WorldWideScience

Sample records for vertebral body growth

  1. Reference values for radiological evaluation of cervical vertebral body shape and spinal canal

    Energy Technology Data Exchange (ETDEWEB)

    Remes, V.M. [Hospital for Children and Adolescents, Helsinki University Central Hospital (Finland); Heinaenen, M.T.; Marttinen, E.J. [Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Kinnunen, J.S. [Department of Radiology, Helsinki University Central Hospital, HYKS (Finland)

    2000-03-01

    Background. Defining normal values is essential for reliable evaluation of growth disturbances. Previous studies of the cervical spine have mainly focused on the sagittal canal diameter and interpedicular distances. Values for vertebral body height and depth have been published only in adult men and cadavers.Objectives. To define normal values for vertebral body height (H)/vertebral body depth (D) ratio (H/D ratio) and sagittal canal diameter (S)/vertebral body depth ratio (S/D ratio) in C2-7.Materials and methods. Lateral cervical spine radiographs were available from 441 children and 192 adults. Subjects' ages varied from newborn to 39 years. Vertebral body height and depth and sagittal canal diameter were measured and ratios were calculated. This was a cross-sectional and retrospective study.Results. Vertebral bodies grow relatively more in height than in depth, most actively at puberty. At all levels, the H/D ratio remains below 1, indicating that vertebral body depth is greater than height. The SD ratio is quite stable until 7-8 years of age and then it starts to decline slowly.Conclusions. When estimating platyspondyly, the age of the patient must be taken into consideration because vertebral body height is lower in children. Growth of the spinal canal declines after 7-8 years of age. (orig.)

  2. Reference values for radiological evaluation of cervical vertebral body shape and spinal canal

    International Nuclear Information System (INIS)

    Remes, V.M.; Heinaenen, M.T.; Marttinen, E.J.; Kinnunen, J.S.

    2000-01-01

    Background. Defining normal values is essential for reliable evaluation of growth disturbances. Previous studies of the cervical spine have mainly focused on the sagittal canal diameter and interpedicular distances. Values for vertebral body height and depth have been published only in adult men and cadavers.Objectives. To define normal values for vertebral body height (H)/vertebral body depth (D) ratio (H/D ratio) and sagittal canal diameter (S)/vertebral body depth ratio (S/D ratio) in C2-7.Materials and methods. Lateral cervical spine radiographs were available from 441 children and 192 adults. Subjects' ages varied from newborn to 39 years. Vertebral body height and depth and sagittal canal diameter were measured and ratios were calculated. This was a cross-sectional and retrospective study.Results. Vertebral bodies grow relatively more in height than in depth, most actively at puberty. At all levels, the H/D ratio remains below 1, indicating that vertebral body depth is greater than height. The SD ratio is quite stable until 7-8 years of age and then it starts to decline slowly.Conclusions. When estimating platyspondyly, the age of the patient must be taken into consideration because vertebral body height is lower in children. Growth of the spinal canal declines after 7-8 years of age. (orig.)

  3. Disturbance of growth of the vertebral bodies in children and adolescents with hematogenous osteomyelitis of the vertebral column

    International Nuclear Information System (INIS)

    Sizov, V.A.

    1987-01-01

    Clinicoroentgenological changes were studied over time in 72 children and adolescents with localized hematogenous osteomyelitis of the lumbar spine. The duration of clinicoroengenological observation ranged from 1 year to 15 years. The dynamic roentgenological followup of a course of hematogenous osteomyelitis developing in the period of growth, made it possible to reveal and describe for the first time an increase in the height of the vertebral bodies which hitherto was regarded in literature as a pathognomonic sign of tuberculous spondylitis. Unlike tuberculosis, in hematogenous osteomyelitis there was an increase in the height not only of the adjacent unaffected but also of the affected vertebrae in case of their superficial or localized focal involvement

  4. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  5. Vertebral body osteomyelitis in the horse

    International Nuclear Information System (INIS)

    Markel, M.D.; Madigan, J.E.; Lichtensteiger, C.A.; Large, S.M.; Hornof, W.J.

    1986-01-01

    The clinical signs, laboratory data, results of nuclear scintigraphy and radiographic examination of five horses with vertebral body osteomyelitis are described together with response to treatment. Three horses were less than five months of age. Four horses demonstrated hindlimb paresis and in three a focus of pain in the thoracolumbar region could be identified. An umbilical abscess, a caudal lobe lung abscess and a patent urachus were considered primary niduses of infection in each of three horses. Leucocytosis, neutrophilia, anaemia and elevated fibrinogen were the most consistent laboratory abnormalities. Nuclear scintigraphy was performed in three horses and identified the site of the vertebral lesion which was subsequently evaluated radiographically. In the other two horses radiographic examination in the region of areas of focal pain identified a lesion. Radiographic abnormalities included compression fractures of vertebral bodies (two), proliferative new bone (three) and soft tissue swelling ventral to a vertebral body (one). Two horses, including one with a compression fracture of the second lumbar vertebra, received parenteral antimicrobial therapy for 40 and 74 days, respectively. When re-examined six months later they showed no neurological abnormalities. The other three horses failed to respond to antimicrobial treatment and were humanely destroyed. The horse with a lung abscess also had an abscess cranial to the right tuber coxae which extended into the vertebral bodies of the third and fourth lumbar vertebrae from which Streptococcus zooepidemicus was cultured. A horse with proliferative new bone on the ventral aspect of the fifth and sixth thoracic vertebrae had a mediastinal mass associated with these vertebrae and fungal granulomas, from which Aspergillus species was cultured, in the heart and aorta, trachea, spleen and kidney. The horse with a patent urachus and soft tissue swelling ventral to the vertebral body of the 12th thoracic vertebra

  6. The characteristic of rBMD distribution in lumbar vertebral body

    International Nuclear Information System (INIS)

    Wang Chenguang; Xiao Xiangsheng; Chen Xingrong; Shen Tianzhen; Liu Guanghua; Hong Qingjian; Ji Rongming; Zhou Weiming

    1998-01-01

    Purpose: To determine the distribution and variation of rBMD in human lumbar vertebral body. Methods: The BMD and rBMD of 28 samples of lumbar body were measured with QCT. The rBMD was measured in the regions of anterior, anterolateral, posterolateral and central, superior-level, middle-level and inferior-level of the vertebral bodies. The relationship between BMD and rBMD were statistically analysed with multiple regression. Results: The rBMD of the inferior vertebral body was higher than that of the superior and middle portions (P<0.05); the central and posterolateral higher than the anterior and anterolateral (P<0.05). The rBMD of posterioinferior vertebral body was the highest. The multiple regression showed that the standard partial regression coefficient of inferior was larger than the superior and middle; the anterior and central were larger than the other regions of the vertebra. Variations of the BMD of vertebral body were mostly related to the rBMD of anterior and central parts. Conclusion: The distribution of BMD are heterogeneous in vertebral body. The anterior and central part of vertebral body are most sensitive to bone loss in osteoporosis. It is emphasized that the rBMD of anterior and central part of vertebral body should be measured for following the osteoporosis

  7. Vertebral growth modulation by hemicircumferential electrocoagulation: an experimental study in pigs.

    Science.gov (United States)

    Caballero, Alberto; Barrios, Carlos; Burgos, Jesús; Hevia, Eduardo; Correa, Carlos

    2011-08-01

    This experimental study in pigs was aimed at evaluating spinal growth disorders after partial arrest of the vertebral epiphyseal plates (EP) and neurocentral cartilages (NCC). Unilateral and multisegmental single or combined lesions of the physeal structures were performed by electrocoagulation throughout a video-assisted thoracoscopical approach. Thirty 4-week-old domestic pigs (mean weight 16 kg) were included in the experiments. The superior and inferior epiphyseal plates of T5 to T9 vertebra were damaged in ten animals by hemicircumferential electrocoagulation (group I). In other ten pigs (group II), right NCC at the same T5-T9 levels were damaged. Ten other animals underwent combined lesions of the ipsilateral hemiepiphyseal plates and NCC at the T5-T9 levels. A total of 26 animals could be evaluated after 12 weeks of follow-up using conventional X-rays, CT scans and histology. The pigs with hemicircumferential EP damage developed very slight concave non-structured scoliotic deformities without vertebral rotation.(mean 12° Cobb; range10-16°). Some of the damaged vertebra showed a marked wedgening with unilateral development alteration of the vertebral body, including the adjacent discs The animals with damage of the NCC developed mild scoliotic curves (mean 19° Cobb; range 16-24°) with convexity opposite to the damaged side and loss of physiological kyphosis. The injured segments showed an asymmetric growth with hypoplasia of the pedicle and costovertebral joints at the damaged side. The pigs undergoing combined EP and NCC lesions developed minimal non-structured curves, ranging from 10 to 12° Cobb. In these animals there was a lack of growth of a vertebral hemibody and disc hypoplasia at the damaged segments. Both damage of the NCC and the EP affect the height of the vertebral body. No spinal stenosis was found in any case. In most cases, the adjacent superior and inferior vertebral EP to damaged segments had a compensatory growth that maintained the

  8. Percutaneous Vertebroplasty for Compression Fracture: Analysis of Vertebral Body Volume by CT Volumetry

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, S.; Kojima, H.; Shomura, Y.; Sawada, S.

    2005-01-01

    Purpose: To evaluate the relationships between volume of vertebral bodies with compression fracture (measured by CT volumetry) before percutaneous vertebroplasty, the amount of bone cement injected, and the effect of treatment. Material and Methods: We examined 49 consecutive patients, with 104 vertebral body compression fractures, who underwent percutaneous injection of bone cement. Vertebral body volume was measured by CT volumetry. The patient's pain level was assessed using a visual analog scale (VAS) before and after the procedure. Improvement in VAS was defined as the decrease in VAS after the procedure. Relationships between vertebral body volume, the amount of bone cement, and the effect of treatment were evaluated using Pearson's correlation coefficient test. Results: Average vertebral body volume was 26.3 ±8.1 cm 3 ; average amount of bone cement was 3.2 ±1.1 ml; and average improvement in VAS was 4.9 ±2.7. The vertebral body volume was greater if a larger amount of bone cement was injected. There was a significant positive correlation between vertebral body volume and amount of bone cement ( r ∼ 0.44; P <0.0001). However, there was no correlation between vertebral body volume and improvement in VAS, or between amount of bone cement and improvement in VAS. Conclusion: In percutaneous vertebroplasty for vertebral body compression fracture, there is a positive correlation between vertebral body volume and amount of bone cement, but improvement in VAS does not correlate with vertebral body volume or amount of bone cement

  9. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Directory of Open Access Journals (Sweden)

    Kim Hak-Jun

    2008-08-01

    Full Text Available Abstract Background Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter and conversely, reduced pressure accelerates the growth (Volkmann. Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body. Methods This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve 30° to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae. Results In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation. Conclusion From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the

  10. Asymmetry of the Vertebral Body and Pedicles in the True Transverse Plane in Adolescent Idiopathic Scoliosis: A CT-Based Study.

    Science.gov (United States)

    Brink, Rob C; Schlösser, Tom P C; Colo, Dino; Vincken, Koen L; van Stralen, Marijn; Hui, Steve C N; Chu, Winnie C W; Cheng, Jack C Y; Castelein, René M

    2017-01-01

    Cross-sectional. To quantify the asymmetry of the vertebral bodies and pedicles in the true transverse plane in adolescent idiopathic scoliosis (AIS) and to compare this with normal anatomy. There is an ongoing debate about the existence and magnitude of the vertebral body and pedicle asymmetry in AIS and whether this is an expression of a primary growth disturbance, or secondary to asymmetrical loading. Vertebral body asymmetry, defined as left-right overlap of the vertebral endplates (ie, 100%: perfect symmetry, 0%: complete asymmetry) was evaluated in the true transverse plane on CT scans of 77 AIS patients and 32 non-scoliotic controls. Additionally, the pedicle width, length, and angle and the length of the ideal screw trajectory were calculated. Scoliotic vertebrae were on average more asymmetric than controls (thoracic: AIS 96.0% vs. controls 96.4%; p = .005, lumbar: 95.8% vs. 97.2%; p transverse pedicle angle was greater (12.3° vs. 5.7°; p transverse plane in AIS and no uniform relation between the axial rotation and vertebral asymmetry could be observed in these moderate to severe patients, suggesting that asymmetrical vertebral growth does not initiate rotation, but rather follows it as a secondary phenomenon. Level 4. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  11. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    Science.gov (United States)

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  12. The evolutionary origin of the vertebrate body plan: the problem of head segmentation.

    Science.gov (United States)

    Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru

    2014-01-01

    The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

  13. X-ray morphology of the eburnated vertebral body - diagnostic and differential diagnostic problems

    Energy Technology Data Exchange (ETDEWEB)

    Krug, B; Lorenz, R; Steinbrich, W

    1988-08-01

    1. Numerous diseases may become manifest as eburnated vertebral bodies, and hence the X-ray morphological sign of eburnation is an unspecific one. Isolated characteristics such as the involvement of one or several vertebrae, an intact vertebral space, a broadening of the paravertebral accompanying shadow, and the remaining radiological skeletal status enable narrowing down the differential diagnosis, although anamnesis and clinical findings will supply the main pointers. 2. In primary tumorous eburnations radiotherapy or chemotherapy will render an X-ray morphological assessment of therapeutic success impossible. 3. In primary diagnosis of an eburnated vertebral body it is possible to apply sonography. CT and MR as diagnostic tools step by step to narrow down the differential diagnosis by detecting or excluding pathological abdominal processes such as liver or lymphatic node metastases, paravertebral or intraspinal soft-part dense space-occupying growths or bone infiltration, but it will only rarely be possible to classify the phenomenon properly as being caused by a well-defined process, even if CT and MR are employed.

  14. Relationship between cervical vertebral maturation and mandibular growth.

    Science.gov (United States)

    Ball, Gina; Woodside, Donald; Tompson, Bryan; Hunter, W Stuart; Posluns, James

    2011-05-01

    The cervical vertebrae have been proposed as a method of determining biologic maturity. The purposes of this study were to establish a pattern of mandibular growth and to relate this pattern to the stages of cervical vertebral maturation. Cephalometric radiographs, taken annually from ages 9 to 18 years, were evaluated for 90 boys from the Burlington Growth Center, Toronto, Ontario, Canada. Mandibular lengths were measured from articulare to gnathion, and incremental growth was determined. Cervical vertebral maturation stages were assessed by using a 6-stage method. Advanced, average, and delayed maturation groups were established. The prepubertal mandibular growth minimum velocity occurred during cervical stages 1 through 4 (P = 0.7327). Peak mandibular growth velocity occurred most frequently during stage 4 in all 3 maturation groups, with a statistical difference in the average and delayed groups (P cervical stages 1 through 6 does not occur annually; time spent in each stage varies depending on the stage and the maturation group. Cervical vertebral maturation stages cannot accurately identify the mandibular prepubertal growth minimum and therefore cannot predict the onset of the peak in mandibular growth. The cervical vertebral maturation stages should be used with other methods of biologic maturity assessment when considering both dentofacial orthopedic treatment and orthognathic surgery. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Micromechanics of the human vertebral body for forward flexion.

    Science.gov (United States)

    Yang, Haisheng; Nawathe, Shashank; Fields, Aaron J; Keaveny, Tony M

    2012-08-09

    To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Technical strategies and anatomic considerations for parapedicular access to thoracic and lumbar vertebral bodies

    International Nuclear Information System (INIS)

    Beall, Douglas P.; Martin, Hal D.; Stapp, Annette M.; Puckett, Timothy A.; Stechison, M.T.; Braswell, John J.

    2007-01-01

    To investigate and illustrate a variation on the traditional percutaneous access to the vertebral body via a parapedicular approach. An effective parapedicular access technique that could safely and reliably guide the needle tip into the center of the vertebral body was developed from cadaver dissection observations for the purpose of clinical use. A total of 102 vertebral compression fractures from T-4 to L-5 were treated via the parapedicular access at our institution between July 2005 and March 2006. There were 72 patients between the ages of 17 and 96 years (mean age: 68.2 years) who underwent treatment. The cadaver dissection revealed a relatively avascular and aneural portion of the vertebral body along the superior margin of the vertebral body-pedicle junction. A total 102 vertebral fractures were treated using the parapedicular access technique without any recognized clinical complications from the needle access or the instrumentation. The thoracic and lumbar vertebral bodies may be safely, reliably, and reproducibly accessed using a percutaneous parapedicular access technique. The technique presented represents a relatively avascular and aneural approach to vertebral body. (orig.)

  17. Height gain of vertebral bodies and stabilization of vertebral geometry over one year after vertebroplasty of osteoporotic vertebral fractures

    International Nuclear Information System (INIS)

    Pitton, Michael B.; Morgen, Nadine; Herber, Sascha; Dueber, Christoph; Drees, Philipp; Boehm, Bertram

    2008-01-01

    The height gain of vertebral bodies after vertebroplasty and geometrical stability was evaluated over a one-year period. Osteoporotic fractures were treated with vertebroplasty. The vertebral geometry and disc spaces were analysed using reformatted computed tomography (CT) images: heights of the anterior, posterior, and lateral vertebral walls, disc spaces, endplate angles, and minimal endplate distances. Vertebrae were assigned to group I [severe compression (anterior height/posterior height) 0.75). A total of 102 vertebral bodies in 40 patients (12 men, 28 women, age 70.3 ± 9.5) were treated with vertebroplasty and prospectively followed for 12 months. Group I showed a greater benefit compared with group II with respect to anterior height gain (+2.1 ± 1.9 vs +0.7 ± 1.6 mm, P < 0.001), reduction of endplate angle (-3.6 ± 4.2 vs -0.8 ± 2.3 , P < 0.001), and compression index (+0.09 ± 0.11 vs +0.01 ± 0.06, P < 0.001). At one-year follow-up, group I demonstrated preserved anterior height gain (+1.5 ± 2.8 mm, P < 0.015) and improved endplate angle (-3.4 ± 4.9 , P < 0.001). In group II, the vertebral heights returned to and were fixed at the pre-interventional levels. Vertebroplasty provided vertebral height gain over one year, particularly in cases with severe compression. Vertebrae with moderate compression were fixed and stabilized at the pre-treatment level over one year. (orig.)

  18. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    International Nuclear Information System (INIS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-01-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T 2 -weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  19. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography

    International Nuclear Information System (INIS)

    Singer, K.P.; Breidahl, P.D.; Royal Perth Hospital

    1990-01-01

    Quantitative computed tomography was used to assess vertebral trabecular density in 26 post-mortem spines from individuals aged between 14 and 80 years. All vertebrae from T10 to L1 were scanned transversely near the mid-vertebral level with calculations of trabecular density in HUs averaged and referenced to a mineral equivalent phantom. An age-related decline in trabecular density was recorded (r=0.55, p<0.0001). Density measures from the anterior aspect of the vertebral body were significantly greater than from postero-lateral regions. From T10 to L1, there was a significant decrease in trabecular density, whereas density measures multiplied by vertebral body cross-sectional area were constant. Predictions of vertebral compressive strength using quantitative computed tomography may become more accurate by increasing the sampling area per scan and including vertebral body cross-sectional area as part of the radiologic assessment. (orig.)

  20. Regional disc change in segmental hypoplasia of the lumbosacral vertebral bodies: MR findings

    International Nuclear Information System (INIS)

    Kim, Sung Kyu; Lee Seung Ro; Moon, Won Jin; Park, Dong Woo; Hahm, Chang Kok

    2000-01-01

    To classify types of vertebral hypoplasia and to investigate the prevalence and patterns of associated disc degeneration. Defining vertebral hypoplasia as occurring when the AP diameter of a lower vertebral body is smaller than that of an upper ones, we retrospectively reviewed the MR images obtained in 34 cases of this condition involving young adults. Two major types and two subtypes, a total of four different entities were classified as follows; type I: hypoplasia involving a single vertebral body; type II: hypoplasia involving serial lower segmental vertebral bodies; subtype a: hypoplastic body located anteriorly along the anterior spinal line; subtype b: hypoplastic body located posteriorly along the posterior spinal line. We also investigated each type of vertebral hypoplasia and patterns of associated disc changes. Three different types were observed. In type IIa (n=3D29), posterior disc occurred in 8/29 cases, diffuse degeneration in 21/29 patients, and posterior disc herniation in all. All type Ia cases (3/3) showed diffuse disc degeneration at both upper and lower disc levels, with posterior disc herniation, while both type IIb cases (2/2) showed diffuse disc degeneration, with bidirectional disc herniation. By identifying the exact patterns of vertebral hypoplasia, we were able to predict which portion of the disc was likely to degenerate. (author)

  1. Percutaneous vertebroplasty in the treatment of vertebral body compression fracture secondary to osteogenesis imperfecta

    International Nuclear Information System (INIS)

    Rami, Parag M.; Heatwole, Eric V.; Boorstein, Jeffrey M.; McGraw, Kevin J.

    2002-01-01

    Percutaneous vertebroplasty, a minimally invasive interventional radiological procedure, has recently been used effectively for the treatment of symptomatic vertebral body compression fractures. Primary indications for vertebroplasty include osteoporotic compression fracture, osteolytic vertebral metastasis and myeloma, and vertebral hemangioma. We present a case and extend the indication of percutaneous vertebroplasty in a patient with a vertebral body compression fracture secondary to osteogenesis imperfecta. (orig.)

  2. Percutaneous vertebroplasty in the treatment of vertebral body compression fracture secondary to osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Rami, Parag M.; Heatwole, Eric V.; Boorstein, Jeffrey M. [Center for Vascular and Interventional Radiology, St. Vincent Mercy Medical Center, Toledo, OH (United States); McGraw, Kevin J. [Riverside Methodist Hospital, Columbus, OH (United States)

    2002-03-01

    Percutaneous vertebroplasty, a minimally invasive interventional radiological procedure, has recently been used effectively for the treatment of symptomatic vertebral body compression fractures. Primary indications for vertebroplasty include osteoporotic compression fracture, osteolytic vertebral metastasis and myeloma, and vertebral hemangioma. We present a case and extend the indication of percutaneous vertebroplasty in a patient with a vertebral body compression fracture secondary to osteogenesis imperfecta. (orig.)

  3. MDCT after balloon kyphoplasty: analysis of vertebral body architecture one year after treatment of osteoporotic fractures

    International Nuclear Information System (INIS)

    Roehrl, B.; Dueber, C.; Sadick, M.; Brocker, K.; Voggenreiter, G.; Obertacke, U.; Brade, J.

    2006-01-01

    Purpose: to evaluate the value of MDCT in the monitoring of vertebral body architecture after balloon kyphoplasty and observe morphological changes of the vertebral body. Material and methods: during a period of 26 months, 66 osteoporotic fractures of the vertebral bodies were treated with percutanous balloon kyphoplasty. The height of the vertebral body, width of spinal space, sagittal indices, kyphosis und COBB angle, and cement leakage were evaluated by computed tomography before and after treatment and in a long-term follow up. Statistical analysis was performed by calculating quantitative constant parameters of descriptive key data. In addition, parametric and distribution-free procedures were performed for all questions. Results: after kyphoplasty, the treated vertebral bodies showed a significant gain in the height of the leading edge (0.15 cm; p < 0.0001) and in the central part of the vertebral body (0.17 cm; p < 0.0001). The height of the trailing edge did not change significantly. A corresponding gain in the sagittal index was found. The index remained stable during follow-up. Treated vertebral bodies as well as untreated references showed a comparable loss of height over the period of one year. The shape of the vertebral bodies remained stable. In comparison to these findings, treated vertebral bodies showed a reduced loss of height. A significant change in kyphosis und the COBB angle was noted. In total, pallacos leakage was detected in 71% of cases. Conclusion: MDCT is an accurate method for evaluating vertebral body architecture after treatment with balloon kyphoplasty. (orig.)

  4. [Development and application of artificial vertebral body].

    Science.gov (United States)

    Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing

    2017-12-25

    Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome

  5. Initial non-weight-bearing therapy is important for preventing vertebral body collapse in elderly patients with clinical vertebral fractures

    Directory of Open Access Journals (Sweden)

    Kishikawa Y

    2012-04-01

    Full Text Available Yoichi KishikawaKishikawa Orthopaedic Clinic, Saga City, Saga, JapanPurpose: The aim of the present conventional observational study was to compare the clinical outcomes of initial non-weight-bearing therapy and conventional relative rest therapy among elderly patients with clinical vertebral fractures.Methods: In total, 196 consecutive patients with clinical vertebral fractures (mean age: 78 years who were hospitalized for treatment between January 1999 and March 2007 were analyzed. Initial non-weight-bearing therapy consisted of complete bed rest allowing rolling on the bed without any weight-bearing to the spine for 2 weeks, followed by rehabilitation wearing a soft brace. The indications for initial non-weight-bearing therapy were vertebral fracture involving the posterior portion of the vertebral body at the thoraco-lumbar spine, mild neurological deficit, instability of the fracture site, severe pain, multiple vertebral fractures arising from trauma, malalignment at the fracture site, and mild spinal canal stenosis caused by the fracture. Patients who met the indication criteria were treated with initial non-weight-bearing therapy (n = 103, while the other patients were treated with conventional relative rest (n = 93. All the patients were uniformly treated with intramuscular elcatonin to relieve pain. The primary endpoint was progression of the vertebral fracture. The secondary endpoints included bony union and subjective back pain. The follow-up period was 12 weeks.Results: Compared with the conventional relative rest group, the collapse rate of the anterior and posterior portions of the vertebral body was significantly smaller in the initial non-weight-bearing group. The bony union rate was 100% in the initial non-weight-bearing group and 97% in the conventional relative rest group. The number of patients who experienced back pain was significantly lower in the initial non-weight-bearing group than in the conventional relative rest

  6. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    Science.gov (United States)

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  7. Transoral vertebral augmentation with polymethylmethacrylate in the treatment of a patient with a dens fracture nonunion and subarticular vertebral body fracture of C2

    International Nuclear Information System (INIS)

    Beall, Douglas P.; Martin, Hal D.; Stapp, Annette M.; Stanfield, Matthew

    2007-01-01

    The injection of polymethylmethacrylate (PMMA) is a minimally invasive, image-guided procedure used to treat vertebral fractures due to osteoporosis, metastatic lesions, multiple myeloma, and benign but destabilizing bone tumors. The injection of PMMA into the C2 vertebral body using the transoral technique has been reported in three separate patients for treatment of benign tumors (a vertebral hemangioma and an aneurysmal bone cyst) and for multiple myeloma in the third patient. Although the injection of PMMA into the vertebral body is most commonly performed to treat benign vertebral compression fractures, a transoral C2 approach has not been reported in the English literature as a treatment for a benign fracture of C2. We report the treatment of a fracture and nonunion of the base of the dens and a subarticular fracture of the vertebral body of C2 using a bilateral transoral approach. (orig.)

  8. Real-time tracking of vertebral body movement with implantable reference microsensors.

    Science.gov (United States)

    Mularski, Sven; Picht, Thomas; Kuehn, Björn; Kombos, Theodoros; Brock, Mario; Suess, Olaf

    2006-05-01

    In the spine, navigation techniques serve mainly to control and accurately target insertion of implants. The main source of error is that the spine is not a rigid organ, but rather a chain of semiflexible movement segments. Any intraoperative manipulation of the patient alters the geometry and volumetry as compared to the 3D volume model created from the image data. Thus, the objective of the study was to implement the theoretical principle of microsensor referencing in a model experiment and to clarify which anatomical structures are suitable for intermittent implantation of positional sensors, as illustrated with cervical vertebral bodies. Laboratory tests were conducted using 70 models of human cervical vertebral bodies. The first experiment investigated whether arbitrary movements of vertebral bodies can be tracked with the positional information from the implanted microsensors. The accuracy of this movement monitoring was determined quantitatively on the basis of positional error measurement. In the second experiment, different ventral and dorsal surgical operations were simulated on five models of the cervical spine. Quantifiable measurement values such as the spatial extension of the intervertebral space and the relative positions of the planes of the upper plates were determined. With respect to the differing anatomy of the individual vertebral bodies of the cervical spine, the sensors could be placed securely with a 5x2 mm drill. The registration error (RE) was determined as a root mean square error. The mean value was 0.9425 mm (range: 0.57-1.2 mm; median: 0.9400 mm; SD: 0.1903 mm). The precision of the movement monitoring of the vertebral body was investigated along its three main axes. The error tolerance between post-interventional 3D reconstruction and direct measurement on the model did not exceed 1.3 mm in the distance measurements or 2.5 degrees in the angular measurements. The tomograms on the system monitor could be updated in close to real time

  9. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    Science.gov (United States)

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. PMID:24758278

  10. Closure of the vertebral canal in human embryos and fetuses.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  11. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    Science.gov (United States)

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  12. Rapid estimation of the vertebral body volume: a combination of the Cavalieri principle and computed tomography images

    International Nuclear Information System (INIS)

    Odaci, Ersan; Sahin, Buenyamin; Sonmez, Osman Fikret; Kaplan, Sueleyman; Bas, Orhan; Bilgic, Sait; Bek, Yueksel; Erguer, Hayati

    2003-01-01

    Objective: The exact volume of the vertebral body is necessary for the evaluation, treatment and surgical application of related vertebral body. Thereby, the volume changes of the vertebral body are monitored, such as infectious diseases of vertebra and traumatic or non-traumatic fractures and deformities of the spine. Several studies have been conducted for the assessment of the vertebral body size based on the evaluation of the different criteria of the spine using different techniques. However, we have not found any detailed study in the literature describing the combination of the Cavalieri principle and vertebral body volume estimation. Materials and methods: In the present study we describe a rapid, simple, accurate and practical technique for estimating the volume of vertebral body. Two specimens were taken from the cadavers including ten lumbar vertebras and were scanned in axial, sagittal and coronal section planes by a computed tomography (CT) machine. The consecutive sections in 5 and 3 mm thicknesses were used to estimate the total volume of the vertebral bodies by means of the Cavalieri principle. Furthermore, to evaluate inter-observer differences the volume estimations were carried out by three performers. Results: There were no significant differences between the performers' estimates and real volumes of the vertebral bodies (P>0.05) and also between the performers' volume estimates (P>0.05). The section thickness and the section plains did not affect the accuracy of the estimates (P>0.05). A high correlation was seen between the estimates of performers and the real volumes of the vertebral bodies (r=0.881). Conclusion: We concluded that the combination of CT scanning with the Cavalieri principle is a direct and accurate technique that can be safely applied to estimate the volume of the vertebral body with the mean of 5 min and 11 s workload per vertebra

  13. Whole spine MRI in the assessment of acute vertebral body trauma

    International Nuclear Information System (INIS)

    Green, R.A.R.; Saifuddin, A.

    2004-01-01

    To determine the incidence and types of multilevel vertebral body injury in association with acute spinal trauma as assessed by whole spine MRI. All acute admissions to a regional spinal injury unit had whole spine MRI carried out, to detect occult vertebral body injury. Two radiologists assessed 127 cases prospectively, over a period of 3 years. All cases had T2-weighted sagittal imaging of the whole spine (where possible using a T2-weighted fat-suppressed sequence), with T1-weighted imaging in both sagittal and axial planes covering the primary injury. The incidence of secondary injury (defined as either bone bruising, wedge compression fracture or burst fracture) was determined and defined by type, site and relationship to the primary injury. Seventy-seven per cent of cases had a secondary injury level. Of these, bone bruising was the commonest but often occurred in combination with secondary wedge compression fracture or burst fracture. MRI detected 27 non-contiguous wedge compression fractures and 16 non-contiguous burst fractures, giving an incidence of secondary level, non-contiguous fracture of approximately 34%. A higher frequency of secondary vertebral body injury may be defined by MRI than has been described in previous studies based on radiographic evaluation of the whole spine. Whole spine MRI in assessment for occult vertebral body fracture enables increased confidence in the conservative or surgical management of patients with severe spinal injury. (orig.)

  14. Mechanical Loading during Growth Is Associated with Plane-specific Differences in Vertebral Geometry: A Cross-sectional Analysis Comparing Artistic Gymnasts vs. Non-gymnasts

    Science.gov (United States)

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2011-01-01

    Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (PA) and supine lateral (LAT) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (PALAT) versus standard PA and LAT outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater PABMD, PABMC, PAWIDTH, PA CROSS-SECTIONAL AREA (CSA), PAVOLUME, LATBMD, LATBMAD, PALATCSA and PALATIBS (p<0.05). Non-gymnasts exhibited greater LATDEPTH/PAWIDTH, LATBMC/PABMC, LATVHEIGHT, LATAREA and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for PA or PALAT BMAD. In contrast, cuboid model results (Carter 1992) suggested erroneous ex/gymnast PABMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than PA or LAT plane scans alone. PMID:21839871

  15. High-resolution computed tomography evaluation of the bronchial lumen to vertebral body diameter and pulmonary artery to vertebral body diameter ratios in anesthetized ventilated normal cats.

    Science.gov (United States)

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron

    2017-10-01

    Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.

  16. Varied overstrain injuries of the vertebral column conditioned by evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kohlbach, W

    1983-08-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.

  17. Varied overstrain injuries of the vertebral column conditioned by evolution

    International Nuclear Information System (INIS)

    Kohlbach, W.

    1983-01-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components. (orig.) [de

  18. MR imaging of degenerative lumbar disc disease emphasizing on signal intensity changes in vertebral body

    International Nuclear Information System (INIS)

    Toyoda, Keiko; Ida, Masahiro; Murakami, Yoshitaka; Harada, Junta; Tada, Shimpei

    1992-01-01

    Magnetic resonance imaging was performed in 400 patients with degenerative disc disease. Signal changes and their sites in the vertebral body were classified and referred to narrowing of the intervertebral disc space. MR findings were compared with those of plain roentgenograms of the lumbar spine. Signal changes in the vertebral body were noted in 83 cases (102 vertebral bodies). Low-intensity abnormality on both T1- and T2-weighted images (WI) was the most common finding, and was most frequently seen at the end plate and/or the angle. These changes were correlated with narrowing of the disc space and osteosclerosis on the plain roentgenogram of the lumbar spine. Signal changes occasionally occurred in the inner region of the vertebral body, and these lesions tended to show a high-intensity abnormality on T1-WI. We conclude that signal changes in degenerative disc disease are not specific, but are sometimes difficult to distinguish from the signal changes in other conditions such as spinal tumor or bone marrow disorder. (author)

  19. Varied overstrain injuries of the vertebral column conditioned by evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kohlbach, W.

    1983-08-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.

  20. Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry.

    Science.gov (United States)

    Smith, Wade D; Miller, Jessica A; Heppell, Selina S

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These

  1. Monostotic fibrous dysplasia of a lumbar vertebral body with secondary aneurysmal bone cyst formation: a case report

    Directory of Open Access Journals (Sweden)

    Snieders Marieke N

    2009-06-01

    Full Text Available Abstract We report the case of a 25-year-old Caucasian woman with symptomatic monostotic fibrous dysplasia of the fourth lumbar vertebral body. The patient suffered from a five-week history of progressive low back pain, radiating continuously to the left leg. Her medical history and physical and neurological examination did not demonstrate any significant abnormalities. Radiographs, computed tomography and magnetic resonance imaging revealed an osteolytic expansive lesion with a cystic component of the fourth lumbar vertebral body. Percutaneous transpedicular biopsy showed histological characteristics of fibrous dysplasia superimposed by the formation of aneurysmal bone cyst components. The patient was treated by subtotal vertebrectomy of the L4 vertebral body with anterior reconstruction and her postoperative course was uncomplicated. To our knowledge, this is the first reported case of a monostotic fibrous dysplasia with superimposed secondary aneurysmal bone cysts of a lumbar vertebral body.

  2. Repair and regeneration of vertebral body after antero-lateral partial vertebrectomy using beta-tricalcium phosphate

    International Nuclear Information System (INIS)

    Momma, Fumiyuki; Amagasa, Masaharu; Nakazawa, Teruo

    2008-01-01

    Antero-lateral partial vertebrectomy (ALPV) was used for decompression in 91 patients with multilevel cervical disorders. The high-speed drill was used to excise about 1/3 of the vertebral body for relief of anterior compression of the cord and nerve roots under the operating microscope. The key point was opening of the medial wall of the foramen of transverse process at the beginning of the ALPV, allowing the determination of the lateral borders of the ALPVs. To repair and regenerate the vertebral body, a beta-tricalcium phosphate (β-TCP) block was trimmed into a cuneiform shape and implanted into the sites of the ALPV excluding the upper and lowermost vertebral bodies. Postoperative computed tomography confirmed that β-TCP was gradually replaced by newly formed bone from the surface towards the center of the block, and that the affected vertebral body was remodeled by 6 to 12 months after the implantation of β-TCP. The cortical bone borders on the bone marrow at the site of the regeneration. The pedicles on the side of the ALPVs were rebuilt during regeneration of the affected vertebrae. Thus, the vertebral foramen of the cervical spine was widened in the anterior direction at the levels of the ALPVs, resulting in restoration of the physiological size of the cervical cord. The cervical curvature remained unchanged and a certain degree of cervical mobility (mean 86%) was preserved in this series. (author)

  3. CT study of vertebral metastasis: re-realization of the diagnostic role of the vertebral pedicle sign

    International Nuclear Information System (INIS)

    Meng Quanfei; Jiang Bo; Chen Yingming; Zhang Chaohui

    2000-01-01

    Objective: To investigate the essence of the vertebral pedicle sign of vertebral metastasis on plain film, and to explore the useful CT signs for the diagnosis and differential diagnosis of this tumor. Methods: The CT scans of the spine obtained in 48 patients with vertebral metastases, 19 patients with vertebral tuberculosis, and 11 with vertebral myeloma, were analyzed. The CT findings were correlated with the abnormalities seen on plain films in 34 of the 48 patients (66 vertebrae involved) with vertebral metastasis. Results: 66 vertebrae were involved in the group of metastasis. Of the 28 vertebrae whose vertebral body were completely destroyed, 15 were seen bilateral pedicles destruction; Of the 22 vertebrae with lateral destruction of the body, 16 were noticed unilateral pedicle destruction which located posterior to the involved side of the body. Of the 62 micro-metastatic foci, 56 were scattered in the vertebral body. In the 19 para-spinal soft-tissue masses of vertebral tuberculosis, 5 were noticed calcifications and 12 with postcontrast rings enhancement. The rates of vertebral pedicle destruction of vertebral metastasis and myeloma were not statistically different (X 2 = 0.03, P > 0.50). The locations of destruction of vertebral body in vertebral metastasis and myeloma had no statistical difference (X 2 = 3.52, P > 0.10), but they differed from that in tuberculosis (X 2 = 39.32, P < 0.001). The distribution of lesions within the vertebrae of metastasis and tuberculosis was similar, but was quite different from myeloma. Conclusion: The vertebral metastasis initially occurs in the vertebral body. The vertebral pedicle sign on plain film of vertebral metastasis is the outcome of the posterior invasion of the tumor in the vertebral body, which is of no differential significance for vertebral metastasis and myeloma. Para-spinal soft tissue mass, location of destruction of vertebral body, and the distribution of lesions within the vertebrae may help

  4. Determination of bone mineral density in the third lumbar vertebral body using photon absorptiometry techniques

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Dual-photon absorptiometry and triple-energy X-ray absorptiometry were used to investigate the total bone mineral content and density as well as the trabecular bone mineral density in the third lumbar vertebral body. Both anteroposterior (AP) and lateral (LAT) measurements were performed. By combining the two projections it was found that the mean trabecular bone mineral density for all 202 subjects included in the study was 52% (SD±20%) of the total bone mineral density in the third lumbar vertebral body. The mean trabecular bone mineral density as a fraction of the total vertebral body bone mineral density decreased as a function of age. The relative annual change in this fraction differed between males and females. It was also found that neither trabecular nor total bone mineral density differed significantly between male and female subjects aged 25-35 years, and bone mineral density (BMD), expressed in g/cm 3 , showed no correlation to subject height, body weight or body mass index (BMI). Male and female individuals showed different rates of change of trabecular bone mineral density with age

  5. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    Science.gov (United States)

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Pathological vertebral fracture after stereotactic body radiation therapy for lung metastases. Case report and literature review.

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ruiz María

    2012-03-01

    Full Text Available Abstract Background Stereotactic body radiation therapy (SBRT is a radiation technique used in patients with oligometastatic lung disease. Lung and chest wall toxicities have been described in the patients but pathological vertebral fracture is an adverse effect no reported in patients treated with SBRT for lung metastases. Case presentation A 68-year-old woman with the diagnosis of a recurrence of a single lung metastatic nodule of urothelial carcinoma after third line of chemotherapy. The patient received a hypo-fractionated course of SBRT.A 3D-conformal multifield technique was used with six coplanar and one non-coplanar statics beams. A total dose of 48 Gy in three fractions over six days was prescribed to the 95% of the CTV. Ten months after the SBRT procedure, a CT scan showed complete response of the metastatic disease without signs of radiation pneumonitis. However, rib and vertebral bone toxicities were observed with the fracture-collapse of the 7th and 8th vertebral bodies and a fracture of the 7th and 8th left ribs. We report a unique case of pathological vertebral fracture appearing ten months after SBRT for an asymptomatic growing lung metastases of urothelial carcinoma. Conclusion Though SBRT allows for minimization of normal tissue exposure to high radiation doses SBRT tolerance for vertebral bone tissue has been poorly evaluated in patients with lung tumors. Oncologists should be alert to the potential risk of fatal bone toxicity caused by this novel treatment. We recommend BMD testing in all woman over 65 years old with clinical risk factors that could contribute to low BMD. If low BMD is demonstrated, we should carefully restrict the maximum radiation dose in the vertebral body in order to avoid intermediate or low radiation dose to the whole vertebral body.

  7. Vertebral osteomyelitis without disc involvement

    Energy Technology Data Exchange (ETDEWEB)

    Kamani, I.; Syed, I.; Saifuddin, A. E-mail: asaifuddin@aol.com; Green, R.; MacSweeney, F

    2004-10-01

    Vertebral osteomyelitis is most commonly due to pyogenic or granulomatous infection and typically results in the combined involvement of the intervertebral disc and adjacent vertebral bodies. Non-infective causes include the related conditions of chronic recurrent multifocal osteomyelitis (CRMO) and SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome. Occasionally, these conditions may present purely within the vertebral body, resulting in various combinations of vertebral marrow oedema and sclerosis, destructive lesions of the vertebral body and pathological vertebral collapse, thus mimicking neoplastic disease. This review illustrates the imaging features of vertebral osteomyelitis without disc involvement, with emphasis on magnetic resonance imaging (MRI) findings.

  8. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  9. The Role of Minimally Invasive Vertebral Body Stent on Reduction of the Deflation Effect After Kyphoplasty: A Biomechanical Study.

    Science.gov (United States)

    Wang, Dalin; Zheng, Shengnai; Liu, An; Xu, Jie; Du, Xiaotao; Wang, Yijin; Wang, Liming

    2018-03-15

    Biomechanical investigation using cadaver spines. The aim of the present study was to assess the magnitude of the deflation effect after balloon kyphoplasty (BKP) or use of minimally invasive vertebral body stent (MIVBS) in in vitro biomechanical condition. BKP is a well-established minimally invasive treatment option for osteoporotic vertebral compression fractures. However, this technique can lead to a secondary height loss-known as the "deflation effect"-causing intrasegmental kyphosis and an overall alignment failure. The study was conducted on 24 human cadaveric vertebral bodies (T12-L5). After creating a compression fracture model, the fractured vertebral bodies were reduced by BKP (n = 12) or by MIVBS (n = 12) and then augmented with polymethyl methacrylate bone cement. Each step of the procedure was performed under fluoroscopic guidance and the results were analyzed quantitatively. Finally, the strength and stiffness of augmented vertebral bodies were measured by biomechanical tests. Complete initial reduction of the fractured vertebral body height was achieved by both systems. Secondary loss of reduction after balloon deflation was significantly greater in the BKP group (2.36 ± 0.63 mm vs. 0.34 ± 0.43 mm in the MIVBS group; P deflation effect after BKP can be significantly decreased with the use of the MIVBS technique. N/A.

  10. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate.

    Science.gov (United States)

    Salinas, Santiago; Munch, Stephan B

    2012-02-01

    Transgenerational plasticity (TGP), a generalisation of more widely studied maternal effects, occurs whenever environmental cues experienced by either parent prior to fertilisation results in a modification of offspring reaction norms. Such effects have been observed in many traits across many species. Despite enormous potential importance-particularly in an era of rapid climate change-TGP in thermal growth physiology has never been demonstrated for vertebrates. We provide the first evidence for thermal TGP in a vertebrate: given sufficient time, sheepshead minnows adaptively program their offspring for maximal growth at the present temperature. The change in growth over a single generation (c. 30%) exceeds the single-generation rate of adaptive evolution by an order of magnitude. If widespread, transgenerational effects on thermal performance may have important implications on physiology, ecology and contemporary evolution, and may significantly alter the extinction risk posed by changing climate. © 2011 Blackwell Publishing Ltd/CNRS.

  11. Relative growth pattern and hard tissue of vertebral centra by microradiography of bluefin tuna

    International Nuclear Information System (INIS)

    Kubo, Y.; Asano, H.

