and downward of five horizontal test sections with diameter ratios d/D = 40/50, 30/50, 30/40, respectively. The observed structures of the oil-water interface, especially for core-annular flows, has suggested also detecting flow patterns in a 30 mm straight pipe for sake of comparison. Actually, the shape of the oil-core interface appears significantly influenced by the sharp-edged area change as well as by the expected momentum variation.

  17. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  18. Water evaporation in vertical tubes: an analytical approach for the subcooled flow boiling region and development of a method for evaluation and sizing evaporators = Evaporación de agua en tubos verticales: análisis de la región de ebullición subenfriada y desarrollo de un método de evaluación y Dimensionado de evaporadores

    OpenAIRE

    Zambrana González, José

    2011-01-01

    The present thesis analyses in detail the process of water evaporation for convective upward flows in vertical tubes, used in industrial applications. Both, the heat transfer process and the pressure drop mechanism, are considered. However, special attention has been put on the heat transfer process in the transition from pure liquid to two-phase flow, known as subcooled flow boiling region. The empirical correlations for the heat transfer coefficient on the water side for subcooled flow boil...

  19. Numerical Solutions by EFGM of MHD Convective Fluid Flow Past a Vertical Plate Immersed in a Porous Medium in the Presence of Cross Diffusion Effects via Biot Number and Convective Boundary Condition

    Science.gov (United States)

    Raju, R. S.; Reddy, B. M.; Rashidi, M. M.; Gorla, R. S. R.

    2017-08-01

    In this investigation, the numerical results of a mixed convective MHD chemically reacting flow past a vertical plate embedded in a porous medium are presented in the presence of cross diffusion effects and convective boundary condition. Instead of the commonly used conditions of constant surface temperature or constant heat flux, a convective boundary condition is employed which makes this study unique and the results more realistic and practically useful. The momentum, energy, and concentration equations derived as coupled second-order, ordinary differential equations are solved numerically using a highly accurate and thoroughly tested element free Galerkin method (EFGM). The effects of the Soret number, Dufour number, Grashof number for heat and mass transfer, the viscous dissipation parameter, Schmidt number, chemical reaction parameter, permeability parameter and Biot number on the dimensionless velocity, temperature and concentration profiles are presented graphically. In addition, numerical results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are discussed through tabular forms. The discussion focuses on the physical interpretation of the results as well as their comparison with the results of previous studies.

  20. Vertical-deformation, water-level, microgravity, geodetic, water-chemistry, and flow-rate data collected during injection, storage, and recovery tests at Lancaster, Antelope Valley, California, September 1995 through September 1998

    Science.gov (United States)

    Metzger, Loren F.; Ikehara, Marti E.; Howle, James F.

    2001-01-01

    A series of freshwater injection, storage, and recovery tests were conducted from September 1995 through September 1998 to evaluate the feasibility of artificially recharging ground water in the Lancaster area of the Antelope Valley, California. The tests used two production wells at a well field located in the southern part of the city of Lancaster. Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry, and injection well flow rates during water injection and recovery. Data presented in this report were collected from a dual extensometer; 10 piezometers; 1 barometer; 27 active or abandoned production wells; 31 gravity stations; 124 bench marks; 1 permanent and 1 temporary continuous Global Positioning System (GPS) station; 3 tiltmeters; and 2 electromagnetic flowmeters from September 1995 through September 1998. This report discusses the location and design of the monitoring networks and the methods used to collect and process the data, and presents the data in tables and graphs.

  1. Numerical Solutions by EFGM of MHD Convective Fluid Flow Past a Vertical Plate Immersed in a Porous Medium in the Presence of Cross Diffusion Effects via Biot Number and Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    Raju R.S.

    2017-08-01

    Full Text Available In this investigation, the numerical results of a mixed convective MHD chemically reacting flow past a vertical plate embedded in a porous medium are presented in the presence of cross diffusion effects and convective boundary condition. Instead of the commonly used conditions of constant surface temperature or constant heat flux, a convective boundary condition is employed which makes this study unique and the results more realistic and practically useful. The momentum, energy, and concentration equations derived as coupled second-order, ordinary differential equations are solved numerically using a highly accurate and thoroughly tested element free Galerkin method (EFGM. The effects of the Soret number, Dufour number, Grashof number for heat and mass transfer, the viscous dissipation parameter, Schmidt number, chemical reaction parameter, permeability parameter and Biot number on the dimensionless velocity, temperature and concentration profiles are presented graphically. In addition, numerical results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are discussed through tabular forms. The discussion focuses on the physical interpretation of the results as well as their comparison with the results of previous studies.

  2. [Analysis on the removal efficiency and mechanisms of phosphorus by modified zeolites substrates coated with LDHs reacted by different metal compounds in laboratory-scale vertical-flow constructed wetlands].