    1989-01-01

    To clarify the growth feature and the structure of hard tissue, we studied the vertebral centrum of three species, bluefin tuna Thunnus thynnus, bigeye tuna T. obesus and skipjack Katsuwonus pelamis (BL: 44.2, 39.5 and 40.0cm respectively). We examined the ratio of cetrum length to diameter in each vertebral centrum and obtained the value of 0.9-1.3 in most centra among three species. This indicates that the examined species belong to the equivalent type of the relative growth pattern of vertebral centra. The hard tissue was observed by microradiography, with the longitudinal and cross sections (about 100 μm) cut through the center of notochordal pore. The major centra of the vertebral column were composed of characteristic simple structure like a cross, when seen in the microradiographs of cross sections. Microradiographs indicated that the bone has complicated canals with minute spaces like the bone cavities

  12. Percutaneous vertebroplasty performed with an 18 G needle for the treatment of severe compression fracture of cervical vertebral body due to malignancy

    International Nuclear Information System (INIS)

    Chen Long; Ni Caifang; Wang Zhentang; Liu Yizhi; Jin Yonghai; Zhu Xiaoli; Zou Jianwei; Xiao Xiangsheng

    2010-01-01

    Objective: To investigate the clinical feasibility and efficacy of percutaneous vertebroplasty performed with an 18G needle for the treatment of severe compression fracture of cervical vertebral body due to malignancy. Methods: During the period of 2006-2010 percutaneous vertebroplasty was performed in 10 patients with severe compression fracture of cervical vertebral body due to metastatic lesions. A total of 12 diseased vertebral bodies were detected, which distributed in the C 4 (n = 3), C 5 (n = 3), C 6 (n = 4) and C 7 (n = 2) vertebral bodies. Under DSA guidance an 18G needle was punctured into the target vertebral body and then polymethylmethacrylate bone cement was injected in. A follow-up lasting for one month was conducted. Results: The technical success of both needle puncturing and bone cement injection was achieved in all patients. The mean amount of bone cement injected in each diseased vertebra was 2.2 ml(1.5-3.2)ml. Marked pain relief was quickly obtained in al1 10 patients. No major complications occurred in this series, except for asymptomatic bone cement leaking around vertebra which appeared in 4 vertebral bodies. Conclusion: Percutaneous vertebroplasty, which is performed with an 18G needle, is a safe and effective technique for the treatment of severe compression fracture of cervical vertebral body due to malignancy. (authors)

  13. CT volumetry of lumbar vertebral bodies in patients with hypoplasia L5 and bilateral spondylolysis and in normal controls

    International Nuclear Information System (INIS)

    Wilms, Guido E.; Demaerel, Philippe; Keyzer, Frederik de; Willems, Endry

    2012-01-01

    To examine the feasibility and results of calculating the volume of lumbar vertebral bodies in normal patients and patients with suspected hypoplasia of L5. Lumbar multi-detector CT was performed in 38 patients with bilateral spondylolysis and hypoplasia of L5 and in 38 normal patients. Lumbar vertebral body volume of L3, L4 and L5 was measured by CT volumetry with a semi-automated program, created with MeVisLab. In the control group, the average vertebral body volume (in cubic centimeters) of L3 was 35.93 (±7.33), 36.34 (±7.13) for L4 and 34.63 (±6.88) for L5. In patients with suspected hypoplasia L5 the average body volume (in cubic centimeters) of L3 was 36.85 (±7.37), 36.90 (±6.99) for L4 and 33.14 (±6.57) for L5. The difference in mean vertebral body volume for L3, L4 and L5 between both groups was statistically not significant. However, there was a statistically significant difference of the ratio L5/L4 (P < 0.001) between both groups: the mean ratio L5/L4 in the control group was 95.3 ± 3.9%, the ratio for the hypoplastic L5 group was 89.9 ± 6.3%. There was no significant difference in the vertebral body volume for L3, L4 and L5 between both groups due to inter-patient variability. However, the relation between the body volume of L5 and L4 is significantly different between both groups. The volume of the vertebral body of L5 proved to be on average 10.2% smaller than the volume of L4 in the group with hypoplasia L5 versus 4.7% in the control group. (orig.)

  14. CT volumetry of lumbar vertebral bodies in patients with hypoplasia L5 and bilateral spondylolysis and in normal controls

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Guido E.; Demaerel, Philippe; Keyzer, Frederik de [UZ Leuven, Campus Gasthuisberg, Department of Radiology, Leuven (Belgium); Willems, Endry [ZOL, Department of Radiology, Genk (Belgium)

    2012-08-15

    To examine the feasibility and results of calculating the volume of lumbar vertebral bodies in normal patients and patients with suspected hypoplasia of L5. Lumbar multi-detector CT was performed in 38 patients with bilateral spondylolysis and hypoplasia of L5 and in 38 normal patients. Lumbar vertebral body volume of L3, L4 and L5 was measured by CT volumetry with a semi-automated program, created with MeVisLab. In the control group, the average vertebral body volume (in cubic centimeters) of L3 was 35.93 ({+-}7.33), 36.34 ({+-}7.13) for L4 and 34.63 ({+-}6.88) for L5. In patients with suspected hypoplasia L5 the average body volume (in cubic centimeters) of L3 was 36.85 ({+-}7.37), 36.90 ({+-}6.99) for L4 and 33.14 ({+-}6.57) for L5. The difference in mean vertebral body volume for L3, L4 and L5 between both groups was statistically not significant. However, there was a statistically significant difference of the ratio L5/L4 (P < 0.001) between both groups: the mean ratio L5/L4 in the control group was 95.3 {+-} 3.9%, the ratio for the hypoplastic L5 group was 89.9 {+-} 6.3%. There was no significant difference in the vertebral body volume for L3, L4 and L5 between both groups due to inter-patient variability. However, the relation between the body volume of L5 and L4 is significantly different between both groups. The volume of the vertebral body of L5 proved to be on average 10.2% smaller than the volume of L4 in the group with hypoplasia L5 versus 4.7% in the control group. (orig.)

  15. Clinical correlation of radiological spinal stenosis after standardization for vertebral body size

    International Nuclear Information System (INIS)

    Athiviraham, A.; Yen, D.; Scott, C.; Soboleski, D.

    2007-01-01

    Aim: To determine the relationship between the degree of radiographic lumbar spinal stenosis, adjusted with an internal control for vertebral body size, and disability from lumbar stenosis. Materials and methods: one hundred and twenty-three consecutive patients with clinical and radiological confirmation of neural impingement secondary to lumbar stenosis were enrolled prospectively. Thecal sac anteroposterior (AP) diameter (TSD) and cross-sectional area (CSA), and vertebral body AP dimension (VBD) were determined. These parameters were then correlated with patients' symptoms using the modified Roland-Morris questionnaire (RMQ) disability score. Results: No statistically significant inverse correlation was found between the TSD and RMQ score (p = 0.433), between the CSA and RMQ score (p = 0.124), or between the TSD:VBD ratio and RMQ score (p = 0.109). There was a significant positive correlation between the CSA:VBD ratio and RMQ score (p = .036), and therefore, there was no statistical support for an inverse relationship between the two. There was a significant difference in mean RMQ scores when the patients were divided into those with CSA greater than or equal to 70 mm 2 and those less than 70 mm 2 , with T = -2.104 and p = 0.038. Conclusion: The degree of radiographic lumbar spinal stenosis, even with the use of an internal control of vertebral body size and standardized disability questionnaires, does not correlate with clinical symptoms. However, patients with more severe stenosis below a CSA critical threshold of 70 mm 2 , have significantly greater functional disability

  16. Evaluation on vertebral endplate injury and adjacent intervertebral disk injury of patients with osteoporotic vertebral compression fractures by MRI and its clinical significance

    International Nuclear Information System (INIS)

    Shen Yu; Shen Huiliang; Fang Xiutong; Zhang Wenbo

    2012-01-01

    Objective: To investigate the relationship between vertebral endplate injury and adjacent intervertebral disk injury of patients with acute or sub-acute osteoporotic vertebral compression fractures (OVC-F) by MRI, and to provide basis for diagnosis of OVCF. Methods: The clinical data of a total of 66 patients with OVCF underwent vertebroplasty (76 fracture of vertebral bodies) were selected. The vertebral endplate injury and adjacent intervertebral disk injury of OVCF patients were detected by MRI. Results: There were 57 vertebral endplate injury in 76 fracture vertebral bodies (75% ). There were only 27 vertebral bodies with vertebral endplate injury in 57 fracture vertebral bodies with endplate injury (47% ), and 22 vertebral with superior and inferior vertebral endplate injury (39% ), and 8 vertebral bodies with inferior vertebral endplate injury (14% ). There were 48 vertebral bodies with intervertebral disc injury in 76 fracture vertebral bodies (63% ). There were 22 intervertebral disc injury located above the fracture of the lumbar spine in 48 vertebral bodies with intervertebral disc injury (45% ), and 19 fracture vertebral bodies with upper and lower intervertebral disc injury (40% ), and 7 intervertebral injuries located below the fracture of the lumbar spine (15% ). Conclusion: Vertebral endplate injury is frequently associated with the adjacent intervertebral disk injury. The clinical diagnosis and treatment should be emphasized in the fracture vertebral endplate damage and adjacent intervertebral disc injury. (authors)

  17. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  18. Analysis of body composition of the abdomen at the level of the 4th lumbar vertebral body by CT

    International Nuclear Information System (INIS)

    Kikuchi, Tetsujiro

    1988-01-01

    Body composition of the area at the level of the 4th lumbar vertebral section was studied on X-ray CT images in 62 normal volunteers (32 men and 30 women ), whose ages ranged from 20 and 79 years. The total cross-sectional area was smallest in persons in their twenties, irrespecstive of sex, and began to increase after the age of 30. The abdominal cavity and muscles had the highest cross-sectional ratio (34%) to the total body, followed by subcutaneous fat in men. In women, the subcutaneous fat and abdominal cavity had a ratio of 34% to the total body. According to age groups, men in their twenties and thirties had the highest ratio of the muscle to the total body, followed by that of abdominal cavity and subcutaneous fat. In the group older than 40, the ratio of organs to the total body was as follows: the abdominal cavity>muscle>subcutaneous fat. Since the age of 70, each ratio of the muscle or subcutaneous fat to the total body was the same. Women between their twenties and fifties had the highest ratio of subcutaneous fat to the total body. Since the age of 60, the ratio of the abdominal cavity became highest. The subcutaneous fat and abdominal cavity tended to increase with aging; and the muscles tended to decrease. The real area of the vertebra increased slightly, but the vertebral foramen tended to decrease with aging. In men, mean areas of the muscles were as follows: abdominis lateralis>erector spinae>psoas major>quadratus lumborum and transversospinalis>rectus abdominis muscle. The same tendency was observed for women, except for the quadratus lumborum and rectus abdominis muscle. According to Rohrer index, the real areas of all components except the vertebral foramen tended to increase in the order of types A, C, and D in men. In women, the real area of the subcutaneous fat increased as well in the order of types A, C, and D. (Namekawa, K)

  19. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    International Nuclear Information System (INIS)

    Wallace, Adam N.; Pacheco, Rafael A.; Tomasian, Anderanik; Hsi, Andy C.; Long, Jeremiah; Chang, Randy O.; Jennings, Jack W.

    2016-01-01

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reports were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact

  20. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States); Hsi, Andy C., E-mail: hsia@path.wustl.edu [Washington University School of Medicine, Division of Anatomic Pathology, Department of Pathology & Immunology (United States); Long, Jeremiah, E-mail: longj@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States); Chang, Randy O., E-mail: changr@wusm.wustl.edu [Washington University School of Medicine (United States); Jennings, Jack W., E-mail: jenningsj@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States)

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reports were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.

  1. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    Science.gov (United States)

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  2. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    Science.gov (United States)

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  4. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  5. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations.

    Science.gov (United States)

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-12-05

    The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11-L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P 6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95-0.99, P DBCV on C-arm images for safety during PVP or PKP.

  6. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  7. [Stability of ventral, dorsal and combined spondylodesis in vertebral body prosthesis implantation].

    Science.gov (United States)

    Vahldiek, M; Gossè, F; Panjabi, M M

    2002-05-01

    The purpose of this study was to evaluate the biomechanical characteristics of short-segment anterior, posterior, and combined instrumentations in lumbar spine vertebral body replacement surgery. Eight fresh frozen human cadaveric thoracolumbar spine specimens (T12-L4) were prepared for biomechanical testing. Pure moments (2.5, 5, and 7.5 Nm) of flexion-extension, left-right axial torsion, and left-right lateral bending were applied to the top vertebra in a flexibility machine and the motions of L1 vertebra with respect to L3 were recorded with an optoelectronic motion measurement system after preconditioning. One anterior, two posterior pedicle screw systems, and two combined instrumentations were tested. Load-displacement curves were recorded and neutral zone (NZ) and range of motion (ROM) were determined. The anterior instrumentation, after vertebral body replacement, showed greater motion than the intact spine, especially in axial torsion. Posterior instrumentation provided greater rigidity than the anterior instrumentation, especially in flexion-extension. The combined instrumentation provided superior rigidity in all directions compared to all other instrumentations.

  8. Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up.

    Science.gov (United States)

    Roselló-Díez, Alberto; Joyner, Alexandra L

    2015-12-01

    The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.

  9. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  10. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  11. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  12. Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual maturation.

    Science.gov (United States)

    Werner, Jan; Sfakianakis, Nikolaos; Rendall, Alan D; Griebeler, Eva Maria

    2018-05-07

    Ectothermic and endothermic vertebrates differ not only in their source of body temperature (environment vs. metabolism), but also in growth patterns, in timing of sexual maturation within life, and energy intake functions. Here, we present a mathematical model applicable to ectothermic and endothermic vertebrates. It is designed to test whether differences in the timing of sexual maturation within an animal's life (age at which sexual maturity is reached vs. longevity) together with its ontogenetic gain in body mass (growth curve) can predict the energy intake throughout the animal's life (food intake curve) and can explain differences in energy partitioning (between growth, reproduction, heat production and maintenance, with the latter subsuming any other additional task requiring energy) between ectothermic and endothermic vertebrates. With our model we calculated from the growth curves and ages at which species reached sexual maturity energy intake functions and energy partitioning for five ectothermic and seven endothermic vertebrate species. We show that our model produces energy intake patterns and distributions as observed in ectothermic and endothermic species. Our results comply consistently with some empirical studies that in endothermic species, like birds and mammals, energy is used for heat production instead of growth, and with a hypothesis on the evolution of endothermy in amniotes published by us before. Our model offers an explanation on known differences in absolute energy intake between ectothermic fish and reptiles and endothermic birds and mammals. From a mathematical perspective, the model comes in two equivalent formulations, a differential and an integral one. It is derived from a discrete level approach, and it is shown to be well-posed and to attain a unique solution for (almost) every parameter set. Numerically, the integral formulation of the model is considered as an inverse problem with unknown parameters that are estimated using a

  13. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  14. An expandable prosthesis with dual cage-and-plate function in a single device for vertebral body replacement: the clinical experience on 14 consecutive cases with vertebral tumors.

    Science.gov (United States)

    Ramírez, J J; Ramírez, J J; Chiquete, E; Gómez-Limón, E

    2011-09-01

    The aim of this paper was to test the hypothesis that an expandable prosthesis with dual cage-and-plate function can provide immediate and durable spine stabilization after corpectomy. We designed an expandable vertebral body prosthesis with dual cage-and-plate function in a single device (JR-prosthesis). Anatomical studies were performed to design a titanium-made prosthesis. Cadaver assays were done with a stainless steal device to test fixation and adequacy to the human spine anatomy. Then, 14 patients with vertebral tumors (8 metastatic) underwent corpectomy and vertebral body replacement with the JR-prosthesis. All patients had neurological deficit, severe pain and spine instability (mean follow-up: 25.4 months). Mean pain score before surgery in a visual analog scale improved from 7.6 to 3.0 points after operation (P=0.002). All patients achieved at least one grade of improvement in the Frankel score (P=0.003), excepting the 3 patients with Frankel grade A presurgery. Two patients with renal cell carcinoma died during the following 4 days after surgery (renal failure and massive bleeding), the rest attained a painless and stable spine immediately and maintained for long periods. No significant infections or implant failures were registered. A non-fatal case of inferior vena cava surgical injury was observed (repaired during surgery without further complications). The JR-prosthesis stabilizes the spine immediately after surgery and for the rest of the patients' life. To our knowledge, this is the first report on the clinical experience of any expandable vertebral body prosthesis with dual cage-and-plate function in a single device. These observations await confirmation in different scenarios.

  15. Vertebral body bone mineral density in patients with lumbar spondylolysis: a quantitative CT study.

    Science.gov (United States)

    Gezer, Naciye Sinem; Balcı, Ali; Kalemci, Orhan; Köremezli, Nevin; Başara Akın, Işıl; Ur, Koray

    2017-01-01

    Spondylolysis is known to be a part of a disease process, which describes a defect in the pars interarticularis of vertebra. We aimed to use quantitative computed tomography (QCT) to measure vertebral body bone mineral density (BMD) in patients with lumbar spondylolysis and compare it with readings in controls. Forty symptomatic patients with lumbar spondylolysis aged 18-52 years and 40 matched controls of same sex and approximate age (±2 years) were included in the study. Measurements of BMD were performed by QCT analysis for each vertebral body from T12 to L5 and mean BMD was calculated for each case. Of 40 patients, 22 (55%) demonstrated L5 spondylolysis, 14 (35%) L4 spondylolysis, three (7.5%) L3 spondylolysis, and one (2.5%) L2 spondylolysis. Spondylolisthesis was found in 29 patients (73%). Patients with spondylolisthesis were significantly older than patients without spondylolisthesis (42±6.9 vs. 37.2±5.4, P = 0.024). Mean BMD value of the patient group was significantly lower than that of the controls (105±24 mg/cm³ vs. 118.7±25.6 mg/cm³, P = 0.015). Subgroup analysis of 19 patients and 19 controls under the age of 40 revealed that the mean BMD value of the patients was significantly lower than that of the controls in the younger age group as well (108.7±23.5 mg/cm³ vs. 130±25.8 mg/cm³, P = 0.009). This study demonstrated that patients with spondylolysis had significantly lower mean vertebral body BMD compared with controls.

  16. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    Science.gov (United States)

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  17. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT.

    Science.gov (United States)

    Burns, Joseph E; Yao, Jianhua; Muñoz, Hector; Summers, Ronald M

    2016-01-01

    To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14-88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a

  18. Midterm Follow-Up of Vertebral Geometry and Remodeling of the Vertebral Bidisk Unit (VDU) After Percutaneous Vertebroplasty of Osteoporotic Vertebral Fractures

    International Nuclear Information System (INIS)

    Pitton, Michael Bernhard; Koch, Ulrike; Drees, Philip; Dueber, Christoph

    2009-01-01

    The purpose of this study was to investigate geometrical stability and preservation of height gain of vertebral bodies after percutaneous vertebroplasty during 2 years' follow-up and to elucidate the geometric remodeling process of the vertebral bidisk unit (VDU) of the affected segment. Patients with osteoporotic vertebral compression fractures with pain resistant to analgetic drugs were treated with polymethylmethacrylate vertebroplasty. Mean ± standard error cement volume was 5.1 ± 2.0 ml. Vertebral geometry was documented by sagittal and coronal reformations from multidetector computed tomography data sets: anterior, posterior, and lateral vertebral heights, end plate angles, and compression index (CI = anterior/posterior height). Additionally, the VDU (vertebral bodies plus both adjacent disk spaces) was calculated from the multidetector computed tomography data sets: anterior, posterior, and both lateral aspects. Patients were assigned to two groups: moderate compression with CI of >0.75 (group 1) and severe compression with CI of o vs. -1.0 ± 2.7 o , P o , P < 0.01) and compression indices (+0.11 ± 0.15, P < 0.01). Thus, posterior height loss of vertebrae and adjacent intervertebral disk spaces contributed to a remodeling of the VDU, resulting in some compensation of the kyphotic malposition of the affected vertebral segment. Vertebroplasty improved vertebral geometry during midterm follow-up. In severe vertebral compression, significant height gain and improvement of end plate angles were achieved. The remodeling of the VDUs contributes to reduction of kyphosis and an overall improvement of the statics of the spine.

  19. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath.

    Science.gov (United States)

    Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K

    2013-08-01

    We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. © 2013 Anatomical Society.

  20. The value of whole-body bone scan combined with SPECT/CT in diagnosing benign and malignant vertebral fractures

    International Nuclear Information System (INIS)

    Xu Feng; Ma Yubo; Yuan Qi

    2012-01-01

    Objective: To evaluate the value of whole-body bone scan (WBS) combined with SPECT/CT in diagnosing of benign and malignant vertebral fractures. Methods: WBS and SPECT/CT data of 52 cases with vertebral fractures were reviewed and analyzed retrospectively, and the differences between the benign and malignant vertebral fractures were compared. Results: WBS found 78.8% (41/52) patients had lesions in the bones besides the spine, but the benign group was less in number. SPECT/CT found that malignant group was more likely to have bone destructions or pedicle radionuclide uptake than the benign group.Both of them had no radioactivity concentration in the tuberculosis or hyperparathyroidism. Conclusion: Although it still had some limitations,WBS combined with SPECT/CT is valuable in the diagnosis of benign and malignant vertebral fractures. (authors)

  1. Evaluation of changes in vertebral body density following administration of contrast medium during routine CT examination

    International Nuclear Information System (INIS)

    Janicek, M.; Bruna, J.; Stenhova, H.

    1984-01-01

    The possibility is discussed of depicting changes in the density of spongiosis of the vertebral body in normal patients after intravenous administration of a bolus of 40 ml 60% Diazetrizoate in the course of a routine CT examination. The average increase in density immediately after the administration of the contrast medium is 12 H (8%), in the course of 10 minutes is reduced to 5 H (4%) against the initial values in native examination. These average changes are statistically significant, in individual patients, however, the increase in density following the administration of a contrast medium fluctuates considerably (from 0.7% to 10%). Only systematic comparison with various pathological conditions will make it possible to assess the possibilities of the evaluation of the structure of the vertebral body in routine CT with the administration of a contrast medium into the blood flow. (author)

  2. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    Science.gov (United States)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  3. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    Science.gov (United States)

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  4. Treatment of osteoid osteoma in the vertebral body of the lumbar spine by radiofrequency ablation

    International Nuclear Information System (INIS)

    Cristante, Alexandre Fogaca; Barros Filho, Tarcisio; Oliveira, Reginaldo Perilo de; Babrabrini, Almir F.; Teixeira, William G.J.

    2007-01-01

    A case of Osteoid osteoma, a rare bone tumor, is studied in a 44-year-old female patient. Scintigraphy using Tc 99m demonstrated increased uptake on the left side of the vertebral body of the fourth vertebra. Computed tomography of the lumbar spine revealed an area of hypoattenuation surrounded by an area of hyperattenuation (bone sclerosis), suggestive of an osteogenic tumor . Complementary examination using MRI demonstrated a signal alteration of 1 cm diameter in the vertebral body of the fourth lumbar vertebra, surrounded by an area of signal compatible with bone edema. The anamnesis data, physical evaluation, and complementary examinations suggested the presence of osteoid osteoma in the vertical body of the fourth lumbar vertebra. A tomography-guided biopsy was performed, and material was collected for cultures, pathological studies in paraffin, and fast freezing (in print). Pathological study of frozen sections ruled out the presence of neoplastic cells. At the same time, minimally invasive destruction of the tumor was performed through a pedicullar approach, via a radiofrequency probe. One year after the procedure, computed tomography did not demonstrate any tumor, and the patient did not report any lumbar pain. (MAC)

  5. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Directory of Open Access Journals (Sweden)

    John P Wilson

    Full Text Available Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  6. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Science.gov (United States)

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  7. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    Science.gov (United States)

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  8. Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability.

    Science.gov (United States)

    Perinetti, Giuseppe; Primozic, Jasmina; Sharma, Bhavna; Cioffi, Iacopo; Contardo, Luca

    2018-03-28

    The capability of the cervical vertebral maturation (CVM) method in the identification of the mandibular growth peak on an individual basis remains undetermined. The diagnostic reliability of the six-stage CVM method in the identification of the mandibular growth peak was thus investigated. From the files of the Oregon and Burlington Growth Studies (data obtained between early 1950s and middle 1970s), 50 subjects (26 females, 24 males) with at least seven annual lateral cephalograms taken from 9 to 16 years were identified. Cervical vertebral maturation was assessed according to the CVM code staging system, and mandibular growth was defined as annual increments in Co-Gn distance. A diagnostic reliability analysis was carried out to establish the capability of the circumpubertal CVM stages 2, 3, and 4 in the identification of the imminent mandibular growth peak. Variable durations of each of the CVM stages 2, 3, and 4 were seen. The overall diagnostic accuracy values for the CVM stages 2, 3, and 4 were 0.70, 0.76, and 0.77, respectively. These low values appeared to be due to false positive cases. Secular trends in conjunction with the use of a discrete staging system. In most of the Burlington Growth Study sample, the lateral head film at age 15 was missing. None of the CVM stages 2, 3, and 4 reached a satisfactorily diagnostic reliability in the identification of imminent mandibular growth peak.

  9. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties.

    Science.gov (United States)

    Oravec, Daniel; Kim, Woong; Flynn, Michael J; Yeni, Yener N

    2018-05-17

    Creep, the time dependent deformation of a structure under load, is an important viscoelastic property of bone and may play a role in the development of permanent deformity of the vertebrae in vivo leading to clinically observable spinal fractures. To date, creep properties and their relationship to geometric, microstructural, and material properties have not been described in isolated human vertebral bodies. In this study, a range of image-based measures of vertebral bone geometry, bone mass, microarchitecture and mineralization were examined in multiple regression models in an effort to understand their contribution to creep behavior. Several variables, such as measures of mineralization heterogeneity, average bone density, and connectivity density persistently appeared as significant effects in multiple regression models (adjusted r 2 : 0.17-0.56). Although further work is needed to identify additional tissue properties to fully describe the portion of variability not explained by these models, these data are expected to help understand mechanisms underlying creep and improve prediction of vertebral deformities that eventually progress to a clinically observable fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. INFLUENCE OF DIETARY PHYTIC ACID AND PHYTASE ON GROWTH, DIGESTIBILITY, AND VERTEBRAL PHOSPHORUS OF JUVENILE JAPANESE FLOUNDER, Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2013-06-01

    Full Text Available Triplicate groups of juvenile Japanese flounder (0.56 g were fed with six experimental diets to examine the effects of phytic acid, with or without phytase on growth performances, nutrient digestibility, and vertebral phosphorus (P content. Diet without both phytic acid (PA and phytase supplementation was used as control. One diet was added with 10 g PA/kg without phytase supplement. Four diets were formulated to contain two levels of phytase (1,000 FTU or 2,000 FTU phytase/kg diet combined with 2 levels of PA (10 and 20 g/kg diet. All diets were added with 10 g/kg in-organic P to meet flounder requirement. After 50 days culture, fish fed 10PA/2,000P grew significantly (P0.05 effects on feed intake and FCR. However, fish fed 10 g PA/kg combined with phytase had significant (P<0.05 higher whole body lipid, ash, and P than other groups. Moreover, P digestibility and vertebral P content were significantly increased by dietary phytase. This finding suggested that dietary phytase had potential to enhance the growth and nutrient utilization in juvenile Japanese flounder fed diet containing phytic acid. Specifically, inclusion of 2,000 FTU phytase/kg diet gave better performances when diet containing PA at level of 10 g/kg diet.

  11. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison

    OpenAIRE

    Guzle Adas, Yasemin; Yazici, Omer; Kekilli, Esra; Kiran, Ferat

    2018-01-01

    Objective: Metallic implants have impacts on dose distribution of radiotherapy. Our purpose is evaluating impact of metallic implants with different dose calculation algorithms on dose distribution. Material and Methods: Two patients with metallic implants on vertebral body were included in this study. They were treated with stereotactic radiotherapy. The data of the patients were retrospectively re-calculated with different TPSs and calculation algorithms. Ray-Tracing (Ry-Tc), Mont...

  12. The cervical vertebral maturation method: A user's guide.

    Science.gov (United States)

    McNamara, James A; Franchi, Lorenzo

    2018-03-01

    The cervical vertebral maturation (CVM) method is used to determine the craniofacial skeletal maturational stage of an individual at a specific time point during the growth process. This diagnostic approach uses data derived from the second (C2), third (C3), and fourth (C4) cervical vertebrae, as visualized in a two-dimensional lateral cephalogram. Six maturational stages of those three cervical vertebrae can be determined, based on the morphology of their bodies. The first step is to evaluate the inferior border of these vertebral bodies, determining whether they are flat or concave (ie, presence of a visible notch). The second step in the analysis is to evaluate the shape of C3 and C4. These vertebral bodies change in shape in a typical sequence, progressing from trapezoidal to rectangular horizontal, to square, and to rectangular vertical. Typically, cervical stages (CSs) 1 and CS 2 are considered prepubertal, CS 3 and CS 4 circumpubertal, and CS 5 and CS 6 postpubertal. Criticism has been rendered as to the reproducibility of the CVM method. Diminished reliability may be observed at least in part due to the lack of a definitive description of the staging procedure in the literature. Based on the now nearly 20 years of experience in staging cervical vertebrae, this article was prepared as a "user's guide" that describes the CVM stages in detail in attempt to help the reader use this approach in everyday clinical practice.

  13. Imaging of vertebral fracture in osteoporosis

    International Nuclear Information System (INIS)

    Skowronska-Jozwiak, E.; Lewinski, A.; Bieganski, T.

    2008-01-01

    Vertebral collapses are the most frequent fractures in osteoporosis. They are often overlooked, although their presence is a strong risk factor for development of new fractures. Lateral radiographs of the spine are the accepted standard for assessment of fractures. Qualitative (visual), semiquantitative and quantitative (morphometric) techniques are useful in determining the compressive deformities of vertebral bodies. In the present paper, the advantages and the disadvantages of these methods are discussed. The improvement of scan quality allows to use DXA technique to diagnose the fractures, in both - the visual and the morphometric way. The vertebral morphologic assessment also seems to be an important diagnostic tool in pediatric osteoporosis. Application of multidetector CT and especially MR in vertebral imaging of osteoporosis, improves the sensitivity of fracture detection and enables the differentiation of benign from malignant vertebral body collapses. (author)

  14. Mandibular growth changes and cervical vertebral maturation. a cephalometric implant study.

    Science.gov (United States)

    Gu, Yan; McNamara, James A

    2007-11-01

    To evaluate mandibular dimensional changes and regional remodeling occurring during five intervals of circumpubertal growth. This investigation evaluated a unique sample of subjects in whom tantalum implants were placed into the craniofacial complex during childhood. The sample was obtained from the Mathews and Ware implant study originally conducted at the University of California San Francisco in the 1970s, with longitudinal cephalometric records of 20 subjects (13 female, 7 male) available for evaluation. Cephalograms at six consecutive stages of cervical vertebral maturation (CS1 through CS6) were analyzed. Peak mandibular growth was noted during the interval from CS3 to CS4. Forward rotation of the mandible was due to greater mandibular growth posteriorly than anteriorly. Progressive closure of the condylar-ramus-occlusal (CRO) angle resulted in a forward and upward orientation of the ramus relative to the corpus of the mandible due to increased vertical growth of the condyle. A peak in mandibular growth at puberty was substantiated. Mandibular remodeling and condylar rotation continue to occur after the growth spurt.

  15. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    Science.gov (United States)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  16. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    Science.gov (United States)

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  17. Influence of physical activity on vertebral strength during late adolescence.

    Science.gov (United States)

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Balloon kyphoplasty for aged osteoporotic vertebral compressive fractures using domestic instruments

    International Nuclear Information System (INIS)

    Sun Gang; Jin Peng; Yi Yuhai; Xie Zhiyong; Zhang Xuping; Zhang Kangli

    2006-01-01

    Objective: To evaluate the efficacy and safety of balloon kyphoplasty in the treatment of painful osteoporosis vertebral compressive fractures using instruments made in China. Methods: 10 cases of painful osteoporotic vertebral compressive fractures, involved 11 vertebrae. Under X-ray fluoroscopy monitoring, the inflatable balloon were inserted into the fractured vertebral body via transpedicular route bilaterally. The balloon was inflated with injected contrast agent to restore vertebral height and form a cavity within vertebral body. The cavity was then filled with bone cement in toothpaste state period. The postoperative symptoms and the radiographic findings of vertebral height recovery were observed. Results: Balloon kyphoplasty was successful in all 10 cases with dramatic pain relief within 48 hours after the procedure without clinical complications. The height restoration of vertebral body was satisfactory with correction of kyphosis up to 6 degree-24 degree. Leakage of a small quantity of bone cement occurred at only the anterior border of the vertebral body. Conclusions: Kyphoplasty using domestic instruments for painful osteoporotic vertebral compressive fractures was effective and safe. (authors)

  19. The variability of vertebral body volume and pain associated with osteoporotic vertebral fractures: conservative treatment versus percutaneous transpedicular vertebroplasty.

    Science.gov (United States)

    Andrei, Diana; Popa, Iulian; Brad, Silviu; Iancu, Aida; Oprea, Manuel; Vasilian, Cristina; Poenaru, Dan V

    2017-05-01

    Osteoporotic vertebral fractures (OVF) can lead to late collapse which often causes kyphotic spinal deformity, persistent back pain, decreased lung capacity, increased fracture risk and increased mortality. The purpose of our study is to compare the efficacy and safety of vertebroplasty against conservative management of osteoporotic vertebral fractures without neurologic symptoms. A total of 66 patients with recent OVF on MRI examination were included in the study. All patients were admitted from September 2009 to September 2012. The cohort was divided into two groups. The first study group consisted of 33 prospectively followed consecutive patients who suffered 40 vertebral osteoporotic fractures treated by percutaneous vertebroplasty (group 1), and the control group consisted of 33 patients who suffered 41 vertebral osteoporotic fractures treated conservatively because they refused vertebroplasty (group 2). The data collection has been conducted in a prospective registration manner. The inclusion criteria consisted of painful OVF matched with imagistic findings. We assessed the results of pain relief and minimal sagittal area of the vertebral body on the axial CT scan at presentation, after the intervention, at six and 12 months after initial presentation. Vertebroplasty with poly(methyl methacrylate) (PMMA) was performed in 30 patients on 39 VBs, including four thoracic vertebras, 27 vertebras of the thoracolumbar jonction and eight lumbar vertebras. Group 2 included 30 patients with 39 OVFs (four thoracic vertebras, 23 vertebras of the thoracolumbar junction and 11 lumbar vertebras). There was no significant difference in VAS scores before treatment (p = 0.229). The mean VAS was 5.90 in Group 1 and 6.28 in Group 2 before the treatment. Mean VAS after vertebroplasty was 0.85 in Group 1. The mean VAS at six months was 0.92 in Group 1 and 3.00 in Group 2 (p pain and avoid VB collapse, vertebroplasty is the recommended treatment in OCFs. Considering the

  20. Vertebral metastases: characteristic MRI findings due to epidural carcinomatous inflitration

    International Nuclear Information System (INIS)

    Hutzelmann, A.; Palmie, S.; Freund, M.

    1997-01-01

    Purpose: In cases of lumbar vertebral metastasis associated with anterior epidural carcinomatous infiltration, we have observed that infiltrations tend to respect the midline. This study led to the systematic recognition of these phenomena in vertebral metastases. Materials and Methods: 11 Patients with 17 vertebral metastases and adjacent anterior epidural infiltration were reviewed retrospectively. All cases were studied by MRI. The routinely used imaging technique included spin echo (SE) T 1 and T 2 weighted sequences in the sagittal plane native and T 1 -SE without and with Gd-DTPA in the axial planes. The radiological findings of these phenomena and the anatomy were studied. Results: We observed these phenomena to be uni- or bilateral in 88.3% of all cases with intraspinal anterior epidural carcinomatous infiltration, especially in that part of the vertebral body where the basal vertebral venous plexus was located. Conclusion: We conclude that vertebral metastases respect the midline. We interpret this fact as being due the anatomy of the vertebral body and especially its stabilization by the posterior longitudinal ligament. These findings may be helpful in the differential diagnosis of vertebral body metastases with epidural infiltration in contrast to intraspinal processes which proceed with the destruction of the vertebral body. (orig.) [de

  1. Percutaneous CT-Guided Biopsy of C3 Vertebral Body: Modified Approach for an Old Procedure

    International Nuclear Information System (INIS)

    Pua, Uei; Chan, Stephen Yung-Wei

    2013-01-01

    Percutaneous biopsy of upper cervical vertebrae is challenging due to the various critical structures in the location and often requires difficult trajectory such as transoral or paramaxillary approaches. The purpose of this manuscript is to illustrate the utility of head rotation in creating a potential space for direct percutaneous access to C3 vertebral body for safe biopsy.

  2. Percutaneous CT-Guided Biopsy of C3 Vertebral Body: Modified Approach for an Old Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei, E-mail: druei@yahoo.com [Tan Tock Seng Hospital, Department of Diagnostic Radiology (Singapore); Chan, Stephen Yung-Wei [Tan Tock Seng Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine (Singapore)

    2013-06-15

    Percutaneous biopsy of upper cervical vertebrae is challenging due to the various critical structures in the location and often requires difficult trajectory such as transoral or paramaxillary approaches. The purpose of this manuscript is to illustrate the utility of head rotation in creating a potential space for direct percutaneous access to C3 vertebral body for safe biopsy.

  3. X-ray image segmentation for vertebral mobility analysis

    International Nuclear Information System (INIS)

    Benjelloun, Mohammed; Mahmoudi, Said

    2008-01-01

    The goal of this work is to extract the parameters determining vertebral motion and its variation during flexion-extension movements using a computer vision tool for estimating and analyzing vertebral mobility. To compute vertebral body motion parameters we propose a comparative study between two segmentation methods proposed and applied to lateral X-ray images of the cervical spine. The two vertebra contour detection methods include (1) a discrete dynamic contour model (DDCM) and (2) a template matching process associated with a polar signature system. These two methods not only enable vertebra segmentation but also extract parameters that can be used to evaluate vertebral mobility. Lateral cervical spine views including 100 views in flexion, extension and neutral orientations were available for evaluation. Vertebral body motion was evaluated by human observers and using automatic methods. The results provided by the automated approaches were consistent with manual measures obtained by 15 human observers. The automated techniques provide acceptable results for the assessment of vertebral body mobility in flexion and extension on lateral views of the cervical spine. (orig.)

  4. Vertebral morphometry by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Boyanov, M.

    2002-01-01

    Vertebral fractures are a key feature of overt osteoporosis. Different X-ray morphometric techniques have been developed for quantification of changes in vertebral body shape. In recent years, a new method was implemented based on dual-energy X-ray absorptiometry. Morphometric X-ray absorptiometry, MXA, is a source of lower radiation and there is no image distortion. Several aspects of its application are under heavy discussion: image quality, accuracy and precision, reference databases, age changes in vertebral shape. The differential diagnosis of vertebral fracture/deformity is difficult. MXA has prove its value in large epidemiological studies on prevalence of vertebral deformities, as well in assessing the effects of different diseases and medications on vertebral body architecture. MXA is a promising method for future research and clinical work. (author)

  5. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    April Hayward

    2016-10-01

    Full Text Available Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”. The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.

  6. Effectiveness of the cervical vertebral maturation method to predict postpeak circumpubertal growth of craniofacial structures.

    NARCIS (Netherlands)

    Fudalej, P.S.; Bollen, A.M.

    2010-01-01

    INTRODUCTION: Our aim was to assess effectiveness of the cervical vertebral maturation (CVM) method to predict circumpubertal craniofacial growth in the postpeak period. METHODS: The CVM stage was determined in 176 subjects (51 adolescent boys and 125 adolescent girls) on cephalograms taken at the

  7. An Improved Version of the Cervical Vertebral Maturation (CVM) Method for the Assessment of Mandibular Growth in Deutero-Malay Sub Race

    Science.gov (United States)

    Oscandar, Fahmi; Malinda, Yuti; Azhari, H.; Murniati, Nani; Yeh Ong, Sing; Subiyanto; Supian, Sudradjat

    2018-01-01

    In this paper, Cervical Vertebral Maturation method was used to assess the mandibular growth in Deutero-Malay sub race. Twenty eight laterals Cephalometric radiographs of Deutero-Malay sub race aged 9-15 were observed. The observation used stratified random sampling by measuring the quantitative and qualitative assessment of the 2nd through 4th cervical vertebra of the subjects. It produced the diagram of developmental stages of cervical vertebrae for Deutero-Malay sub race. The diagram can be used to determine mandibular growth in term of qualitative by matching the shape of cervical vertebrae. It was obtained that the Cervical Vertebral Maturation method can be used to assess mandibular growth in Deutero-Malay sub race by matching the shape of cervical vertebrae to the diagram of developmental stages of cervical vertebrae. In addition, Cervical Vertebral Maturation method can be used to identification person’s age.

  8. Origin of the vertebrate body plan via mechanically biased conservation of regular geometrical patterns in the structure of the blastula.

    Science.gov (United States)

    Edelman, David B; McMenamin, Mark; Sheesley, Peter; Pivar, Stuart

    2016-09-01

    We present a plausible account of the origin of the archetypal vertebrate bauplan. We offer a theoretical reconstruction of the geometrically regular structure of the blastula resulting from the sequential subdivision of the egg, followed by mechanical deformations of the blastula in subsequent stages of gastrulation. We suggest that the formation of the vertebrate bauplan during development, as well as fixation of its variants over the course of evolution, have been constrained and guided by global mechanical biases. Arguably, the role of such biases in directing morphology-though all but neglected in previous accounts of both development and macroevolution-is critical to any substantive explanation for the origin of the archetypal vertebrate bauplan. We surmise that the blastula inherently preserves the underlying geometry of the cuboidal array of eight cells produced by the first three cleavages that ultimately define the medial-lateral, dorsal-ventral, and anterior-posterior axes of the future body plan. Through graphical depictions, we demonstrate the formation of principal structures of the vertebrate body via mechanical deformation of predictable geometrical patterns during gastrulation. The descriptive rigor of our model is supported through comparisons with previous characterizations of the embryonic and adult vertebrate bauplane. Though speculative, the model addresses the poignant absence in the literature of any plausible account of the origin of vertebrate morphology. A robust solution to the problem of morphogenesis-currently an elusive goal-will only emerge from consideration of both top-down (e.g., the mechanical constraints and geometric properties considered here) and bottom-up (e.g., molecular and mechano-chemical) influences. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Use of cervical vertebral dimensions for assessment of children growth.

    Science.gov (United States)

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (pcervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (pcervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (pmaturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  10. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: gigicazzato@hotmail.it; Garnon, Julien, E-mail: juliengarnon@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital, Interventional Radiology Department (France)

    2017-03-15

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  11. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    Science.gov (United States)

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  12. Growth type of vertebral centra and the hard tissue observed by microradiography of the rainbow trout

    International Nuclear Information System (INIS)

    Kubo, Y.; Asano, H.

    1987-01-01

    To clarify the growth feature and the structure of hard tissue, we studied the vertebral centrum of rainbow trout Salmo gairdneri, using three specimens (BL: 21.0, 29.0 and 40.0cm). We examined the ratio of centrum length to centrum diameter in each vertebral centrum and obtained the value of 0.8-1.0 in most centra. This indicates that the vertebral centra of rainbow trout belong to the so-called equivalent type. The hard tissue was observed by microradiography, with the longitudinal and cross sections (about 100 μm)cut through the center of notochordal pore. The microradiograph of thin section of centrurn differentiated serially and changed in pattern, but it is clear to sustain the specific characteristics. In longitudinal sections, the V-shaped part of bone was composed of structure like compact bone through the length of vertebral column. In cross sections, the notochordal pore was enclosed by the radial trabecular bones, the arrangement gradually turning toward the posterior centra like paired fans set opposite each other laterally

  13. Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study.

    Science.gov (United States)

    Been, Ella; Li, Ling; Hunter, David J; Kalichman, Leonid

    2011-07-01

    The objective is to evaluate the geometric parameters of vertebral bodies and intervertebral discs in spinal segments adjacent to spondylolysis and spondylolisthesis. This pilot cross-sectional study was an ancillary project to the Framingham Heart Study. The presence of spondylolysis and spondylolisthesis as well as measurements of spinal geometry were identified on CT imaging of 188 individuals. Spinal geometry measurements included lordosis angle, wedging of each lumbar vertebra and intervertebral disc. Last measurements were used to calculate ΣB, the sum of the lumbar L1-L5 body wedge angles; and ΣD, the sum of the lumbar L1-L5 intervertebral disc angles. Using Wilcoxon-Mann-Whitney test we compared the geometric parameters between individuals with no pathology and ones with spondylolysis (with no listhesis) at L5 vertebra, ones with isthmic spondylolisthesis at L5-S1 level, and ones with degenerative spondylolisthesis at L5-S1 level. Spinal geometry in individuals with spondylolysis or listhesis at L5 shows three major patterns: In spondylolysis without listhesis, spinal morphology is similar to that of healthy individuals; In isthmic spondylolisthesis there is high lordosis angle, high L5 vertebral body wedging and very high L4-5 disc wedging; In degenerative spondylolisthesis, spinal morphology shows more lordotic wedging of the L5 vertebral body, and less lordotic wedging of intervertebral discs. In conclusion, there are unique geometrical features of the vertebrae and discs in spondylolysis or listhesis. These findings need to be reproduced in larger scale study.

  14. Monostotic fibrous dysplasia of a lumbar vertebral body with secondary aneurysmal bone cyst formation: a case report

    NARCIS (Netherlands)

    Snieders, N.M.E.; Kemenade, van F.J.; Royen, van B.J.

    2009-01-01

    We report the case of a 25-year-old Caucasian woman with symptomatic monostotic fibrous dysplasia of the fourth lumbar vertebral body. The patient suffered from a five-week history of progressive low back pain, radiating continuously to the left leg. Her medical history and physical and neurological

  15. Effects of vertebral-body-sparing proton craniospinal irradiation on the spine of young pediatric patients with medulloblastoma

    Directory of Open Access Journals (Sweden)

    Iain MacEwan, MD

    2017-04-01

    Conclusion: Vertebral-body-sparing CSI with proton beam did not appear to cause increased severe spinal abnormalities in patients treated at our institution. This approach could be considered in future clinical trials in an effort to reduce toxicity and the risk of secondary malignancy and to improve adult height.

  16. Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography

    International Nuclear Information System (INIS)

    Eriksson, S.; Isberg, B.; Lindgren, U.; Huddinge Univ. Hospital

    1988-01-01

    The lumbar spine of 14 cadavers was studied both by 153 Gd dual photon absorptiometry (DPA) and quantitative computed tomography (QCT) at 96 and 125 kVp. The intact spine and the individual vertebrae were analyzed. After these measurements the ash content of the vertebral body, the posterior elements, and the transverse processes was determined. The fat content of the vertebral body as well as its volume was also measured. With DPA, the bone mineral content (BMC) determined in situ as well as on excised spine specimens correlated highly with the amount of total vertebral ash (r > 0.92, SEE 0.81, SEE 3 ). The so-called corpus density and central density determinations were less accurate. No difference in accuracy was found between measurements when using 3 mm and 4.5 mm step intervals. Variations in the distribution of mineral between the vertebral body and the posterior elements contribute to the error in predicting vertebral body mineral with DPA. QCT gave a smaller error when a cylindric portion of the vertebral body with a 20 diameter was measured compared with one with a 9 mm diameter, when the dual energy technique was used (p 3 ). Single energy QCT was insignificantly less accurate than dual energy QCT. Only small differences were found between vertebrae with high fat density of the vertebral body when single or dual QCT was used. QCT was more accurate than DPA in the prediction of the mineral density of individual vertebral bodies (p < 0.05) but no difference was found when the average values for the lumbar spine were calculated. (orig.)

  17. Vertebral artery dissection in weightlifter with performance enhancing drug use

    OpenAIRE

    Low, Andrew; Dovey, Julie; Ash-Miles, Janice

    2011-01-01

    This case report describes a transient ischaemic attack secondary to vertebral artery dissection (VAD) in a young male body builder. This occurred following weight training with weights across the back and shoulders. The patient was also known to take multiple performance enhancing agents including anabolic steroids, slimming agents, stimulants and human growth hormone. Cases of VAD have been described with cervical manipulation in the past and an association between the use of anabolic stero...

  18. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2015-01-01

    Conclusions: Depression of the thoracolumbar posterior vertebral body may be informative for the estimation of cement location on C-arm images. To reduce type-B leakage, DCPW should be made longer than DBCV on C-arm images for safety during PVP or PKP.

  19. Quantitative image analysis of vertebral body architecture - improved diagnosis in osteoporosis based on high-resolution computed tomography

    International Nuclear Information System (INIS)

    Mundinger, A.; Wiesmeier, B.; Dinkel, E.; Helwig, A.; Beck, A.; Schulte Moenting, J.

    1993-01-01

    71 women, 64 post-menopausal, were examined by single-energy quantitative computed tomography (SEQCT) and by high-resolution computed tomography (HRCT) scans through the middle of lumbar vertebral bodies. Computer-assisted image analysis of the high-resolution images assessed trabecular morphometry of the vertebral spongiosa texture. Texture parameters differed in women with and without age-reduced bone density, and in the former group also in patients with and without vertebral fractures. Discriminating parameters were the total number, diameter and variance of trabecular and intertrabecular spaces as well as the trabecular surface (p < 0.05)). A texture index based on these statistically selected morphometric parameters identified a subgroup of patients suffering from fractures due to abnormal spongiosal architecture but with a bone mineral content not indicative for increased fracture risk. The combination of osteodensitometric and trabecular morphometry improves the diagnosis of osteoporosis and may contribute to the prediction of individual fracture risk. (author)

  20. Endplates Changes Related to Age and Vertebral Segment

    Directory of Open Access Journals (Sweden)

    Carlos Fernando P. S. Herrero

    2014-01-01

    Full Text Available Endplate separations are defined as the presence of a space between the hyaline cartilage and the cortical bone of the adjacent vertebral body. This study evaluates endplate separations from the vertebral body and intervertebral discs and verifies if endplate separation is related to age and the spinal level. Groups were formed based on age (20–40 and 41–85 years old and the vertebral segment (T7-T8 and L4-L5 segments. Histological analysis included assessment of the length of the vertebral endplates, the number and dimensions of the separations, and orientation of the collagen fibers, in the mid-sagittal slice. Two indexes were created: the separation index (number of separations/vertebral length and separation extension index (sum of all separations/vertebral length. The results of the study demonstrated a direct relationship between the density of separations in the endplate and two variables: age and spinal level.

  1. Use of cervical vertebral dimensions for assessment of children growth

    Directory of Open Access Journals (Sweden)

    Maria de Paula Caldas

    2007-04-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. MATERIAL AND METHODS: The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3 method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. RESULTS: The analysis of the Brazilian female children data showed that there was a statistically significant difference (p0.05 was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05 between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05. CONCLUSIONS: The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  2. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    Science.gov (United States)

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Calcifying discopathy in infancy in the cervical spine: Evaluation of vertebral alterations over a period of time

    Energy Technology Data Exchange (ETDEWEB)

    Urso, S; Colajacomo, M; Migliorini, A; Fassari, F M

    1987-07-01

    CDI in the cervical spine has already been observed and described by many authors, as a well-defined clinico-radiological syndrome with a benign course. The clinical picture is composed of: pain and functional limitation, sometimes with a stiff neck, more rarely slight fever, increase of the erythrocyte sedimentation rate or leukocytosis. The radiographic picture consists of the association of morphological and structural alterations of vertebral bodies adjacent to one or more disc calcifications usually centrally sited, sometimes associated with anterior or posterior herniations. On the basis of the observation of 7 patients, in the 15-year-old range, the authors propose to evaluate the changes of both the vertebral bodies and the discs involved in the disease over a period of time. The repetition of even modest alterations, that persist in time, testify to the involvement of the vertebral growth perhaps, more than the discal alterations connected with the calcification.

  4. Assisted techniques for vertebral cementoplasty: Why should we do it?

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M., E-mail: mutomar@tiscali.it [Department of Diagnostic Imaging, Section of Neuroradiology—“A. Cardarelli” Hospital, Naples (Italy); Marcia, S. [Section of Radiology—Santissima Trinità Hospital, Cagliari (Italy); Guarnieri, G. [Department of Diagnostic Imaging, Section of Neuroradiology—“A. Cardarelli” Hospital, Naples (Italy); Pereira, V. [Unit of Interventional Neuroradiology–HUG, Geneva (Switzerland)

    2015-05-15

    Assisted techniques (AT) for vertebral cementoplasty include multiple mini-invasive percutaneous systems in which vertebral augmentation is obtained through mechanical devices with the aim to reach the best vertebral height restoration. As an evolution of the vertebroplasty, the rationale of the AT-treatment is to combine the analgesic and stability effect of cement injection with the restoration of a physiological height for the collapsed vertebral body. Reduction of the vertebral body kyphotic deformity, considering the target of normal spine biomechanics, could improve all systemic potential complications evident in patient with vertebral compression fracture (VCF). Main indications for AT are related to fractures in fragile vertebral osseous matrix and non-osteoporotic vertebral lesions due to spine metastasis or trauma. Many companies developed different systems for AT having the same target but different working cannula, different vertebral height restoration system and costs. Aim of this review is to discuss about vertebral cementoplasty procedures and techniques, considering patient inclusion and exclusion criteria as well as all related minor and/or major interventional complications.

  5. Assisted techniques for vertebral cementoplasty: Why should we do it?

    International Nuclear Information System (INIS)

    Muto, M.; Marcia, S.; Guarnieri, G.; Pereira, V.

    2015-01-01

    Assisted techniques (AT) for vertebral cementoplasty include multiple mini-invasive percutaneous systems in which vertebral augmentation is obtained through mechanical devices with the aim to reach the best vertebral height restoration. As an evolution of the vertebroplasty, the rationale of the AT-treatment is to combine the analgesic and stability effect of cement injection with the restoration of a physiological height for the collapsed vertebral body. Reduction of the vertebral body kyphotic deformity, considering the target of normal spine biomechanics, could improve all systemic potential complications evident in patient with vertebral compression fracture (VCF). Main indications for AT are related to fractures in fragile vertebral osseous matrix and non-osteoporotic vertebral lesions due to spine metastasis or trauma. Many companies developed different systems for AT having the same target but different working cannula, different vertebral height restoration system and costs. Aim of this review is to discuss about vertebral cementoplasty procedures and techniques, considering patient inclusion and exclusion criteria as well as all related minor and/or major interventional complications

  6. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.

    Science.gov (United States)

    Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri

    2012-11-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, pcreep behavior of the OVX group (pcreep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. MR imaging of tuberculous vertebral osteomyelitis: pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Gouliamos, A.D.; Kehagias, D.T.; Lahanis, S.; Moulopoulou, E.S.; Kalovidouris, A.A.; Trakadas, S.J.; Vlahos, L.j. [Dept. of Radiology, University of Athens (Greece); Athanassopoulou, A.A. [Dept. of Radiology, Asklipiion Hospital, Athens (Greece)

    2001-04-01

    Vertebral osteomyelitis is one of the most common manifestations of tuberculosis. Magnetic resonance imaging is considered the main imaging modality for the diagnosis, the demonstration of the extent of the disease, and follow-up studies. Vertebral destruction involving two consecutive levels with sparing of the intervertebral disc, disc herniation into the vertebral body, epidural involvement, and paraspinal abscess are the most common MRI findings suggestive of tuberculous vertebral osteomyelitis. (orig.)

  8. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  9. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  10. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    Science.gov (United States)

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies

  11. Split-Volume Treatment Planning of Multiple Consecutive Vertebral Body Metastases for Cyberknife Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Sahgal, Arjun; Chuang, Cynthia; Larson, David; Huang, Kim; Petti, Paula; Weinstein, Phil; Ma Lijun

    2008-01-01

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required

  12. Growth Pattern of Body Dimension of Arfak Children

    Directory of Open Access Journals (Sweden)

    Elda Irma Jeanne Joice Kawulur

    2013-06-01

    Full Text Available Growth pattern of body height and weight reflect the nutritional status and health condition of a population. Assessment of growth pattern and nutritional status of children and adolescence is urgently needed because during this growth period there is a transition period frominfant to adult with fast growth spurt, secondary sexual character maturation, and dramatic body proportion change. A cross-sectional study of the physical growth status was done to 514Arfak children consisted of 231 girls aged 6-19 years and 283 boys aged 6-23 years, in Manokwari, West Papua Province.The study was conducted to find out the growth pattern of the body size of Arfak children. Anthropometry measurement consists of body height (cm and body weight (kg. Growth charts of these variables showed increase with age in both sexes. Growth rate of body weight of Arfak children at juvenile phase was higher than those of other populations, such as India, Purwakarta, and Karawang, except American population.

  13. Rapid onset aggressive vertebral haemangioma.

    Science.gov (United States)

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  14. Value of diffusion - weighted magnetic resonance imaging in the assessment of bone marrow in vertebral metastases

    International Nuclear Information System (INIS)

    Herneth, A.M.; Philipp, M.; Trattnig, S.; Imhof, H.; Naude, J.; Beichel, R.

    2000-01-01

    Aim of the study. The aim of the study was the evaluation of the diffusion coefficient (ADC) of vertebral metastasis and regular vertebral bodies with diffusion weighted MRI (DWI). DWI evaluates the tissue-specific molecular diffusion of protons. In tissues with high cell densities (neoplasm) a decreased ADC can be expected due to restricted diffusion according to an exaggerated amount of intra- and intercellular membranes (i.e. diffusion barriers). Methods. In 5 breast cancer patients the ADC of both known vertebral metastases and of adjacent regular vertebral bodies were measured with DWI (1.0 T; Phased-Array-Body-Coil; b: 880 and 440 s/mm 2 ). Results. The ADC of regular vertebral bodies (1.3±0.23x10 -3 s/mm 2 ) was significantly (p -3 s/mm 2 ). Conclusions. These data demonstrate that the ADC can be reliably measured in vertebral bodies. The quantitative evaluation of the ADC in vertebral bodies seems to be an objective and comparable parameter for differentiating malign from benign vertebral tissue. (orig.) [de

  15. Preoperative MRI evaluation of vertebral hemangiomas treated with percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Liu Xiaoping; Wu Chungen; Li Minghua; Li Yuehua; Gu Yifeng; Cheng Yongde

    2012-01-01

    Objective: To discuss the clinical value of preoperative magnetic resonance imaging examination in guiding the treatment of vertebral hemangiomas with percutaneous vertebroplasty (PVP). Methods: A total of 286 patients with vertebral hemangiomas detected on spine MRI in authors' Department were enrolled in this study. The patient's age, the lesion's size and location, the clinical symptoms, MRI findings, etc. were retrospectively analyzed. Results: A total of 336 vertebral bodies were affected in 286 patients. The lesions were mainly located at the lumbar spine (43.15%) and the thoracic spine (37.80%). The highest incidence of disease was seen in 50-59 years old patients (34.62%). The mean diameter of the lesions was 14.56 mm. Solitary lesion was seen in 85.66% of patients, while two vertebral bodies involved were seen in 10.14% of patients. Twelve cases (4.20%) simply presented as back pain at the related vertebral bodies. Two patients showed signs due to spinal cord compression. All aggressive vertebral hemangiomas were manifested as iso-lower signal on T1-weighted images and higher signal on T2-weighted images. Simple PVP was performed in 4 cases, and subtotal tumor excision together with PVP was carried out in two patients with aggressive vertebral hemangiomas. Conclusion: Evaluation of vertebral hemangiomas with MRI performed prior to percutaneous vertebroplasty is very helpful in guiding the selection of therapeutic scheme. (authors)

  16. Kyphoplasty for severe osteoporotic vertebral compression fractures

    International Nuclear Information System (INIS)

    Bao Zhaohua; Wang Genlin; Yang Huilin; Meng Bin; Chen Kangwu; Jiang Weimin

    2010-01-01

    Objective: To evaluate the clininal efficacy of kyphoplasty for severe osteoporotic vertebral compression fractures. Methods: Forty-five patients with severe osteoporotic compressive fractures were treated by kyphoplasty from Jan 2005 to Jan 2009. The compressive rate of the fractured vertebral bodies was more than 75%. According to the morphology of the vertebral compression fracture bodies the unilateral or bilateral balloon kyphoplasty were selected. The anterior vertebral height was measured on a standing lateral radiograph at pre-operative, post-operative (one day after operation) and final follow-up time. A visual analog scale(VAS) and the Oswestry disability index (ODI) were chosen to evaluate pain status and functional activity. Results: The mean follow-up was for 21.7 months (in range from 18 to 48 months). The anterior vertebral body height of fracture vertebra was restored from preoperative (18.7 ± 3.1)% to postoperative (51.4 ± 2.3)%, the follow-up period (50.2 ± 2.7)%. There was a significant improvement between preoperative and postoperative values (P 0.05). The VAS was 8.1 ± 1.4 at preoperative, 2.6 ± 0.9 at postoperative, 2.1 ± 0.5 at final follow-up time; and the ODI was preoperative 91.1 ± 2.3, postoperative 30.7 ± 7.1, follow-up period 26.1 ± 5.1. There was statistically significant improvement in the VAS and ODI in the post-operative assessment compared with the pre-operative assessment (P 0.05). Asymptomatic cement leakage occurred in three cases. New vertebral fracture occurred in one case. Conclusion: The study suggests that balloon kyphoplasty is a safe and effective procedure in the treatment of severe osteoporotic vertebral compression fractures. (authors)

  17. Irradiation of Spinal Metastases: Should We Continue to Include One Uninvolved Vertebral Body Above and Below in the Radiation Field?

    Energy Technology Data Exchange (ETDEWEB)

    Klish, Darren S. [Lawrence Cancer Center, Lawrence, KS (United States); Grossman, Patricia; Allen, Pamela K. [Department of Radiation Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States); Rhines, Laurence D. [Department of Neurosurgery and (PG, PKA, ELC), M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States); Chang, Eric L., E-mail: echang@mdanderson.org [Department of Radiation Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States)

    2011-12-01

    Purpose: Historically, the appropriate target volume to be irradiated for spinal metastases is 1-2 vertebral bodies above and below the level of involvement for three reasons: (1) to avoid missing the correct level in the absence of simulation or (2) to account for the possibility of spread of disease to the adjacent level, and (3) to account for beam penumbra. In this study, we hypothesized that isolated failures occurring in the level adjacent to level treated with stereotactic body radiosurgery (SBRS) were infrequent and that with improved localization techniques with image-guided radiation therapy, treatment of only the involved level of spinal metastases may be more appropriate. Methods and Materials: Patients who had received SBRS treatments to only the involved level of the spine as part of a prospective trial for spinal metastases comprised the study population. Follow-up imaging with spine MRI was performed at 3-month intervals following initial treatment. Failures in the adjacent (V{+-}1, V{+-}2) and distant spine were identified and classified accordingly. Results: Fifty-eight patients met inclusion criteria for this study and harbored 65 distinct spinal metastases. At 18-month median follow-up, seven (10.7%) patients failed simultaneously at adjacent levels V{+-}1 and at multiple sites throughout the spine. Only two (3%) patients experienced isolated, solitary adjacent failures at 9 and 11 months, respectively. Conclusion: Isolated local failures of the unirradiated adjacent vertebral bodies may occur in <5% of patients with isolated spinal metastasis. On the basis of the data, the current practice of irradiating one vertebral body above and below seems unnecessary and could be revised to irradiate only the involved level(s) of the spine metastasis.

  18. Quantitative morphology of the vertebral body cortex; Quantitative Morphologie der Wirbelkoerperkortikalis

    Energy Technology Data Exchange (ETDEWEB)

    Ritzel, H.; Amling, M.; Hahn, M.; Delling, G. [Hamburg Univ. (Germany). Abt. Osteopathologie; Maas, R. [Hamburg Univ. (Germany). Radiologische Klinik

    1998-04-01

    The vertebral bodies consist of two main structures, trabecular and cortical bone. The histological changes within the spine, especially in cortical bone, leading to osteoporotic fractures remain, however, poorly understood. Therefore, the complete front column of the spine was removed in 26 autopsy cases without skeletal diseases and in 11 cases with proven osteoporosis. A sagittal segment prepared through the center of all vertebral bodies was undecalcified embedded in plastic, ground to a 1-mm-thick block and stained using a modification of the von Kossa method. The analysis included measurement of the mean cortical thickness of both ventral and dorsal shell (from C3 to L5). The qualitative investigation of the structure of the cortical ring completed the analysis. The skeletally intact specimens had high cortical thickness values in the cervical spine (285{+-}22 {mu}m), a decrease in the thoracic spine (244{+-}14 {mu}) and an increase in the lumbar spine (290{+-}15 {mu}m). The mean thickness of the ventral shell is in general higher than the thickness of the dorsal shell. The cortical thickness of the spine showed no gender-specific differences (P=n.s.). There was a slight decrease in cortical thickness with age; however, this decrease and the correlation of cortical thickness to age was only significant below vertebral body T8 (r=0.225 to 0.574; P{sub r}<0.05 to P{sub t}<0.005). Most interestingly, osteoporosis is characterized by a significant decrease in cortical thickness throughout the whole spine. This decrease in cortical thickness was more marked in the dorsal shell (P<0.05) than in the ventral shell (ventral from C3 to T6 (P<0.05)) below T6 (P=n.s.). (orig./AJ) [Deutsch] Zielsetzung: Wirbelkoerper bestehen aus den beiden Hauptkomponenten Spongiosa und Kortikalis. Trotz kontroverser Meinungen zur biomechanischen Bedeutung dieser Strukturen fuer die Stabilitaet der Knochen liegen ueber die Dicke der Kortikalis in der Literatur allerdings nur wenige

  19. Vertebral morphology influences the development of Schmorl's nodes in the lower thoracic vertebrae.

    Science.gov (United States)

    Plomp, Kimberly A; Roberts, Charlotte A; Viðarsdóttir, Una Strand

    2012-12-01

    Schmorl's nodes are the result of herniations of the nucleus pulposus into the adjacent vertebral body and are commonly identified in both clinical and archaeological contexts. The current study aims to identify aspects of vertebral shape that correlate with Schmorl's nodes. Two-dimensional statistical shape analysis was performed on digital images of the lower thoracic spine (T10-T12) of adult skeletons from the late medieval skeletal assemblages from Fishergate House, York, St. Mary Graces and East Smithfield Black Death cemeteries, London, and postmedieval Chelsea Old Church, London. Schmorl's nodes were scored on the basis of their location, depth, and size. Results indicate that there is a correlation between the shape of the posterior margin of the vertebral body and pedicles and the presence of Schmorl's nodes in the lower thoracic spine. The size of the vertebral body in males was also found to correlate with the lesions. Vertebral shape differences associated with the macroscopic characteristics of Schmorl's nodes, indicating severity of the lesion, were also analyzed. The shape of the pedicles and the posterior margin of the vertebral body, along with a larger vertebral body size in males, have a strong association with both the presence and severity of Schmorl's nodes. This suggests that shape and/or size of these vertebral components are predisposing to, or resulting in, vertically directed disc herniation. Copyright © 2012 Wiley Periodicals, Inc.

  20. The origin of the vertebrate skeleton

    Science.gov (United States)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  1. Biomechanical spinal growth modulation and progressive adolescent scoliosis – a test of the 'vicious cycle' pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE

    Directory of Open Access Journals (Sweden)

    Burwell R Geoffrey

    2006-10-01

    Full Text Available Abstract There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS. As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE introduced the electronic focus group (EFG as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The text for this debate was written by Dr Ian A Stokes. It evaluates the hypothesis that in progressive scoliosis vertebral body wedging during adolescent growth results from asymmetric muscular loading in a "vicious cycle" (vicious cycle hypothesis of pathogenesis by affecting vertebral body growth plates (endplate physes. A frontal plane mathematical simulation tested whether the calculated loading asymmetry created by muscles in a scoliotic spine could explain the observed rate of scoliosis increase by measuring the vertebral growth modulation by altered compression. The model deals only with vertebral (not disc wedging. It assumes that a pre-existing scoliosis curve initiates the mechanically-modulated alteration of vertebral body growth that in turn causes worsening of the scoliosis, while everything else is anatomically and physiologically 'normal' The results provide quantitative data consistent with the vicious cycle hypothesis. Dr Stokes' biomechanical research engenders controversy. A new speculative concept is proposed of vertebral symphyseal dysplasia with implications for Dr Stokes' research and the etiology of AIS. What is not controversial is the need to test this hypothesis using additional factors in his current model and in three-dimensional quantitative models that incorporate intervertebral discs and simulate thoracic as well as lumbar scoliosis. The growth modulation process in the vertebral body can be viewed as one type of the biologic phenomenon of mechanotransduction. In certain connective tissues this involves the

  2. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Centre Hospitalier de L' Universite de Québec–Université Laval, Quebec, Quebec (Canada); Whyne, Cari M. [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Zhou, Stephanie; Campbell, Mikki [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Myrehaug, Sten; Soliman, Hany; Lee, Young K. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Ebrahimi, Hamid [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Yee, Albert J.M. [Division of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range, 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.

  3. Temporal trends in vertebral size and shape from medieval to modern-day.

    Directory of Open Access Journals (Sweden)

    Juho-Antti Junno

    Full Text Available Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations.

  4. The combination of mesenchymal stem cells and a bone scaffold in the treatment of vertebral body defects

    Czech Academy of Sciences Publication Activity Database

    Vaněček, Václav; Klíma, K.; Kohout, A.; Foltán, R.; Jiroušek, Ondřej; Šedý, Jiří; Štulík, J.; Syková, Eva; Jendelová, Pavla

    2013-01-01

    Roč. 22, č. 12 (2013), s. 2777-2786 ISSN 0940-6719 R&D Projects: GA ČR GAP304/10/0320; GA MZd(CZ) NT13477 Institutional support: RVO:68378041 ; RVO:68378297 ; RVO:67985823 Keywords : vertebral body defect * mesenchymal stem cells * hydroxyapatite scaffold Subject RIV: FH - Neurology ; FI - Traumatology, Orthopedics (UTAM-F); FI - Traumatology, Orthopedics (FGU-C) Impact factor: 2.473, year: 2013

  5. Importance of MRI in the diagnosis of vertebral involvement in generalized cystic lymphangiomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Renjen, Pooja; Kovanlikaya, Arzu; Brill, Paula W. [New York Presbyterian Hospital/Weill Cornell Medical Center, Department of Radiology, New York, NY (United States); Narula, Navneet [New York Presbyterian Hospital/Weill Cornell Medical Center, Department of Pathology, New York, NY (United States)

    2014-11-15

    A 9-year-old boy presented with the sudden onset of pleuritic chest pain and on CT was found to have a large pleural effusion, mediastinal fluid, splenic lesions and multiple apparently sclerotic vertebral bodies. Subsequent MRI showed that those vertebral bodies that appeared sclerotic were in fact normal, and the vertebral bodies initially interpreted as normal had an abnormal T1 and T2 hyperintense signal on MRI and were relatively lucent on CT. MRI also demonstrated abnormal heterogeneous T2 hyperintense paraspinal tissue and several multicystic soft tissue masses. Biopsy of two adjacent vertebral bodies, one relatively sclerotic and one lucent, demonstrated findings of bony remodeling without a specific diagnosis. Biopsy of an infiltrative mediastinal mass confirmed the diagnosis of generalized cystic lymphangiomatosis. MRI should be included in the assessment of vertebral involvement in this condition because CT and biopsy findings may be nonspecific. (orig.)

  6. Anterior dural ectasia mimicking a lytic lesion in the posterior vertebral body in ankylosing spondylitis.

    Science.gov (United States)

    Bele, Keerthiraj; Pendharkar, Hima Shriniwas; Venkat, Easwer; Gupta, Arun Kumar

    2011-12-01

    Anterior dural ectasia is an extremely rare finding in ankylosing spondylitis (AS). The authors describe a unique case of AS in which the patient presented with cauda equina syndrome as well as an unusual imaging finding of erosion of the posterior aspect of the L-1 (predominantly) and L-2 vertebral bodies due to anterior dural ectasia. Symptomatic patients with long-standing AS should be monitored for the presence of dural ectasia, which can be anterior in location, as is demonstrated in the present case.

  7. Asymmetry of the Vertebral Body and Pedicles in the True Transverse Plane in Adolescent Idiopathic Scoliosis : A CT-Based Study

    NARCIS (Netherlands)

    Brink, Rob C.; Schlösser, Tom P C; Colo, Dino; Vincken, Koen L.; van Stralen, Marijn; Hui, Steve C N; Chu, Winnie C W; Cheng, Jack C Y; Castelein, RM

    2017-01-01

    Study Design Cross-sectional. Objectives To quantify the asymmetry of the vertebral bodies and pedicles in the true transverse plane in adolescent idiopathic scoliosis (AIS) and to compare this with normal anatomy. Summary of background data There is an ongoing debate about the existence and

  8. Use of vertebral body units to locate the cavoatrial junction for optimum central venous catheter tip positioning.

    Science.gov (United States)

    Song, Y G; Byun, J H; Hwang, S Y; Kim, C W; Shim, S G

    2015-08-01

    Central venous catheter (CVC) placement plays an important role in clinical practice; however, optimal positioning of the CVC tip remains a controversial issue. The objective of this study was to evaluate the use of vertebral body unit (VBUs), to locate the cavoatrial junction (CAJ), for optimal CVC tip placement based on chest radiography (CXR) using the carina as a landmark. 524 patients who underwent coronary computed tomographic angiography (CTA) and CXR were included. The position of the CAJ was identified using VBUs, and the efficacy of VBUs for locating the CAJ with the carina as a landmark was analysed using multiple regression analysis. A VBU was defined as the distance between two adjacent vertebral bodies, including the inter-vertebral disk space. The mean (sd) distance from the carina to the superior CAJ was 54.3 (9.7) mm on CTA; the mean distance in VBUs at the level of the carina was 21.4 (1.7) mm on CTA and 22.6 (2.1) mm on CXR. The mean CAJ position was 2.5 VBUs below the carina on CTA and 2.4 VBUs below on CXR with 95% limits of agreement between -0.6 and +0.3. The position of the CVC tip in relation to the carina can be described using the thoracic spine as an internal ruler, and the position of the CAJ in adults was reliably estimated to be 2.4 VBUs below the carina. KCT0001319. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Closure of the vertebral canal in human embryos and fetuses

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S. Eleonore; Lamers, Wouter H.

    2017-01-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10weeks of

  10. Prevalence of silent vertebral fractures detected by vertebral fracture assessment in young Portuguese men with hyperthyroidism.

    Science.gov (United States)

    Barbosa, Ana Paula; Rui Mascarenhas, Mário; Silva, Carlos Francisco; Távora, Isabel; Bicho, Manuel; do Carmo, Isabel; de Oliveira, António Gouveia

    2015-02-01

    Hyperthyroidism is a risk factor for reduced bone mineral density (BMD) and osteoporotic fractures. Vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA) is a radiological method of visualization of the spine, which enables patient comfort and reduced radiation exposure. This study was carried out to evaluate BMD and the prevalence of silent vertebral fractures in young men with hyperthyroidism. We conducted a cross-sectional study in a group of Portuguese men aged up to 50 years and matched in hyperthyroidism (n=24) and control (n=24) groups. A group of 48 Portuguese men aged up to 50 years was divided and matched in hyperthyroidism (n=24) and control (n=24) groups. BMD (g/cm(2)) at L1-L4, hip, radius 33%, and whole body as well as the total body masses (kg) were studied by DXA. VFA was used to detect fractures and those were classified by Genant's semiquantitative method. No patient had previously been treated for hyperthyroidism, osteoporosis, or low bone mass. Adequate statistical tests were used. The mean age, height, and total fat mass were similar in both groups (P≥0.05). The total lean body mass and the mean BMD at lumbar spine, hip, and whole body were significantly decreased in the hyperthyroidism group. In this group, there was also a trend for an increased prevalence of reduced BMD/osteoporosis and osteoporotic vertebral fractures. The results obtained using VFA technology (confirmed by X-ray) suggest that the BMD changes in young men with nontreated hyperthyroidism may lead to the development of osteoporosis and vertebral fractures. This supports the pertinence of using VFA in the routine of osteoporosis assessment to detect silent fractures precociously and consider early treatment. © 2015 European Society of Endocrinology.

  11. The role of the notochord in amniote vertebral column segmentation.

    Science.gov (United States)

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis.

    Directory of Open Access Journals (Sweden)

    Sophie-Anne Scherrer

    Full Text Available Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity.Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50° participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20° from the moderate (20° and over spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body.Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it (F = 1.78, p = 0.101. Main effects of vertebral Positions (apex and above or below it (F = 4.20, p = 0.015 and wedging Planes (F = 34.36, p<0.001 were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6° than the superior group (2.9°, p = 0.019 and a significantly greater wedging (p≤0.03 along the sagittal plane (4.3°.Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim that scoliosis could be initiated

  13. Extinction risk is most acute for the world's largest and smallest vertebrates.

    Science.gov (United States)

    Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J

    2017-10-03

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.

  14. Prevalence of thoracolumbar vertebral fractures on multidetector CT

    International Nuclear Information System (INIS)

    Bartalena, Tommaso; Giannelli, Giovanni; Rinaldi, Maria Francesca; Rimondi, Eugenio; Rinaldi, Giovanni; Sverzellati, Nicola; Gavelli, Giampaolo

    2009-01-01

    Objective: To evaluate the prevalence of osteoporotic vertebral fractures in patients undergoing multidetector computed tomography (MDCT) of the chest and/or abdomen. Materials and methods: 323 consecutive patients (196 males, 127 females) with a mean age of 62.6 years (range 20-88) who had undergone chest and/or abdominal MDCT were evaluated. Sagittal reformats of the spine obtained from thin section datasets were reviewed by two radiologists and assessed for vertebral fractures. Morphometric analysis using electronic calipers was performed on vertebral bodies which appeared abnormal upon visual inspection. A vertebral body height loss of 15% or more was considered a fracture and graded as mild (15-24%), moderate (25-49%) or severe (more than 50%). Official radiology reports were reviewed and whether the vertebral fractures had been reported or not was noted. Results: 31 out of 323 patients (9.5%) had at least 1 vertebral fracture and 7 of those patients had multiple fractures for a total of 41 fractures. Morphometric grading revealed 10 mild, 16 moderate and 15 severe fractures. Prevalence was higher in women (14.1%) than men (6.6%) and increased with patients age with a 17.1% prevalence in post-menopausal women. Only 6 out 41 vertebral fractures (14.6%) had been noted in the radiology final report while the remaining 35 (85.45) had not. Conclusion: although vertebral fractures represent frequent incidental findings on multidetector CT studies and may be easily identified on sagittal reformats, they are often underreported by radiologists, most likely because of unawareness of their clinical importance.

  15. Vertebral physitis: a radiographic diagnosis to be separated from discospondylitis: a preliminary report

    International Nuclear Information System (INIS)

    Jimenez, M.M.; O'Callaghan, M.W.

    1995-01-01

    A retrospective study was initiated to investigate the incidence, radiographic appearance and progression of vertebral physitis, a condition the authors propose as a separate radiographic diagnosis from discospondylitis. From 30 dogs with an initial radiographic diagnosis of discospondylitis, six dogs (five less than two years old) had radiographic signs believed to represent vertebral physitis. Bone lysis initially confined to the caudal physeal zone of affected vertebrae and sparing the vertebral endplates characterized the vertebral physitis lesions. Subsequent collapse of the caudoventral vertebral body and reactive spondylosis arising only from the caudal vertebral margins followed as the lesions progressed. By contrast, discospondylitis lesions originated as symmetric lysis of the vertebral endplates with reactive sclerosis in both vertebral bodies, and subsequent symmetric spondylosis. As a result of the differing radiographic patterns demonstrated by the physitis and discospondylitis lesions the author's also propose an alternative pathogenesis from that which is generally accepted for discospondylitis

  16. Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis.

    Science.gov (United States)

    Aubin, Carl-Éric; Clin, Julien; Rawlinson, Jeremy

    2018-01-01

    Compression-based fusionless tethers are an alternative to conventional surgical treatments of pediatric scoliosis. Anterior approaches place an anterior (ANT) tether on the anterolateral convexity of the deformed spine to modify growth. Posterior, or costo-vertebral (CV), approaches have not been assessed for biomechanical and corrective effectiveness. The objective was to biomechanically assess CV and ANT tethers using six patient-specific, finite element models of adolescent scoliotic patients (11.9 ± 0.7 years, Cobb 34° ± 10°). A validated algorithm simulated the growth and Hueter-Volkmann growth modulation over a period of 2 years with the CV and ANT tethers at two initial tensions (100, 200 N). The models without tethering also simulated deformity progression with Cobb angle increasing from 34° to 56°, axial rotation 11° to 13°, and kyphosis 28° to 32° (mean values). With the CV tether, the Cobb angle was reduced to 27° and 20° for tensions of 100 and 200 N, respectively, kyphosis to 21° and 19°, and no change in axial rotation. With the ANT tether, Cobb was reduced to 32° and 9° for 100 and 200 N, respectively, kyphosis unchanged, and axial rotation to 3° and 0°. While the CV tether mildly corrected the coronal curve over a 2-year growth period, it had sagittal lordosing effect, particularly with increasing initial axial rotation (>15°). The ANT tether achieved coronal correction, maintained kyphosis, and reduced the axial rotation, but over-correction was simulated at higher initial tensions. This biomechanical study captured the differences between a CV and ANT tether and indicated the variability arising from the patient-specific characteristics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:254-264, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Minimal invasive stabilization of osteoporotic vertebral compression fractures. Methods and preinterventional diagnostics

    International Nuclear Information System (INIS)

    Grohs, J.G.; Krepler, P.

    2004-01-01

    Minimal invasive stabilizations represent a new alternative for the treatment of osteoporotic compression fractures. Vertebroplasty and balloon kyphoplasty are two methods to enhance the strength of osteoporotic vertebral bodies by the means of cement application. Vertebroplasty is the older and technically easier method. The balloon kyphoplasty is the newer and more expensive method which does not only improve pain but also restores the sagittal profile of the spine. By balloon kyphoplasty the height of 101 fractured vertebral bodies could be increased up to 90% and the wedge decreased from 12 to 7 degrees. Pain was reduced from 7,2 to 2,5 points. The Oswestry disability index decreased from 60 to 26 points. This effects persisted over a period of two years. Cement leakage occurred in only 2% of vertebral bodies. Fractures of adjacent vertebral bodies were found in 11%. Good preinterventional diagnostics and intraoperative imaging are necessary to make the balloon kyphoplasty a successful application. (orig.) [de

  18. MRI evaluation and treatment of osteoporotic vertebral compression fracture

    International Nuclear Information System (INIS)

    Yamaguchi, Ken; Otani, Koji

    2003-01-01

    The purpose of this study was to investigate the relation between Gd-DTPA enhanced MRI findings and the prognosis of the fractured vertebral body in the patients with fresh osteoporotic compression vertebral fractures. Subjects were 8 cases, 11 vertebrae. All of the cases were treated with no bed rest and no corset. MRI and radiographs were taken within 1 week after injury. MRI signal intensity of the fractured vertebral body altered low on T1WI at acute phase. When the fractured vertebrae were enhanced at whole area with Gd-DTPA at acute phase, the vertebrae showed no progression of wedge deformity by follow up radiographs. On the other hand, when the fractured vertebrae were not enhanced at whole area, the vertebrae showed progression of wedge deformity. These findings suggests that vertebral fractures in osteoporosis should be taken MRI including GD-DTPA in acute phase after injury. When the fractured vertebrae are enhanced with Gd-DTPA in whole body at acute phase, the fracture may need no special treatment. In conclusion, Gd-DTPA enhanced MRI may be useful to determine the prognosis of the osteoporotic compression fracture. (author)

  19. The pattern and prevalence of vertebral artery injury in patients with ...

    African Journals Online (AJOL)

    Other important risk factors for vertebral artery injury include facet joint dislocations and fractures of the first to the third cervical vertebral bodies. The aim of this study was to determine the pattern and prevalence of vertebral artery injury on CT angiography (CTA) in patients with cervical spine fractures. Method.

  20. Growth and Body Composition of School-Aged Children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde

    growth or remodeling. Seasonal variations in growth and changes in body composition, if present, are of interest when trying to understand the regulation of growth. They may also be important to be aware of when assessing growth and body composition during shorter periods of time. The overall aim...... of this thesis was to identify factors influencing or associated with growth and body composition of 8-11 year old children. Four specific research questions were specified: 1.) Does a school meal intervention based on the New Nordic Diet (NND) influence height, body mass index (BMI) z-score, waist circumference...... school meals based on a NND for three months and for another three months they ate packed lunch brought from home (control). At baseline, between the two dietary periods, and after the last dietary period children went through a number of investigations. In paper I we showed that ad libitum school meals...

  1. Fibrous dysplasia: an unusual case of a very aggressive form with costo-vertebral joint destruction and invasion of the contralateral D7 vertebral body.

    Science.gov (United States)

    Zoccali, Carmine; Attala, Dario; Rossi, Barbara; Zoccali, Giovanni; Ferraresi, Virginia

    2018-05-23

    Fibrous dysplasia (FD) is a benign fibro-osseous disease of the bone that may be solitary or multicentric. It is important to distinguish this type of lesion from low-grade osteosarcomas (LGOS) and from secondary sarcomas, because malignant transformation has rarely been reported. It is classically described as having a ground-glass appearance, endosteal scalloping, and thinning of the cortex. Cortical disruption is considered evidence of malignancy, but it can also be present in benign FD with aggressive behavior. We present an unusual case of aggressive FD of the 7th left rib, already diagnosed more than 22 years ago, where cortical and costo-vertebral joint disruption and 7th thoracic vertebral body involvement were not evidence of malignant behavior. From a histological perspective, FD and LGOS are similar; even if histology is of fundamental importance, the diagnosis has to be made based on the clinical and radiological aspects as well, although at imaging, differentiation between FD and LGOS can be difficult. In the present case, even though the histological examination suggested a benign lesion, the radiological examination instead consistently suggests malignancy. It is for this reason that there should be a high index of suspicion during follow-up and a new biopsy should be scheduled in case any changes occur during follow-up.

  2. Analysis of radiological characteristics distribution in the vertebral bodies of the lumbosacral spine of competitive rowers

    Directory of Open Access Journals (Sweden)

    M.B. Ogurkowska

    2010-09-01

    Full Text Available Unfavorable biomechanical situations, usually related to the performance of a profession and competitive sports practice, promote formation of overloads. This problem may be particularly perceptible among sportsmen that practice strength and stamina sports. The present study deals with rowing. The purpose of this study is to evaluate the degree of degenerative changes of the lumbosacral spine in competitive rowers, on the basis of an analysis of changes in the cancellous structure of vertebral bodies. This has been achieved on the basis of radiological density acquired from a CT test.

  3. The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation.

    Science.gov (United States)

    Chen, Lili; Lin, Jiuxiang; Xu, Tianmin; Long, Xiaosi

    2009-04-01

    To investigate the longitudinal sagittal growth changes of maxilla and mandible according to the quantitative cervical vertebral maturation (QCVM) for adolescents with normal occlusion, mixed longitudinal data were used. The samples included 87 adolescents aged from 8 to 18 y old with normal occlusion (32 males, 55 females) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year, lasting for 6 y. The longitudinal sagittal growth changes of maxilla and mandible according to QCVM were measured. There were some significant differences between maxilla and mandible according to QCVM. The sagittal growth change of maxilla showed a trend towards high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. The sagittal growth change of mandible showed a trend towards accelerating velocity-->high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. With sagittal relationship, growth magnitude was almost the same between maxilla and mandible at QCVM stage I. At stage II the growth of mandible exceeded that of maxilla and growth in mandible continued at stages III and IV, while the maxilla ceased to grow. Growth magnitude was greater and the growth duration was longer with male mandible. It is concluded that the longitudinal sagittal growth changes of maxilla and mandible on the basis of QCVM is of value in the orthodontic practice.

  4. Rapid determination of vertebral fat fraction over a large range of vertebral bodies

    International Nuclear Information System (INIS)

    Martin, Jarad; Nicholson, Geoffrey; Cowin, Gary; Ilente, Clare; Wong, Winnie; Kennedy, Dominic

    2014-01-01

    Vertebral body fat fraction (FF) has been found to vary between lumbar vertebrae using magnetic resonance spectroscopy (MRS). We aim to more quickly assess a larger number of adjacent vertebrae using a single T2-weighted iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) sequence. Five men had dual-energy X-ray absorptometry (DEXA) and 1.5-T MR scans performed. MRS was performed at L3, and a sagittal IDEAL sequence was also performed, resulting in separate fat-only and water-only readings from T10 to S2. For the IDEAL measurements, two independent observers followed a set reading protocol, with five observations each per vertebra. Intra- and interobserver variability were assessed as deviations from the mean within and between observers, respectively. For FF measurements there was limited intra-observer variation, with observers being on average within 3.4% of the pooled mean value. Similarly, there was good interobserver agreement, with an average variation of 2.1%. All men showed a reduction in FF of 1.6–7% between L5 and S1. Otherwise, there was a trend of increasing FF moving inferiorly from T10 to S2. This averaged 2.7% per vertebra (range 1.1–3.8%) and may not have been dependent on MRS-measured FF at the L3 level. There was poor correlation between MRS-measured FF at L2–4 and bone mineral density measured using DEXA (R2=0.06). IDEAL measurements are generally reproducible between observers following a set protocol. There appears to be a gradient in FF moving from T10 to S2, with S1 showing a consistent decrease. This variation may better describe overall marrow function than a single-vertebra reading.