    Science.gov (United States)

    Zhang, Xiang-Ling; Chen, Jun-Jie; Guo, Lu; Chen, Qiao-Zhen; Wang, Xiao-Xiao

    2014-12-01

    Six kinds of metal compounds which were CaCl2 , ZnCl2, MgCl2, FeCl3, AlCl3, and CoCl3 were formed nine kinds of different combinations in the alkaline conditions to synthesized LDHs (Layered Double Hydroxides), which were in-situ coated on the surface of zeolites. With the filling of the original and nine kinds of modified zeolites in the columns to simulate a laboratory-scale vertical-flow constructed wetland system, the experiments of purified phosphorus were conducted. Combined removal efficiency with adsorption isotherm data of the ten kinds of zeolites, mechanism for strengthening the removal rates of the phosphorus by the modified zeolites was studied. The results showed that compared with the original zeolites, the removal rates of the phosphorus by nine kinds of modified zeolites were enhanced with various degrees. In the cases of Zn involved in the modified zeolites, the removal efficiencies of phosphorus reached a high quality. Especially, the ZnFe-LDHs had the average removal rates of the total phosphorus, the dissolved phosphorus and the phosphate were over 90%, and its maximum adsorption capacity of the phosphorus was three times higher than that of the original zeolites. Therefore, by means of increasing the adsorption capacity and improving the chemical adsorption ability of phosphorus, the modification to coated LDHs on the zeolites reached the aim of strengthening the purification of the phosphorus.

  3. Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater.

    Science.gov (United States)

    Zhao, Yongjun; Zhang, Yuejin; Ge, Zhigang; Hu, Changwei; Zhang, Hui

    2014-03-01

    This research focused on the nutrient removal and the simultaneous CO2, CH4, and N2O emission rates of various combinations of vertical subsurface flow constructed wetlands (VSFCWs) and earthworm eco-filters (EEs) under different influent C/N ratios in synthetic wastewater. The optimal parameters for nutrient removal were influent C/N ratios of 5 : 1 and 10 : 1 as well as the combination VSFCW-EE. Relatively low values of greenhouse gas (GHG) emission rates measured in situ were obtained at a C/N ratio of 5 : 1. The emission rates of CH4 and N2O were considerably lower than that of CO2. The VSFCW-EE and EE-VSFCW combinations showed similar GHG emission results. The C/N ratio of 5 : 1 and the VSFCW-EE combination exhibited the highest nutrient removal efficiency with the lowest GHG emission rate. Wastewater nutrient removal and GHG emission were both high during summer (June to August) and low during winter (December to February).

  4. Instability due to interfacial tension in parallel liquid-liquid flow

    Science.gov (United States)

    Rodriguez, Oscar M. H.

    2016-06-01

    The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production in directional wells. However, it has not received the same attention when compared to gas-liquid flow. In addition, most of the available information has to do with flow in pipes. When it comes to flows in annular ducts the data are scanty. A general transition criterion has been recently proposed in order to obtain the stratified and core-annular flow-pattern transition boundaries in viscous oil-water flow. The proposed criterion was based on an one-dimensional two-fluid model of liquid-liquid two-phase flow. A stability analysis was carried out and interfacial tension is considered. A new destabilizing term arises, which is a function of the cross-section curvature of the interface. It is well accepted that interfacial tension favors the stable condition. However, the analysis of the new interfacial-tension term shows that it can actually destabilize the basic flow pattern, playing an important role in regions of extreme volumetric fractions. Such an interesting effect seems to be more pronounced in flows of viscous fluids and in annular-duct flow. The effect of interfacial tension is explored and the advantages of using a more complete model are discussed and illustrated through comparisons with experimental data from the literature. The evaluation of the effects of fluid viscosity and interfacial tension allows the correction and enhancement of transition models based essentially on data of pipe flow of low viscosity fluids.

  5. Etude expérimentale de l'écoulement gaz-liquide ascendant à deux et trois fluides en conduite verticale Experimental Study of Upward Gas-Liquid Flow of Two and Three Fluids in a Vertical Pipe

    Directory of Open Access Journals (Sweden)

    Frechou D.

    2006-11-01

    Full Text Available Cette étude a pour objet de préciser certains phénomènes essentiels des écoulements ascendants diphasiques et triphasiques rencontrés dans les puits de production pétrolière. Des expériences ont été réalisées sur une conduite verticale de 5 cm de diamètre et de 12,5 m de long. Les mesures du gradient de pression, des fractions volumiques et des célérités des poches de gaz, en écoulement intermittent d'eau, d'huile et d'air, mettent en évidence le rôle important (a de la viscosité du liquide, (b du comportement du mélange d'eau et d'huile. A partir des données expérimentales, on propose une loi de fermeture sur la célérité des poches. Elle est utilisée dans les modèles cellulaires pour améliorer la prédiction du glissement du gaz en écoulement intermittent gaz-liquide, à deux ou trois fluides. The aim of this study is to determine various essential phenomena in the two-phase and three-phase upward flows encountered in petroleum production wells. Experiments were performed on a vertical tube 5 cm in diameter and 12. 5 m long. The pressure gradient, volume fractions and velocities of gas pockets were measured with intermittent flow of water, oil and air. These measurements revealed the important role of both the liquid viscosity and the behavior of the water/oil mixture. On the basis of experimental data, a closure law is proposed for the velocity of the pockets, This law is used in cellular models to improve the forecasting of gas slippage in intermittent gas-liquid flow with two or three fluids.