  5. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    Science.gov (United States)

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  6. Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: A retrospective study

    Science.gov (United States)

    Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui

    2018-01-01

    Background Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. Methods A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. Results One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper

  7. Radiotherapy for vertebral metastases. Analysis of symptoms and clinical effects by MR imaging

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    1994-01-01

    Fifty patients with 63 symptomatic vertebral metastasis (18 sites: pain only, 28 sites: radiculopathy with pain, 17 sites: myelopathy) were treated by radiotherapy. Primary lesions were located in the lung (9 cases), breast (9), colorectal area (9), prostate (7) and so on. We correlated the radiologic findings, symptoms and clinical effects with metastatic features which were classified into 4 types by MR imaging: non-deformity, expanding, vertebral collapse, and destructive mass. Each type of metastasis was accompanied with or without epidural tumor. Osteolytic metastases were apt to create features of deformity (expanding type: 18 vertebrae, vertebral collapse type: 17, destructive mass type: 9). The features of osteoblastic metastases were no deformity (18 vertebrae) and expanding type (2). The symptom of pain only occurred most frequently in the lumbosacral spine. The vertebral body deformity of symptomatic sites was relatively slight (non-deformity type: 6 sites, expanding type: 6, vertebral collapse type: 6), and epidural tumors were seen at only 2 sites. The effect of radiotherapy was excellent (complete pain relief: 64.7%, partial pain relief: 29.4%). Radiculopathy occurred most frequently in the lumber spine. Vertebral body deformity was noted in most symptomatic sites (expanding type: 9 sites, vertebral collapse type: 10, destructive mass type: 2). Complete relief was obtained in 6 sites (22.2%), partial relief in 18 (63.0%). Myelopathy occurred most often in the thoracic spine, followed by the lumbar spine. The vertebral body deformity was severe (expanding: 3 cases, vertebral collapse type: 3, destructive mass type: 6). Epidural tumors were also present in all but one case. Six of 13 patients treated with radiation alone improved. These 6 patients had non-deformity or expanding types with epidural tumor. No improvement was seen in the vertebral collapse type with epidural tumor or destructive mass type. (author)

  8. Fluid sign in the treated bodies after percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Lin, Chao-Chun; Yen, Pao-Sheng; Wen, Shu-Hui

    2008-01-01

    The aims of this study are to describe non-healing in the treated vertebral body after percutaneous vertebroplasty and analyze the influence of vacuum cleft, location, and severity of collapse on the development of nonunion cement. Of 208 patients (266 treated vertebral bodies) who were treated with percutaneous vertebroplasty from September 2002 to May 2006, 23 patients (41 treated levels) with residual or recurrent pain underwent follow-up magnetic resonance imaging (MRI) study. Retrospective chart review with analysis of preoperative and postoperative MRIs were performed in these 23 patients. In the 41 treated vertebral bodies, 22 of 41 bodies had vacuum cleft found in the preoperative MRI study. Eight of the 22 treated vertebral bodies with preoperative vacuum clefts were found to have fluid between the interface of cement and the residual bone in the collapsed vertebral bodies on follow-up MRI. The adjacent discs of these treated vertebral bodies were upward/downward displaced. The endplate of the adjacent vertebral body exhibited fibrotic change. Treated bodies with vacuum clefts and level A location (T9, T11, T12, and L1) had higher probability of developing nonunion of the cement with statistical significance. The probability of nonunion cement in severe collapsed bodies might be higher than that of union cement in mild collapsed ones, but was not statistically significant. Fluid sign in the treated body represents unhealed bone-cement interface. The location of the treated vertebral body and existence of vacuum cleft in the treated bodies may be important factors influencing the nonunion of cement. (orig.)

  9. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Winfield, Jessica M.; Blackledge, Matthew D.; Collins, David J.; Tunariu, Nina; Messiou, Christina; Poillucci, Gabriele; Shah, Vallari; Kaiser, Martin F.

    2018-01-01

    The aim of this study was to identify apparent diffusion coefficient (ADC) values for typical haemangiomas in the spine and to compare them with active malignant focal deposits. This was a retrospective single-institution study. Whole-body magnetic resonance imaging (MRI) scans of 106 successive patients with active multiple myeloma, metastatic prostate or breast cancer were analysed. ADC values of typical vertebral haemangiomas and malignant focal deposits were recorded. The ADC of haemangiomas (72 ROIs, median ADC 1,085 x 10 -6 mm 2 s -1 , interquartile range 927-1,295 x 10 -6 mm 2 s -1 ) was significantly higher than the ADC of malignant focal deposits (97 ROIs, median ADC 682 x 10 -6 mm 2 s -1 , interquartile range 583-781 x 10 -6 mm 2 s -1 ) with a p-value < 10 -6 . Receiver operating characteristic (ROC) analysis produced an area under the curve of 0.93. An ADC threshold of 872 x 10 -6 mm 2 s -1 separated haemangiomas from malignant focal deposits with a sensitivity of 84.7 % and specificity of 91.8 %. ADC values of classical vertebral haemangiomas are significantly higher than malignant focal deposits. The high ADC of vertebral haemangiomas allows them to be distinguished visually and quantitatively from active sites of disease, which show restricted diffusion. (orig.)

  10. Ancient deuterostome origins of vertebrate brain signalling centres.

    Science.gov (United States)

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  11. Vertebral chondroblastoma

    International Nuclear Information System (INIS)

    Ilaslan, Hakan; Sundaram, Murali; Unni, Krishnan K.

    2003-01-01

    To determine the age distribution, gender, incidence, and imaging findings of vertebral chondroblastoma, and to compare our series with findings from case reports in the world literature.Design and patients Case records and imaging findings of nine histologically documented vertebral chondroblastomas were retrospectively reviewed for patient age, gender, vertebral column location and level, morphology, matrix, edema, soft tissue mass, spinal canal invasion, and metastases. Our findings were compared with a total of nine patients identified from previous publications in the world literature. The histologic findings in our cases was re-reviewed for diagnosis and specifically for features of calcification and secondary aneurysmal bone cyst (ABC). Clinical follow-up was requested from referring institutions. Nine of 856 chondroblastomas arose in vertebrae (incidence 1.4%; thoracic 5, lumbar 1, cervical 2, sacral 1). There were six males and three females ranging in age from 5 to 41 years (mean 28 years). Satisfactory imaging from seven patients revealed the tumor to arise from the posterior elements in four and the body in three. All tumors were expansive, six of seven were aggressive, and the spinal canal was significantly narrowed by bone or soft tissue mass in six. In one patient canal invasion was minimal. Calcification was pronounced in two and subtle in four. The sole nonaggressive-appearing tumor was heavily mineralized. Bony edema and secondary ABC were not seen on MR imaging. None of the cases had microscopic features of significant secondary ABC. Calcification, and specifically ''chicken wire'' calcification, was identified in two patients. Pulmonary metastases occurred in none. Vertebral chondroblastoma is a rare neoplasm that presents later in life than its appendicular counterpart. On imaging it is aggressive in appearance with bone destruction, soft tissue mass, and spinal canal invasion. The lesions contain variable amounts of mineral. Secondary

  12. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  13. Handed behavior in hagfish--an ancient vertebrate lineage--and a survey of lateralized behaviors in other invertebrate chordates and elongate vertebrates.

    Science.gov (United States)

    Miyashita, Tetsuto; Palmer, A Richard

    2014-04-01

    Hagfish represent an ancient lineage of boneless and jawless vertebrates. Among several curious behaviors they exhibit, solitary individuals in one dominant genus of hagfish (Eptatretus spp.) regularly rest in a tightly coiled posture. We present the first systematic treatment of this distinctive behavior. Individual northeastern Pacific hagfish (E. stoutii) exhibited significant handedness (preferred orientation of coiling). However, right-coiling and left-coiling individuals were equally common in the population. Individual hagfish likely develop a preference for one direction by repeating the preceding coiling direction. We also revisit classical accounts of chordate natural history and compare the coiling behavior of Eptatretus with other handed or lateralized behaviors in non-vertebrate chordates, lampreys, and derived vertebrates with elongate bodies. Handed behaviors occur in many of these groups, but they likely evolved independently. In contrast to vertebrates, morphological asymmetries may bias lateralized larval behaviors toward one side in cephalochordates and tunicates. As a consequence, no known handed behavior can be inferred to have existed in the common ancestor of vertebrates.

  14. Inheritance of vertebral number in the three-spined stickleback (Gasterosteus aculeatus.

    Directory of Open Access Journals (Sweden)

    Jussi S Alho

    Full Text Available Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus. We found that both the number of vertebrae (h(2 = 0.36 and body size (h(2 = 0.42 were moderately heritable, whereas the influence of maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant positive environmental correlation between these two traits. Our results support the generalization--in accordance with results from a review of heritability estimates for vertebral number in fish, reptiles and mammals--that the number of vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback, independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between the two traits.

  15. Inheritance of Vertebral Number in the Three-Spined Stickleback (Gasterosteus aculeatus)

    Science.gov (United States)

    Alho, Jussi S.; Leinonen, Tuomas; Merilä, Juha

    2011-01-01

    Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus). We found that both the number of vertebrae (h2 = 0.36) and body size (h2 = 0.42) were moderately heritable, whereas the influence of maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant positive environmental correlation between these two traits. Our results support the generalization-in accordance with results from a review of heritability estimates for vertebral number in fish, reptiles and mammals-that the number of vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback, independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between the two traits. PMID:21603609

  16. Correlation between cervical vertebral and dental maturity in Iranian subjects.

    Science.gov (United States)

    Heravi, Farzin; Imanimoghaddam, Mahrokh; Rahimi, Hoda

    2011-12-01

    Determination of the skeletal maturation is extremely important in clinical orthodontics. Cervical vertebral maturation is an effective diagnostic tool for determining the adolescent growth spurt. The aim of this study was to investigate the correlation between the stages of calcification of teeth and the cervical vertebral maturity stages.

  17. A mechanical perspective on vertebral segmentation

    NARCIS (Netherlands)

    Truskinovsky, L.; Vitale, G.; Smit, T.H.

    2014-01-01

    Segmentation is a characteristic feature of the vertebrate body plan. The prevailing paradigm explaining its origin is the 'clock and wave-front' model, which assumes that the interaction of a molecular oscillator (clock) with a traveling gradient of morphogens (wave) pre-defines spatial

  18. Vertebral column aggressive osteoblastoma: two cases report and literature review

    International Nuclear Information System (INIS)

    Sabedotti, Ismail Fernando; Sabedotti, Valdir

    2007-01-01

    Osteoblastoma is a bone neoplasy that in most circumstances present a low aggressive aspect on radiographic studies, but in some cases may acquire an aggressive pattern, rupturing the bone cortex and invading nearby structures. Most cases occur on the vertebral column, especially at the posterior arch and occasionally involving the vertebral body. Differential diagnosis of the aggressive form is made with osteosarcomas. This review reports two cases of osteoblastomas involving vertebral column, with an aggressive pattern on radiologic studies, and their histologic confirmation. (author)

  19. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  20. Vertebrate Herbivore Browsing on Neighboring Forage Species Increases the Growth and Dominance of Siberian Alder Across a Latitudinal Transect in Northern Alaska.

    Science.gov (United States)

    McNeill, E. M.; Ruess, R. W.

    2017-12-01

    Vertebrate herbivores strongly influence plant growth and architecture, biogeochemical cycling, and successional dynamics in boreal and arctic ecosystems. One of the most notable impacts of vertebrate herbivory is on the growth and spread of alder, a chemically-defended, N-fixing shrub whose distribution in the Alaskan arctic has expanded dramatically over the past 60 years. Although herbivore effects on thin-leaf alder are well described for interior Alaskan floodplains, no work has been conducted on the effects of herbivores on Siberian alder (Alnus viridis spp fruticosa), despite the increasing importance of this species to high latitude ecosystems. We characterized browsing by snowshoe hares, moose, and willow ptarmigan on dominant shrub species across topo-edaphic sequences within 5 ecoregions along a 600 km latitudinal transect extending from interior Alaska to the North Slope. Ptarmigan browsed wind-blown lowland and alpine sites devoid of trees in all regions; moose browsed predominantly willow species in hardwood and mixed forests and were absent north of the Brooks Range; snowshoe hares selected habitats and forage based on their local density and vulnerability to predators. Browsing intensity on Siberian alder was either undetectable or low, limited primarily to hare browsing on young ramets in the northern boreal forest where hare density relative to forage availability is highest. Overall, alder height growth was positively correlated with levels of herbivory on competing shrub species. Our data support the hypothesis that vertebrate herbivore browsing is indirectly augmenting the growth, dominance, and possible spread of Siberian alder throughout its northern Alaskan range. Given the potential high rates of N-fixation inputs by Siberian alder, we believe herbivores are also having strong indirect effects on biogeochemical cycling and possibly C storage in these landscapes.

  1. Vertebral Fractures and Spondylosis in Men - Original Investigation

    Directory of Open Access Journals (Sweden)

    Selmin Gülbahar

    2008-04-01

    Full Text Available Aim: The aim of this study was to investigate the relationship between vertebral fractures and spondylosis and bone mineral density in men older than 60 years. Material and Method: Thirty-two men with back and low back pain aged over 60 years were included into the study. Thoracic and lumbar spine radiographs were taken and, anterior, central and posterior heights of each vertebral body from T4 to L5 was measured and than the number of vertebral fractures was assessed. Osteophyte and disc scores were used for evaluation of spondylosis. Bone mineral density was measured by dual-energy-X-ray absorptiometry. Measurements were obtained from lumbar vertebrae and proximal femoral region. Results: Significant positive correlations were found between vertebral fracture and osteophyte score and bone mineral density of total femoral region. When osteophyte score and total femoral bone mineral density were taken into consideration, there were no significant correlations between other parameters and vertebral fracture. Significant positive correlations were observed between osteophyte score and bone mineral density and t scores of L1-4. Also there were significant positive correlations between disc score and both bone mineral density and t scores of L1-4. Significant positive correlation was also found between femoral bone density and body weight. Conclusion: Finally, lumbar bone mineral density increases with spinal degenerative changes, but the increase in bone mineral density can not prevent sub clinic vertebral fractures. Especially, in the men who have intensive spinal degenerative changes, the measurement of lumbar bone mineral density is not enough for determining the fracture risk. Measurement of femoral bone mineral density and evaluation of clinic risk factors are more important for determining the fracture risk. (From the World of Osteoporosis 2008;14:1-6

  2. Morphometric X-ray Absorptiometry: Reference Data for Vertebral Dimensions in a Population-based Sample of Young Danish Men

    International Nuclear Information System (INIS)

    Wulff, R.; Koch Holst, A.; Nielsen, T.L.; Andersen, M.; Hagen, C.; Brixen, K.

    2004-01-01

    Purpose: To determine reference values for vertebral heights in healthy young Danish males using morphometric X-ray absorptiometry (MXA). Material and Methods: A population-based study group of 487 males aged between 20 and 30 years (mean 25 years) from the county of Funen, Denmark, were recruited. Using a Hologic QDR 4500 (dual energy X-ray absorptiometry) DXA-scanner, MXA scans covering the vertebrae from T4 to L4 were acquired for each subject. Anterior (Ha), middle (Hm), and posterior (Hp) heights of the thoracic (T4-T12) and lumbar (L1-L4) vertebral bodies were measured. Moreover, wedge, mid-wedge, crush I, and crush II ratios were calculated. Results: No correlation between vertebral dimensions and crush indices on the one hand and age or weight on the other were found. Body height, however, correlated significantly with the cumulated vertebral heights. Reference data for vertebral dimensions, wedge, mid-wedge, crush I, and crush II are tabulated. Conclusion: The anterior, middle, and posterior heights of the vertebral bodies of T4 to L4 can be measured reproducible with MXA. In young men, the cumulative vertebral heights correlated with body height but not with age. Moreover, the wedge and crush indices were unrelated of both age and height

  3. Localization of Proliferating Cells in the Inter-Vertebral Region of the Developing and Adult Vertebrae of Lizards in Relation to Growth and Regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2016-04-01

    New cartilaginous tissues in lizards is formed during the regeneration of the tail or after vertebral damage. In order to understand the origin of new cartilaginous cells in the embryo and after injury of adult vertebrae we have studied the distribution of proliferating cartilaginous cells in the vertebral column of embryos and adults of the lizard Anolis lineatopus using autoradiography for H3-thymidine and light and ultrastructural immunocytochemistry for 5BrdU. Proliferating sclerotomal cells initially surround the notochord in a segmental pattern and give rise to the chondrocytes of the vertebral centrum that replace the original chordal cells. Qualitative observations show that proliferating sclerotomal cells dilute the labeling up to 13 days post-injection but a few maintain the labeling as long labeling retention cells and remain in the inter-centra and perichondrium after birth. These cells supply new chondroblasts for post-natal growth of vertebrae but can also proliferate in case of vertebral damage or tail amputation in lizards, a process that sustains tail regeneration. The lack of somitic organization in the regenerating tail impedes the re-formation of a segmental vertebral column that is instead replaced by a continuous cartilaginous tube. It is hypothesized that long labeling retaining cells might represent stem/primordial cells, and that their permanence in the inter-vertebral cartilages and the nearby perichondrium in adult lizards pre-adapt these reptiles to elicit a broad cartilage regeneration in case of injury of the vertebrae. © 2016 Wiley Periodicals, Inc.

  4. Reproducibility of central lumbar vertebral BMD

    International Nuclear Information System (INIS)

    Chan, F.; Pocock, N.; Griffiths, M.; Majerovic, Y.; Freund, J.

    1997-01-01

    Full text: Lumbar vertebral bone mineral density (BMD) using dual X-ray absorptiometry (DXA) has generally been calculated from a region of interest which includes the entire vertebral body. Although this region excludes part of the transverse processes, it does include the outer cortical shell of the vertebra. Recent software has been devised to calculate BMD in a central vertebral region of interest which excludes the outer cortical envelope. Theoretically this area may be more sensitive to detecting osteoporosis which affects trabecular bone to a greater extent than cortical bone. Apart from the sensitivity of BMD estimation, the reproducibility of any measurement is important owing to the slow rate of change of bone mass. We have evaluated the reproducibility of this new vertebral region of interest in 23 women who had duplicate lumbar spine DXA scans performed on the same day. The patients were repositioned between each measurement. Central vertebral analysis was performed for L2-L4 and the reproducibility of area, bone mineral content (BMC) and BMD calculated as the coefficient of variation; these values were compared with those from conventional analysis. Thus we have shown that the reproducibility of the central BMD is comparable to the conventional analysis which is essential if this technique is to provide any additional clinical data. The reasons for the decrease in reproducibility of the area and hence BMC requires further investigation

  5. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    International Nuclear Information System (INIS)

    Jagt-Willems, H.C. van der; Munster, B.C. van; Leeflang, M.; Beuerle, E.; Tulner, C.R.; Lems, W.F.

    2014-01-01

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  6. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jagt-Willems, H.C. van der, E-mail: Hvanderjagt@spaarneziekenhuis.nl [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Department of Internal Medicine, Spaarne Hospital, Hoofddorp (Netherlands); Munster, B.C. van [Department of Internal Medicine, Academic Medical Center, Amsterdam (Netherlands); Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Leeflang, M. [Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Beuerle, E. [Department of Radiology, Slotervaart Hospital, Amsterdam (Netherlands); Tulner, C.R. [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Lems, W.F. [Department of Rheumatology, VU Medical Center, Amsterdam (Netherlands)

    2014-12-15

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  7. Musculoskeletal simulations to investigate the influence of vertebral geometrical parameters on lumbar spine loading

    DEFF Research Database (Denmark)

    Putzer, Michael; Rasmussen, John; Penzkofer, Rainer

    Body Modeling System and a parameterized musculoskeletal lumbar spine model for four different postures: upright standing, flexion (50°), torsion (10°) and lateral bending (15°). The linear dimensions of the vertebral body, the posterior parts of the vertebrae as well as the disc height, the orientation...... of the facet joints and the curvature of the lumbar spine have been varied. Figure 1 depicts the used musculoskeletal model in the flexed posture and a lumbar vertebra labeled with all relevant linear dimensions except the disc height. Additionally, all combinations of the three parameters vertebral body...... are consistent with the corresponding results of Han et al. (2012) and Niemeyer et al. (2012). As mentioned above, the vertebral body depth showed a recognizable effect for the flexed and lateral bended postures, too. These characteristics can be justified with increasing moments due to the changed offset...

  8. Vertebral chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Sundaram, Murali [Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905 (United States); Unni, Krishnan K. [Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905 (United States)

    2003-02-01

    To determine the age distribution, gender, incidence, and imaging findings of vertebral chondroblastoma, and to compare our series with findings from case reports in the world literature.Design and patients Case records and imaging findings of nine histologically documented vertebral chondroblastomas were retrospectively reviewed for patient age, gender, vertebral column location and level, morphology, matrix, edema, soft tissue mass, spinal canal invasion, and metastases. Our findings were compared with a total of nine patients identified from previous publications in the world literature. The histologic findings in our cases was re-reviewed for diagnosis and specifically for features of calcification and secondary aneurysmal bone cyst (ABC). Clinical follow-up was requested from referring institutions. Nine of 856 chondroblastomas arose in vertebrae (incidence 1.4%; thoracic 5, lumbar 1, cervical 2, sacral 1). There were six males and three females ranging in age from 5 to 41 years (mean 28 years). Satisfactory imaging from seven patients revealed the tumor to arise from the posterior elements in four and the body in three. All tumors were expansive, six of seven were aggressive, and the spinal canal was significantly narrowed by bone or soft tissue mass in six. In one patient canal invasion was minimal. Calcification was pronounced in two and subtle in four. The sole nonaggressive-appearing tumor was heavily mineralized. Bony edema and secondary ABC were not seen on MR imaging. None of the cases had microscopic features of significant secondary ABC. Calcification, and specifically ''chicken wire'' calcification, was identified in two patients. Pulmonary metastases occurred in none. Vertebral chondroblastoma is a rare neoplasm that presents later in life than its appendicular counterpart. On imaging it is aggressive in appearance with bone destruction, soft tissue mass, and spinal canal invasion. The lesions contain variable amounts of mineral

  9. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J.; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.

    2017-01-01

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the vertebral

  10. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@mgh.harvard.edu; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J.; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.

    2017-05-01

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the vertebral

  11. Over-extending reduction combined with unilateral approach percutaneous vertebroplasty for the treatment of vertebral compression fractures due to osteoporosis

    International Nuclear Information System (INIS)

    Wei Xinjian; Ji Xianghui; Cao Fei; Zhang Fuhua

    2012-01-01

    Objective: To assess the clinical effect of over-extending reduction combined with percutaneous vertebroplasty (PVP) in treating vertebral compression fractures caused by osteoporosis. Methods: A total of 16 patients with vertebral compression fractures due to osteoporosis were treated with over-extending reduction by using traction on the operation table, and then PVP through trans-single-pedicular approach was performed on the fractured vertebra. The visual analogue scale (VAS) was used to evaluate the clinical effectiveness. The preoperative and postoperative heights of the fractured vertebral body were determined, and the vertebral height recovery ratio was calculated. Results: Technical success was achieved in 20 vertebrae of 16 cases. Bone cement leakage was observed in front of the vertebral body (n=5), in the side of vertebral body (n=20) and within the intervertebral (n=2). After the treatment VAS score decreased from preoperative 8.5±1.2 to postoperative 2.5±1.4. The vertebral height recovery ratio was (40.1±23.5)%. After the surgery, the VAS score and the vertebral height were significantly improved (P<0.05). Conclusion: The over-extending reduction combined with PVP through trans-single-pedicular approach is an effective treatment for vertebral compression fractures caused by osteoporosis. (authors)

  12. Percutaneous Vertebroplasty for Osteoporotic Compression Fracture: Multivariate Study of Predictors of New Vertebral Body Fracture

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Komemushi, Sadao; Sawada, Satoshi

    2006-01-01

    Purpose. To investigate the risk factors and relative risk of new compression fractures following vertebroplasty. Methods. Initially, we enrolled 104 consecutive patients with vertebral compression fractures caused by osteoporosis. A total of 83 of the 104 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. Logistic regression analysis of the data obtained from these 83 patients was used to determine relative risks of recurrent compression fractures, using 13 different factors. Results. We identified 59 new fractures in 30 of the 83 patients: 41 new fractures in vertebrae adjacent to treated vertebrae; and 18 new fractures in vertebrae not adjacent to treated vertebrae. New fractures occurred in vertebrae adjacent to treated vertebrae significantly more frequently than in vertebrae not adjacent to treated vertebrae. Only cement leakage into the disk was a significant predictor of new vertebral body fracture after vertebroplasty (odds ratio = 4.633). None of the following covariates were associated with increased risk of new fracture: age, gender, bone mineral density, the number of vertebroplasty procedures, the number of vertebrae treated per procedure, the cumulative number of vertebrae treated, the presence of a single untreated vertebra between treated vertebrae, the presence of multiple untreated vertebrae between treated vertebrae, the amount of bone cement injected per procedure, the cumulative amount of bone cement injected, cement leakage into the soft tissue around the vertebra, and cement leakage into the vein

  13. A great number of old vertebral fractures expressing instability are pedicle fractures. With the use of 64-line multi slice computerized tomography

    International Nuclear Information System (INIS)

    Kobayashi, Akihiko; Nishida, Kenki; Ogawa, Koichi; Takahashi, Yuichi; Nakahara, Masayuki; Hijikata, Yasukazu

    2008-01-01

    We examined old vertebral fractures expressing instability with the use of 64-line CT. From April 2006 to December 2006, CT photographic images of 15 unstable fractures were examined in detail. We confirmed gas or liquid in all vertebral bodies. In 5 cases (33%), vertebral body protruding into the canal was observed. Four cases (23%) had other vertebral fractures. In addition, 12 pedicle fractures (73%) were seen. We confirmed many pedicle fractures in vertebral fractures expressing instability. These results suggest that pedicle fracture is a risk factor for back pain associated with vertebral fracture. (author)

  14. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  15. Primary Ewing's sarcoma of the vertebral column

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Sundaram, Murali [Department of Radiology, Mayo Clinic, Ch2-290 200 First Street, SW, Rochester, 55905, MN (United States); Unni, K.Krishnan [Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, 55905, Rochester, MN (United States); Dekutoski, Mark B. [Department of Orthopedic Surgery, Mayo Clinic, 200 First Street, SW, 55905, Rochester, MN (United States)

    2004-09-01

    To determine the demographics, imaging findings, clinical symptoms, and prognosis of primary vertebral Ewing's sarcoma (PVES). A retrospective review of medical records and radiological studies of patients diagnosed with PVES from 1936 through 2001 in our institution and Department of Pathology consultation files was undertaken. Metastatic and soft tissue Ewing's sarcoma cases were excluded. From a total of 1,277 cases of Ewing's sarcoma, 125 (9.8%) had a primary vertebral origin. There were 48 females and 76 males. Patient ages ranged from 4 to 54 (mean 19.3, standard deviation 10.7, median 16) years. Vertebral column distribution was four cervical (3.2%), 13 thoracic (10.5%), 31 lumbar (25%), and 67 sacrum (53.2%). More than one vertebral segment was involved in ten cases (8%). Satisfactory imaging studies were available in 51 patients: 49 radiographs, 27 computerized tomography (CT), and 23 magnetic resonance imaging (MRI) studies. The majority of tumors were lytic (93%). Three cases were mixed lytic and sclerotic (6%) and one sclerotic. In the nonsacral spine, the majority of lesions (12/20) involved the posterior elements with extension into the vertebral body. Five cases were centered in the vertebral body with extension into the posterior elements. Two cases were limited to the posterior elements, and one case solely involved the vertebral body. Ala was the most frequently affected site in the sacrum (18/26). Spinal canal invasion was frequent (91%). Detailed clinical information was available in 53 patients. Duration of symptoms ranged from 1 to 30 (mean 7) months. Local pain was the first symptom and seen in all cases. Neurological deficits were present in 21 (40%) cases. All patients received radiation in various dosages; 70% additionally received chemotherapy. Twenty-five patients had surgery, and two patients received bone marrow transplantation. Forty-five patients had follow-up; the five-year disease-free survival probability is 0

  16. Normal values of the sagittal diameter of the lumbar spine (vertebral body and dural sac) in children measured by MRI

    International Nuclear Information System (INIS)

    Knirsch, Walter; Kurtz, Claudia; Langer, Mathias; Haeffner, Nicole; Kececioglu, Deniz

    2005-01-01

    The definition of normal values is a prerequisite for the reliable evaluation of abnormality in the lumbar spine, such as spinal canal stenosis or dural ectasia in patients with Marfan syndrome. Values for vertebral body diameter (VBD) and dural sac diameter (DSD) for the lumbar spine have been published in adults. In children, normal values have been established using conventional radiography or myelography, but not by MRI. To define normal values for the sagittal diameter of the vertebral body and dural sac, and to calculate a dural sac ratio (DSR) in the lumbosacral spine (L1-S1) in healthy children using MRI. A total of 75 healthy children between 6 years and 17 years of age were examined using a sagittal T2-weighted sequence. Sagittal VBD and DSD were measured and a DSR was calculated. This was a retrospective and cross-sectional study. With increasing age there is a significant increase of VBD, a slight increase of DSD, and a slight decrease of DSR. There is no significant sex difference. DSR in healthy children is higher than in healthy adults. MRI is a reliable method demonstrating the natural shape of the lumbosacral spine and its absolute values. These normal values compare well with those established by conventional radiological techniques. Our data may serve as a reference for defining dural ectasia in children with Marfan syndrome. (orig.)

  17. Normal values of the sagittal diameter of the lumbar spine (vertebral body and dural sac) in children measured by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Walter [University Children' s Hospital Freiburg, Department of Pediatric Cardiology, Freiburg (Germany); University Children' s Hospital Zurich, Division of Paediatric Cardiology, Zurich (Switzerland); Kurtz, Claudia; Langer, Mathias [University Hospital Freiburg, Department of Radiology, Freiburg (Germany); Haeffner, Nicole; Kececioglu, Deniz [University Children' s Hospital Freiburg, Department of Pediatric Cardiology, Freiburg (Germany)

    2005-04-01

    The definition of normal values is a prerequisite for the reliable evaluation of abnormality in the lumbar spine, such as spinal canal stenosis or dural ectasia in patients with Marfan syndrome. Values for vertebral body diameter (VBD) and dural sac diameter (DSD) for the lumbar spine have been published in adults. In children, normal values have been established using conventional radiography or myelography, but not by MRI. To define normal values for the sagittal diameter of the vertebral body and dural sac, and to calculate a dural sac ratio (DSR) in the lumbosacral spine (L1-S1) in healthy children using MRI. A total of 75 healthy children between 6 years and 17 years of age were examined using a sagittal T2-weighted sequence. Sagittal VBD and DSD were measured and a DSR was calculated. This was a retrospective and cross-sectional study. With increasing age there is a significant increase of VBD, a slight increase of DSD, and a slight decrease of DSR. There is no significant sex difference. DSR in healthy children is higher than in healthy adults. MRI is a reliable method demonstrating the natural shape of the lumbosacral spine and its absolute values. These normal values compare well with those established by conventional radiological techniques. Our data may serve as a reference for defining dural ectasia in children with Marfan syndrome. (orig.)

  18. Lumbo-costo-vertebral syndrome with congenital lumbar hernia.

    Science.gov (United States)

    Gupta, Lucky; Mala, Tariq Ahmed; Gupta, Rahul; Malla, Shahid Amin

    2014-01-01

    Lumbo-costo-vertebral syndrome (LCVS) is a set of rare abnormalities involving vertebral bodies, ribs, and abdominal wall. We present a case of LCVS in a 2-year-old girl who had a progressive swelling over left lumbar area noted for the last 12 months. Clinical examination revealed a reducible swelling with positive cough impulse. Ultrasonography showed a defect containing bowel loops in the left lumbar region. Chest x-ray showed scoliosis and hemivertebrae with absent lower ribs on left side. Meshplasty was done.

  19. The vertebral morphology of the estuarine dolphin, Sotalia guianensis (Cetacea, Delphinidae

    Directory of Open Access Journals (Sweden)

    Paulo César Simões-Lopes

    2004-12-01

    Full Text Available We present a description of the backbone of the marine tucuzi (Sotalia guianensis vertebrae (n= 34, including the variations in the vertebral formula (n= 32(UFSC- Universidade Federal de Santa catarina: Ce7, T12,L10-12,Ca23-25= 52-56. Species diagnostic characters and intraspecific variations are presented. Cervical ribs occur in 22.5% of the samples. The metapophyses start from the fourth thoracic vertebra, and the zigapophyses start at the cervical level, being observed up to T11. The inclination of the transverse processes and neurapophyses is most reduced around L5 or L6. Transverse processes on caudal vertebrae disappear between Ca9 and Ca13. The neurapophyses, neural arches and metapophyses are observed up to Ca13 or Ca15. Caudal foramina appear between Ca3 and Ca6. The height of the vertebral body increases up to Ca13, then starts to decrease. The maximum width is found around Ca6, where the vertebral body becomes laterally compressed. The length of the vertebral body increases from the last cervical to T7 and then remains constant up to Ca13, decreasing from then on. This is the first study to take into account intraspecific shape and count variations, representing an improvement over the traditional typologic approach.

  20. Lumbar Disc Herniation in a Patient With Congenital Vertebral Body Anomaly: A Case Report

    Science.gov (United States)

    Atabey, Cem; Topuz, Ali Kivanc; Velioğlu, Murat; Demircan, Mehmet Nusret

    2014-01-01

    Lumbar disc herniation is characterized with low back and leg pain resulting from the degenerated lumbar disc compressing the spinal nerve root. The etiology of degenerative spine is related to age, smoking, microtrauma, obesity, disorders of familial collagen structure, occupational and sports-related physical activity. However, disc herniations induced by congenital lumbar vertebral anomalies are rarely seen. Vertebral fusion defect is one of the causes of congenital anomalies. The pathogenesis of embryological corpus vertebral fusion anomaly is not fully known. In this paper, a 30-year-old patient who had the complaints of low back and right leg pain after falling from a height is presented. She had right L5-S1 disc herniation that had developed on the basis of S1 vertebra corpus fusion anomaly in Lumbar computed tomography. This case has been discussed in the light of literature based on evaluations of Lumbar Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This case is unique in that it is the first case with development of lumbar disc herniation associated with S1 vertebral corpus fusion anomaly. Congenital malformations with unusual clinical presentation after trauma should be evaluated through advanced radiological imaging techniques. PMID:25620987

  1. Nonsurgical Corrective Union of Osteoporotic Vertebral Fracture with Once-Weekly Teriparatide

    Directory of Open Access Journals (Sweden)

    Naohisa Miyakoshi

    2015-01-01

    Full Text Available Osteoporotic vertebral fractures usually heal with kyphotic deformities with subsidence of the vertebral body when treated conservatively. Corrective vertebral union using only antiosteoporotic pharmacotherapy without surgical intervention has not been reported previously. An 81-year-old female with osteoporosis presented with symptomatic fresh L1 vertebral fracture with intravertebral cleft. Segmental vertebral kyphosis angle (VKA at L1 was 20° at diagnosis. Once-weekly teriparatide administration, hospitalized rest, and application of a thoracolumbosacral orthosis alleviated symptoms within 2 months. Corrective union of the affected vertebra was obtained with these treatments. VKA at 2 months after injury was 8° (correction, 12° and was maintained as of the latest follow-up at 7 months. Teriparatide has potent bone-forming effects and has thus been expected to enhance fracture healing. Based on the clinical experience of this case, teriparatide may have the potential to allow correction of unstable vertebral fractures without surgical intervention.

  2. Cervical vertebral and dental maturity in Turkish subjects.

    Science.gov (United States)

    Başaran, Güvenç; Ozer, Törün; Hamamci, Nihal

    2007-04-01

    The aim of this study was to investigate the relationships between the stages of calcification of teeth and the cervical vertebral maturity stages in Turkish subjects. A retrospective cross-sectional study was designed. The final study population consisted of 590 Turkish subjects. Statistical analysis of the data was performed with computer software. Spearman rank order correlation coefficients were used to assess the relationship between cervical vertebral and dental maturation. For a better understanding of the relationship between cervical vertebral maturation indexes and dental age, percentage distributions of the studied teeth were also calculated. Strict correlations were found between dental and cervical vertebral maturation of Turkish subjects. For males, the sequence from lowest to the highest was third molar, central incisor, canine, first premolar, second premolar, first molar, and second molar. For females, the sequence from lowest to the highest was third molar, canine, second premolar, first premolar, central incisor, first molar, and second molar. Dental maturation stages can be used as a reliable indicator of facial growth.

  3. Imaging investigation of metabolic and endocrine bone disease of vertebral density

    International Nuclear Information System (INIS)

    Cai Yuezeng; Tian Xiali; Li Jingxue

    2006-01-01

    Objective: To probe vertebral density of metabolic and endocrine bone disease imaging features, characterize the regional distribution of bone trabecular in sandwich spine. Methods: Thirty-six patients who had the bone density abnormality appearance in radiograms were collected in this study. Twelve patients with sandwich spine were performed lumbar CT scan. Thirty-two healthy volunteers as control group were performed lumbar CT scan too. CT values of two groups were measured from different portions of vertebral body, and then were analysed. Twenty two patients were performed dual-energy x-ray absorptiometry (DXA). One patient was performed bone histomorphometry. Results: Abnormal density included decreased and increased density. Decreased density was found in different portions of all patients, which divided into general and regional type. Increased density was obviously in vertebrae, including diffusely increased density and sandwich spine. The mean CT values of superior, middle and inferior portions of sandwich vertebral body were (259.94±18.08), (182.96±34.85), (270.34±19.40) HU. The mean CT values of both superior and inferior portions of sandwich vertebral body were higher than that of control group. The mean CT values of superior and inferior portions of sandwich spine were higher than that of middle portion. The difference of mean CT values between superior and inferior portions had no statistical significance. The difference of CT values among the regions of superior and inferior portions had no statistical significance (F=0.457, 0.462, P>0.05). The difference of CT values among the regions of middle portion had statistical significance(F=4.539, P<0.05). The DXA measurement of sandwich spine showed high, normal and low BMD. Conclusion: The sandwich spine is useful to measure superior and inferior portions of sandwich vertebral body if QCT would be performed. Sandwich spine sign can be used as an imaging index of state evaluation. Increased density in

  4. Are spinal or paraspinal anatomic makers helpful for vertebral numbering and diagnosing lumbosacral transitional vertebrae?

    Energy Technology Data Exchange (ETDEWEB)

    Tokgoz, Nil; Ucar, Murat; Erdogan, Aylin Billur; Killic, Koray; Ozcan, Cahide [Dept. of Radiology, Gazi University School of Medicine, Ankara (Turkmenistan)

    2014-04-15

    To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels.

  5. Correlation of Improved Version of Cervical Vertebral Maturation Indicator with Other Growth Maturity Indicators

    Directory of Open Access Journals (Sweden)

    Tripti Tikku

    2013-01-01

    Conclusion: The correlation between middle phalanx of 3rd finger (MP3 and cervical vertebral maturation method (CVMI and CVMS was higher as compared to the correlation of either of the cervical vertebral maturation method or MP3 with dental maturation indicator.

  6. Early prenatal diagnosis of a lumbo-costo-vertebral syndrome.

    Science.gov (United States)

    Pristavu, Anda Ioana; Furnica, Cristina; Ifrim, Mona Mihaela; Popovici, Razvan Mihai

    2018-04-01

    Lumbo-costo-vertebral syndrome (LCVS) is a rare type of lumbar hernia with associated abnormalities of the vertebral bodies, ribs, and trunk muscles. Only a few cases have been reported in the literature, all of which were diagnosed after birth. We present a case of LCVS diagnosed early in the second trimester of pregnancy using two- and three-dimensional ultrasound. In our case, the associated anomalies were: multiple costovertebral anomalies, lumbar hernia, anal imperforation, left hand supernumerary digit, and clubfoot.

  7. Three-dimensional motion pattern of the caudal lumbar and lumbosacral portions of the vertebral column of dogs.

    Science.gov (United States)

    Benninger, Monika I; Seiler, Gabriela S; Robinson, Leanne E; Ferguson, Stephen J; Bonél, Harald M; Busato, André R; Lang, Johann

    2004-05-01

    To evaluate the 3-dimensional motion pattern including main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column of dogs. Vertebral columns of 9 German Shepherd Dogs (GSDs) and 16 dogs of other breeds with similar body weights and body conditions. Main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column (L4 to S1) were determined by use of a testing apparatus that permitted precise application of known pure moments to the vertebral column. Motion was compared between GSDs and dogs of other breeds. All specimens had a similar motion pattern consisting of main motion and a certain amount of coupled motion including translation. Vertebral columns of GSDs had significantly less main motion in all directions than that of dogs of other breeds. Translation was similar in GSDs and dogs of other breeds and was smallest at the lumbosacral motion segment. Results indicated that motion in the caudal lumbar and lumbosacral portions of the vertebral column of dogs is complex and provided a basis for further studies evaluating abnormal vertebral columns.

  8. Age-related changes in vertebral and iliac crest 3D bone microstructure--differences and similarities.

    Science.gov (United States)

    Thomsen, J S; Jensen, M V; Niklassen, A S; Ebbesen, E N; Brüel, A

    2015-01-01

    Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes. The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between the bone microstructure at these skeletal sites. Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19-96 years) and 39 men (23-95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified. For both women and men, bone volume per total volume (BV/TV), connectivity density (CD), and trabecular number (Tb.N) decreased significantly, while structure model index (SMI) and trabecular separation (Tb.Sp) increased significantly with age at either skeletal site. Vertebral trabecular thickness (Tb.Th) was independent of age for both women and men, while iliac Tb.Th decreased significantly with age for men, but not for women. In general, the vertebral and iliac age-related changes were similar. The 95th percentile of the Tb.Th distribution increased significantly with age for women but was independent of age for men at the vertebral body, while it was independent of age for either sex at the iliac crest. The Tb.Th probability density functions at the two skeletal sites became significantly more similar with age for women, but not for men. The microstructural parameters at the iliac crest and the vertebral bodies were only moderately correlated from r = 0.38 for SMI in women to r = 0.75 for Tb.Sp in men. Age-related changes in vertebral and iliac bone microstructure were in general similar. The iliac

  9. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies.

    Science.gov (United States)

    Bednar, Timothy; Heyde, Christoph E; Bednar, Grace; Nguyen, David; Volpi, Elena; Przkora, Rene

    2013-11-01

    Vertebral compression fractures caused by osteoporosis are among the most common fractures in the elderly. The treatment focuses on pain control, maintenance of independence, and management of the osteoporosis. Elderly patients often encounter adverse effects to pain medications, do not tolerate bed rest, and are not ideal candidates for invasive spinal reconstructive surgery. Percutaneous vertebral augmentation (vertebroplasty or kyphoplasty) has become popular as a less-invasive alternative. However, studies have questioned the effectiveness of these procedures. The authors conducted a MEDLINE search using relevant search terms including osteoporosis, osteoporotic vertebral compression fracture, elderly, kyphoplasty and vertebroplasty. Two elderly patients presented with a fracture of their third and first lumbar vertebral body, respectively. One patient progressed well with conservative treatment, whereas the other patient was hospitalized secondary to pain after conservative measures failed to offer improvement. The hospitalized patient subsequently opted for a kyphoplasty and was able to resume his normal daily activities after the procedure. Selecting patients on an individual case-by-case basis can optimize the effectiveness and outcomes of a vertebral augmentation. This process includes the documentation of an osteoporotic vertebral compression fracture with the aide of imaging studies, including the acuity of the fracture as well as the correlation with the physical examination findings. Patients who are functional and improving under a conservative regimen are not candidates for kyphoplasty. However, if the conservative management is not successful after 4 to 6 weeks and the patient is at risk to become bedridden, an augmentation should be considered. A kyphoplasty procedure may be preferred over vertebroplasty, given the lower risk profile and better outcomes regarding spinal alignment. Published by Elsevier HS Journals, Inc.

  10. Reliability of cervical vertebral maturation staging.

    Science.gov (United States)

    Rainey, Billie-Jean; Burnside, Girvan; Harrison, Jayne E

    2016-07-01

    Growth and its prediction are important for the success of many orthodontic treatments. The aim of this study was to determine the reliability of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. A group of 20 orthodontic clinicians, inexperienced in CVM staging, was trained to use the improved version of the CVM method for the assessment of mandibular growth with a teaching program. They independently assessed 72 consecutive lateral cephalograms, taken at Liverpool University Dental Hospital, on 2 occasions. The cephalograms were presented in 2 different random orders and interspersed with 11 additional images for standardization. The intraobserver and interobserver agreement values were evaluated using the weighted kappa statistic. The intraobserver and interobserver agreement values were substantial (weighted kappa, 0.6-0.8). The overall intraobserver agreement was 0.70 (SE, 0.01), with average agreement of 89%. The interobserver agreement values were 0.68 (SE, 0.03) for phase 1 and 0.66 (SE, 0.03) for phase 2, with average interobserver agreement of 88%. The intraobserver and interobserver agreement values of classifying the vertebral stages with the CVM method were substantial. These findings demonstrate that this method of CVM classification is reproducible and reliable. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. The pattern and prevalence of vertebral artery injury in patients with cervical spine fractures

    Directory of Open Access Journals (Sweden)

    Farzanah Ismail

    2013-06-01

    Method: A retrospective review of patients who had undergone CTA of the vertebral arteries was undertaken. Reports were reviewed to determine which patients met the inclusion criteria of having had both cervical spine fractures and CTA of the vertebral arteries. Images of patients who met the inclusion criteria were analysed by a radiologist. Results: The prevalence of vertebral artery injury was 33%. Four out of the 11 patients who had vertebral artery injury, had post-traumatic spasm of the artery, with associated thrombosis or occlusion of the vessel. In terms of blunt carotid vertebral injury (BCVI grading, most of the patients sustained grade IV injuries. Four patients who had vertebral artery injury had fractures of the upper cervical vertebrae, i.e. C1 to C3. Fifteen transverse process fractures were associated with vertebral artery injury. No vertebral artery injury was detected in patients who had facet joint subluxations. Conclusion: Patients with transverse process fractures of the cervical spine and upper cervical vertebral body fractures should undergo CTA to exclude vertebral artery injury.

  12. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    Science.gov (United States)

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  13. A new classification for cervical vertebral injuries: influence of CT

    International Nuclear Information System (INIS)

    Daffner, R.H.; Brown, R.R.; Goldberg, A.L.

    2000-01-01

    Objective. Computed tomography (CT) has been demonstrated to be superior to radiography in identifying cervical vertebral injuries. However, many of these injuries may not be clinically significant, and require only minimal symptomatic and supportive treatment. It is therefore imperative that radiologists and spine surgeons have criteria for distinguishing between those injuries requiring surgical stabilization and those that do not. The authors propose a new classification of cervical vertebral injuries into two categories: major and minor.Design and patients. A data base, acquired on 1052 separate cervical injuries in 879 patients seen between 1983 and 1998, was reviewed. Four categories of injury based on mechanism [hyperflexion (four variants), hyperextension (two variants), rotary (two variants), and axial compression (five variants)] were identified. ''Major'' injuries are defined as having either radiographic or CT evidence of instability with or without associated localized or central neurologic findings, or have the potential to produce the latter. ''Minor'' injuries have no radiographic and/or CT evidence of instability, are not associated with neurologic findings, and have no potential to cause the latter.Results and conclusions. Cervical injury should be classified as ''major'' if the following radiographic and/or CT criteria are present: displacement of more than 2 mm in any plane, wide vertebral body in any plane, wide interspinous/interlaminar space, wide facet joints, disrupted posterior vertebral body line, wide disc space, vertebral burst, locked or perched facets (unilateral or bilateral), ''hanged man'' fracture of C2, dens fracture, and type III occipital condyle fracture. All other types of fractures may be considered ''minor''. (orig.)

  14. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel.

    Directory of Open Access Journals (Sweden)

    Yihui Shi

    Full Text Available A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB, carried a recombinant human bone morphogenetic protein-2 (rhBMP-2/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05. At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05. At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce

  15. iDNA screening: Disease vectors as vertebrate samplers.

    Science.gov (United States)

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  16. Kummel Disease Treatment by Unipedicular Vertebral Augmentation Using Curved Injection Cannula

    International Nuclear Information System (INIS)

    Masala, Salvatore; Nano, Giovanni; Mammucari, Matteo; Simonetti, Giovanni

    2011-01-01

    Purpose: This study was designed to evaluate the efficacy of the blunt-tipped curved injection needle (BCN) AVAflex (Care Fusion) for vertebral augmentation in cases of Kummel’s disease. Methods: We performed 25 vertebral augmentation procedures on 25 consecutive patients (11 men/14 women; mean age, 67 years) with Kummel’s disease using the blunt-tipped curved injection needle with PMMA cement. We performed all 25 procedures by unipedicular left approach with patients in prone position under local anesthesia and mild sedation. In all cases, an intravertebral cleft was evident on preprocedural imaging. We evaluated pain intensities by Visual Analogic Scale (VAS) before and at first day, 6 months, and 1 year after procedure. Results: In all cases the curved injection cannula permitted the filling of the clefts and surrounding cancellous bone without any complication. A significant reduction of kyphotic deformities of the treated vertebral bodies was evident. A significance decrease in VAS values at 1 year also was evident (mean decrease 7.2). At plain dynamic postprocedural X-rays checks, there was no sign of pathologic intravertebral motion as evidence of optimal stabilization. Conclusions: BCN AVAflex is a safe and effective device for targeted vertebral augmentation in cases of Kummel’s disease. Its distinctive characteristic is the curved injection cannula, which enables targeting the cement injection to areas far off the trajectory of the straight access cannula, thus providing excellent cement spread throughout the entire volume of vertebral body.

  17. Use of cervical vertebral maturation to determine skeletal age.

    Science.gov (United States)

    Wong, Ricky W K; Alkhal, Hessa A; Rabie, A Bakr M

    2009-10-01

    The purpose of this study was to evaluate the validity of the cervical vertebral maturation (CVM) method as an indicator of skeletal age in the circumpubertal period by correlating it to the hand-wrist method (HWM). Hand-wrist and lateral cephalometric radiographs of 400 Chinese subjects were randomly selected. Their ages were 10 to 15 years for girls and 12 to 17 years for boys, so they were within the circumpubertal period. Skeletal ages were assessed according to the CVM method and the HWM. The CVM was significantly correlated with HWM skeletal age (Spearman r = 0.9521 [boys] and 0.9408 [girls]). All patients in cervical vertebral stage 3 of the CVM corresponded to stages MP3-FG or MP3-G (around the peak of the growth spurt) in the HWM. The CVM is a valid indicator of skeletal growth during the circumpubertal period, providing information for timing of growth modification.

  18. A comparison of hand wrist bone analysis with two different cervical vertebral analysis in measuring skeletal maturation.

    Science.gov (United States)

    Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana

    2014-09-01

    Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. Hand wrist radiographs and lateral cephalograms of 72 subjects aged between 7 and 16 years both male and female from the patients visiting Department of Orthodontics and Dentofacial Orthopedics, R.V. Dental College and Hospital. The 9 stages were reduced to 5 stages to compare with cervical vertebral maturation stage by Baccetti et al. The Bjork, Grave and Brown stages were reduced to six intervals to compare with cervical vertebral maturational index (CVMI) staging by Hassel and Farman. These measurements were then compared with the hand wrist bone analysis, and the results were statistically analyzed using the Mann-Whitney test. There was no significant difference between the hand wrist analysis and the two different cervical vertebral analyses for assessing skeletal maturation. There was no significant difference between the two cervical vertebral analyses, but the CVMI method, which is visual method is less time consuming. Vertebral analysis on a lateral cephalogram is as valid as the hand wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects.

  19. Life-long accumulation of 137Cs and 40K in the vertebral column of a cow

    International Nuclear Information System (INIS)

    Pichl, Elke; Rabitsch, Herbert

    2013-01-01

    We have investigated the accumulation of 137 Cs and 40 K in all the tissues and organs of an adult slaughtered Austrian “mountain pasture cow”. In this paper we present measured 137 Cs- and 40 K-activity concentrations in different tissues of the vertebral bodies, in their other bony components and in all the vertebrae forming the vertebral column. Data are also given for activity concentrations of adherent tissues, and for activities of both the components and the whole vertebral column. The dairy cow was born in a highly contaminated region of Styria, Austria, at the time of the radioactive fallout following the Chernobyl accident. Both radionuclides were incorporated during life-long ingestion and their accumulation in all the vertebrae up to the day of slaughtering was determined by high-purity germanium detectors. Our results show considerable variations of 137 Cs- and 40 K-activity concentrations in the components of a certain vertebra, within vertebrae of a particular region, and between vertebrae of different regions of the vertebral column. Particularly, the courses of 137 Cs- and 40 K-activity concentrations in trabecular bone, cortical bone and intervertebral discs of thoracic vertebral bodies are subdivided by a strong drop into two sections. Mean values of 137 Cs-concentration in vertebral bodies of these subsections vary by a factor 4. Compared with corresponding quantities for the skeleton, total mass, as well as total 137 Cs- and 40 K-activities of the whole vertebral column came to 14%, and approximately 38% for each 137 Cs and 40 K, respectively. - Highlights: ► We show non-uniform distributions of 137 Cs and 40 K in components of vertebra. ► Any sample of one component of vertebra cannot be represent the remainder. ► No drop in concentrations in thoracic vertebral arches, spinous or transverse processes.

  20. The largest Silurian vertebrate and its palaeoecological implications

    Science.gov (United States)

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  1. Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Mantel, Frederick; Gerszten, Peter C; Flickinger, John C; Sahgal, Arjun; Létourneau, Daniel; Grills, Inga S; Jawad, Maha; Fahim, Daniel K; Shin, John H; Winey, Brian; Sheehan, Jason; Kersh, Ron

    2014-01-01

    To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD2 10 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown

  2. Delayed vertebral diagnosed L4 pincer vertebral fracture, L2-L3 ruptured vertebral lumbar disc hernia, L5 vertebral wedge fracture - Case report

    OpenAIRE

    Balasa D; Schiopu M; Tunas A; Baz R; Hancu Anca

    2016-01-01

    An association between delayed ruptured lumbar disc hernia, L5 vertebral wedge fracture and posttraumaticL4 pincer vertebral fracture (A2.3-AO clasification) at different levels is a very rare entity. We present the case of a 55 years old male who falled down from a bicycle. 2 months later because of intense and permanent vertebral lumbar and radicular L2 and L3 pain (Visual Scal Autologus of Pain7-8/10) the patient came to the hospital. He was diagnosed with pincer vertebral L4 fracture (A2....

  3. Iodine-123 uptake in vertebral haemangiomas in a patient with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Sameer Khan, S.; Dunn, J.; All-Nahhas, A.; Strickland, N.

    2008-01-01

    We present a case of a 58-year-old woman with papillary carcinoma of the thyroid and elevated thyroglobulin. Whole body 123 I scan with SPECT images demonstrated focal uptake in the thoracic spine, reported as bone metastases. Subsequent 18 F DG PET and 99m Tc HDP bone were normal. MRI and CT scans confirmed the presence of vertebral haemangiomas corresponding to the uptake seen on the 123 I scan. False-positive uptake of 123 I in benign vertebral haemangiomas should be considered in the differential diagnosis of focal vertebral uptake. (authors)

  4. A new classification for cervical vertebral injuries: influence of CT

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H.; Brown, R.R.; Goldberg, A.L. [Department of Diagnostic Radiology, Allegheny University Hospitals, Allegheny General, Pittsburgh, PA (United States)

    2000-03-30

    Objective. Computed tomography (CT) has been demonstrated to be superior to radiography in identifying cervical vertebral injuries. However, many of these injuries may not be clinically significant, and require only minimal symptomatic and supportive treatment. It is therefore imperative that radiologists and spine surgeons have criteria for distinguishing between those injuries requiring surgical stabilization and those that do not. The authors propose a new classification of cervical vertebral injuries into two categories: major and minor.Design and patients. A data base, acquired on 1052 separate cervical injuries in 879 patients seen between 1983 and 1998, was reviewed. Four categories of injury based on mechanism [hyperflexion (four variants), hyperextension (two variants), rotary (two variants), and axial compression (five variants)] were identified. ''Major'' injuries are defined as having either radiographic or CT evidence of instability with or without associated localized or central neurologic findings, or have the potential to produce the latter. ''Minor'' injuries have no radiographic and/or CT evidence of instability, are not associated with neurologic findings, and have no potential to cause the latter.Results and conclusions. Cervical injury should be classified as ''major'' if the following radiographic and/or CT criteria are present: displacement of more than 2 mm in any plane, wide vertebral body in any plane, wide interspinous/interlaminar space, wide facet joints, disrupted posterior vertebral body line, wide disc space, vertebral burst, locked or perched facets (unilateral or bilateral), ''hanged man'' fracture of C2, dens fracture, and type III occipital condyle fracture. All other types of fractures may be considered ''minor''. (orig.)

  5. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Huwart, Laurent, E-mail: huwart.laurent@wanadoo.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Foti, Pauline, E-mail: pfoti@hotmail.fr [Department of Biostatistics, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Andreani, Olivier, E-mail: andreani.olivier@gmail.com [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Hauger, Olivier, E-mail: olivier.hauger@chubordeaux.fr [Department of Radiology, Hôpital Pellegrin, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux (France); Cervantes, Elodie, E-mail: elodie.cervantes@live.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Brunner, Philippe, E-mail: pbrunner@chpg.mc [Department of Radiology, Hôpital Princesse Grasse de Monaco (Monaco); Boileau, Pascal, E-mail: boileau.p@chu-nice.fr [Department of Orthopedic Surgery, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France); Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr [Department of Radiology, Hôpital Archet 2, Centre Hospitalo-Universitaire de Nice, Nice (France)

    2014-01-15

    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty.

  6. Vertebral split fractures: Technical feasibility of percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Huwart, Laurent; Foti, Pauline; Andreani, Olivier; Hauger, Olivier; Cervantes, Elodie; Brunner, Philippe; Boileau, Pascal; Amoretti, Nicolas

    2014-01-01

    Objective: The treatment of vertebral split fractures remains controversial, consisting of either corset or internal fixation. The aim of this study was to evaluate the technical feasibility of CT- and fluoroscopy-guided percutaneous vertebroplasty in the treatment of vertebral split fractures. Materials and methods: Institutional review board approval and informed consent were obtained for this study. Sixty-two consecutive adult patients who had post-traumatic vertebral split fractures (A2 according to the AO classification) without neurological symptoms were prospectively treated by percutaneous vertebroplasty. All these procedures were performed by an interventional radiologist under computed tomography (CT) and fluoroscopy guidance by using only local anaesthesia. Postoperative outcome was assessed using the visual analogue scale (VAS) and Oswestry disability index (ODI) scores. Results: Vertebroplasty was performed on thoracic and lumbar vertebrae, creating a cement bridge between the displaced fragment and the rest of the vertebral body. Seven discal cement leakages (11%) were observed, without occurrence of adjacent vertebral compression fractures. The mean VAS measurements ± standard deviation (SD) significantly decreased from 7.9 ± 1.5 preoperatively to 3.3 ± 2.1 at 1 day, 2.2 ± 2.0 at 1 month, and 1.8 ± 1.4 at 6 months (P < 0.001). The mean ODI scores ± SD had also a significant improvement: 62.3 ± 17.2 preoperatively and 15.1 ± 6.0 at the 6-month follow-up (P < 0.001). Conclusion: This study suggests that type A2 vertebral fractures could be successfully treated by CT- and fluoroscopy-guided percutaneous vertebroplasty

  7. Biological growth in bodies with incoherent interfaces

    Science.gov (United States)

    Swain, Digendranath; Gupta, Anurag

    2018-01-01

    A general theory of thermodynamically consistent biomechanical-biochemical growth in a body, considering mass addition in the bulk and at an incoherent interface, is developed. The incoherency arises due to incompatibility of growth and elastic distortion tensors at the interface. The incoherent interface therefore acts as an additional source of internal stress besides allowing for rich growth kinematics. All the biochemicals in the model are essentially represented in terms of nutrient concentration fields, in the bulk and at the interface. A nutrient balance law is postulated which, combined with mechanical balances and kinetic laws, yields an initial-boundary-value problem coupling the evolution of bulk and interfacial growth, on the one hand, and the evolution of growth and nutrient concentration on the other. The problem is solved, and discussed in detail, for two distinct examples: annual ring formation during tree growth and healing of cutaneous wounds in animals.

  8. Gap junctional coupling in the vertebrate retina: variations on one theme?

    Science.gov (United States)

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such

  9. A Comparison of Hand Wrist Bone Analysis with Two Different Cervical Vertebral Analysis in Measuring Skeletal Maturation

    Science.gov (United States)

    Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana

    2014-01-01

    Background: Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. Materials and Methods: Hand wrist radiographs and lateral cephalograms of 72 subjects aged between 7 and 16 years both male and female from the patients visiting Department of Orthodontics and Dentofacial Orthopedics, R.V. Dental College and Hospital. The 9 stages were reduced to 5 stages to compare with cervical vertebral maturation stage by Baccetti et al. The Bjork, Grave and Brown stages were reduced to six intervals to compare with cervical vertebral maturational index (CVMI) staging by Hassel and Farman. These measurements were then compared with the hand wrist bone analysis, and the results were statistically analyzed using the Mann–Whitney test. Results: There was no significant difference between the hand wrist analysis and the two different cervical vertebral analyses for assessing skeletal maturation. There was no significant difference between the two cervical vertebral analyses, but the CVMI method, which is visual method is less time consuming. Conclusion: Vertebral analysis on a lateral cephalogram is as valid as the hand wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects. PMID:25395791

  10. Comparison of vertebral morphometry in the lumbar vertebrae by T1-weighted sagittal MRI and radiograph

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Purpose: In this study, we investigated the usefulness of T1-weighted sagittal MR images at the lumbar vertebrae in the vertebral morphometry, in comparison with lateral radiographs. Subjects and methods: The subjects were 42 men (mean age: 53.0 years) and 41 women (mean age: 57.9 years). Both MRI and radiography of the lumbar spine were performed within 1 month. The vertebral body heights and their ratios were measured by the semi-automatic measuring system. The frequency of a vertebral fracture and the absolute value of vertebral body height in both morphometry were compared. Results: Based on the criteria for prevalent vertebral fracture using vertebral height ratios, the vertebrae were classified into four groups. Group 1 was defined as the vertebrae without fracture (n = 347 vertebrae). Groups 2-4 were defined as the vertebrae with fracture; Group 2 by both MRI and X-ray morphometry (n = 17), Group 3 by MRI morphometry alone (n = 17), and Group 4 by X-ray morphometry alone (n = 4). The rate of prevalent vertebral fracture diagnosed by MRI morphometry (8.8%) was higher than that by X-ray morphometry (5.5%). In Group 1, the values of anterior and posterior vertebral height obtained by MRI morphometry were greater than those obtained by X-ray morphometry. On the other hand, the values of central vertebral height obtained by MRI morphometry were smaller than those obtained by X-ray morphometry. Conclusion: Severe biconcave deformity of vertebra can be detected by both MRI and X-ray morphometry, although mild biconcave deformity can be detected only by MRI morphometry

  11. Complex Vertebral Malformation (CVM) in an Italian Holstein calf

    International Nuclear Information System (INIS)

    Gentile, A.; Diana, A.; Testoni, S.; Olzi, E.

    2004-01-01

    Complex Vertebral Malformation, a congenital and lethal genetic defect of Holstein breed, has been recently observed in different Countries all over the world. In this paper the AA describe the clinical and radiological aspects of CVM in a two day old female calf. The disease was characterized by low body weight, symmetrical arthrogryposis and partial rotation of all legs and scoliosis. Calf was alert and showed physiological appetite, but was not able to maintain the quadrupedal stance. Radiographs of the vertebral column showed multiple vertebral anomalies, including hemivertebrae, fused and misshapen vertebrae and ribs and scoliosis, that affected mainly the caudal, cervical and thoracic regions. At necropsy, besides the skeleton anomalies, complex malformation of the heart was observed, which included atrial and interventricular defects and patent ductus arteriosus. This is the first case of CVM completely documented and genetically tested in Italy [it

  12. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    Science.gov (United States)

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p related to BMD of all sites (p related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  13. A comparison of neuronal growth cone and cell body membrane: electrophysiological and ultrastructural properties.

    Science.gov (United States)

    Guthrie, P B; Lee, R E; Kater, S B

    1989-10-01

    This study investigated a broad set of general electrophysiological and ultrastructural features of growth cone and cell body membrane of individual neurons where membrane from different regions of the same neuron can be directly compared. Growth cones were surgically isolated from identified adult Helisoma neurons in culture and compared with the cell body using whole-cell patch-clamp recording techniques. All isolated growth cones generated overshooting regenerative action potentials. Five neurons (buccal neurons B4, B5, and B19; pedal neurons P1 and P5) were selected that displayed distinctive action potential waveforms. In all cases, the growth cone action potential was indistinguishable from the cell body action potential and different from growth cones from other identified neurons. Two of these neurons (B5 and B19) were studied further using voltage-clamp procedures; growth cones and cell bodies again revealed major similarities within one neuron type and differences between neuron types. The only suggested difference between the growth cone and cell body was an apparent reduction in the magnitude of the A-current in the growth cone. Peak inward and outward current densities, as with other electrophysiological features, were different between neuron types, but were, again, similar between the growth cone and the cell body of the same neuron. Freeze-fracture analysis of intramembraneous particles (IMPs) was also performed on identified regions of the same neuron in culture. Both the density and the size distribution of IMPs were the same in growth cone, cell body, and neurite membranes. In these general electrophysiological and ultrastructural characteristics, therefore, growth cone membranes appear to retain the identity of the parent neuron cell body membrane.

  14. Thoracic and lumbar vertebral bone mineral density changes in a natural occurring dog model of diffuse idiopathic skeletal hyperostosis.

    Directory of Open Access Journals (Sweden)

    Steven De Decker

    Full Text Available Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD. There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH. DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30 or without (n=29 DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001, lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01, and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03 were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001 and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001 were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding.

  15. Shark-bitten vertebrate coprolites from the Miocene of Maryland

    Science.gov (United States)

    Godfrey, Stephen J.; Smith, Joshua B.

    2010-05-01

    Coprolites (fossilized feces) preserve a wide range of biogenic components, from bacteria and spores to a variety of vertebrate tissues. Two coprolites from the Calvert Cliffs outcrop belt (Miocene-aged Chesapeake Group), MD, USA, preserve shark tooth impressions in the form of partial dental arcades. The specimens are the first known coprolites to preserve vertebrate tooth marks. They provide another example of trace fossils providing evidence of prehistoric animal behaviors that cannot be directly approached through the study of body fossils. Shark behaviors that could account for these impressions include: (1) aborted coprophagy, (2) benthic or nektonic exploration, or (3) predation.

  16. Lordose lombar: estudo dos valores angulares e da participação dos corpos vertebrais e discos intervertebrais Lumbar lordosis: a study of angle values and of vertebral bodies and intervertebral discs role

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Fonseca Damasceno

    2006-01-01

    Full Text Available Foi estudado, em indivíduos normais, o valor angular da lordose lombar e a participação dos corpos vertebrais e discos intervertebrais na sua composição. Foram avaliadas as radiografias da coluna lombar de 350 indivíduos normais e assintomáticos com a idade variando de 18 a 50 anos (média 29,0 anos ± 8,24, sendo 143 homens e 207 mulheres. Foram medidas a curvatura lombossacra (L1S1 e a curvatura lombolombar (L1L5. As medidas das curvaturas lombares e dos seus componentes apresentaram grande variabilidade. Foram observados valores médios de -61° para a curvatura lombossacra e de -45° para a curvatura lombolombar. As medidas dos corpos vertebrais apresentaram valores cifóticos para L1, neutros para L2, e progressivamente lordóticos de L3 a L5. Os discos intervertebrais apresentaram angulação lordótica progressiva desde L1-L2. Os elementos caudais da curvatura, discos intervertebrais L4-L5 e L5-S1 e o corpo vertebral L5 corresponderam a quase 60% medida angular da curvatura lombossacra. Foi observada diferença significante entre os sexos masculino e feminino para as medidas das curvaturas lombares, e dos corpos vertebrais L2 e L4, tendo sido observados valores maiores no sexo feminino. Foram observadas diferenças relacionadas à idade na medida das curvaturas lombares e dos corpos vertebrais.The angular value of lumbar lordosis and the role of vertebral bodies and intervertebral discs in its constitution were studied in normal individuals. X-Ray images of lumbar spine were studied in 350 normal and asymptomatic individuals, ages ranging from 18 to 50 years old (average 29.0 years old ± 8.24, being 143 males and 207 females. The lumbosacral (L1S1 and the lumbolumbar (L1L5 curves were measured. Measurements for lumbar curves and their components presented a large variation. Average values of -61º were seen for lumbosacral curve and of -45º for lumbolumbar curve. Vertebral bodies measurements presented kyphotic values for L1

  17. Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis.

    Science.gov (United States)

    Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept

  18. Percutaneous vertebroplasty for osteoporotic vertebral compression fractures with intraosseous cystic cavity phenomena

    International Nuclear Information System (INIS)

    He Shicheng; Teng Gaojun; Deng Gang; Fang Wen; Guo Jinhe; Zhu Guangyu; Li Guozao; Shen Zhiping; Ding Huijuan

    2005-01-01

    Objective: To evaluate the key technique, short term clinical efficacy and degree of changes in vertebral body height for percutaneous vertebroplasty in treating patients with osteoporotic vertebral compression fractures containing intraosseous cystic cavity phenomena. Methods: Thirty two vertebrae of painful compression fractures with intraosseous vacuum sign occurring in 27 patients were identified from 326 percutaneous vertebroplasties performed in 207 patients during 4 years. PVP was performed under C-arm fluoroscopy guidance only with local anesthesia. Intaosseous venography was performed on each vertebra by hand injection with non-ionic contrast agent, with CT monitoring after PMMA injection for the PMMA distribution in the vertebrae and looking for leakage. The heights of 32 vertebral bodies were measured before and after the vertebroplasty. The efficacy of PVP was evaluated during the follow-up. Results: The successful rate of PVP was 100%. Main appearance of vertebral venography showed cystic cavity-like, stasis of contrast medium within the marrow space of the fractured vertebra. 6.8 ml of PMMA in average was injected into each vertebra. CR, PR and NR were obtained respectively 66.7%, 18.5%, 14.8% mm centrally and 0.06 mm posteriorly. The heights restoration of vertebrae anteriorly and centrally were significantly different (P 0.05). No serious complications related to the technique occurred, except 3 cases with asymptomatic PMMA leakage around vertebrae demonstrated by CT. Conclusions: Significant pain relief and vertebral height restoration by PVP in the treatment of patients with painful vertebral compression fractures accompanied by intraosseous cysticavitary change, are promising with low-rate of PMMA leakage. The basic successful mechanism lies on the proper complete PMMA filling predicting through venography. (authors)

  19. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    Science.gov (United States)

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Vertebroplasty as treatment of aggressive and symptomatic vertebral hemangiomas: up to 4 years of follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, G.; Ambrosanio, G.; Vassallo, P.; Galasso, R.; Lavanga, A.; Izzo, R.; Muto, M. [AORNA Cardarelli, Neuroradiology Service, Naples (Italy); Pezzullo, M.G. [Seconda Universita degli studi di Napoli - SUN, Radiology Service, Naples (Italy)

    2009-07-15

    This study aimed to illustrate the validity of the treatment with vertebroplasty (VP) in patients with aggressive or symptomatic vertebral hemangioma (VH) with or without epidural extension. From January 2003 to December 2007, 24 consecutive patients have been treated with VP, for a total of 36 vertebral bodies affected by VH: two cervical, ten dorsal, 24 lumbar. All the patients complained of a pain syndrome resistant to continuous medical medication; four of 24 patients also presented aggressive magnetic resonance features of the vertebral lesion and two patients showed also epidural extension. A unipedicular approach has been performed in 16 patients; a bipedicular approach has been performed in six, while for the cervical spine an anterior-lateral approach with manual dislocation of the carotid axis has always been performed. Bone biopsy was never done. All procedures have been carried out with local anesthesia, except for the treatment of the cervical hemangiomas which has always been performed under general anesthesia. Four vertebral bodies in the same session have been treated in one case. Results have been evaluated with the visual analog scale and the Oswestry Disability Index methods. In all the patients, in the following 24-72 h, a successful outcome has been observed with a complete resolution of pain symptom. Extravertebral vascular or discal cement leakage has been observed in four patients, without any onset of clinical radicular syndrome due to epidural diffusion. Clinical and radiological follow-up until 4 years has been performed in 12 patients and it showed stability of the treatment and absence of pain. Percutaneous treatment with VP for aggressive and symptomatic vertebral hemangiomas even with epidural extension is a valuable, mini-invasive, and quick method that allows a complete and enduring resolution of the painful vertebral symptoms without findings of fracture of a vertebral body adjacent or distant to the one treated. (orig.)

  1. Vertebroplasty as treatment of aggressive and symptomatic vertebral hemangiomas: up to 4 years of follow-up

    International Nuclear Information System (INIS)

    Guarnieri, G.; Ambrosanio, G.; Vassallo, P.; Galasso, R.; Lavanga, A.; Izzo, R.; Muto, M.; Pezzullo, M.G.

    2009-01-01

    This study aimed to illustrate the validity of the treatment with vertebroplasty (VP) in patients with aggressive or symptomatic vertebral hemangioma (VH) with or without epidural extension. From January 2003 to December 2007, 24 consecutive patients have been treated with VP, for a total of 36 vertebral bodies affected by VH: two cervical, ten dorsal, 24 lumbar. All the patients complained of a pain syndrome resistant to continuous medical medication; four of 24 patients also presented aggressive magnetic resonance features of the vertebral lesion and two patients showed also epidural extension. A unipedicular approach has been performed in 16 patients; a bipedicular approach has been performed in six, while for the cervical spine an anterior-lateral approach with manual dislocation of the carotid axis has always been performed. Bone biopsy was never done. All procedures have been carried out with local anesthesia, except for the treatment of the cervical hemangiomas which has always been performed under general anesthesia. Four vertebral bodies in the same session have been treated in one case. Results have been evaluated with the visual analog scale and the Oswestry Disability Index methods. In all the patients, in the following 24-72 h, a successful outcome has been observed with a complete resolution of pain symptom. Extravertebral vascular or discal cement leakage has been observed in four patients, without any onset of clinical radicular syndrome due to epidural diffusion. Clinical and radiological follow-up until 4 years has been performed in 12 patients and it showed stability of the treatment and absence of pain. Percutaneous treatment with VP for aggressive and symptomatic vertebral hemangiomas even with epidural extension is a valuable, mini-invasive, and quick method that allows a complete and enduring resolution of the painful vertebral symptoms without findings of fracture of a vertebral body adjacent or distant to the one treated. (orig.)

  2. Spondylolysis and isthmic spondylolisthesis: impact of vertebral hypoplasia on the use of the Meyerding classification.

    Science.gov (United States)

    Niggemann, P; Kuchta, J; Grosskurth, D; Beyer, H K; Hoeffer, J; Delank, K S

    2012-04-01

    Spondylolysis and isthmic spondylolisthesis are common multifactorial disorders. The extent of slipping of the spondylolytic vertebra is considered a major predicator for prognosis and further follow-up. Vertebral hypoplasia is a common finding associated with spondylolysis. The purpose of this study is to evaluate the incidence of hypoplastic vertebral bodies in patients with spondylolysis and in the general population and to analyse the impact of the findings on the measurement and grading of spondylolisthesis. 140 patients with 141 levels of spondylolysis identified by MRI were included in this study. The slippage of the spondylolytic vertebral body and the size in the midline sagittal image were measured and correlated. In addition, a randomised control group was evaluated to test the hypothesis that shortened, hypoplastic vertebral bodies can also be found in the general population. Shortened, hypoplastic vertebrae were found in 50 patients with spondylolysis and none was found in the control group. These shortened vertebrae mimicked spondylolisthesis and in 19 patients the slippage equalled the shortening, thus mimicking spondylolisthesis, although only spondylolysis was present. Sagittal shortening of the spondylolytic vertebra is common and may mimic spondylolisthesis. In order to define and measure spondylolisthesis the shortening of the spondylolytic vertebra has to be taken into account.

  3. [Vertebral fractures in children with Type I Osteogenesis imperfecta].

    Science.gov (United States)

    Sepúlveda, Andrea M; Terrazas, Claudia V; Sáez, Josefina; Reyes, María L

    2017-06-01

    Osteogenesis imperfecta (OI) is an hereditary disease affecting conective tissue, mainly associated to growth retardation and pathological fractures. OI type I (OI type I), is the mildest, most often, and homogeneous in its fenotype. Vertebral fractures are the most significant complications, associated to skeletical and cardiopulmonary morbidity. To characterize clinically a cohort of children with OI type I. A cohort of OI type I children younger than 20 year old was evaluated. Demographic, clinical, biochemical and radiological data were registered. Sixty seven patients were included, 55% male, 69% resident in the Metropolitan Region. The mean age of diagnose was 2.9 years, 70% presented vertebral fractures on follow-up, mostly thoracic, and 50% before the age of 5 years. Fifty percentage presented vertebral fractures at diagnose, which was about the age of 5 years. Bone metabolic parameters were in the normal range, without significant change at the moment of vertebral fractures. Calcium intake was found to be below American Academy of Pediatrics recommendations at the time of the first fracture. In this study OI type I has an early diagnose, and vertebral fractures show a high incidence, mostly in toddlers. Calcium intake was found to be below reccomended values, and should be closely supervised in these patients.

  4. Oldest near-complete acanthodian: the first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario.

    Directory of Open Access Journals (Sweden)

    Carole J Burrow

    Full Text Available The relationships between early jawed vertebrates have been much debated, with cladistic analyses yielding little consensus on the position (or positions of acanthodians with respect to other groups. Whereas one recent analysis showed various acanthodians (classically known as 'spiny sharks' as stem osteichthyans (bony fishes and others as stem chondrichthyans, another shows the acanthodians as a paraphyletic group of stem chondrichthyans, and the latest analysis shows acanthodians as the monophyletic sister group of the Chondrichthyes.A small specimen of the ischnacanthiform acanthodian Nerepisacanthus denisoni is the first vertebrate fossil collected from the Late Silurian Bertie Formation Konservat-Lagerstätte of southern Ontario, Canada, a deposit well-known for its spectacular eurypterid fossils. The fish is the only near complete acanthodian from pre-Devonian strata worldwide, and confirms that Nerepisacanthus has dentigerous jaw bones, body scales with superposed crown growth zones formed of ondontocytic mesodentine, and a patch of chondrichthyan-like scales posterior to the jaw joint.The combination of features found in Nerepisacanthus supports the hypothesis that acanthodians could be a group, or even a clade, on the chondrichthyan stem. Cladistic analyses of early jawed vertebrates incorporating Nerepisacanthus, and updated data on other acanthodians based on publications in press, should help clarify their relationships.

  5. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images.

    Science.gov (United States)

    Burns, Joseph E; Yao, Jianhua; Summers, Ronald M

    2017-09-01

    Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.

  6. A case of traumatic intracranial vertebral artery injury presenting with life-threatening symptoms

    Directory of Open Access Journals (Sweden)

    Kishi S

    2012-04-01

    Full Text Available Seiji Kishi1, Kenji Kanaji2, Toshio Doi1, Tadashi Matsumura21Department of Nephrology, Tokushima University Hospital, Kuramoto-cho Tokushima, 2Department of General Internal Medicine, Rakuwakai Otowa Hospital, Otowachinji-cho Yamashina-ku Kyoto, JapanAbstract: Traumatic intracranial vertebral artery injury is a relatively rare but potentially fatal disease. We present a case of a 63-year-old man who presented with sudden onset of loss of consciousness after hitting his head. After immediate resuscitation, he showed quadriplegia and absence of spontaneous breathing. Brain and cervical spine magnetic resonance imaging revealed an atlantoaxial subluxation, fractured C2 odontoid process, left vertebral artery occlusion, and bilateral extensive ischemia in the medulla oblongata and high cervical spinal cord. Digital subtraction angiography demonstrated left vertebral artery dissection just below the level of vertebral body C2.Keywords: vertebral artery dissection, brainstem infarction, bilateral spinal cord infarction, neck trauma

  7. Permo-Triassic vertebrate extinctions: A program

    Science.gov (United States)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  8. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    Science.gov (United States)

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  9. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  10. Variation in vertebral number and its morphological implication in Galaxias platei.

    Science.gov (United States)

    Barriga, J P; Milano, D; Cussac, V E

    2013-11-01

    Variation in the vertebral number of the puyen grande Galaxias platei was examined for specimens from 22 localities that span the entire distribution range of the species (from 40° to 55° S). The mean vertebral number (NMW ) increases towards high latitudes, i.e. Jordan's rule is applicable to this species. Owing to the wide geographic variation of the species, not only in latitude but also in altitude, the most explicative variable for NMW was mean winter air temperature, showing negative dependence. Morphological data suggest that the increment in vertebral number lies in the pre-pelvic region of the trunk and in the caudal region, but not in the segment between pelvic-fin insertion and the origin of the anal fin. As these alterations in body shape have important consequences for hydrodynamics and swimming performance, vertebral number variation in G. platei also holds implications for both individual and population fitness. © 2013 The Fisheries Society of the British Isles.

  11. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes.

    Science.gov (United States)

    Fuentes, Eduardo N; Einarsdottir, Ingibjörg Eir; Paredes, Rodolfo; Hidalgo, Christian; Valdes, Juan Antonio; Björnsson, Björn Thrandur; Molina, Alfredo

    2015-01-01

    Knowledge about the underlying mechanisms, particularly the signaling pathways that account for muscle growth in vivo in early vertebrates is still scarce. Fish (Paralichthys adspersus) were fasted for 3weeks to induce a catabolic period of strong muscle atrophy. Subsequently, fish were refed for 2weeks to induce compensatory muscle hypertrophy. During refeeding, the fish were treated daily with either rapamycin (TORC blocker), PD98059 (MEK blocker), or PBS (V; vehicle), or were untreated (C; control). Rapamycin and PD98059 differentially impaired muscle cellularity in vivo, growth performance, and the expression of growth-related genes, and the inhibition of TORC1 had a greater impact on fish muscle growth than the inhibition of MAPK. Blocking TORC1 inhibited the phosphorylation of P70S6K and 4EBP1, two downstream components activated by TORC1, thus affecting protein contents in muscle. Concomitantly, the gene expression in muscle of igf-1, 2 and igfbp-4, 5 was down-regulated while the expression of atrogin-1, murf-1, and igfbp-2, 3 was up-regulated. Muscle hypertrophy was abolished and muscle atrophy was promoted, which finally affected body weight. TORC2 complex was not affected by rapamycin. On the other hand, the PD98059 treatment triggered ERK inactivation, a downstream component activated by MEK. mRNA contents of igf-1 in muscle were down-regulated, and muscle hypertrophy was partially impaired. The present study provides the first direct data on the in vivo contribution of TORC1/P70S6K, TORC1/4EBP1, and MAPK/ERK signaling pathways in the skeletal muscle of an earlier vertebrate, and highlights the transcendental role of TORC1 in growth from the cellular to organism level. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Growth and Puberty in Obese Children and Implications of Body Composition

    Directory of Open Access Journals (Sweden)

    Sochung Chung

    2017-12-01

    Full Text Available Childhood obesity is a major public health concern throughout the world. Nutrition, energy balance and hormones interplay in growth and pubertal development regulation. Frequently overweight and obese children are taller for their age and sex and tend to mature earlier than lean children. The increased leptin and sex hormone levels seen in obese children with excessive adiposity may be implicated in accelerated pubertal growth and accelerated epiphyseal growth plate maturation. Efforts to detect the impact of obesity in children are needed to prevent metabolic and cardiovascular disease in later life. This review aims to cover the process of growth in obese children and implications of body composition on growth and pubertal development and introduce the use of body composition charts in clinical practice.

  13. CT and MRI of vertebral haemangiomas

    International Nuclear Information System (INIS)

    Braitinger, S.; Weigert, F.; Held, P.; Obletter, N.; Breit, A.

    1989-01-01

    A retrospective comparative study of CT and MRI was carried out involving 38 vertebral haemangiomas; this revealed a typical signal pattern on MRI from benign lesions. It consists of a hyper-intense signal from the bone marrow affecting the T 1 /T 2 sequences; this may be focal or involve the entire vertebral body. These characteristic signals were compared with CT images of the spine. The areas of bone that produce the high intensity signals on MRI appear on CT as spongey patterns with hypertrophic trabeculae surrounding mostly areas with negative absorption values. An analysis of the changes in the spongiosa has revealed three clearly defined types. The signals derived from haemangiomas extending beyond the bone have an intensity of normal spongiosa; this corresponds with an absence of fat, as demonstrated by CT. Extra-osseous components have low intensity T 1 signals that increase in T 2 sequences. (orig.) [de

  14. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    The ability to control cell volume is fundamental for proper cell function. This review highlights recent advances in the understanding of the complex sequences of events by which acute cell volume perturbation alters the activity of osmolyte transport proteins in cells from vertebrate organisms...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  15. Prevalent morphometric vertebral fractures in professional male rugby players.

    Directory of Open Access Journals (Sweden)

    Karen Hind

    Full Text Available There is an ongoing concern about the risk of injury to the spine in professional rugby players. The objective of this study was to investigate the prevalence of vertebral fracture using vertebral fracture assessment (VFA dual energy X-ray absorptiometry (DXA imaging in professional male rugby players. Ninety five professional rugby league (n = 52 and union (n = 43 players (n = 95; age 25.9 (SD 4.3 years; BMI: 29.5 (SD 2.9 kg.m2 participated in the research. Each participant received one VFA, and one total body and lumbar spine DXA scan (GE Lunar iDXA. One hundred and twenty vertebral fractures were identified in over half of the sample by VFA. Seventy four were graded mild (grade 1, 40 moderate (grade 2 and 6 severe (grade 3. Multiple vertebral fractures (≥2 were found in 37 players (39%. There were no differences in prevalence between codes, or between forwards and backs (both 1.2 v 1.4; p>0.05. The most common sites of fracture were T8 (n = 23, T9 (n = 18 and T10 (n = 21. The mean (SD lumbar spine bone mineral density Z-score was 2.7 (1.3 indicating high player bone mass in comparison with age- and sex-matched norms. We observed a high number of vertebral fractures using DXA VFA in professional rugby players of both codes. The incidence, aetiology and consequences of vertebral fractures in professional rugby players are unclear, and warrant timely, prospective investigation.

  16. STUDY OF VERTEBRAL MORPHOGENESIS OF COBIA LARVAE, (Rachycentron canadum BY DOUBLE STAINING METHODS

    Directory of Open Access Journals (Sweden)

    Afifah Nasukha

    2012-12-01

    Full Text Available Vertebral development is one of the main indicators of organism growth. The aim of this study was to know the vertebral development of cobia Rachycentron canadum in larval stage (20 day post hatch. Vertebral assay was done with double staining methods. The result showed that cobia larvae from 0 dph up to 5 dph did not have cartilage. On 5 dph up to 10 dph had pre cartilage phase composed by calcium and on 10 dph up to 18 dph were cartilage phase and marked with blue color by alcian blue. Vertebral was formed perfectly as bones on 18 dph marked with red color by alizarin red. On 20 dph, cartilage had been fully transformed to bones, and the segment of vertebral was clearly formed. Measurement showed that length of cobia vertebrae was 20.20±3.90 mm, vertebrae segment was 0.91±0.11 mm and number of vertebral segments were between 25-26 segments.

  17. Isolated unilateral vertebral pedicle fracture caused by a back massage in an elderly patient: a case report and literature review.

    Science.gov (United States)

    Guo, Zhiping; Chen, Wei; Su, Yanling; Yuan, Junhui; Zhang, Yingze

    2013-11-01

    The vertebral pedicle injuries are clinically common. However, the isolated vertebral pedicle fracture with intact vertebral bodies is a rare lesion. We reported a case of a 66-year-old man who experienced a pedicle fracture after a back massage. The patient sustained osteoporosis, long-existing low back pain and nerve compression symptoms without antecedent major trauma. Imaging findings demonstrated an isolated unilateral L5 vertebral pedicle fracture with intact vertebral bodies, spinal canal stenosis at the L4-5 levels, bulging annulus fibrosus at the L4-S1 levels, bilateral spondylolysis and an L5/S1 spondylolisthesis. The patient underwent L4-S1 decompressive laminectomy, L5/S1 discectomy and neurolysis, and reduction and fixation of the L5 vertebral pedicle fracture and L5/S1 spondylolisthesis using the pedicle nail system. At follow-ups, the patient showed good recovery without pain or numbness in the low back and bilateral lower extremities. This study raises the awareness of a complication of alternative medicine and the possibility of a pedicle fracture caused by a low-energy trauma.

  18. High prevalence of radiological vertebral fractures in HIV-infected males.

    Science.gov (United States)

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  19. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    Directory of Open Access Journals (Sweden)

    Tishya A L Wren

    Full Text Available Lumbar lordosis (LL is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI, we measured vertebral cross-sectional area (CSA and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001, while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02. When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001; this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001, suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as

  20. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    Science.gov (United States)

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis

  1. Growth performance and certain body measurements of ostrich ...

    African Journals Online (AJOL)

    Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age. Kh M Mahrose, AI Attia, IE Ismail, DE Abou-Kassem, ME Abd El-Hack ...

  2. Trait-based prediction of extinction risk of small-bodied freshwater fishes.

    Science.gov (United States)

    Kopf, R Keller; Shaw, Casey; Humphries, Paul

    2017-06-01

    Small body size is generally correlated with r-selected life-history traits, including early maturation, short-generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small-bodied freshwater fishes from 4 temperate river basins: Murray-Darling, Australia; Danube, Europe; Mississippi-Missouri, North America; and the Rio Grande, North America. Twenty-three ecological and life-history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed-effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size-among small-bodied species-was the most influential trait correlated with threatened species listings. The k-folds cross-validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small-bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11

  3. Palliative radiation for vertebral metastases: the effect of variation in prescription parameters on the dose received at depth

    International Nuclear Information System (INIS)

    Barton, Rachael; Robinson, Graham; Gutierrez, Eric; Kirkbride, Peter; McLean, Michael

    2002-01-01

    Purpose: To assess the effect of prescription parameters on the dose received by the spine during palliative radiotherapy. Methods and Materials: In a survey, members of the Canadian Association of Radiation Oncologists were asked to define their prescription parameters for vertebral metastases. The depth of the spinal canal and vertebral body at 8 spinal levels was measured in 20 magnetic resonance imaging studies (MRIs). Survey results were applied to the measurements to assess the dose received at depth. The depth of spinal structures assessed at simulation and by diagnostic imaging was compared. Results: Prescriptions were most commonly to D max 3 cm or 5 cm using 60 Co-6MV photons delivering 8-30 Gy in 1-10 fractions. Mean depths from MRI were: posterior spinal canal, 5.5 cm; anterior spinal canal, 6.9 cm; and anterior vertebral body, 9.6 cm. Application of the prescription parameters from the survey to these measurements showed a wide range in the dose at depth with variation in technique. Depths measured at simulation correlated well with diagnostic imaging. Conclusion: The spinal canal and vertebral body lie >5 cm beneath the skin, and the dose received varies by up to 50% with changes in prescription depth. We suggest a suitable prescription point for vertebral metastases and a method for determining this at simulation

  4. Outcome following kyphoplasty or vertebral body stenting with special regard to associated complications including their treatment strategy

    DEFF Research Database (Denmark)

    Lehmann, C.; Strohm, P.; Knöller, S.