  6. Comparison between Spectral perturbation and Spectral relaxation approach for unsteady heat and mass transfer by MHD mixed convection flow over an impulsively stretched vertical surface with chemical reaction effect

    Directory of Open Access Journals (Sweden)

    T. M. Agbaje

    2015-06-01

    Full Text Available In this study, the spectral perturbation method (SPM is utilized to solve the momentum, heat and mass transfer equations describing the unsteady MHD mixed convection flow over an impulsively stretched vertical surface in the presence of chemical reaction effect. The governing partial differential equations are reduced into a set of coupled non similar equations and then solved numerically using the SPM. The SPM combines the standard perturbation method idea with the Chebyshev pseudo-spectral collocation method. In order to demonstrate the accuracy and efficiency of the proposed method, the spectral perturbation (SPM numerical results are compared with numerical results generated using the spectral relaxation method (SRM and a good agreement between the two methods is observed up to a minimum of eight decimal digits. Several simulation are conducted to ascertain the accuracy of the SPM and the SRM. The computational speed of the SPM is demonstrated by comparing the SPM computational time with the SRM computational time. A residual error analysis is also conducted for the SPM and the SRM in order to further assess the accuracy of the SPM. The study shows that the spectral perturbation method (SPM is more efficient in terms of computational speed when compared with the SRM. The study also shows that the SPM can be used as an efficient and reliable tool for solving strongly nonlinear boundary value partial differential equation problems that are defined under the Williams and Rhyne [3] transformation. In addition, the study shows that accurate results can be obtained using the perturbation method and thus, the conclusions earlier drawn by researchers regarding the accuracy of perturbation methods is corrected.

  7. A new model for blood flow through an artery with axisymmetric stenosis.

    Science.gov (United States)

    Tandon, P N; Rana, U V

    1995-03-01

    Presented herein are the studies on the flow behavior of a blood type suspension through a circular tube with an axisymmetric stenosis. The suspension of the cells in plasma is represented by a layered fluid model, with a marginal cell-free layer of the suspending medium near the wall, a central core region and an annular layer of a biviscous fluid layer. It is understood that the proposed model may contribute to the inbuilt mechanism for drag reduction and prevention of the further development of the stenosis. The concept of lubricating pipe lining for transporting various industrial fluids is well represented through three-layered core-annular flows. The governing equations are solved numerically by using finite element method. The velocity fields, including separation and reattachment points, and the distribution of pressure and wall shear stresses have been brought out and discussed. The results of the analysis show that the presence of the marginal cell-free layer reduces the wall shear stresses and the length of the flow reversal zone. The non-Newtonian character of the suspension is helpful in reducing the abnormal effects of the stenosis. The model thus establishes the inbuilt character of blood for decreasing the stresses and this, in turn, reduces the load on the heart in propelling the blood.

  8. Transition to disorder: the effects of elasticity on thin film flow inside a tube

    Science.gov (United States)

    Olander, Jeffrey; Camassa, Roberto; Forest, G. M.; Ogrosky, H. Reed

    2013-11-01

    Previous studies of non-Newtonian flows driven up a tube by a high volume flux flow of air have suggested that a transition to disordered core-annular wave dynamics occurs when the liquid becomes elastic. Understanding this transition may shed light on the behavior of mucus in the human trachea. We present results from experiments of thin-film liquid flows of a Newtonian fluid and a non-Newtonian, dilute mixture of oligomers. These so-called Boger fluids are elastic, non-thixotropic liquid solutions made by dissolving a non-Newtonian solute in a Newtonian base. We compare, through video analysis, the wave dynamics of the Boger fluid to those of its Newtonian base under identical inflow conditions. We describe observed differences between the Newtonian and non-Newtonian cases. Finally, quantitative comparisons of wave properties and liquid mass transport are discussed. We would like to thank the National Science Foundation (DMS grants 0509423, 1009750, RTG -0943851) and the National Institutes of Health (NIEHS 534197-3411) for supporting this study.

  9. Vertical atlantoaxial dislocation

    OpenAIRE

    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.

    1999-01-01

    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  10. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  11. Vertical-Deformation, Water-Level, Microgravity, Geodetic, Water-Chemistry, and Flow-Rate Data Collected During Injection, Storage, and Recovery Tests at Lancaster, Antelope Valley, California, September 1995 Through September 1998

    National Research Council Canada - National Science Library

    Metzger, Loren F; Ikehara, Marti E; Howle, James F

    2002-01-01

    .... Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry...

  12. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  13. Composition of vertical gardens

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  14. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle......It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...

  15. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  16. Diel vertical migrat..

    African Journals Online (AJOL)

    2002-01-24

    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  17. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  18. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.

    1994-01-01

    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  19. Vertical shaft windmill

    Science.gov (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  20. Vertical gastroplasty: evolution of vertical banded gastroplasty.

    Science.gov (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W

    1998-09-01

    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.