    2011-01-01

    Introduction: Kyphoplasty (KP) and vertebral body stenting (VBS) have been established for treatment of spine fractures in elderly people. There are a lot of studies about the short-term pain reduction in reference to the health-related quality of life (HRQoL). The aim of this study...... patient needed a spinal decompression as a sole treatment and 3 patients additionally needed a spinal decompression. There was a statistically significant difference concerning the HRQoL between patients with or without secondary intervention for the EQ-5d Index and the EQ-5d pain/discomfort survey...... of fractures of the thoracic and lumbar spine remains an important problem, because the necessary surgical effort is significant. The HRQoL of patients with KP or VBS is less than that of the age-matched control sample. For patients with a secondary intervention the result is even worse. Type and reason...

  5. Vertebral involvement in SAPHO syndrome: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Nachtigal, A.; Cardinal, E.; Bureau, N.J. [Dept. of Radiology, Univ. de Montreal, QC (Canada); Sainte-Marie, L.G. [Dept. of Internal Medicine, Univ. de Montreal, QC (Canada); Milette, F. [Department of Pathology, Univ. de Montreal, QC (Canada)

    1999-03-01

    We report on the MRI findings in the vertebrae and surrounding soft tissues in two patients with the SAPHO syndrome (Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis). The MRI findings include abnormal bone marrow signal, either focal or diffuse, of the vertebral bodies and posterior elements; hyperintense paravertebral soft tissue swelling and abnormal signal of the intervertebral discs. These changes are consistent with discitis and osteitis. (orig.) With 6 figs., 17 refs.

  6. Axial dynamics during locomotion in vertebrates: lesson from the salamander

    OpenAIRE

    GOSSARD, JEAN-PIERRE; DUBUC, RÉJEAN; KOLTA, ARLETTE; Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri

    2010-01-01

    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body...

  7. Vertebrate land invasions-past, present, and future: an introduction to the symposium.

    Science.gov (United States)

    Ashley-Ross, Miriam A; Hsieh, S Tonia; Gibb, Alice C; Blob, Richard W

    2013-08-01

    The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis. Thus, studies of amphibious vertebrates elucidate the functional demands of two very different habitats and clarify our understanding of the initial evolutionary challenges of moving onto land. A complementary approach is to use studies of the fossil record and comparative development to gain new perspectives on form and function of modern amphibious and non-amphibious vertebrate taxa. Based on the synthetic approaches presented in the symposium, it is clear that our understanding of aquatic-to-terrestrial transitions is greatly improved by the reciprocal integration of paleontological and neontological perspectives. In addition, common themes and new insights that emerged from this symposium point to the value of innovative approaches, new model species, and cutting-edge research techniques to elucidate the functional challenges and evolutionary changes associated with vertebrates' invasion of the land.

  8. Asymptomatic Lumbar Vertebral Erosion from Inferior Vena Cava Filter Perforation

    International Nuclear Information System (INIS)

    Fang, Wayne; Hieb, Robert A.; Olson, Eric; Carrera, Guillermo F.

    2007-01-01

    In 2002, a 24-year-old female trauma patient underwent prophylactic inferior vena cava filter placement. Recurrent bouts of renal stones prompted serial CT imaging in 2004. In this brief report, we describe erosion and ossification of the L3 vertebral body by a Greenfield filter strut

  9. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    Science.gov (United States)

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Effects of anatomic conformation on three-dimensional motion of the caudal lumbar and lumbosacral portions of the vertebral column of dogs.

    Science.gov (United States)

    Benninger, Monika I; Seiler, Gabriela S; Robinson, Leanne E; Ferguson, Stephen J; Bonél, Harald M; Busato, André R; Lang, Johann

    2006-01-01

    To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

  11. Osteomielitis vertebral piógena Pyogenic vertebral osteomyelitis

    Directory of Open Access Journals (Sweden)

    Pedro P. Perrotti

    2009-10-01

    Full Text Available La osteomielitis vertebral piógena (OVP es una localización poco frecuente (2-7% Se confirma con el aislamiento de un microorganismo de una vértebra, disco intervertebral, absceso epidural o paravertebral. Se describe una serie de casos por la infrecuente presentación de esta enfermedad, que puede ser consulta inicial en los servicios de clínica médica y por su sintomatología inespecífica que supone una dificultad diagnóstica. Tanto la columna lumbar como la dorsal fueron los sitios más afectados. El dolor dorsolumbar y la paraparesia fueron los síntomas más frecuentes de presentación. En ocho pacientes se aislaron Staphylococcus aureus, en uno Escherichia coli y en el restante Haemophylus sp. Se observó leucocitosis sólo en tres pacientes, y en dos velocidad de sedimentación globular mayor de 100 mm/h. Los diez pacientes presentaron imágenes características de osteomielitis vertebral piógena en la resonancia nuclear magnética. Dentro de las complicaciones, los abscesos paravertebrales y epidurales fueron los más frecuentes (en cinco enfermos. Además, un paciente presentó empiema pleural. De los diez pacientes de esta serie, siete recibieron inicialmente tratamiento médico empírico y luego específico para el germen aislado. En los restantes el tratamiento fue guiado de acuerdo al antibiograma. A dos enfermos fue necesario realizarles laminectomía descompresiva por compromiso de partes blandas y a otros dos estabilización quirúrgica por inestabilidad espinal, observándose buena evolución en todos los casos. Esta serie demuestra que, ante un paciente con dolor dorsolumbar y síntomas neurológicos se deberá tener en cuenta esta entidad para evitar un retraso en el tratamiento.Pyogenic osteomyelitis seldom affects the spine (2-7%. It is diagnosed by the isolation of a bacterial agent in the vertebral body, the intervertebral disks or from paravertebral or epidural abscesses. We report a retrospective study of ten

  12. Feasibility Study of a Standardized Novel Animal Model for Cervical Vertebral Augmentation in Sheep Using a PTH Derivate Bioactive Material

    Directory of Open Access Journals (Sweden)

    Karina Klein

    2014-08-01

    Full Text Available Prophylactic local treatment involving percutaneous vertebral augmentation using bioactive materials is a new treatment strategy in spine surgery in humans for vertebral bodies at risk. Standardized animal models for this procedure are almost non-existent. The purpose of this study was to: (i prove the efficacy of PTH derivate bioactive materials for new bone formation; and (ii create a new, highly standardized cervical vertebral augmentation model in sheep. Three different concentrations of a modified form of parathyroid hormone (PTH covalently bound to a fibrin matrix containing strontium carbonate were used. The same matrix without PTH and shams were used as controls. The bioactive materials were locally injected. Using a ventral surgical approach, a pre-set amount of material was injected under fluoroscopic guidance into the intertrabecular space of three vertebral bodies. Intravital fluorescent dyes were used to demonstrate new bone formation. After an observation period of four months, the animals were sacrificed, and vertebral bodies were processed for µCT, histomorphometry, histology and sequential fluorescence evaluation. Enhanced localized bone activity and new bone formation in the injected area could be determined for all experimental groups in comparison to the matrix alone and sham with the highest values detected for the group with a medium concentration of PTH.

  13. Growth and body composition of Peruvian infants in a periurban setting

    Science.gov (United States)

    Iannotti, Lora L.; Zavaleta, Nelly; León, Zulema; Caulfield, Laura E.

    2010-01-01

    Background Previous growth studies of Peruvian children have featured high stunting rates and limited information about body composition. Objective We aimed to characterize anthropometric measures of Peruvian infants 0 to 12 months of age in relation to the international growth references and biological, environmental, and socioeconomic factors. Methods Infants (n = 232) were followed longitudinally from birth through 12 months of age from a prenatal zinc supplementation trial conducted in Lima, Peru, between 1995 and 1997. Anthropometric measures of growth and body composition were obtained at enrollment from mothers and monthly through 1 year of age from infants. Weekly morbidity and dietary intake surveillance was carried out during the second half of infancy. Results The prevalence rates of stunting, underweight, and wasting did not exceed 4% based on the World Health Organization growth references. Infants of mothers from high-altitude regions had larger chest circumference (p = .006) and greater length (p = .06) by 12 months. Significant predictors of growth and body composition throughout infancy were age, sex, anthropometric measurements at birth, breastfeeding, maternal anthropometric measurements, primiparity, prevalence of diarrhea among children, and the altitude of the region of maternal origin. No associations were found for maternal education, asset ownership, or sanitation and hygiene factors. Conclusions Peruvian infants in this urban setting had lower rates of stunting than expected. Proximal and familial conditions influenced growth throughout infancy. PMID:19927604

  14. Growth and body composition of Peruvian infants in a periurban setting.

    Science.gov (United States)

    Iannotti, Lora L; Zavaleta, Nelly; León, Zulema; Caulfield, Laura E

    2009-09-01

    Previous growth studies of Peruvian children have featured high stunting rates and limited information about body composition. We aimed to characterize anthropometric measures of Peruvian infants 0 to 12 months of age in relation to the international growth references and biological, environmental, and socioeconomic factors. Infants (n = 232) were followed longitudinally from birth through 12 months of age from a prenatal zinc supplementation trial conducted in Lima, Peru, between 1995 and 1997. Anthropometric measures of growth and body composition were obtained at enrollment from mothers and monthly through 1 year of age from infants. Weekly morbidity and dietary intake surveillance was carried out during the second half of infancy. The prevalence rates of stunting, underweight, and wasting did not exceed 4% based on the World Health Organization growth references. Infants of mothers from high-altitude regions had larger chest circumference (p = .006) and greater length (p = .06) by 12 months. Significant predictors of growth and body composition throughout infancy were age, sex, anthropometric measurements at birth, breastfeeding, maternal anthropometric measurements, primiparity, prevalence of diarrhea among children, and the altitude of the region of maternal origin. No associations were found for maternal education, asset ownership, or sanitation and hygiene factors. Peruvian infants in this urban setting had lower rates of stunting than expected. Proximal and familial conditions influenced growth throughout infancy.

  15. Delayed vertebral diagnosed L4 pincer vertebral fracture, L2-L3 ruptured vertebral lumbar disc hernia, L5 vertebral wedge fracture - Case report

    Directory of Open Access Journals (Sweden)

    Balasa D

    2016-08-01

    Full Text Available An association between delayed ruptured lumbar disc hernia, L5 vertebral wedge fracture and posttraumaticL4 pincer vertebral fracture (A2.3-AO clasification at different levels is a very rare entity. We present the case of a 55 years old male who falled down from a bicycle. 2 months later because of intense and permanent vertebral lumbar and radicular L2 and L3 pain (Visual Scal Autologus of Pain7-8/10 the patient came to the hospital. He was diagnosed with pincer vertebral L4 fracture (A2.3-AO clasification and L2-L3 right ruptured lumbar disc hernia in lateral reces. The patient was operated (L2-L3 right fenestration, and resection of lumbar disc hernia, bilateral stabilisation, L3-L4-L5 with titan screws and postero-lateral bone graft L4 bilateral harvested from iliac crest.

  16. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  17. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  18. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  19. Body Size Distribution of the Dinosaurs

    Science.gov (United States)

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  20. Effect of various nutrient combinations on growth and body ...

    African Journals Online (AJOL)

    A total of 80 Labeo rohita fingerlings (mean body weight, 14.7 ± 0.08 g and length, 11.0 ± 0.16 cm) were randomly distributed into four treatments with 20 replicates each, for 60 days, to determine the effect of different feed compositions on the growth and body composition of L. rohita. Four isoenergetic (17.05 ± 0.24 kJ g-1) ...

  1. Percutaneous vertebroplasty in the therapy of osteoporotic vertebral compression fractures: a critical review

    International Nuclear Information System (INIS)

    Hochmuth, K.; Proschek, D.; Schwarz, W.; Mack, M.; Vogl, T.J.; Kurth, A.A.

    2006-01-01

    Percutaneous vertebroplasty has become an efficient technique for the treatment of painful vertebral fractures. Osteoporotic vertebral compression fractures are characterized by severe back pain and immobilization causing other complications like thrombosis or pneumonia. Vertebral cement augmentation provides increased strength of the vertebral body and an obvious pain relief. Between 1989 and 2004, 30 studies and a total of 2,086 treated patients have been published in literature. A review of these studies has been performed. The number and age of the patients, number of treated vertebrae, pre- and postoperative outcome of pain and complications of the different studies were assessed and analyzed. Percutaneous vertebroplasty is an efficient technique with low complication rates and a significant reduction in pain. It rapidly improves the mobility and quality of life of patients with vertebral compression fractures. With an increasing number of treated patients, experience with this interventional technique has become excellent. But still there are no randomized controlled trials available, showing that percutaneous vertebroplasty has a significantly better outcome than other treatment options, especially after a long-term follow-up. (orig.)

  2. The Effect of Reduction Mammaplasty on the Vertebral Column: A Radiologic Study

    Directory of Open Access Journals (Sweden)

    Onder Karaaslan

    2013-01-01

    Full Text Available Some studies emphasized that anatomic mechanisms of vertebral aberrations could be associated with large breasts. The effect of mammaplasty operation on the vertebral column and body posture seems to be beneficial; in this trial, it was planned to investigate the objective radiologic effect of reduction mammaplasty on the posture of the vertebral column in a group of patients operated due to the large breasts. Thirty-four white women with large breasts were enrolled in this study. The patients were divided into three groups according to their breast cup sizes. Anteroposterior and lateral radiographs of the lumbosacral and thoracic spine were taken at baseline preoperatively, and the same radiographic images were taken in an average of 12 months later than the reduction mammaplasty operation. All were evaluated and compared for thoracic kyphosis angle and lumbar lordosis angle both preoperatively and postoperatively. The mean thoracic kyphosis angle was 40,53 preoperatively and 39,38 postoperatively. However, there was no statistically significant difference between the preoperative and postoperative measurements in all groups (P>0,05. The mean lumbar lordosis angle was 54,71 preoperatively and 53,18 postoperatively. Regarding the preoperative and postoperative measurements of lumbar lordosis angles, no statistically significant difference was found between the groups (P>0,05. Although breast size may be an important factor that affects body posture, reduction mammaplasty operations have little or no radiologic effect on the vertebral column.

  3. The sex of specific neurons controls female body growth in Drosophila.

    Science.gov (United States)

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  4. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography.

    Science.gov (United States)

    Seki, Shoji; Kawaguchi, Yoshiharu; Nakano, Masato; Makino, Hiroto; Mine, Hayato; Kimura, Tomoatsu

    2016-03-01

    Although direct vertebral rotation (DVR) is now used worldwide for the surgical treatment of adolescent idiopathic scoliosis (AIS), the benefit of DVR in reducing vertebral body rotation in these patients has not been determined. We investigated a possible additive effect of DVR on further reduction of vertebral body rotation in the axial plane following intraoperative rod rotation or differential rod contouring in patients undergoing surgical treatment for AIS. The study was a prospective computed tomography (CT) image analysis. We analyzed the results of the two intraoperative procedures in 30 consecutive patients undergoing surgery for AIS (Lenke type I or II: 15; Lenke type V: 15). The angle of reduction of vertebral body rotation taken by intraoperative CT scan was measured and analyzed. Pre- and postoperative responses to the Scoliosis Research Society 22 Questionnaire (SRS-22) were also analyzed. To analyze the reduction of vertebral body rotation with rod rotation or DVR, intraoperative cone-beam CT scans of the three apical vertebrae of the major curve of the scoliosis (90 vertebrae) were taken pre-rod rotation (baseline), post-rod rotation with differential rod contouring, and post-DVR in all patients. The angle of vertebral body rotation in these apical vertebrae was measured and analyzed for statistical significance. Additionally, differences between thoracic curve scoliosis (Lenke type I or II; 45 vertebrae) and thoracolumbar or lumbar curve scoliosis (Lenke type V; 45 vertebrae) were analyzed. Pre- and postoperative SRS-22 scores were evaluated in all patients. The mean (90 vertebrae) vertebral body rotation angles at baseline, post-rod rotation or differential rod contouring, and post-rod rotation or differential rod contouring or post-DVR were 17.3°, 11.1°, and 6.9°, respectively. The mean reduction in vertebral body rotation with the rod rotation technique was 6.8° for thoracic curves and 5.7° for thoracolumbar or lumbar curves (pself

  5. Preliminary clinical research of vertebral body stenting combined with absorbable bone cements for osteoporotic vertebral compression fractures%椎体支架联合可吸收骨水泥治疗骨质疏松性椎体压缩骨折的临床疗效

    Institute of Scientific and Technical Information of China (English)

    贾崇哲; 贾璞; 陈浩; 包利; 冯飞; 刘青山; 杨阳; 唐海

    2016-01-01

    目的 分析经皮椎体后凸成形术(PKP)中运用椎体支架联合可吸收骨水泥治疗骨质疏松性椎体压缩骨折(OVCF)的临床效果. 方法 前瞻性研究2014年1月-2016年1月应用椎体支架联合可吸收骨水泥治疗OVCF患者.比较术前、术后3d、3、6个月视觉模拟评分(VAS)、Oswestry功能障碍指数(ODI)、椎体高度恢复情况、椎体后凸Cobb角的变化及其并发症.结果 共纳入15例患者,其中男8例,女7例;年龄51~83岁,平均68.6岁,均完成6个月随访.所有患者均顺利完成手术,无术中、术后并发症发生.VAS评分由术前(7.67±0.62)分改善至术后3d的(2.60 ±0.63)分,术后3个月的(2.00 ±0.65)分,术后6个月的(1.26±0.80)分;ODI由术前(55.62±6.14)%改善至术后3d的(30.84±2.70)%,术后3个月的(21.88±2.42)%,术后6个月的(17.07±2.82)%.术后3d、3个月、6个月与术前比较,VAS评分和ODI显著降低(P均<0.05).椎体前缘高度由术前(2.50 ±0.48) cm恢复为术后3d的(2.59 ±0.49)cm,术后6个月的(2.60±0.50)cm.椎体中部高度由术前(2.27 ±0.38)cm恢复为术后3d的(2.33±0.38) cm,术后6个月的(2.35±0.38) cm.椎体后缘高度由术前(3.09±0.48)cm恢复为术后3d的(3.14±0.46)cm,术后6个月的(3.18±0.50) cm.术后椎体前缘、中部高度较术前均有所恢复(P<0.05),且高度在3d、6个月时丢失不明显(P>0.05);术后椎体后缘高度较术前恢复不明显(P>0.05).Cobb角术前为(8.93±6.58).,恢复为术后3d的(8.03±6.02)°,术后3个月的(8.06±6.08).,术后6个月的(7.93±6.09).,术后Cobb角较术前有所改善(P均<0.05),且随访期间Cobb角变化不明显(P>0.05). 结论 PKP术中椎体支架联合可吸收骨水泥治疗OVCF可改善和维持椎体前缘、中部高度及Cobb角,早期随访效果满意.%Objective To observe the clinical effect and safety of using vertebral body stenting combined with absorbable bone cements during percutaneous kyphoplasty (PKP) for osteoporotic

  6. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures

    International Nuclear Information System (INIS)

    Lentle, B.C.; Brown, J.P.; Khan, A.

    2007-01-01

    should be assessed from lateral spinal or chest radiographs according to the semiquantitative method of Genant and colleagues. Grade II and Grade III fractures as classified by this method should be given the greatest emphasis. Semiquantitative fracture recognition should include the recognition of changes such as loss of vertebral end-plate parallelism, cortical interruptions, and quantitative changes in the anterior, midbody, and posterior heights of vertebral bodies. (author)

  7. High Resolution N-Body Simulations of Terrestrial Planet Growth

    Science.gov (United States)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  8. Imaging the vertebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Keng Yeow; U-King-Im, Jean Marie; Trivedi, Rikin A.; Higgins, Nicholas J.; Cross, Justin J.; Antoun, Nagui M. [Addenbrooke' s Hospital and University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Davies, John R.; Weissberg, Peter L. [Addenbrooke' s Hospital and University of Cambridge, Division of Cardiovascular Medicine, Cambridge (United Kingdom); Gillard, Jonathan H. [Addenbrooke' s Hospital and University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospitald, University Department of Radiology, Cambridge (United Kingdom)

    2005-07-01

    Although conventional intraarterial digital subtraction angiography remains the gold standard method for imaging the vertebral artery, noninvasive modalities such as ultrasound, multislice computed tomographic angiography and magnetic resonance angiography are constantly improving and are playing an increasingly important role in diagnosing vertebral artery pathology in clinical practice. This paper reviews the current state of vertebral artery imaging from an evidence-based perspective. Normal anatomy, normal variants and a number of pathological entities such as vertebral atherosclerosis, arterial dissection, arteriovenous fistula, subclavian steal syndrome and vertebrobasilar dolichoectasia are discussed. (orig.)

  9. Imaging the vertebral artery

    International Nuclear Information System (INIS)

    Tay, Keng Yeow; U-King-Im, Jean Marie; Trivedi, Rikin A.; Higgins, Nicholas J.; Cross, Justin J.; Antoun, Nagui M.; Davies, John R.; Weissberg, Peter L.; Gillard, Jonathan H.

    2005-01-01

    Although conventional intraarterial digital subtraction angiography remains the gold standard method for imaging the vertebral artery, noninvasive modalities such as ultrasound, multislice computed tomographic angiography and magnetic resonance angiography are constantly improving and are playing an increasingly important role in diagnosing vertebral artery pathology in clinical practice. This paper reviews the current state of vertebral artery imaging from an evidence-based perspective. Normal anatomy, normal variants and a number of pathological entities such as vertebral atherosclerosis, arterial dissection, arteriovenous fistula, subclavian steal syndrome and vertebrobasilar dolichoectasia are discussed. (orig.)

  10. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  11. Bi-iliac distance and iliac bone position compared to the vertebral column in normal fetal development

    DEFF Research Database (Denmark)

    Hartling, U B; Fischer Hansen, B; Skovgaard, L T

    2001-01-01

    Prenatal standards of bi-iliac width were not found in the literature based on autopsy investigations, nor was the caudo-cranial position of the ilia compared to the vertebral column. The first purpose of the present study was to establish normal standard values for the bi-iliac distance in fetal...... life, the second to evaluate the level of the iliac bones proportional to the ossified vertebral column. Whole body radiographs in antero-posterior projections from 98 human fetuses (36 female and 44 male fetuses, as well as 18 fetuses on which the sex had not been determined) were analyzed...... caliper. The caudo-cranial position of the iliac bones was evaluated. The present study shows that in normal fetal development there is a continuous linear enlargement of the pelvic region in the transverse and vertical planes. The upper iliac contour stays at the level of the first sacral vertebral body...

  12. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds.

    Directory of Open Access Journals (Sweden)

    Seung-Yoon Oh

    Full Text Available Tricholoma matsutake (pine mushroom, PM is a prized mushroom in Asia due to its unique flavor and pine aroma. The fruiting body of PM forms only in its natural habitat (pine forest, and little is known regarding the natural conditions required for successful generation of the fruiting bodies in this species. Recent studies suggest that microbial interactions may be associated with the growth of PM; however, there have been few studies of the bacterial effects on PM growth. In this study, we surveyed which bacteria can directly and indirectly promote the growth of PM by using co-cultures with PM and molds associated with the fruiting body. Among 16 bacterial species isolated from the fruiting body, some species significantly influenced the mycelial growth of PM and molds. Most bacteria negatively affected PM growth and exhibited various enzyme activities, which suggests that they use the fruiting body as nutrient source. However, growth-promoting bacteria belonging to the Dietzia, Ewingella, Pseudomonas, Paenibacillus, and Rodococcus were also found. In addition, many bacteria suppressed molds, which suggests an indirect positive effect on PM as a biocontrol agent. Our results provide important insights toward a better understanding of the microbial interactions in the fruiting body of PM, and indicate that growth-promoting bacteria may be an important component in successful cultivation of PM.

  13. Measurement of spinal canal narrowing, interpedicular widening, and vertebral compression in spinal burst fractures: plain radiographs versus multidetector computed tomography

    International Nuclear Information System (INIS)

    Bensch, Frank V.; Koivikko, Mika P.; Koskinen, Seppo K.; Kiuru, Martti J.

    2009-01-01

    To assess the reliability of measurements of spinal canal narrowing, vertebral body compression, and interpedicular widening in burst fractures in radiography compared with multidetector computed tomography (MDCT). Patients who had confirmed acute vertebral burst fractures over an interval of 34 months underwent both MDCT and radiography. Measurements of spinal canal narrowing, vertebral body compression, and interpedicular widening from MDCT and radiography were compared. The 108 patients (30 female, 78 male, aged 16-79 years, mean 39 years) had 121 burst fractures. Eleven patients had multiple fractures, of which seven were not contiguous. Measurements showed a strong positive correlation between radiography and MDCT (Spearman's rank sum test: spinal canal narrowing k = 0.50-0.82, vertebral compression k = 0.55-0.72, and interpedicular widening k = 0.81-0.91, all P 0.25) and for interpedicular widening in the thoracic spine (k = 0.35, P = 0.115). The average difference in measurements between the modalities was 3 mm or fewer. Radiography demonstrates interpedicular widening, spinal canal narrowing and vertebral compression with acceptable precision, with the exception of those of the cervical spine. (orig.)

  14. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis.

    Science.gov (United States)

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-02-15

    BACKGROUND Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. MATERIAL AND METHODS Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. RESULTS The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. CONCLUSIONS The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications.

  15. Assessing the effects of lumbar posterior stabilization and fusion to vertebral bone density in stabilized and adjacent segments by using Hounsfield unit

    Science.gov (United States)

    Öksüz, Erol; Deniz, Fatih Ersay; Demir, Osman

    2017-01-01

    Background Computed tomography (CT) with Hounsfield unit (HU) is being used with increasing frequency for determining bone density. Established correlations between HU and bone density have been shown in the literature. The aim of this retrospective study was to determine the bone density changes of the stabilized and adjacent segment vertebral bodies by comparing HU values before and after lumbar posterior stabilization. Methods Sixteen patients who had similar diagnosis of lumbar spondylosis and stenosis were evaluated in this study. Same surgical procedures were performed to all of the patients with L2-3-4-5 transpedicular screw fixation, fusion and L3-4 total laminectomy. Bone mineral density measurements were obtained with clinical CT. Measurements were obtained from stabilized and adjacent segment vertebral bodies. Densities of vertebral bodies were evaluated with HU before the surgeries and approximately one year after the surgeries. The preoperative HU value of each vertebra was compared with postoperative HU value of the same vertebrae by using statistical analysis. Results The HU values of vertebra in the stabilized and adjacent segments consistently decreased after the operations. There were significant differences between the preoperative HU values and the postoperative HU values of the all evaluated vertebral bodies in the stabilized and adjacent segments. Additionally first sacral vertebra HU values were found to be significantly higher than lumbar vertebra HU values in the preoperative group and postoperative group. Conclusions Decrease in the bone density of the adjacent segment vertebral bodies may be one of the major predisposing factors for adjacent segment disease (ASD). PMID:29354730

  16. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    Science.gov (United States)

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  17. Management of osteoporotic vertebral fractures

    OpenAIRE

    Dionyssiotis, Yannis

    2010-01-01

    Yannis DionyssiotisRhodes General Hospital, Rhodes, GreeceAbstract: Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature.Keywords: vertebral fracture...

  18. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Final report, 1 September 1988--30 June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  19. Establishment of the Vertebrate Germ Layers.

    Science.gov (United States)

    Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T

    2017-01-01

    The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

  20. Analysis of Long Bone and Vertebral Failure Patterns

    Science.gov (United States)

    1985-02-14

    and alter the injury pattern. Classified on an anatomical, kinesiologic , £s and pathologic basis, the vertebral body fracture patterns may...814. Boyde, A. (1972) Scanning electron microscope studies of bone. In Bourne, G.H. (ed): The Biochemistry and Physiology of Bone. New York...Eyring, E.J. (1969) The biochemistry and physiology of intervertebral disk. Clin. Orthop. Rel, Res. 67: 16-18. Fick, R. (1904) Handbuch der Anatomie

  1. Primary bone lymphoma with multiple vertebral involvement

    Directory of Open Access Journals (Sweden)

    Showkat Hussain Dar

    2013-01-01

    Full Text Available A 20-year-old student presented with 2 months history of fever and night sweats, 15 days history of low backache, progressive weakness of both limbs of 7 days duration, and urinary retention for last 24 h. Examination revealed a sensory level at D 10 dermatome and grade two power in both the lower limbs with absent reflexes. Examination of spine revealed a knuckle at T8 level, which was tender on palpation. MRI spine showed erosion of D11-12 and L1 in vertebral bodies with destruction of left pedicles, transverse processes and lamina, and a prominent psoas abscess. Post gadolinium study revealed ring-enhancing lesions in the D11-12 and L1 vertebrae as well as the dural sac. Fine needle aspiration cytology (FNAC and bone biopsy demonstrated a non-Hodgkin′s lymphoma (NHL, large cell high-grade of the spine (primary, which as per age is the youngest case of NHL ever reported in literature with multiple vertebral involvement.

  2. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    Science.gov (United States)

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  3. Evolution of endothelin receptors in vertebrates.

    Science.gov (United States)

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  4. Vertebral metastases with high risk of symptomatic malignant spinal cord compression

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Senba, Takatoshi

    2009-01-01

    To find vertebral metastases with high risk of symptomatic malignant spinal cord compression (MSCC), features of vertebral metastases caused motor deficits of the lower extremities were examined. From 2004 through 2006, 78 patients with metastases of the thoracic and/or the cervical spine were treated with radiation therapy (RT). Of these, 86 irradiated lesions in 73 patients were evaluable by magnetic resonance imaging and/or computed tomography at the initiation of RT and were reviewed retrospectively in this study. Twenty-eight patients (38%) had motor deficits at the initiation of RT. Assessed factors were age, sex, primary disease (lung, breast, digestive system and other cancer), lamina involvement, main level of tumor location and vertebral-body involvement. Incidence of motor deficits at the initiation of RT was 55% for lesions with lamina involvement and 5% for lesions without lamina involvement (P 0.9999, P=0.7798, P=0.1702 and P=0.366, respectively). Vertebral metastases with lamina involvement tended to cause symptomatic MSCC. Latent development of MSCC occurred more frequently in the MTS compared with other levels of the thoracic and the cervical spine. (author)

  5. New method for evaluation of cervical vertebral maturation based on angular measurements.

    Science.gov (United States)

    Alhadlaq, Adel M; Al-Shayea, Eman I

    2013-04-01

    To investigate the validity of a new approach to assess the cervical vertebral maturation based on angular measurements of the lower border concavity of cervical vertebral bodies. Hand-wrist and lateral cephalometric radiographs of 197 male subjects with age range of 10-15 years attending the orthodontic clinic at King Saud University, Riyadh, Kingdom of Saudi Arabia were utilized. The study was carried out between September 2009 and May 2011. The study sample was divided into 6 groups (group 1: 10 years to group 6: 15 years) based on the chronological age of the subject. The skeletal age of the subjects was determined using Greulich and Pyle's standard radiographic atlas, and skeletal maturation was assessed by Fishman's skeletal maturity indicators. The cervical vertebral maturation (CVM) of subjects was determined using angular measurements of the second, third, and fourth cervical vertebral bodies. The validity of the newly developed method was assessed by examining the correlation between CVM stages determined by the angular measurements and the skeletal maturation level as determined by the standard hand-wrist methods. A significant correlation (r=0.94) was found between the angular CVM stages and the skeletal age determined by Greulich and Pyle's atlas from hand-wrist radiographs. Also, a high correlation (r=0.94) was found between the angular CVM stages and the Fishman's hand-wrist skeletal maturity indicators. The new angular measurement approach to determine CVM is valid and has the potential to be applied in assessing skeletal maturity level in growing male children.

  6. The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth

    International Nuclear Information System (INIS)

    Oestreich, Alan E.

    2003-01-01

    In order to discuss and illustrate the common effects on normal and abnormal enchondral bone at the physes and at all other growth plates of the developing child, the term ''acrophysis'' is proposed. Acrophyses include the growth plates of secondary growth centers including carpals and tarsals and apophyses, and the growth plates at the non-physeal ends of small tubular bones. The last layer of development of both physes and acrophysis is the cartilaginous zone of provisional calcification (ZPC). The enchondral bone abutting the ZPC shares similar properties at physes and acrophyses, including the relatively lucent metaphyseal bands of many normal infants at several weeks of age. The bone-in-bone pattern of the normal vertebral bodies and bands of demineralization of the tarsal bones just under the ZPC are the equivalent of those bands. The growth arrest/recovery lines of metaphyses similarly have equivalent lines in growth centers and other acrophyseal sites. Nearly the same effects can also be anticipated from the relatively similar growth plate at the cartilaginous cap of benign exostoses (''paraphysis''). The companion article will explore abnormalities at acrophyseal sites, including metabolic bone disease and dysplasias. (orig.)

  7. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    Science.gov (United States)

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  9. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    Science.gov (United States)

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  10. Novel Single Nucleotide Polymorphisms of the Insulin-Like Growth Factor-I Gene and Their Associations with Growth Traits in Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Xiu Feng

    2014-12-01

    Full Text Available Insulin-like growth factor-I (IGF-I plays an important role in the growth and development of vertebrates. To study polymorphisms of IGF-I, we screened a total of 4555 bp of genomic sequences in four exons and partial introns for the discovery of single nucleotide polymorphism (SNP in common carp (Cyprinus carpio. Three SNPs (g.3759T>G, g.7627T>A and g.7722T>C in intron 2 and a nonsynonymous SNP (g.7892C>T in exon 3 were identified in a pilot population including random parents and their progenies. 289 progenies were further genotyped for studying possible associations between genotypes or combined genotypes and growth traits. The results showed that the locus g.7627T>A was significantly associated with body weight and body length, and fish with genotype AA had a mean body weight 5.9% higher than those with genotype TT. No significant associations were observed between genotypes of other loci and growth traits. However, when both g.7627T>A and g.7722T>C were considered, the combined genotype TT/TT was extremely associated with the lowest values of body length and body weight and the highest K value in comparison with other diplotypes (p < 0.01. These results suggest that genotype AA at g.7627T>A and its combined genotypes with alleles from another locus have positive effects on growth traits, which would be a candidate molecular marker for further studies in marker-assisted selection in common carp.

  11. Evolution of the turtle body plan by the folding and creation of new muscle connections.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Ericsson, Rolf; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2009-07-10

    The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.

  12. THE CERVICAL VERTEBRAL BONE MATURATION OF Hb E BETA THALASSEMIA PATIENTS OF DEUTEROMALAY AGED 9 – 14 YEARS

    Directory of Open Access Journals (Sweden)

    Loes D. Sjahruddin

    2006-04-01

    Full Text Available One of the growth indicators that can be used to assess a child’s developmental growth is through skeletal maturation. Skeletal maturity can be evaluated by using anatomical changes of the cervical vertebral bones observed on the lateral cephalometric radiographs. The purpose of this study was to determine the stage of cervical vertebrae maturation of Hb E β thalassemia patients by comparing the shape changes of the second to fourth cervical vertebrae bodies with a control group. The design of this study was cross sectional. The subjects were children with Hb E β thalassemia aged 9 – 14 years. The results showed that the retarded maturation of the cervical vertebrae in Hb E β thalassemia was not found in the subjects of pre-puberty age (9 – 11 years old, but in those of puberty age (12 – 14 years old.

  13. Significance of angular mismatch between vertebral endplate and prosthetic endplate in lumbar total disc replacement.

    Science.gov (United States)

    Lee, Chong Suh; Chung, Sung Soo; Oh, Sung Kyun; You, Je Wook

    2011-05-01

    A retrospective study. To determine whether angular mismatch between the vertebral endplate and prosthetic endplate during lumbar total disc replacement (L-TDR) affects the radiological and clinical outcomes. A prosthesis anchored to the vertebral body by using a large central keel carries an inherent risk of angular mismatch between the vertebral endplate and prosthetic endplate at a segment with a greater degree of lordosis, such as L5-S1. Theoretically, this angular mismatch can cause several problems, such as segmental hyperlordosis, anterior positioning of the upper prosthesis, posterior prosthetic edge subsidence, decreased range of motion (ROM), and a poor clinical outcome. This study evaluated 64 prosthetic levels of 56 patients who were implanted with L-TDR between June 2002 and February 2006. There were 38 and 26 prosthetic levels at the L4-5 and L5-S1, respectively. The mean follow-up period was 25.6 (12 to 49) months. The angle of mismatch between the lower endplate of the upper vertebral body and the upper prosthetic plate, segmental flexion/extension ROM, segmental lordosis angle at extension, distance from the posterior wall of the vertebral body to the posterior prosthetic edge were measured by obtaining radiographs. Clinically, the Visual Analogue Scale and Oswestry Disability Index were also evaluated. The angular mismatches between the upper vertebra and prosthesis at L4-5 and L5-S1 were 1.6 degree and 5.6 degree, respectively (P body to the posterior edge of the prosthesis in L5-S1 were 6.8 degree (4 to 13), 12.8 degree (8 to 17), and 3.8 mm (1 to 6 mm) in patients with an angular mismatch of 0.05). Angular mismatch was more common in L5-S1 than in L4-5. L-TDR at the most lordotic level, L5-S1, and implantation of an upper prosthesis with a mismatched angle seem to be the causes of a reduced segmental ROM, increased segmental lordosis, and anterior malpositioning of the prosthesis. However, these changes do not affect the clinical outcomes of

  14. The influence of dental caries on body growth in prepubertal children

    NARCIS (Netherlands)

    van Gemert-Schriks, M.C.M.; van Amerongen, E.W.; Aartman, I.H.A.; Wennink, J.M.B.; ten Cate, J.M.; de Soet, J.J.

    2011-01-01

    Dental decay and dental treatment are suggested to be related to body growth in children. The aim of this study was first to assess the relation between dental caries and body proportions cross-sectionally in a Suriname caries child population and secondly to investigate whether dental treatment had

  15. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon.

    Science.gov (United States)

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  16. Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings

    Energy Technology Data Exchange (ETDEWEB)

    Oei, Ling [Erasmus Medical Center, Department of Internal Medicine, Rotterdam (Netherlands); Erasmus Medical Center, Department of Epidemiology, P.O. Box 2040 Ee21-75, CA, Rotterdam (Netherlands); Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam (Netherlands); Erasmus Medical Center, Departments of Internal Medicine and Epidemiology, P.O. Box 2040 Ee21-83, CA, Rotterdam (Netherlands); Rivadeneira, Fernando [Erasmus Medical Center, Department of Internal Medicine, Rotterdam (Netherlands); Erasmus Medical Center, Department of Epidemiology, P.O. Box 2040 Ee21-75, CA, Rotterdam (Netherlands); Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam (Netherlands); Erasmus Medical Center, Departments of Internal Medicine and Epidemiology, P.O. Box 2040 Ee5-79, CA, Rotterdam (Netherlands); Ly, Felisia; Breda, Stephan J. [Erasmus Medical Center, Department of Internal Medicine, Rotterdam (Netherlands); Erasmus Medical Center, Department of Epidemiology, P.O. Box 2040 Ee21-75, CA, Rotterdam (Netherlands); Erasmus Medical Center, Departments of Internal Medicine and Epidemiology, P.O. Box 2040 Ee21-83, CA, Rotterdam (Netherlands); Zillikens, M.C. [Erasmus Medical Center, Department of Internal Medicine, Rotterdam (Netherlands); Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam (Netherlands); Erasmus Medical Center, Department of Internal Medicine, ' s Gravendijkwal 230, CE, Rotterdam (Netherlands); Hofman, Albert [Erasmus Medical Center, Department of Epidemiology, P.O. Box 2040 Ee21-75, CA, Rotterdam (Netherlands); Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam (Netherlands); Uitterlinden, Andre G. [Erasmus Medical Center, Department of Internal Medicine, Rotterdam (Netherlands); Erasmus Medical Center, Department of Epidemiology, P.O. Box 2040 Ee21-75, CA, Rotterdam (Netherlands); Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam (Netherlands); Erasmus Medical Center, Departments of Internal Medicine and Epidemiology, P.O. Box 2040 Ee5-75B, CA, Rotterdam (Netherlands); Krestin, Gabriel P.; Oei, Edwin H.G. [Erasmus Medical Center, Department of Radiology, ' s Gravendijkwal 230, CE, Rotterdam (Netherlands)

    2013-02-15

    Osteoporosis is the most common metabolic bone disease; vertebral fractures are the most common osteoporotic fractures. Several radiological scoring methods using different criteria for osteoporotic vertebral fractures exist. Quantitative morphometry (QM) uses ratios derived from direct vertebral body height measurements to define fractures. Semi-quantitative (SQ) visual grading is performed according to height and area reduction. The algorithm-based qualitative (ABQ) method introduced a scheme to systematically rule out non-fracture deformities and diagnoses osteoporotic vertebral fractures based on endplate depression. The concordance across methods is currently a matter of debate. This article reviews the most commonly applied standardised radiographic scoring methods for osteoporotic vertebral fractures, attaining an impartial perspective of benefits and limitations. It provides image examples and discusses aspects that facilitate large-scale application, such as automated image analysis software and different imaging investigations. It also reviews the implications of different fracture definitions for scientific research and clinical practice. Accurate standardised scoring methods for assessing osteoporotic vertebral fractures are crucial, considering that differences in definition will have implications for patient care and scientific research. Evaluation of the feasibility and concordance among methods will allow establishing their benefits and limitations, and most importantly, optimise their effectiveness for widespread application. (orig.)

  17. Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings

    International Nuclear Information System (INIS)

    Oei, Ling; Rivadeneira, Fernando; Ly, Felisia; Breda, Stephan J.; Zillikens, M.C.; Hofman, Albert; Uitterlinden, Andre G.; Krestin, Gabriel P.; Oei, Edwin H.G.

    2013-01-01

    Osteoporosis is the most common metabolic bone disease; vertebral fractures are the most common osteoporotic fractures. Several radiological scoring methods using different criteria for osteoporotic vertebral fractures exist. Quantitative morphometry (QM) uses ratios derived from direct vertebral body height measurements to define fractures. Semi-quantitative (SQ) visual grading is performed according to height and area reduction. The algorithm-based qualitative (ABQ) method introduced a scheme to systematically rule out non-fracture deformities and diagnoses osteoporotic vertebral fractures based on endplate depression. The concordance across methods is currently a matter of debate. This article reviews the most commonly applied standardised radiographic scoring methods for osteoporotic vertebral fractures, attaining an impartial perspective of benefits and limitations. It provides image examples and discusses aspects that facilitate large-scale application, such as automated image analysis software and different imaging investigations. It also reviews the implications of different fracture definitions for scientific research and clinical practice. Accurate standardised scoring methods for assessing osteoporotic vertebral fractures are crucial, considering that differences in definition will have implications for patient care and scientific research. Evaluation of the feasibility and concordance among methods will allow establishing their benefits and limitations, and most importantly, optimise their effectiveness for widespread application. (orig.)

  18. Longitudinal study of relative growth rates of the maxilla and the mandible according to quantitative cervical vertebral maturation.

    Science.gov (United States)

    Chen, Lili; Liu, Jiarong; Xu, Tianmin; Lin, Jiuxiang

    2010-06-01

    The purpose of this study was to investigate the relative growth rates (RGR) of the maxilla and the mandible according to quantitative cervical vertebral maturation (QCVM) of adolescents with normal occlusion. Mixed longitudinal data were used. The sample included 87 adolescents (32 boys, 55 girls) from 8 to 18 years of age with normal occlusion, selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year for 6 consecutive years. The growth magnitude (GM) and RGR of the maxilla and the mandible were measured and analyzed. GM and RGR were not always consistent, because subjects had different periods of time between the QCVM stages. GM was not as reliable as RGR. RGR had no significant sex differences in the maxilla and the mandible, in spite of different decelerating curves. However, statistically significant sex differences were found in the GM of mandibular measurements. The greatest growth potentials were not synchronized between the maxilla and the mandible. For both sexes, the greatest RGR of maxillary length and height was in QCVM stage I; then, deceleration occurred. The greatest RGR of mandibular length and height was in QCVM stage II, and the next largest was in QCVM stage I. Understanding the RGR can provide references for orthodontic treatment and orthognathic surgery. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. A Study of Pseudoprogression After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bahig, Houda; Simard, Dany [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Létourneau, Laurent [Department of Radiology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Wong, Philip; Roberge, David; Filion, Edith; Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Sahgal, Arjun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Masucci, Laura, E-mail: g.laura.masucci.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada)

    2016-11-15

    Purpose: To determine the incidence of pseudoprogression (PP) after spine stereotactic body radiation therapy based on a detailed and quantitative assessment of magnetic resonance imaging (MRI) morphologic tumor alterations, and to identify predictive factors distinguishing PP from local recurrence (LR). Methods and Materials: A retrospective analysis of 35 patients with 49 spinal segments treated with spine stereotactic body radiation therapy, from 2009 to 2014, was conducted. The median number of follow-up MRI studies was 4 (range, 2-7). The gross tumor volumes (GTVs) within each of the 49 spinal segments were contoured on the pretreatment and each subsequent follow-up T1- and T2-weighted MRI sagittal sequence. T2 signal intensity was reported as the mean intensity of voxels constituting each volume. LR was defined as persistent GTV enlargement on ≥2 serial MRI studies for ≥6 months or on pathologic confirmation. PP was defined as a GTV enlargement followed by stability or regression on subsequent imaging within 6 months. Kaplan-Meier analysis was used for estimation of actuarial local control, disease-free survival, and overall survival. Results: The median follow-up was 23 months (range, 1-39 months). PP was identified in 18% of treated segments (9 of 49) and LR in 29% (14 of 49). Earlier volume enlargement (5 months for PP vs 15 months for LR, P=.005), greater GTV to reference nonirradiated vertebral body T2 intensity ratio (+30% for PP vs −10% for LR, P=.005), and growth confined to 80% of the prescription isodose line (80% IDL) (8 of 9 PP cases vs 1 of 14 LR cases, P=.002) were associated with PP on univariate analysis. Multivariate analysis confirmed an earlier time to volume enlargement and growth within the 80% IDL as significant predictors of PP. LR involved the epidural space in all but 1 lesion, whereas PP was confined to the vertebral body in 7 of 9 cases. Conclusions: PP was observed in 18% of treated spinal segments. Tumor growth

  20. The shape of the human lumbar vertebral canal A forma do canal vertebral lombar humano

    Directory of Open Access Journals (Sweden)

    Edmundo Zarzur

    1996-09-01

    Full Text Available Literature on the anatomy of the human vertebral column characterizes the shape of the lumbar vertebral canal as triangular. The purpose of the present study was to determine the precise shape of the lumbar vertebral canal. Ten lumbar vertebral columns of adult male cadavers were dissected. Two transverse sections were performed in the third lumbar vertebra. One section was performed at the level of the lower border of the ligamenta flava, and the other section was performed at the level of the pedicles. The shape of the lumbar vertebral canal at the level of the pedicles tends to be oval or circular, whereas the shape of the lumbar vertebral canal at the level of the lower border of the ligamenta flava is triangular. Thus, the shape of the human lumbar vertebral canal is not exclusively triangular, as reported in the literature. It is related to the level of the transversal section performed on the lumbar vertebra. This finding should be taken into consideration among factors involved in the spread of solutions introduced into the epidural space.A literatura sobre a anatomia da coluna vertebral descreve como sendo triangular o formato do canal vertebral na região lombar. O objetivo deste estudo é determinar a real forma do canal da coluna vertebral lombar.Dez colunas vertebrais de cadáveres de homens adultos foram dissecadas. Dois cortes transversais foram executados na terceira vértebra lombar. Um corte foi feito no nível das bordas inferiores de dois ligamentos amarelos vizinhos e o outro corte foi transversal, no nível dos pedículos. A forma do canal vertebral variou: no nível dos pedículos ela tende a ser oval ou circular e junto às bordas inferiores dos ligamentos amarelos passa a ser triangular. Portanto, a forma do canal vertebral lombar não é somente triangular; ela depende do nível em que se faz o corte transversal da vértebra. Estes achados devem ser levados em consideração entre os fatores envolvidos na difusão das

  1. The impact of asymptomatic vertebral fractures on quality of life in older community-dwelling women: the São Paulo Ageing & Health Study

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Lopes

    2012-12-01

    Full Text Available OBJECTIVES: The aim of this study was to investigate the impact of asymptomatic vertebral fractures on the quality of life in older women as part of the Sao Paulo Ageing & Health Study. METHODS: This study was a cross-sectional study with a random sample of 180 women 65 years of age or older with or without vertebral fractures. The Quality of Life Questionnaire of the European Foundation for Osteoporosis was administered to all subjects. Anthropometric data were obtained by physical examination, and the body mass index was calculated. Lateral thoracic and lumbar spine X-ray scans were obtained to identify asymptomatic vertebral fractures using a semi-quantitative method. RESULTS: Women with asymptomatic vertebral fractures had lower total scores [61.4(15.3 vs. 67.1(14.2, p = 0.03] and worse physical function domain scores [69.5(20.1 vs. 77.3(17.1, p = 0.02] for the Quality of Life Questionnaire of the European Foundation for Osteoporosis compared with women without fractures. The total score of this questionnaire was also worse in women classified as obese than in women classified as overweight or normal. High physical activity was related to a better total score for this questionnaire (p = 0.01. Likewise, lower physical function scores were observed in women with higher body mass index values (p<0.05 and lower physical activity levels (p,0.05. Generalized linear models with gamma distributions and logarithmic link functions, adjusted for age, showed that lower total scores and physical function domain scores for the Quality of Life Questionnaire of the European Foundation for Osteoporosis were related to a high body mass index, lower physical activity, and the presence of vertebral fractures (p<0.05. CONCLUSION: Vertebral fractures are associated with decreased quality of life mainly physical functioning in older community-dwelling women regardless of age, body mass index, and physical activity. Therefore, the results highlight the importance

  2. Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.

    Science.gov (United States)

    Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank

    2010-12-01

    Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical

  3. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt.

    Science.gov (United States)

    Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo

    2016-07-01

    To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.

  4. Primary extracranial vertebral artery aneurysms.

    Science.gov (United States)

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  5. Body growth and brain development in premature babies: an MRI study

    International Nuclear Information System (INIS)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I.; Drougia, Aikaterini; Andronikou, Styliani; Astrakas, Loukas G.

    2014-01-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA a ) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA b ). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA b in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  6. Body growth and brain development in premature babies: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Drougia, Aikaterini; Andronikou, Styliani [University of Ioannina, Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece); Astrakas, Loukas G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece)

    2014-03-15

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA{sub a}) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA{sub b}). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA{sub b} in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  7. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants.

    Science.gov (United States)

    Díaz-Gómez, N Marta; Doménech, Eduardo; Barroso, Flora; Castells, Silvia; Cortabarria, Carmen; Jiménez, Alejandro

    2003-05-01

    The aim of our study was to evaluate the effect of zinc supplementation on linear growth, body composition, and growth factors in premature infants. Thirty-six preterm infants (gestational age: 32.0 +/- 2.1 weeks, birth weight: 1704 +/- 364 g) participated in a longitudinal double-blind, randomized clinical trial. They were randomly allocated either to the supplemental (S) group fed with a standard term formula supplemented with zinc (final content 10 mg/L) and a small quantity of copper (final content 0.6 mg/L), or to the placebo group fed with the same formula without supplementation (final content of zinc: 5 mg/L and copper: 0.4 mg/L), from 36 weeks postconceptional age until 6 months corrected postnatal age. At each evaluation, anthropometric variables and bioelectrical impedance were measured, a 3-day dietary record was collected, and a blood sample was taken. We analyzed serum levels of total alkaline phosphatase, skeletal alkaline phosphatase (sALP), insulin growth factor (IGF)-I, IGF binding protein-3, IGF binding protein-1, zinc and copper, and the concentrations of zinc in erythrocytes. The S group had significantly higher zinc levels in serum and erythrocytes and lower serum copper levels with respect to the placebo group. We found that the S group had a greater linear growth (from baseline to 3 months corrected age: Delta score deviation standard length: 1.32 +/-.8 vs.38 +/-.8). The increase in total body water and in serum levels of sALP was also significantly higher in the S group (total body water: 3 months; corrected age: 3.8 +/-.5 vs 3.5 +/-.4 kg, 6 months; corrected age: 4.5 +/-.5 vs 4.2 +/-.4 kg; sALP: 3 months; corrected age: 140.2 +/- 28.7 vs 118.7 +/- 18.8 micro g/L). Zinc supplementation has a positive effect on linear growth in premature infants.

  8. The Vertebral Column, Ribs, and Sternum of the African Giant Rat (Cricetomys gambianus Waterhouse)

    Science.gov (United States)

    Olude, Matthew Ayokunle; Mustapha, Oluwaseun Ahmed; Ogunbunmi, Temitope Kehinde; Olopade, James Olukayode

    2013-01-01

    Examined bones were obtained from eight adult African giant rats, Cricetomys gambianus Waterhouse. Animals used had an average body mass of 730.00 ± 41.91 gm and body length of 67.20 ± 0.05 cm. The vertebral formula was found to be C7, T13, L6, S4, Ca31–36. The lowest and highest points of the cervicothoracic curvature were at C5 and T2, respectively. The spinous process of the axis was the largest in the cervical group while others were sharp and pointed. The greatest diameter of the vertebral canal was at the atlas (0.8 cm) and the lowest at the caudal sacral bones (2 mm). The diameter of the vertebral foramen was the largest at C1 and the smallest at the S4; the foramina were negligibly indistinct caudal to the sacral vertebrae. There were 13 pairs of ribs. The first seven pairs were sternal, and six pairs were asternal of which the last 2-3 pairs were floating ribs. The sternum was composed of deltoid-shaped manubrium sterni, four sternebrae, and a slender processus xiphoideus. No sex-related differences were observed. The vertebral column is adapted for strong muscular attachment and actions helping the rodent suited for speed, agility, dexterity, and strength which might enable it to overpower prey and escape predation. PMID:24288518

  9. The Vertebral Column, Ribs, and Sternum of the African Giant Rat (Cricetomys gambianus Waterhouse

    Directory of Open Access Journals (Sweden)

    Matthew Ayokunle Olude

    2013-01-01

    Full Text Available Examined bones were obtained from eight adult African giant rats, Cricetomys gambianus Waterhouse. Animals used had an average body mass of 730.00±41.91 gm and body length of 67.20±0.05 cm. The vertebral formula was found to be C7, T13, L6, S4, Ca31–36. The lowest and highest points of the cervicothoracic curvature were at C5 and T2, respectively. The spinous process of the axis was the largest in the cervical group while others were sharp and pointed. The greatest diameter of the vertebral canal was at the atlas (0.8 cm and the lowest at the caudal sacral bones (2 mm. The diameter of the vertebral foramen was the largest at C1 and the smallest at the S4; the foramina were negligibly indistinct caudal to the sacral vertebrae. There were 13 pairs of ribs. The first seven pairs were sternal, and six pairs were asternal of which the last 2-3 pairs were floating ribs. The sternum was composed of deltoid-shaped manubrium sterni, four sternebrae, and a slender processus xiphoideus. No sex-related differences were observed. The vertebral column is adapted for strong muscular attachment and actions helping the rodent suited for speed, agility, dexterity, and strength which might enable it to overpower prey and escape predation.

  10. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  11. Analysis of Long Bone and Vertebral Failure Patterns.

    Science.gov (United States)

    1983-03-01

    apophyseal joints, lumbar spondylosis and low back pain in Jayson, M.I.V. (ed) The Lumbar Spine and Back Pain, Pitman Medical, pp. 83-114. PUBLICATIONS...NOTES Material in this report was presented at the International Society for the Study of the Lumbar Spine, Toronto, Canada, June 6-10, 1982. 19. KEY...intervertebral disc and end plate fragments were observed in the vertebral bodies (G84 L2 -3 ) of the upper lumbar levels. Also fragments of trabecular bone

  12. Stable isotope distribution in continental Maastrichtian vertebrates from the Haţeg Basin, South Carpathians

    Science.gov (United States)

    Bojar, Ana-Voica; Csiki, Zoltan; Grigorescu, Dan

    2010-05-01

    The oxygen isotopic compositions of biogenic apatite from crocodiles, turtles and dinosaurs, and their relationship to climate and physiology have been evidenced by several studies (Barrick and Showers, 1995; Kolodny et al., 1996; Barrick et al., 1999; Fricke and Rogers, 2000; Stoskopf et al., 2001; Straight et al., 2004; Amiot et al., 2007). To date, few attempts have been made to correlate the enamel d13C to dietary resources of dinosaurs (Bocherens et al., 1988; Stanton Thomas and Carlson, 2004; Fricke and Pearson, 2008; Fricke, et al., 2008). One additional complication is that for dinosaurs, the d18O of enamel phosphate depends on both body water and variations in body temperature. Several studies addressed the issue of endothermy vs. ectothermy of fossil vertebrates by studying inter- and intra-bone and enamel isotopic variability (Barrick and Showers, 1994, 1995; Barrick et al., 1996; 1998; Fricke and Rogers, 2000). More recent investigations provided evidence for inter-tooth temporal variations and related them to seasonality and/or changes in physiology (Straight et al., 2004; Stanton Thomas and Carlson, 2004). The main objectives of this study are to extract palaeoclimatic information considering, beside lithofacial characteristics and the isotopic distribution of carbonates formed in paleosols, the stable isotope composition of vertebrate remains from the Haţeg Basin. We also sampled several teeth along their growth axis in order to get further information about growth rates and the amplitude of isotopic variation. Located in the South Carpathians in Romania, the Haţeg Basin contains a thick sequence of Maastrichtian continental deposits yielding a rich dinosaur and mammalian fauna. Stable isotope analyses of both calcretes and dinosaur, crocodilian and turtle remains from two localities (Tuştea and Sibişel) were integrated in order to reconstruct environmental conditions during the Maastrichtian time and to gain further insights into the metabolism

  13. Measurements of vertebral shape by radiographic morphometry: sex differences and relationships with vertebral level and lumbar lordosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X G; Sun, Y; Boonen, S; Nicholson, P H.F.; Dequeker, J [Arthritis and Metabolic Bone Disease Research Unit, U.Z. Pellenberg, Division of Rheumatology, Pellenberg (Belgium); Brys, P [Radiology Department, University Hospitals, Katholieke Universiteit Leuven, Leuven (Belgium); Felsenberg, D [Radiology Department, Freie Univ. Berlin (Germany)

    1998-07-01

    Objective. To examine sex-related and vertebral-level-specific differences in vertebral shape and to investigate the relationships between the lumbar lordosis angle and vertebral morphology. Design and patients. Lateral thoracic and lumbar spine radiographs were obtained with a standardized protocol in 142 healthy men and 198 healthy women over 50 years old. Anterior (Ha), central (Hc) and posterior (Hp) heights of each vertebra from T4 to L4 were measured using a digitizing technique, and the Ha/Hp and Hc/Hp ratios were calculated. The lumbar lordosis angle was measured on the lateral lumbar spine radiographs. Results. Ha/Hp and Hc/Hp ratios were smaller in men than women by 1.8% and 0.7%, respectively, and these ratios varied with vertebral level. Significant correlations were found between vertebral shape and the lumbar lordosis angle. Conclusions. These results demonstrate that vertebral shape varies significantly with sex, vertebral level and lumbar lordosis angle. Awareness of these relationships may help prevent misdiagnosis in clinical vertebral morphometry. (orig.) With 4 figs., 2 tabs., 17 refs.

  14. Assessment of radiological vertebral fractures in HIV-infected patients: clinical implications and predictive factors.

    Science.gov (United States)

    Gazzola, L; Savoldi, A; Bai, F; Magenta, A; Dziubak, M; Pietrogrande, L; Tagliabue, L; Del Sole, A; Bini, T; Marchetti, G; d'Arminio Monforte, A

    2015-10-01

    The aim of this study was to evaluate the clinical impact of including lateral spine X-ray in the screening of bone diseases in HIV-positive patients. A total of 194 HIV-positive patients underwent dual-energy X-ray absorptiometry (DEXA), lateral spine X-ray and bone biochemical analysis. Vertebral fractures were identified using a morphometric analysis of X-rays and classified using the semiquantitative scoring system of Genant et al. For each patient, a spine deformity index (SDI) score was calculated by summing the grades of vertebral deformities. Reductions in vertebral body height of > 25% were considered vertebral fractures, and those Risk factors associated with vertebral fractures were evaluated by univariate and multivariate analysis. Vertebral fractures were detected in 24 patients (12.4%) and vertebral deformities in 17 patients (8.7%); 153 patients (78.9%) did not show any vertebral deformity. Among patients with fractures, only two with SDI > 10 reported lumbar pain; the remaining were asymptomatic. Patients over 50 years old showed a higher prevalence of vertebral fracture [24.4% versus 11.8% in patients 41-50 years old (P = 0.05) and 1.9% in patients ≤ 40 years old (P = 0.04)]. No significant increase in the prevalence according to bone mineral density (BMD) reduction was observed, and 70% of fractures were diagnosed in nonosteoporotic patients. Older age [adjusted odds ratio 1.09; 95% confidence interval (CI) 1.03-1.13; P = 0.001] and steroid use (adjusted odds ratio 3.64; 95% CI 1.29-10.3; P = 0.01) were independently associated with vertebral fracture; no association was found with HIV- or highly active antiretroviral therapy (HAART)-related variables. A prevalence of vertebral fractures of 12.4% was observed in our HIV-positive cohort. Given that two-thirds of fractures occurred in nonosteoporotic patients, spine X-ray may be considered in patients at increased risk, irrespective of BMD; that is, in elderly patients

  15. Prenatal diagnosis of isochromosome 20q in a fetus with vertebral anomaly and rocker-bottom feet

    Directory of Open Access Journals (Sweden)

    Aline Receveur

    2017-10-01

    Conclusion: The data would allow establishing a phenotype–genotype correlation. Thus, we proposed to define a recognizable syndrome combining cranio-facial dysmorphism, vertebral bodies' anomalies, feet and cerebral malformations.

  16. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Hjelde Kirsti

    2010-07-01

    Full Text Available Abstract Background Hyperthermia has been shown in a number of organisms to induce developmental defects as a result of changes in cell proliferation, differentiation and gene expression. In spite of this, salmon aquaculture commonly uses high water temperature to speed up developmental rate in intensive production systems, resulting in an increased frequency of skeletal deformities. In order to study the molecular pathology of vertebral deformities, Atlantic salmon was subjected to hyperthermic conditions from fertilization until after the juvenile stage. Results Fish exposed to the high temperature regime showed a markedly higher growth rate and a significant higher percentage of deformities in the spinal column than fish reared at low temperatures. By analyzing phenotypically normal spinal columns from the two temperature regimes, we found that the increased risk of developing vertebral deformities was linked to an altered gene transcription. In particular, down-regulation of extracellular matrix (ECM genes such as col1a1, osteocalcin, osteonectin and decorin, indicated that maturation and mineralization of osteoblasts were restrained. Moreover, histological staining and in situ hybridization visualized areas with distorted chondrocytes and an increased population of hypertrophic cells. These findings were further confirmed by an up-regulation of mef2c and col10a, genes involved in chondrocyte hypertrophy. Conclusion The presented data strongly indicates that temperature induced fast growth is severely affecting gene transcription in osteoblasts and chondrocytes; hence change in the vertebral tissue structure and composition. A disrupted bone and cartilage production was detected, which most likely is involved in the higher rate of deformities developed in the high intensive group. Our results are of basic interest for bone metabolism and contribute to the understanding of the mechanisms involved in development of temperature induced

  17. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.

    Science.gov (United States)

    Hosseini, Hadi S; Clouthier, Allison L; Zysset, Philippe K

    2014-04-01

    Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towards the prediction of extended vertebral

  18. Age-related changes in vertebral and iliac crest 3D bone microstructure-differences and similarities

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Jensen, Michael Vinkel; Niklassen, Andreas Steenholt

    2015-01-01

    Summary Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure...... was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes.Introduction The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between...... the bone microstructure at these skeletal sites.Methods Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19–96 years) and 39 men (23–95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified.Results For both women...

  19. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  20. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    Science.gov (United States)

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly composed of mass type and mixed type. There was no

  1. The analysis of imaging diagnosis and misdiagnosis of vertebral eosinophilic granuloma

    International Nuclear Information System (INIS)

    Liang Weiqiang; Li Sheng

    2007-01-01

    Objective: To analyze the imaging features of vertebral eosinophilic granuloma and the reasons of misdiagnosis, so as to improve the diagnosis accuracy of the disease. Methods: The clinical materials and images findings of 10 patients with vertebral eosinophilic granuloma proved by surgery and histopathology were analyzed retrospectively. Results: Of all the cases, 3 of them were located in cervical vertebra, 5 in thoracic vertebra and 2 in lumbar vertebra. 8 lesions were single and 2 involved the adjacent 2 vertebrae. 4 lesions showed obvious sinking and flattening of the vertebra body, with widening anteroposterior and transverse diameters, 4 cases showed wedge-shaped appearance, 2 cases showed well-defined oval deossification. The appendix of vertebrae in 3 lesions were destroyed with surrounding mass. The intervertebral spaces were normal in 7 cases, slightly widened in 2 cases and slightly narrowed in 1 case. 6 cases showed paravertebra soft tissue swelling or soft tissue mass formation. Conclusion: Though there are some imaging features of vertebral eosinophilic granuloma, close combination with clinical dates and careful analysis of imaging findings can effectively improved the diagnosis accuracy. (authors)

  2. Constrained vertebrate evolution by pleiotropic genes

    DEFF Research Database (Denmark)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song

    2017-01-01

    applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality...... for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates....

  3. Measurements of the vertebral foramen and the spinal cord by means of x-ray computed tomography (corpse)

    International Nuclear Information System (INIS)

    Kimura, Kazue; Katakura, Toshihiko; Suzuki, Kenji; Sato, Takanori; Azuma, Koji; Okuaki, Koju; Mizukoshi, Hitoshi; Kageyama, Kazuhiro; Suzuki, Sigeki

    1985-01-01

    It is important for orthopedics to measure the sizes of the vertebral canal and the spinal cord. Owing to the development of X-ray computed tomography (XCT), clear cross section images of the vertebral foramen and the spinal cord are now available, facilitating the measurement of these sizes, so that many literatures on this subject have been reported. The authors studied the errors of measurements of the anteroposterior diameterers of the vertebral foramen and the spinal cord by means of XCT (EMI CT 5005 type, slice thickness: 14mm). Method: Cross section images by XCT at the mid-plane of each vertebral body of cadaver were taken, and then, sawed cross sections were prepared for actual survey of the antero-posterior diameters of the vertebral foramen and the spinal cord. Measurements by XCT were made with the CT-number profile method and the multi-format film method. Results: The errors at the measurement of the antero-posterior diameters of the vertebral foramen and the spinal cord were about +- 2.0 - +- 4.5 %. The slice thickness of XCT pictures at present is thinner than 14mm and if we can make the tomographic plane at a right angle to the long axis of the vertebral column, the errors may be more minimized. (author)

  4. [The preliminary study of the efficiency of using cervical vertebral maturation of growth level of female adolescent idiopathic scoliosis].

    Science.gov (United States)

    Zhang, Di-qing; Chen, Zi-qiang; Li, Ming

    2011-03-01

    To investigate the reliability of cervical vertebral maturation (CVM) and to verify the possibility in the growth evaluation of female adolescent idiopathic scoliosis patients as a helpful supplementary to the Risser sign. Coronal and lateral full-length spine X-ray film and left hand-wrist radiographs of 77 female adolescent patients with idiopathic scoliosis were selected from January 2010 to October 2010. The interval period between lateral length of the spine and left hand-wrist radiographs did not exceed 3 months. The CVM was assessed by a method developed by Baccetti and co-workers, whereas hand-wrist maturation was assessed by Fishman's method. The results were analyzed by Spearman correlation with patients Risser sign, chronological age, and menarche period. There were strong correlations between CVM and SMI or Risser sign (r = 0.862 and 0.762, P < 0.01). While in 26 patients whose Risser sign were 0-I, the correlation between CVM and SMI was more pronounced (r = 0.761, P < 0.01), compared with the correlation between Risser sign and SMI (r = 0.641, P < 0.01). CVM is a valid indicator of skeletal growth evaluation and can be used as a helpful supplementary to Risser sign.

  5. Body growth and life history in wild mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

    Science.gov (United States)

    Galbany, Jordi; Abavandimwe, Didier; Vakiener, Meagan; Eckardt, Winnie; Mudakikwa, Antoine; Ndagijimana, Felix; Stoinski, Tara S; McFarlin, Shannon C

    2017-07-01

    Great apes show considerable diversity in socioecology and life history, but knowledge of their physical growth in natural settings is scarce. We characterized linear body size growth in wild mountain gorillas from Volcanoes National Park, Rwanda, a population distinguished by its extreme folivory and accelerated life histories. In 131 individuals (0.09-35.26 years), we used non-invasive parallel laser photogrammetry to measure body length, back width, arm length and two head dimensions. Nonparametric LOESS regression was used to characterize cross-sectional distance and velocity growth curves for males and females, and consider links with key life history milestones. Sex differences became evident between 8.5 and 10.0 years of age. Thereafter, female growth velocities declined, while males showed increased growth velocities until 10.0-14.5 years across dimensions. Body dimensions varied in growth; females and males reached 98% of maximum body length at 11.7 and 13.1 years, respectively. Females attained 95.3% of maximum body length by mean age at first birth. Neonates were 31% of maternal size, and doubled in size by mean weaning age. Males reached maximum body and arm length and back width before emigration, but experienced continued growth in head dimensions. While comparable data are scarce, our findings provide preliminary support for the prediction that mountain gorillas reach maximum body size at earlier ages compared to more frugivorous western gorillas. Data from other wild populations are needed to better understand comparative great ape development, and investigate links between trajectories of physical, behavioral, and reproductive maturation. © 2017 Wiley Periodicals, Inc.

  6. Seasonal variations in growth and body composition of 8-11-year-old Danish children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    BACKGROUND: Earlier studies on seasonality in growth reported the largest height gains during spring and largest body weight gains during autumn. We examined seasonality in height, body weight, BMI, fat mass index (FMI) and fat-free mass index (FFMI) among contemporary Danish 8-11-year......-olds. METHODS: 760 children from the OPUS School Meal Study provided >2200 measurements on height, body weight and composition between September-June. Average velocities were calculated using change-score analyses based on three-month intervals. As a complementary analysis, point velocities derived from...... suggest seasonality in growth and body composition of Danish children. We recovered the well-known height velocity peak during spring time, but unlike earlier studies we found coincident peaks in body weight, BMI, and FFMI velocities.Pediatric Research (2015); doi:10.1038/pr.2015.206....

  7. Warts signaling controls organ and body growth through regulation of ecdysone

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Nagy, Stanislav; Gerlach, Stephan Uwe

    2017-01-01

    Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms...... under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin....../insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively...

  8. Characterizing the location of spinal and vertebral levels in the human cervical spinal cord.

    Science.gov (United States)

    Cadotte, D W; Cadotte, A; Cohen-Adad, J; Fleet, D; Livne, M; Wilson, J R; Mikulis, D; Nugaeva, N; Fehlings, M G

    2015-04-01

    Advanced MR imaging techniques are critical to understanding the pathophysiology of conditions involving the spinal cord. We provide a novel, quantitative solution to map vertebral and spinal cord levels accounting for anatomic variability within the human spinal cord. For the first time, we report a population distribution of the segmental anatomy of the cervical spinal cord that has direct implications for the interpretation of advanced imaging studies most often conducted across groups of subjects. Twenty healthy volunteers underwent a T2-weighted, 3T MRI of the cervical spinal cord. Two experts marked the C3-C8 cervical nerve rootlets, C3-C7 vertebral bodies, and pontomedullary junction. A semiautomated algorithm was used to locate the centerline of the spinal cord and measure rostral-caudal distances from a fixed point in the brain stem, the pontomedullary junction, to each of the spinal rootlets and vertebral bodies. Distances to each location were compared across subjects. Six volunteers had 2 additional scans in neck flexion and extension to measure the effects of patient positioning in the scanner. We demonstrated that substantial variation exists in the rostral-caudal position of spinal cord segments among individuals and that prior methods of predicting spinal segments are imprecise. We also show that neck flexion or extension has little effect on the relative location of vertebral-versus-spinal levels. Accounting for spinal level variation is lacking in existing imaging studies. Future studies should account for this variation for accurate interpretation of the neuroanatomic origin of acquired MR signals. © 2015 by American Journal of Neuroradiology.

  9. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology.

    Science.gov (United States)

    Köhler, Meike; Marín-Moratalla, Nekane; Jordana, Xavier; Aanes, Ronny

    2012-07-19

    Cyclical growth leaves marks in bone tissue that are in the forefront of discussions about physiologies of extinct vertebrates. Ectotherms show pronounced annual cycles of growth arrest that correlate with a decrease in body temperature and metabolic rate; endotherms are assumed to grow continuously until they attain maturity because of their constant high body temperature and sustained metabolic rate. This apparent dichotomy has driven the argument that zonal bone denotes ectotherm-like physiologies, thus fuelling the controversy on dinosaur thermophysiology and the evolution of endothermy in birds and mammal-like reptiles. Here we show, from a comprehensive global study of wild ruminants from tropical to polar environments, that cyclical growth is a universal trait of homoeothermic endotherms. Growth is arrested during the unfavourable season concurrently with decreases in body temperature, metabolic rate and bone-growth-mediating plasma insulin-like growth factor-1 levels, forming part of a plesiomorphic thermometabolic strategy for energy conservation. Conversely, bouts of intense tissue growth coincide with peak metabolic rates and correlated hormonal changes at the beginning of the favourable season, indicating an increased efficiency in acquiring and using seasonal resources. Our study supplies the strongest evidence so far that homeothermic endotherms arrest growth seasonally, which precludes the use of lines of arrested growth as an argument in support of ectothermy. However, high growth rates are a distinctive trait of mammals, suggesting the capacity for endogenous heat generation. The ruminant annual cycle provides an extant model on which to base inferences regarding the thermophysiology of dinosaurs and other extinct taxa.

  10. Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast

    NARCIS (Netherlands)

    Jacobs, Louis L.; Polcyn, Michael J.; Mateus, Octávio; Schulp, Anne S.; Gonçalves, António Olímpio; Morais, Maria Luísa

    2016-01-01

    The separation of Africa from South America and the growth of the South Atlantic are recorded in rocks exposed along the coast of Angola. Tectonic processes that led to the formation of Africa as a continent also controlled sedimentary basins that preserve fossils. The vertebrate fossil record in

  11. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading-a biomechanical investigation.

    Science.gov (United States)

    Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad

    2018-03-01

    In the operative treatment of osteoporotic vertebral body fractures, a dorsal stabilization in combination with a corpectomy of the fractured vertebral body might be necessary with respect to the fracture morphology, whereby the osteoporotic bone quality may possibly increase the risk of implant failure. To achieve better stability, it is recommended to use cement-augmented screws for dorsal instrumentation. Besides careful end plate preparation, cement augmentation of the adjacent end plates has also been reported to lead to less reduction loss. The aim of the study was to evaluate biomechanically under cyclic loading whether an additional cement augmentation of the adjacent end plates leads to improved stability of the inserted cage. Methodical cadaver study. Fourteen fresh frozen human thoracic spines with proven osteoporosis were used (T2-T7). After removal of the soft tissues, the spine was embedded in Technovit (Kulzer, Germany). Subsequently, a corpectomy of T5 was performed, leaving the dorsal ligamentary structures intact. After randomization with respect to bone quality, two groups were generated: Dorsal instrumentation (cemented pedicle screws, Medtronic, Minneapolis, MN, USA)+cage implantation (CAPRI Corpectomy Cage, K2M, Leesburg, VA, USA) without additional cementation of the adjacent endplates (Group A) and dorsal instrumentation+cage implantation with additional cement augmentation of the adjacent end plates (Group B). The subsequent axial and cyclic loading was performed at a frequency of 1 Hz, starting at 400 N and increasing the load within 200 N after every 500 cycles up to a maximum of 2,200 N. Load failure was determined when the cages sintered macroscopically into the end plates (implant failure) or when the maximum load was reached. One specimen in Group B could not be clamped appropriately into the test bench for axial loading because of a pronounced scoliotic misalignment and had to be excluded. The mean strength for implant

  12. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    Science.gov (United States)

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (Pcement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  13. Measurements of vertebral shape by r[iographic morphometry: sex differences and relationships with vertebral level and lumbar lordosis

    International Nuclear Information System (INIS)

    Cheng, X.G.; Sun, Y.; Boonen, S.; Nicholson, P.H.F.; Dequeker, J.; Brys, P.; Felsenberg, D.

    1998-01-01

    Objective. To examine sex-related and vertebral-level-specific differences in vertebral shape and to investigate the relationships between the lumbar lordosis angle and vertebral morphology. Design and patients. Lateral thoracic and lumbar spine r[iographs were obtained with a standardized protocol in 142 healthy men and 198 healthy women over 50 years old. Anterior (Ha), central (Hc) and posterior (Hp) heights of each vertebra from T4 to L4 were measured using a digitizing technique, and the Ha/Hp and Hc/Hp ratios were calculated. The lumbar lordosis angle was measured on the lateral lumbar spine r[iographs. Results. Ha/Hp and Hc/Hp ratios were smaller in men than women by 1.8% and 0.7%, respectively, and these ratios varied with vertebral level. Significant correlations were found between vertebral shape and the lumbar lordosis angle. Conclusions. These results demonstrate that vertebral shape varies significantly with sex, vertebral level and lumbar lordosis angle. Awareness of these relationships may help prevent misdiagnosis in clinical vertebral morphometry. (orig.)

  14. Estudo experimental do sequenciamento das manobras da ligamentotaxia na descompressão do canal vertebral Experimental study of ligamentotaxis maneuvers sequencing in vertebral canal decompression

    Directory of Open Access Journals (Sweden)

    Ilton José Carrilho de Castro

    2008-01-01

    . Fractured vertebral body fragments were measured and compared using the Student's t test (p<0,05. By comparing dislocations between groups, no statistical differences were found (p<0,06. This result is close to the significance level adopted, suggesting a strong trend towards a better effectiveness of the maneuver started with lordosis.

  15. ANOMALOUS PREVERTEBRAL COURSE OF THE LEFT VERTEBRAL ARTERY. Recorrido prevertebral anómalo de la arteria vertebral izquierda

    Directory of Open Access Journals (Sweden)

    Prakash B Billakanti

    2016-03-01

    Full Text Available La arteria vertebral es una de las arterias que irriga el cerebro. El conocimiento de la anatomía normal y las variantes de la arteria vertebral adquiere importancia en la práctica clínica y la radiología vascular. El origen anómalo de la arteria vertebral del arco de la aorta o cualquiera de las arterias del cuello ha sido reportado por muchos autores. En este informe se presenta una variación del curso prevertebral de la arteria vertebral izquierda. La arteria vertebral tenía su origen habitual en la arteria subclavia con un largo curso prevertebral y entraba en el foramen transversarium de la vértebra CII. El origen y recorrido de la arteria vertebral en el lado derecho fue normal. Clínicamente es importante conocer el origen y curso del segmento prevertebral de la arteria vertebral y las posibles variaciones. El presente informe debería ser de interés para el médico vascular con respecto a las variaciones en el cuello y región torácica, y puede dar idea para dilucidar el mecanismo de desarrollo de la angiogénesis. Vertebral artery is one of the arteries supplying the brain. Knowledge of the normal and variant anatomy of the vertebral artery assumes importance in clinical practice and vascular radiology. Anomalous origins of the vertebral artery from the arch of the aorta or any one of the arteries of the neck have been reported by several authors. In this report a variation of the prevertebral course of the left vertebral artery is being presented. The Vertebral artery had usual origin from the subclavian artery and had a longer prevertebral course to enter the foramen transversarium of the CII vertebra. The origin and course of the vertebral artery on the right side was normal. It is clinically important to know the origin and course of the prevertebral segment of the vertebral artery and possible variations. The present report should be of interest for clinicians with regard to vascular variations in the neck and thoracic

  16. Vertebral osteoradionecrosis. Report of a new case with a review of the literature

    International Nuclear Information System (INIS)

    Deshayes, P.; Laplagne, A.; Le Loet, X.; Daragon, A.

    1987-01-01

    With reference to the eighth case of vertebral radionecrosis reported in the literature, developed three years after radiotherapy for cervical cancer, the authors recall that diagnosis rests on a set of clinical evidence: development of one or several compression fractures within the irradiated area and following exposure to more than 30 grays; roentgenologic evidence consisting in integrity of the neural arch and stability of roentgenologic evidence findings over time; lastly, pathologic evidence, especially the absence of metastatic cells in biopsy specimens from the vertebral body. Supportive management usually allows to wait out the period of pain resulting from collapse of the gangrenous areas [fr

  17. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    Science.gov (United States)

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  18. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study.

    Science.gov (United States)

    Santiago, R C; Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Statistically significant differences (p cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction.

  19. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation—a pilot study

    Science.gov (United States)

    Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    Objectives: In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Methods: Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Results: Statistically significant differences (p cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Conclusions: Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction. PMID:24319125

  20. Bone density and body composition in chronic renal failure: effects of growth hormone treatment

    NARCIS (Netherlands)

    van der Sluis, I. M.; Boot, A. M.; Nauta, J.; Hop, W. C.; de Jong, M. C.; Lilien, M. R.; Groothoff, J. W.; van Wijk, A. E.; Pols, H. A.; Hokken-Koelega, A. C.; de Muinck Keizer-Schrama, S. M.

    2000-01-01

    Metabolic bone disease and growth retardation are common complications of chronic renal failure (CRF). We evaluated bone mineral density (BMD), bone metabolism, body composition and growth in children with CRF, and the effect of growth hormone treatment (GHRx) on these variables. Thirty-three

  1. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Effectiveness of the cervical vertebral maturation method to predict postpeak circumpubertal growth of craniofacial structures.

    Science.gov (United States)

    Fudalej, Piotr; Bollen, Anne-Marie

    2010-01-01

    Our aim was to assess effectiveness of the cervical vertebral maturation (CVM) method to predict circumpubertal craniofacial growth in the postpeak period. The CVM stage was determined in 176 subjects (51 adolescent boys and 125 adolescent girls) on cephalograms taken at the end of treatment (T2; mean ages, 15.75 years [boys] and 15.23 years [girls]) in subjects from the postretention database at the University of Washington in Seattle. Craniofacial growth was evaluated from the following measurements on cephalograms at T2 and end of follow-up (T3) (mean ages, 29.01 years [men] and 28.08 years [women]): condylion to gnathion, condylion to gonion, gonion to gnathion, sella to gnathion, nasion to menton, anterior nasal spine to menton, and sella to gonion. The change of each variable from T2 to T3 was assessed with paired t tests. Parametric (t tests or analysis of variance [ANOVA]) or nonparametric (Mann-Whitney or Kruskal-Wallis) tests were used to detect intergroup differences. One hundred eight subjects (35 boys, 73 girls) demonstrated CVM stage 3, 56 (16 boys, 40 girls) were in CVM stage 4, and 12 (all girls) were in CVM stage 5 at T2. Intrasex comparisons showed that boys in CVM stages 3 and 4 could be differentiated regarding changes of all variables. In the girls, only those in CVM stages 3 and 4 could be differentiated based on the amount of changes of 2 measurements: condylion to gonion and sella to gonion. Intersex comparisons showed that boys in CVM stage 3 had significantly more changes than girls (P <0.01). Boys in CVM stage 4 showed significant differences compared with girls in CVM stage 4 for only 2 variables (sella to gonion and condylion to gonion; P <0.001 and P = 0.012, respectively). The CVM method was modestly effective in determining the amount of postpeak circumpubertal craniofacial growth. Copyright 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets......, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization...

  4. Effect of whole-body irradiation on skeletal growth in rhesus monkeys

    International Nuclear Information System (INIS)

    Sonneveld, P.; van Bekkum, D.W.

    1979-01-01

    Late effects of single whole-body doses of 400 to 500 and 750 to 900 rads on skeletal growth in 32 rhesus monkeys were studied. Findings indicated growth inhibition strongly related to dose and age at irradiation. Doses of 750 to 900 rads before the age of 40 months resulted in significantly greater growth inhibition (11%) than doses given during or shortly after adolescence (p < 0.005). Doses of less than 750 rads were not significant. In view of the close similarity between monkeys and man, irradiation of children at doses greater than 750 rads may carry a strong risk of subsequent growth retardation

  5. Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

    Science.gov (United States)

    Takahashi, Yu; Yasuhiko, Yukuto; Takahashi, Jun; Takada, Shinji; Johnson, Randy L; Saga, Yumiko; Kanno, Jun

    2013-08-15

    The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Ponrartana, Skorn; Fisher, Carissa L.; Aggabao, Patricia C. [Keck School of Medicine, University of Southern California, Department of Radiology, Children' s Hospital Los Angeles, Los Angeles, CA (United States); Chavez, Thomas A. [Keck School of Medicine, University of Southern California, Department of Pediatrics, Children' s Hospital Los Angeles, Los Angeles, CA (United States); Broom, Alexander M.; Wren, Tishya A.L.; Skaggs, David L. [Keck School of Medicine, University of Southern California, Department of Orthopaedic Surgery, Children' s Hospital Los Angeles, Los Angeles, CA (United States); Gilsanz, Vicente [Keck School of Medicine, University of Southern California, Department of Radiology, Children' s Hospital Los Angeles, Los Angeles, CA (United States); Keck School of Medicine, University of Southern California, Department of Pediatrics, Children' s Hospital Los Angeles, Los Angeles, CA (United States); Keck School of Medicine, University of Southern California, Department of Orthopaedic Surgery, Children' s Hospital Los Angeles, Los Angeles, CA (United States)

    2016-09-15

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm{sup 2}; P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm{sup 2}; P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis. (orig.)

  7. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis

    International Nuclear Information System (INIS)

    Ponrartana, Skorn; Fisher, Carissa L.; Aggabao, Patricia C.; Chavez, Thomas A.; Broom, Alexander M.; Wren, Tishya A.L.; Skaggs, David L.; Gilsanz, Vicente

    2016-01-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm 2 ; P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm 2 ; P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis. (orig.)

  8. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    Science.gov (United States)

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  9. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    Science.gov (United States)

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  10. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    Directory of Open Access Journals (Sweden)

    Liang CL

    2015-03-01

    Full Text Available Cheng-Loong Liang,1 Hao-Kwan Wang,1 Fei-Kai Syu,2 Kuo-Wei Wang,1 Kang Lu,1 Po-Chou Liliang1 1Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan; 2Department of Pharmacy, China Medical University Hospital, Taichung City, Taiwan Purpose: Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation.Methods: We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses.Results: The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36, advanced age (AOR=1.60; 95% CI: 1.32–2.08, diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88, cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76, dementia (AOR=1.97; 95% CI: 1.69–2.33, blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95, hypertension (AOR=2.58; 95% CI: 2.35–3.47, and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22. Patients taking calcium/ vitamin D (AOR=2.98; 95% CI: 1.83–3.93, bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61, or calcitonin (AOR=4.59; 95% CI: 3.40–5.77 were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08, acetaminophen (AOR=3.54; 95% CI: 2.75–4.83, or nonsteroidal

  11. Evaluation of effects of selected factors on inter-vertebral fusion-a simulation study.

    Science.gov (United States)

    Wang, Xiaobo; Dumas, Geneviève A

    2005-04-01

    This study simulated the effects of inter-vertebral disc degeneration and bone density distribution on the structural stiffness and strength provided by inter-vertebral fusion. Based on the original and redistributed bone density distributions, the effects of selected factors, including contact area between device/graft and vertebral endplates, endplate conditions, and bone growth capacity were evaluated using a factorial design of experiment. The simulation results suggested that the degeneration of inter-vertebral disc significantly affected the bone density and density distribution in adjacent vertebrae. The mechanical strength immediately after instrumentation is the worst case of device/graft subsidence. After that procedure, bone will adapt itself to the changed loading conditions and therefore reduce the risk of subsidence. A deficiency in structural stiffness immediately after instrumentation could be the "worst-case scenario" depending on the combinations of selected factors. The simulation results demonstrated that the contact area and initial bone density distribution should be considered jointly while estimating the risk of device/graft subsidence. The endplate condition is a secondary factor on the subsidence risk, compared with the contact area and initial bone density distribution.

  12. Application of Cervical Vertebral Maturation Stages Index in Orthodontics

    Directory of Open Access Journals (Sweden)

    Z.Dalili

    2005-02-01

    Full Text Available Evaluation of skeletal age and determination of growth status had important and special roie in orthodontic treatment planning (such as functional orthopedic treatment and orthognatic surgery and also in stability of it. There were several biologic indicators for the detection of the peak in mandibular growth. Due to the limitations of biological indicators application, idea of new indicators was seemed importantly. Cervical vertebral maturation (CVM method is one of them. At first the detection of the peak in mandibular growth was based on the analysis of the second through sixth cervical vertebrae in six developmental stages. But a few improvements of the original CVM analysis were still needed. In this method, the peak in mandibular growth was determined based on the analysis of the second through fourth cervical vertebrae in five developmental stages. This method is easy, applicable and more valid than hand-wrist analysis method.

  13. The neural crest, a multifaceted structure of the vertebrates.

    Science.gov (United States)

    Dupin, Elisabeth; Le Douarin, Nicole M

    2014-09-01

    In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. © 2014 Wiley Periodicals, Inc.

  14. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    OpenAIRE

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6?18 years of age). CBCT-generated cervical vertebral maturation ...

  15. Evolution and Functional Diversification of the GLI Family of Transcription Factors in Vertebrates

    Directory of Open Access Journals (Sweden)

    Amir Ali Abbasi

    2009-05-01

    within and between the various vertebrate species. We propose that duplication and divergence of GLI genes has increased in the complexity of vertebrate body plan by recruiting the hedgehog signalling for the novel developmental tasks.

  16. Efficacy of SPECT over planar bone scan in the diagnosis of solitary vertebral lesions in patients with low back pain

    International Nuclear Information System (INIS)

    Sudhakar, Pushpalatha; Bhushan, Shanti M.; Ranadhir, G.; Prabhakar Rao, V.V.S.; Sharma, Anshu Rajnish; Narsimuhulu, G.

    2010-01-01

    The purpose of our study has been to evaluate the efficacy of single photon emission computed tomography (SPECT) over planar bone scan in identifying solitary vertebral lesions in patients with low backache and its ability to differentiate various pathologies according to the uptake pattern. Materials and Methods: The study included twenty patients out of whom six patients presented with known carcinoma and fourteen patients with low back pain. SPECT was done in all following planar skeletal survey. Benign and malignant lesions were identified according to the uptake pattern in vertebral elements, based on Gary F. Gates observations. Final diagnosis was obtained by means of biopsy or correlation with radiograph or computed tomography (CT) or magnetic resonance imaging (MRI), and/or follow up. Results: SPECT detected additional 30% of solitary vertebral lesions that were obscured on planar scan. Seven out of twenty were localized in anterior vertebral body and were diagnosed as benign ostophytes in six and osteoma in one substantiating the previous observations. Out of six cases of known carcinoma, three were having solitary metastases and showed posterior vertebral body uptake with pedicle involvement. SPECT could localize specific lesions as source of pain in eleven patients with low back pain (78%) and identified various etiologies including benign tumors (osteoid osteoma and osteoma), facet arthritis, discitis, transverse process fractures and spondylolysis. Conclusion: Our study highlighted the higher diagnostic value of SPECT over planar skeletal scintigraphy in localizing solitary vertebral lesions in low backache patients. Based on SPECT pattern, malignant and benign lesions could be differentiated in the given clinical context. (author)

  17. Identification of extant vertebrate Myxine glutinosa VWF: evolutionary conservation of primary hemostasis.

    Science.gov (United States)

    Grant, Marianne A; Beeler, David L; Spokes, Katherine C; Chen, Junmei; Dharaneeswaran, Harita; Sciuto, Tracey E; Dvorak, Ann M; Interlandi, Gianluca; Lopez, José A; Aird, William C

    2017-12-07

    Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules. © 2017 by The American Society of Hematology.

  18. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.

    Science.gov (United States)

    Burnham, Jon M; Shults, Justine; Semeao, Edisio; Foster, Bethany; Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B

    2004-12-01

    Whole body BMC was assessed in 104 children and young adults with CD and 233 healthy controls. CD was associated with significant deficits in BMC and lean mass, relative to height. Adjustment for lean mass eliminated the bone deficit in CD. Steroid exposure was associated with short stature but not bone deficits relative to height. Children with Crohn disease (CD) have multiple risk factors for impaired bone accrual. The confounding effects of poor growth and delayed maturation limit the interpretation of prior studies of bone health in CD. The objective of this study was to assess BMC relative to growth, body composition, and maturation in CD compared with controls. Whole body BMC and lean mass were assessed by DXA in 104 CD subjects and 233 healthy controls, 4-26 years of age. Multivariable linear regression models were developed to sequentially adjust for differences in skeletal size, pubertal maturation, and muscle mass. BMC-for-height z scores were derived to determine CD-specific covariates associated with bone deficits. Subjects with CD had significantly lower height z score, body mass index z score, and lean mass relative to height compared with controls (all p BMC in CD relative to controls was significantly reduced in males (0.86; 95% CI, 0.83, 0.94) and females (0.91; 95% CI, 0.85, 0.98) with CD. Adjustment for pubertal maturation did not alter the estimate; however, addition of lean mass to the model eliminated the bone deficit. Steroid exposure was associated with short stature but not bone deficits. This study shows the importance of considering differences in body size and composition when interpreting DXA data in children with chronic inflammatory conditions and shows an association between deficits in muscle mass and bone in pediatric CD.

  19. Globally threatened vertebrates on islands with invasive species.

    Science.gov (United States)

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  20. Hormonally active phytochemicals and vertebrate evolution.

    Science.gov (United States)

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  1. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    Science.gov (United States)

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  2. Genetic parameters of growth, body, and egg traits in Japanese ...

    African Journals Online (AJOL)

    Objective: This study on Japanese quails was undertaken to estimate heritability values for growth, body and egg traits as well as genetic and phenotypic relationships between these traits in Japanese quails reared in the Southern Guinea Savannah Zone of Nigeria. Methodology and Results: One hundred and sixty nine ...

  3. The role of physical activity in bone health: a new hypothesis to reduce risk of vertebral fracture.

    Science.gov (United States)

    Sinaki, Mehrsheed

    2007-08-01

    Locomotion has always been a major criterion for human survival. Thus, it is no surprise that science supports the dependence of bone health on weight-bearing physical activities. The effect of physical activity on bone is site-specific. Determining how to perform osteogenic exercises, especially in individuals who have osteopenia or osteoporosis, without exceeding the biomechanical competence of bone always poses a dilemma and must occur under medical advice. This article presents the hypothesis that back exercises performed in a prone position, rather than a vertical position, may have a greater effect on decreasing the risk for vertebral fractures without resulting in compression fracture. The risk for vertebral fractures can be reduced through improvement in the horizontal trabecular connection of vertebral bodies.

  4. Fetal growth velocity and body proportion in the assessment of growth.

    Science.gov (United States)

    Hiersch, Liran; Melamed, Nir

    2018-02-01

    use of fetal body proportions to classify fetuses as either symmetric or asymmetric using 1 of several ratios; these include the head circumference to abdominal circumference ratio, transverse cerebellar diameter to abdominal circumference ratio, and femur length to abdominal circumference ratio. Although these ratios are associated with small for gestational age at birth and with adverse perinatal outcomes, their predictive accuracy is too low for clinical practice. Furthermore, these associations become questionable when other, potentially more specific measures such as umbilical artery Doppler are being used. Furthermore, these ratios are of limited use in determining the etiology underlying fetal smallness. It is possible that the use of the 2 gestational-age-independent ratios (transverse cerebellar diameter to abdominal circumference and femur length to abdominal circumference) may have a role in the detection of mild-moderate fetal growth restriction in pregnancies without adequate dating. In addition, despite their limited predictive accuracy, these ratios may become abnormal early in the course of fetal growth restriction and may therefore identify pregnancies that may benefit from closer monitoring of fetal growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women.

    Science.gov (United States)

    Kim, Kyong-Chol; Chun, Hyejin; Lai, ChaoQiang; Parnell, Laurence D; Jang, Yangsoo; Lee, Jongho; Ordovas, Jose M

    2015-03-01

    Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.

  6. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    Science.gov (United States)

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  7. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2003-09-15

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 +- 39.7 ml/min for the right side and 127.6 +- 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 +- 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 +- 59.19 ml/min in male, and 217.28 +- 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  8. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol

    2003-01-01

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 ± 39.7 ml/min for the right side and 127.6 ± 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 ± 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 ± 59.19 ml/min in male, and 217.28 ± 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  9. Conserved form and function of the germinal epithelium through 500 million years of vertebrate evolution.

    Science.gov (United States)

    Grier, Harry J; Uribe, Mari Carmen; Lo Nostro, Fabiana L; Mims, Steven D; Parenti, Lynne R

    2016-08-01

    The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates

  10. Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine

    Directory of Open Access Journals (Sweden)

    Watanabe Kota

    2012-06-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS patients, using computer simulation. Methods Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1 complete coronal correction only (C method and 2 complete coronal correction with complete derotation of vertebral bodies (C + D method. The kyphosis angle (T5-T12 and vertebral rotation angle at the apex were measured before and after the simulated corrections. Results The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p  Conclusions In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine.

  11. MRI determination of the vertebral termination of the dural sac tip in ...

    African Journals Online (AJOL)

    This level was recorded in relation to the adjacent lumbosacral vertebral body i.e. upper-, middle- and lower-third and adjacent intervertebral disc. The overall mean of the DS position was at the middle third of S2. Although the caudal DS tip was at the level of S2 in the majority of patients, a notable percentage (13.9%) had ...

  12. TALE transcription factors during early development of the vertebrate brain and eye.

    Science.gov (United States)

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.

  13. Using time-dependent models to investigate body condition and growth rate of the giant gartersnake

    Science.gov (United States)

    Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, Michael L.

    2009-01-01

    Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.

  14. New dual-energy X-ray absorptiometry equipment in the assessment of vertebral fractures: technical limits and software accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Bazzocchi, Alberto; Diano, Danila; Battista, Giuseppe [University of Bologna, Sant' Orsola - Malpighi Hospital, Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, Bologna (Italy); Albisinni, Ugo [Rizzoli Orthopaedic Institute, Department of Radiology, Bologna (Italy); Rossi, Cristina [University of Parma, Section of Radiological Sciences, Department of Clinic Sciences, Parma (Italy); Guglielmi, Giuseppe [University of Foggia, Department of Radiology, Foggia (Italy); Department of Radiology, Scientific Institute Hospital ' ' Casa Sollievo della Sofferenza' ' , San Giovanni Rotondo (Italy)

    2012-07-15

    The aim of this study was to investigate software accuracy and influence of body mass index on image quality of Lunar iDXA (Lunar, Madison, WI, USA; software enCORE 12.0) in vertebral fracture (VFs) assessment. We enrolled 65 normal or overweight patients (group 1) and 64 obese patients (group 2) with indication for morphometric evaluation of the spine. Patients underwent iDXA, with scans performed in the standard manner by an expert technologist. Lateral images of the spine were subsequently evaluated by a musculoskeletal radiologist as the gold standard. Our analysis considered five points: vertebral bodies missed or not assessable or wrongly labeled on T4-L4 segment, diagnostic performance of the automatic morphometric point-positioning system in the detection of VFs, upgrading and downgrading of fractures, radiologist intervention rate, and BMI influence. In group 1, 57/845 (6.7%) vertebral bodies and 34/832 (4.1%) in group 2 were not assessable - the upper thoracic spine. enCORE failed to recognize vertebral levels in 5.4% of the patients (7.7% in group 1 vs. 3.1% in group 2). On a lesion-based analysis sensitivity, specificity and accuracy of the software were 81.4, 93.8, and 93.1% in group 1 and 69.1, 88.3, and 86.7% in group 2, respectively. For 52.7% of the vertebrae in group 1 (51/8 upgraded/downgraded) and 70.0% in group 2 (96/26 upgraded/downgraded), a point correction was necessary and this changed the diagnosis respectively in 29.2 and 50.0% of the patients. Differences in diagnostic performance and point correction rate were significantly different between the two groups; however, BMI did not significantly affect vertebral level labeling and was correlated with a better visualization of the whole T4-L4 spine segment. This study provides new and interesting information about the accuracy, reliability, and imaging quality provided by iDXA in the assessment of VFs. (orig.)

  15. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic "screw-tailed" dog breeds.

    Science.gov (United States)

    Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques

    2014-01-01

    Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.

  16. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  17. A Comparison of Hand Wrist Bone Analysis with Two Different Cervical Vertebral Analysis in Measuring Skeletal Maturation

    OpenAIRE

    Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana

    2014-01-01

    Background: Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. M...

  18. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    Science.gov (United States)

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  19. Age and growth of the spinner shark Carcharhinus brevipinna ...

    African Journals Online (AJOL)

    Natal coast of South Africa was investigated from vertebral growth ring counts of 67 specimens (54–213 cm precaudal length, PCL). Counts were made from sectioned vertebral centra by two readers. There was a statistically significant difference ...

  20. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    Directory of Open Access Journals (Sweden)

    Bo-Ram Byun

    2015-01-01

    Full Text Available This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT images were obtained from 74 Korean girls (6–18 years of age. CBCT-generated cervical vertebral maturation (CVM was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P<0.05. Forty-seven of 64 parameters from CBCT-generated CVM (independent variables exhibited statistically significant correlations (P<0.05. The multiple regression model with the greatest R2 had six parameters (PH2/W2, UW2/W2, (OH+AH2/LW2, UW3/LW3, D3, and H4/W4 as independent variables with a variance inflation factor (VIF of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  1. Hand-wrist and cervical vertebral maturation indicators: how can these events be used to time Class II treatments?

    Science.gov (United States)

    Grave, Keith; Townsend, Grant

    2003-11-01

    Ossification events in the hand and wrist and in the cervical vertebrae have been shown to occur at specific times before, during and after the adolescent growth spurt, but there is still debate about the applicability of these findings to the clinical management of Class II cases. The aim of this study was to relate, on an individual basis, cervical vertebral maturation stages and hand-wrist ossification events to the timing of peak statural and mandibular growth in a group of indigenous Australians. Velocity curves for stature and mandibular growth were constructed for 47 boys and 27 girls, and maturation events were then plotted on the curves. For the majority of children, peak velocity in mandibular growth coincided with peak velocity in stature. Particular combinations of hand-wrist and cervical maturation events occurred consistently before, during or after the adolescent growth spurt. Our findings are consistent with those for North American children and we believe that assessment by orthodontists of a combination of hand-wrist and cervical vertebral maturation stages will enhance prediction of the adolescent growth spurt, thereby contributing to a positive, purposeful and more confident approach to the management of Class II cases.

  2. Growth, body characteristics and blood parameters of ostrich chickens receiving commercial probiotics

    Energy Technology Data Exchange (ETDEWEB)

    Karimi-Kivi, R.; Dadashbeiki, M.; Seidavi, A.

    2015-07-01

    This study was undertaken to determine the effect of four commercial probiotics on growth, body characteristics and haematological parameters of ostrich chicks. A total of 25 ostrich chicks (937±68.1 g) were individually allocated and fed the experimental diet for six weeks (n=5 per treatment). Experimental diets consisted of a corn/soybean meal-based diet unsupplemented (T1: Control), and four diets supplemented with probiotics according to the recommendations of the manufacturer (T2: 0.04% Bioplus 2B; T3: 0.09% Primalac; T4: 0.1% Thepax; and T5: 0.03% Protexin). Feed intake (FI), body weight (BW) and seven body characteristics (e.g. height) were measured every week. Blood samples and other body characteristics were also taken in the last week. There was an interaction effect between diet and time on all the growth variables and body characteristics (p<0.05). Both the BW and the BW gain of the ostrich chicks were, in general, higher for those fed the diet T2 than those fed the control diet (0.42, 1.07, 0.99, 1.09, 2.51, and 1.66 kg BW gain vs 0.28, 0.41, 0.83, 0.94, 1.15, and 1.15 kg BW gain at 7, 14, 21, 28, 35, and 42 days respectively), while for those fed the other diets containing probiotics differences were only observed at 42 days (p<0.05). Consuming probiotics over an extended period influenced several of the haematological parameters differently compared to those fed the control diet (p<0.05). T2 and T3 increased the concentration of total cholesterol (157 and 210 mg/dL respectively), when compared to those fed the control diet (119 mg/dL), while total cholesterol was slightly reduced (p>0.05) for those fed the diet containing Thepax (T4, 79 mg/dL). In conclusion, the effects of commercial probiotics on growth performance, body characteristics and haematological parameters varied among probiotics. (Author)

  3. Associations of infant feeding and timing of linear growth and relative weight gain during early life with childhood body composition

    NARCIS (Netherlands)

    de Beer, M.; Vrijkotte, T. G. M.; Fall, C. H. D.; van Eijsden, M.; Osmond, C.; Gemke, R. J. B. J.

    2015-01-01

    Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear. Of 5551 children with collected growth and

  4. Light adaptation and the evolution of vertebrate photoreceptors.

    Science.gov (United States)

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  5. Median sternotomy and ventral stabilisation using pins and polymethylmethacrylate for a comminuted T5 vertebral fracture in a Miniature Schnauzer.

    Science.gov (United States)

    Guiot, L P; Allman, D A

    2011-01-01

    A 2.9 kg Miniature Schnauzer was referred to our clinic, the Emergency & Critical Care Medicine Service at the Michigan State University Veterinary Teaching Hospital, following a dog fight. Physical examination findings upon admission included multiple thoracic wounds, absence of hindlimb deep pain, and marked Schiff-Sherrington syndrome. Computed tomography imaging revealed thoracic wall penetration and a comminuted T5 vertebral fracture. Thoracic exploration and thoracic wall repair were performed through a median sternotomy. The vertebral fracture was exposed and stabilised intra-thoracically through the same approach using pins and polymethylmethacrylate. The pins were placed percutaneously into the vertebral bodies of the adjacent vertebrae. Recovery was uncomplicated and fracture healing was documented eight weeks postoperatively. Spinal trauma secondary to dog fights is relatively common. The presence of concurrent penetrating thoracic injury negatively affects prognosis and necessitates thoracic exploration as soon as feasible. The approach should allow complete thoracic exploration to repair parietal and visceral damage, thus indicating the need for median sternotomy rather than an intercostal approach. The present case report suggested that median sternotomy can be used to safely apply stabilisation devices for the treatment of concurrent spinal trauma. Direct visualisation of the vertebral bodies permitted optimal implant anchorage as compared to potentially more hazardous techniques such as dorsal pinning.

  6. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  7. Growth patterns of fossil vertebrates as deduced from bone

    Indian Academy of Sciences (India)

    2009-10-20

    Oct 20, 2009 ... The dicynodonts on the other hand, were characterized by an overall fast growth with periodic interruptions, variable growth rates dependent on ontogeny and indeterminate growth strategy. A comparative study encompassing several neotherapsid genera including the dicynodonts shows significant ...

  8. A comparison of cervical vertebral maturation assessment of skeletal growth stages with chronological age in Thai between cleft lip and palate and non-cleft patients.

    Science.gov (United States)

    Pisek, Poonsak; Godfrey, Keith; Manosudprasit, Montian; Wangsrimongkol, Tasanee; Leelasinjaroen, Pornnapha

    2013-09-01

    (1) To search for any difference in chronological age related to stages of the cervical vertebral maturation index stages (CVMIs) comparing groups of cleft lip and palate (CLP) and non-cleft (non-CLP) subjects; (2) To investigate the relationship between chronological age and CVMIs in both groups of subjects. Cervical vertebrae C2, C3, C4 were assessed on 1,549 cephalometric films (503 CLP films, 1,046 non-CLP films of subjects aged 5 to 18 years) using Hassel and Farman's method. T-tests showed mean chronological ages of CVMIs 2, 3 and 6 were different at p = 0.001, 0.024 and 0.016, respectively. CVMIs 1, 4 and 5 showed no significant differences. The CLP group achieved each CVMI score one year ahead of the non-CLP group, except for CVMI 4. Spearman's rank order correlations were r = 0.80 (95% CI: 0.76-0.83) for CLP, and 0.77 (95% CI: 0.74-0.79) for non-CLP. CLP subjects tended to have a slightly advanced growth compared with non-CLP subjects. A high correlation coefficient was found between chronological age and cervical vertebral skeletal maturation.

  9. Cisto ósseo aneurismático vertebral: estudo de três casos Vertebral aneurysmatic bone cyst: study of three cases

    Directory of Open Access Journals (Sweden)

    Benjamim Pessoa Vale

    2005-12-01

    Full Text Available O cisto ósseo aneurismático é lesão hipervascularizada, benigna, localmente destrutiva pelo seu crescimento progressivo, de incidência maior na segunda década de vida. Acomete preferencialmente ossos longos e vértebras. Sua sintomatologia varia desde dor e edema locais, até presença de sintomas neurológicos quando de sua localização vertebral. Relatamos três casos de cisto ósseo aneurismático vertebral acometendo crianças, todas com alterações neurológicas. Os diagnósticos foram firmados através de tomografia computadorizada e/ou ressonância magnética, sendo os pacientes submetidos a cirurgia para ressecção do tumor. Em um dos casos foi realizada a embolização arterial seletiva pré-operatória da lesão. Os três pacientes evoluíram satisfatoriamente, com melhora do quadro neurológico, demonstrando a eficácia da técnica microcirúrgica para ressecção de tumor raquimedular. Discutimos a evolução dos casos e os tratamentos existentes na atualidade.Aneurysmatic bone cyst is a hypervascularized, benign lesion locally destructive by its progressive growth with greater incidence in the second decade of life. It lodges preferably in the long bones and vertebras. The clinical picture varies from pain to local edema and even neurological symptoms when in vertebral location. Three cases of vertebral aneurysmatic bone cyst occurring in childhood and all with neurologic deficit symptoms are described. Computerized tomography and/or magnetic resonance imaging confirmed the diagnosis. Patients underwent surgery to remove the tumor. In one of the cases, pre-operative selective arterial embolization of the lesion was performed. The three patients progressed satisfactorily with neurological improvement, which demonstrated the efficiency of the microsurgical technique for the resection of the spinal tumor. The evolution of the cases and the current treatment are discussed.

  10. An invertebrate stomach's view on vertebrate ecology

    DEFF Research Database (Denmark)

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Gilbert, Tom

    2013-01-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population...

  11. Vertebral architecture in the earliest stem tetrapods.

    Science.gov (United States)

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  12. Growth Patterns of the Neurocentral Synchondrosis (NCS) in Immature Cadaveric Vertebra.

    Science.gov (United States)

    Blakemore, Laurel; Schwend, Richard; Akbarnia, Behrooz A; Dumas, Megan; Schmidt, John

    2018-03-01

    Gross anatomic study of osteological specimens. To evaluate the age of closure for the neurocentral synchondrosis (NCS) in all 3 regions of the spine in children aged 1 to 18 years old. The ossification of the human vertebra begins from a vertebral body ossification center and a pair of neural ossification centers located within the centrum called the NCS. These bipolar cartilaginous centers of growth contribute to the growth of the vertebral body, spinal canal, and posterior elements of the spine. The closure of the synchondroses is dependent upon location of the vertebra and previous studies range from 2 to 16 years of age. Although animal and cadaveric studies have been performed regarding NCS growth and early instrumentation's effect on its development, the effects of NCS growth disturbances are still not completely understood. The vertebrae of 32 children (1 to 18 y old) from the Hamann-Todd Osteological collection were analyzed (no 2 or 9 y old specimens available). Vertebrae studied ranged from C1 to L5. A total of 768 vertebral specimens were photographed on a background grid to allow for measurement calibration. Measurements of the right and left NCS, pedicle width at the NCS, and spinal canal area were taken using Scandium image-analysis software (Olympus Soft Imaging Solutions, Germany). The percentage of the growth plate still open was found by dividing the NCS by the pedicle width and multiplying by 100. Data were analyzed with JMP 11 software (SAS Institute Inc., Cary, NC). The NCS was 100% open in all 3 regions of the spine in the 1- to 3-year age group. The cervical NCS closed first with completion around 5 years of age. The lumbar NCS was nearly fully closed by age 11. Only the thoracic region remained open through age 17 years. The left and right NCS closed simultaneously as there was no statistical difference between them. In all regions of the spine, the NCS appeared to close sooner in males than in females. Spinal canal area increased with age

  13. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Badkul, Rajeev; Jiang, Hongyu; Mallory, Matthew; Mitchell, Mellissa; Wang, Fen; Lominska, Christopher

    2017-04-01

    To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and

  14. Vertebrate pressure-gradient receivers

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  15. Head segmentation in vertebrates

    OpenAIRE

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Her...

  16. Prevalent Vertebral Fractures in Black Women and White Women

    OpenAIRE

    Cauley, Jane A; Palermo, Lisa; Vogt, Molly; Ensrud, Kristine E; Ewing, Susan; Hochberg, Marc; Nevitt, Michael C; Black, Dennis M

    2008-01-01

    Vertebral fractures are the most common osteoporotic fracture. Hip and clinical fractures are less common in black women, but there is little information on vertebral fractures. We studied 7860 white and 472 black women ≥65 yr of age enrolled in the Study of Osteoporotic Fractures. Prevalent vertebral fractures were identified from lateral spine radiographs using vertebral morphometry and defined if any vertebral height ratio was >3 SD below race-specific means for each vertebral level. Infor...

  17. MR imaging of medullary compression due to vertebral metastases

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Maldague, B.; Cornelis, G.; Malghem, J.; Demeure, R.

    1987-01-01

    A prospective study was performed to assess the value of MR imaging for demonstrating medullary compression due to vertebral metastases in cancer patients clinically suspected of presenting with that complication. Twenty-five consecutive unselected patients were studied, and the MR imaging findings were confirmed by myelography, CT, and/or surgical and autopsy findings for each patient. The MR examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5-T. MR imaging demonstrated the metastases (single or multiple) mainly on T1- weighted images (TR = 0.45 sec and TE = 20 msec). Soft-tissue tumoral mass and/or deformity of a vertebral body secondary to metastasis, compressing the spinal cord, was equally demonstrated on T1- and heavily T2-weighted images (TR = 1.65 sec and TE = 100 msec). In the sagittal plane, MR imaging demonstrated the exact level of the compression (one or multiple levels) and its full extent. In conclusion, MR is the first imaging modality for studying cancer patients with clinically suspected medullary compression and obviates the need for more invasive procedures

  18. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  19. Mexican patients with HIV have a high prevalence of vertebral fractures

    Directory of Open Access Journals (Sweden)

    José Antonio Mata-Marín

    2018-04-01

    Full Text Available Low bone mineral density (BMD and fragility fractures are common in individuals infected with HIV, who are undergoing antiretroviral therapy (ART. In high-income countries, dual energy X-ray absorptiometrry is typically used to evaluate osteopenia or osteoporosis in HIV infected individuals. However, this technology is unavailable in low and-middle income countries, so a different approach is needed. The aim of this study was to use X-ray scans of the spine to determine the prevalence of and associated risk factors for vertebral fractures in HIV-infected patients in a tertiary-care hospital in Mexico. We conducted a cross-sectional study of outpatients who were >40 years old and receiving ART at the Hospital de Infectología, La Raza National Medical Center in Mexico City, Mexico. We used semi-quantitative morphometric analysis of centrally digitized X-ray images to assess vertebral deformities in the spine. Anterior, middle and posterior vertebral heights were measured, and height ratios were calculated. For each vertebral body, fractures were graded on the basis of height ratio reductions, and a spine deformity index’ (SDI value was calculated by summing the grades of the vertebral deformities: An SDI>1 was indicative of a vertebral fracture. We included 104 patients, 87% of whom were men. The median age was 49 years [interquartile range (IQR 42-52]. Themost common stage of HIV infection, as defined by the Centers for Disease Control,was B2 in 40 (39% of patients. Forty seven (45% patients were on ART regimens that included protease inhibitors (PIs and 100 (96% being treated with tenofovir. The median time of ART was 6.5 years (IQR1.6-9.0. Of the 104 patients in our study, 83 (80% had undetectable viral load, as assessed by HIV-1 RNA levels, 32 (31% showed evidence of a previous fracture, 4 (4% were co-infected with hepatitis C virus, and 57 (55% had a history of corticosteroid treatment. The prevalence of vertebral fractures was 25%, 95

  20. [Effect of growth hormone combined with Radix Dipsaci on the body growth and the bone metabolism of hypophysectomized rats].

    Science.gov (United States)

    Liu, Ying-ke; Zhang, Zhi-xin; Zhang, Qiong

    2011-12-01

    To study the effect of growth hormone (GH) combined with Radix Dipsaci on the body growth and the bone mineral content (BMC) of hypophysectomized rats. The GH deficiency rats model was established using the hypophysectomized operation through the skull and the throat. Qualified rats were divided into the sham-operation group (n = 15), the negative control group (n = 13), the GH intervention group (n = 13), and the GH combined with Radix Dipsaci group(n = 12). GH (0.25 mg/kg) was subcutaneously injected from the cervical part in the GH intervention group and the GH combined with Radix Dipsaci group at the same time, while equal volume of normal saline was injected to the rest groups. 0.7 mL/100 kg Radix Dipsaci was given by gastrogavage to the GH combined with Radix Dipsaci group at the same time, while equal volume of normal saline was given by gastrogave to the rest groups. The body weight, the tail length, and the body length were measured during the intervention period. Blood was withdrawn after 14-day intervention. The femoral bone and the tibial bone were taken out. The levels of GH, insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), and osteocalcin (OC) were measured. The width of the tibial epiphyseal plate was measured. The bilateral femur bone mineral density (BMD) and BMC were measured using the dual energy X-ray absorptiometry. The body weight, the body length, the length of the femoral bone, the length of the tibial bone, the width of the epiphyseal plate, the levels of the GH, IGF-1, ALP, and OC increased in the GH intervention group and the GH combined with Radix Dipsaci group after 2-week intervention, showing statistical difference when compared with the model group (P 0.05). There was insignificant difference in the aforesaid indices between the two groups (P > 0.05). Compared with the model group, the BMD of the GH combined with Radix Dipsaci group increased with statistical difference (P growth. But it could elevate BMD and BMC

  1. Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathological fracture in a child. Case report and review of the literature.

    Science.gov (United States)

    Snell, B E; Adesina, A; Wolfla, C E

    2001-10-01

    The authors present the case of a 10-year-old girl with a history of cervical trauma in whom a cystic lesion was found to involve all three columns of C-7 with evidence of pathological fracture. Computerized tomography scanning revealed a lytic lesion with sclerotic margins involving the left vertebral body, pedicle, lateral mass, and lamina of C-7 with an associated pathological compression fracture. Magnetic resonance imaging demonstrated mixed signal on both T1- and T2-weighted sequences, with cystic and enhancing solid portions. Magnetic resonance angiography demonstrated anterior displacement of the left vertebral artery at C-7. The patient underwent C-7 subtotal corpectomy and posterior resection of the tumor mass; anterior and posterior fusion were performed in which instrumentation was placed. Histological examination disclosed cystic areas lined by fibromembranous tissue with calcification and osteoid deposits consistent with unicameral bone cyst. Of the four previously reported cases of unicameral bone cysts in the cervical spine, none involved all three columns simultaneously or was associated with pathological fracture. The most common differential diagnostic considerations for cystic lesions in the spine are aneurysmal bone cyst, osteoblastoma, or giant cell tumor of bone. Unicameral bone cyst, in this location, although rare, must be considered in the differential diagnosis and may require resection and spinal reconstruction.

  2. Unusual bone dysplasia featuring severe platyspondyly and vertebral 'coronal cleft' in infancy, and changes of metaphyseal chondrodysplasia in childhood

    International Nuclear Information System (INIS)

    Currarino, G.; Texas Univ., Dallas

    1986-01-01

    This is the report of a boy who presented at birth with severe generalized platyspondyly, a vertebral ''coronal cleft'', and an abnormal configuration of the pelvis with short and broad iliac and ischial bones and horizontal acetabular roofs. The rest of the skeleton was normal. In the ensuing years the vertebral bodies and pelvis assumed a near normal configuration, but the patient developed changes of metaphyseal chondrodysplasia in the long bones of the lower limbs with progressive shortness of stature. (orig.)

  3. Bone Mineral Density and Body Composition in Adolescents with Childhood-Onset Growth Hormone Deficiency

    NARCIS (Netherlands)

    Boot, Annemieke M.; van der Sluis, Inge M.; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    2009-01-01

    Background/Aims: The aim of the present study was to evaluate bone mineral density (BMD) and body composition of patients with childhood-onset growth hormone (GH) deficiency (GHD) treated with GH during the transition period. Methods: BMD and body composition, measured by dual-energy X-ray

  4. Health economic aspects of vertebral augmentation procedures.

    Science.gov (United States)

    Borgström, F; Beall, D P; Berven, S; Boonen, S; Christie, S; Kallmes, D F; Kanis, J A; Olafsson, G; Singer, A J; Åkesson, K

    2015-04-01

    We reviewed all peer-reviewed papers analysing the cost-effectiveness of vertebroplasty and balloon kyphoplasty for osteoporotic vertebral compression fractures. In general, the procedures appear to be cost effective but are very dependent upon model input details. Better data, rather than new models, are needed to answer outstanding questions. Vertebral augmentation procedures (VAPs), including vertebroplasty (VP) and balloon kyphoplasty (BKP), seek to stabilise fractured vertebral bodies and reduce pain. The aim of this paper is to review current literature on the cost-effectiveness of VAPs as well as to discuss the challenges for economic evaluation in this research area. A systematic literature search was conducted to identify existing published studies on the cost-effectiveness of VAPs in patients with osteoporosis. Only peer-reviewed published articles that fulfilled the criteria of being regarded as full economic evaluations including both morbidity and mortality in the outcome measure in the form of quality-adjusted life years (QALYs) were included. The search identified 949 studies, of which four (0.4 %) were identified as relevant with one study added later. The reviewed studies differed widely in terms of study design, modelling framework and data used, yielding different results and conclusions regarding the cost-effectiveness of VAPs. Three out of five studies indicated in the base case results that VAPs were cost effective compared to non-surgical management (NSM). The five main factors that drove the variations in the cost-effectiveness between the studies were time horizon, quality of life effect of treatment, offset time of the treatment effect, reduced number of bed days associated with VAPs and mortality benefit with treatment. The cost-effectiveness of VAPs is uncertain. In answering the remaining questions, new cost-effectiveness analysis will yield limited benefit. Rather, studies that can reduce the uncertainty in the underlying data

  5. A Biostereometric Approach To The Study Of Infants' And Children's Body Growth

    Science.gov (United States)

    Coblentz, A.; Ignazi, G.

    1980-07-01

    Studies on the somatic growth of young children have traditionally been made using conventional anthropometry techniques. As a result, while the conditions of growth of morphological variables such as weight or segmental dimensions are well known, the same cannot be said of the more global aspect of the development of the body in a three-dimensional reference space. Yet body volumes and surfaces represent morphological characteristics which are just as necessary for a good understanding of physiological phenomena (thermoregulation, energy balance, etc.) as the conventional linear data. In the volume of their research on children's growth in recent years, the authors have found that in none of the studies mentioned in the literature was consideration given to the dynamic aspect of the child's somatic development in a three-dimensional space. A primary reason for such omission is largely to be found in the technical difficulties encountered in the measure-ment of somatic characteristics such as body volume and surface. Yet, among the several possible methods of study, biostereometry and particularly the photogrammetric tool, is certainly one of the most rewarding. This being so, the authors propose to use the photogrammetric technique to undertake, in a first stage, a methodological study that will draw up, on a limited sample of infants and young children, the development chart, over a period of time, of the surfaces and volumes of segmental elements. Thus will be checked the relationships between the growth rates of different characteristics : surfaces, volumes, weight, linear dimensions. Quite apart from the intrinsic value of such studies, the data thus collected will eventually provide practitioners, pediatricians and physiologists with the reference records that have so far been lacking.

  6. Factors for vertebral artery injury accompanied by cervical trauma

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Masaaki; Shingu, Hikosuke; Kimura, Isao; Nasu, Yoshiro; Shiotani, Akihide [San-in Rosai Hospital, Yonago, Tottori (Japan). Spine and Low Back Pain Center

    2001-09-01

    Injury of the vertebral artery with cerebellar and brain stem infarction is a complication of cervical vertebral trauma. However, the pathogenesis and etiological factors remain to be clarified. In this study, we investigated patients with cervical vertebral and cord injury. This study included 51 patients with cervical vertebral and cord injury who were treated in our department. In these patients, plain X-ray, CT, MRI, and MRA findings were examined. The incidence of vertebral arterial injury was 33.3% (17 of 51 patients with cervical vertebral trauma). In 11 of the 17 patients, dislocation fracture was noted, comprising a markedly high percentage (64.7%). Particularly, vertebral arterial injury was commonly observed in patients with a large dislocation distance and severe paralysis. Cerebellar and brain stem infarction related to vertebral arterial injury was observed in 5 of the 17 patients (29.4%). No infarction developed in patients 50 years old or younger. Infarction was detected in relatively elderly patients. Vertebral arterial injury and cerebellar/brain stem infarction related to cervical vertebral trauma were frequently observed in patients with high energy injury. However, these disorders commonly occurred in elderly patients. Therefore, age-related factors such as arteriosclerosis may also be closely involved. In the acute stage, the state of the vertebral artery should be evaluated by MRA and MRI. Among patients with vertebral arterial injury, caution is needed during follow-up those with risk factors such as high energy injury and advanced age. (author)

  7. Factors for vertebral artery injury accompanied by cervical trauma

    International Nuclear Information System (INIS)

    Murata, Masaaki; Shingu, Hikosuke; Kimura, Isao; Nasu, Yoshiro; Shiotani, Akihide

    2001-01-01

    Injury of the vertebral artery with cerebellar and brain stem infarction is a complication of cervical vertebral trauma. However, the pathogenesis and etiological factors remain to be clarified. In this study, we investigated patients with cervical vertebral and cord injury. This study included 51 patients with cervical vertebral and cord injury who were treated in our department. In these patients, plain X-ray, CT, MRI, and MRA findings were examined. The incidence of vertebral arterial injury was 33.3% (17 of 51 patients with cervical vertebral trauma). In 11 of the 17 patients, dislocation fracture was noted, comprising a markedly high percentage (64.7%). Particularly, vertebral arterial injury was commonly observed in patients with a large dislocation distance and severe paralysis. Cerebellar and brain stem infarction related to vertebral arterial injury was observed in 5 of the 17 patients (29.4%). No infarction developed in patients 50 years old or younger. Infarction was detected in relatively elderly patients. Vertebral arterial injury and cerebellar/brain stem infarction related to cervical vertebral trauma were frequently observed in patients with high energy injury. However, these disorders commonly occurred in elderly patients. Therefore, age-related factors such as arteriosclerosis may also be closely involved. In the acute stage, the state of the vertebral artery should be evaluated by MRA and MRI. Among patients with vertebral arterial injury, caution is needed during follow-up those with risk factors such as high energy injury and advanced age. (author)

  8. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  9. The effect of oxandrolone on body proportions and body composition in growth hormone-treated girls with Turner syndrome.

    NARCIS (Netherlands)

    Menke, L.A.; Sas, T.C.J.; Zandwijken, G.R.; Ridder, M.A. de; Stijnen, T.; Muinck Keizer-Schrama, S.M.P.F. de; Otten, B.J.; Wit, J.M.

    2010-01-01

    OBJECTIVE: Untreated girls with Turner syndrome (TS) have short stature, relatively broad shoulders, a broad pelvis, short legs, a high fat mass and low muscle mass. Our objective was to assess the effect of the weak androgen oxandrolone (Ox) on body proportions and composition in growth hormone

  10. Multi-detector thoracic CT findings in cerebro-costo-mandibular syndrome: rib gaps and failure of costo-vertebral separation.

    Science.gov (United States)

    Watson, Tom Anthony; Arthurs, Owen John; Muthialu, Nagarajan; Calder, Alistair Duncan

    2014-02-01

    Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects ("rib gaps"). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia.

  11. 2R and remodeling of vertebrate signal transduction engine

    Directory of Open Access Journals (Sweden)

    Huminiecki Lukasz

    2010-12-01

    Full Text Available Abstract Background Whole genome duplication (WGD is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed. Results We show that 2R-WGD affected an overwhelming majority (74% of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R network, and found that hubs (particularly involving negative regulation were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs. Conclusions The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis, while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle tended to be excluded. 2R

  12. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  13. Associations of infant feeding and timing of linear growth and relative weight gain during early life with childhood body composition

    NARCIS (Netherlands)

    de Beer, M.; Vrijkotte, T.G.M.; Fall, C.H.D.; Eijsden, M.; Osmond, C.; Gemke, R.J.B.J.

    2015-01-01

    Background:Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear.Methods:Of 5551 children with collected

  14. Trunk muscle activity is modified in osteoporotic vertebral fracture and thoracic kyphosis with potential consequences for vertebral health.

    Directory of Open Access Journals (Sweden)

    Alison M Greig

    Full Text Available This study explored inter-relationships between vertebral fracture, thoracic kyphosis and trunk muscle control in elderly people with osteoporosis. Osteoporotic vertebral fractures are associated with increased risk of further vertebral fractures; but underlying mechanisms remain unclear. Several factors may explain this association, including changes in postural alignment (thoracic kyphosis and altered trunk muscle contraction patterns. Both factors may increase risk of further fracture because of increased vertebral loading and impaired balance, which may increase falls risk. This study compared postural adjustments in 24 individuals with osteoporosis with and without vertebral fracture and with varying degrees of thoracic kyphosis. Trunk muscle electromyographic activity (EMG associated with voluntary arm movements was recorded and compared between individuals with and without vertebral fracture, and between those with low and high thoracic kyphosis. Overall, elderly participants in the study demonstrated co-contraction of the trunk flexor and extensor muscles during forwards arm movements, but those with vertebral fractures demonstrated a more pronounced co-contraction than those without fracture. Individuals with high thoracic kyphosis demonstrated more pronounced alternating flexor and extensor EMG bursts than those with less kyphosis. Co-contraction of trunk flexor and extensor muscles in older individuals contrasts the alternating bursts of antagonist muscle activity in previous studies of young individuals. This may have several consequences, including altered balance efficacy and the potential for increased compressive loads through the spine. Both of these outcomes may have consequences in a population with fragile vertebrae who are susceptible to fracture.

  15. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    Science.gov (United States)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  16. Hemifacial spasm; The value of vertebral angiography

    International Nuclear Information System (INIS)

    Yang, Hak Seok; Kim, Myung Soon; Han, Yong Pyo

    1992-01-01

    In order to evaluate the value of vertebral angiography in assesment of hemifacial spasm, We reviewed retrospectively the vertebral angiography of 28 patients (30 cases) with surgically proved hemifacial spasm but normal CT scans of posterior fossa. There were 9 males and 19 females. Angiography revealed vascular focus of hemifacial spasm located at anterior inferior cerebellar artery , posterior inferior cerebellar artery, and vertebral artery in 19, 9, and 2 cases respectively. Right side was involved in 20 cases. All involved vessels were elongated, tortuous, and dilated. In conclusion, vertebral angiography was valuable in evaluating hemifacial spasm of vascular origin in the posterior fossa

  17. HEMATOPOIETIC PROGENITOR CELL CONTENT OF VERTEBRAL BODY MARROW USED FOR COMBINED SOLID ORGAN AND BONE MARROW TRANSPLANTATION

    Science.gov (United States)

    Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.

    2010-01-01

    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582

  18. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes

    Science.gov (United States)

    Zouache, Moussa A.; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac0.67, where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma. PMID:26990431

  19. Body Mass Disorders in Healthy Short Children and in Children with Growth Hormone Deficiency.

    Science.gov (United States)

    Tomaszewski, Paweł; Milde, Katarzyna; Majcher, Anna; Pyrżak, Beata; Tiryaki-Sonmez, Gul; Schoenfeld, Brad J

    2018-01-01

    The aim of the study was to determine the degree of adiposity and the incidence of body mass disorders, including abdominal obesity, in healthy short children and children with growth hormone deficiency. The study included 134 short children (height hormonal disorders and 71 patients (35 boys and 36 girls) with growth hormone deficiency. Basic somatic features were assessed and the study participants were categorized according to the percentage of body fat (%FAT), body mass index (BMI), and waist-to-height ratio (WHtR). We found that there were no significant differences in %FAT and the incidence of body weight disorders depending on gender or diagnosis. %FAT deficit was observed in 12-21% of the participants and underweight in almost every fourth child. Overweight involved 3-14% of the participants and obesity was diagnosed in isolated cases (0-3%); both were considerably lower compared to the estimates based on %FAT. Using the cut-off points of WHtR, abdominal adiposity was observed in 3-15% of the participants. In conclusion, quite a large number of short children (between 25 and 50%) are characterized by abnormal body fat or body mass index values. The results indicate a limited usefulness of BMI in evaluating the incidence of overweight and obesity in children characterized by a height deficit.

  20. Metamerism in cephalochordates and the problem of the vertebrate head.

    Science.gov (United States)

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  1. Cervical chordoma with vertebral artery encasement mimicking neurofibroma: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Mortele, B.; Lemmerling, M.; Mortele, K.; Verstraete, K.; Defreyne, L.; Kunnen, M. [Department of Radiology, University Hospital, Gent (Belgium); Vandekerckhove, T. [Department of Neurosurgery, University Hospital, Gent (Belgium)

    2000-06-01

    A case of cervical chordoma in a 36-year-old white man with hypoesthesia in the neck and right shoulder, neck pain, and restricted neck mobility is presented. Plain radiographs of the cervical spine showed radiolucency of the body of C2 on the right side and enlargement of the right intervertebral foramen at C2-C3 level. Tumor encasement of the vertebral artery was demonstrated by MR imaging and confirmed by conventional arteriography. This proved to be particularly important for preoperative assessment. (orig.)

  2. Cervical chordoma with vertebral artery encasement mimicking neurofibroma: MRI findings

    International Nuclear Information System (INIS)

    Mortele, B.; Lemmerling, M.; Mortele, K.; Verstraete, K.; Defreyne, L.; Kunnen, M.; Vandekerckhove, T.

    2000-01-01

    A case of cervical chordoma in a 36-year-old white man with hypoesthesia in the neck and right shoulder, neck pain, and restricted neck mobility is presented. Plain radiographs of the cervical spine showed radiolucency of the body of C2 on the right side and enlargement of the right intervertebral foramen at C2-C3 level. Tumor encasement of the vertebral artery was demonstrated by MR imaging and confirmed by conventional arteriography. This proved to be particularly important for preoperative assessment. (orig.)

  3. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  4. Whole-body low-dose computed tomography in multiple myeloma staging: Superior diagnostic performance in the detection of bone lesions, vertebral compression fractures, rib fractures and extraskeletal findings compared to radiography with similar radiation exposure.

    Science.gov (United States)

    Lambert, Lukas; Ourednicek, Petr; Meckova, Zuzana; Gavelli, Giampaolo; Straub, Jan; Spicka, Ivan

    2017-04-01

    The primary objective of the present prospective study was to compare the diagnostic performance of conventional radiography (CR) and whole-body low-dose computed tomography (WBLDCT) with a comparable radiation dose reconstructed using hybrid iterative reconstruction technique, in terms of the detection of bone lesions, skeletal fractures, vertebral compressions and extraskeletal findings. The secondary objective was to evaluate lesion attenuation in relation to its size. A total of 74 patients underwent same-day skeletal survey by CR and WBLDCT. In CR and WBLDCT, two readers assessed the number of osteolytic lesions at each region and stage according to the International Myeloma Working Group (IMWG) criteria. A single reader additionally assessed extraskeletal findings and their significance, the number of vertebral compressions and bone fractures. The radiation exposure was 2.7±0.9 mSv for WBLDCT and 2.5±0.9 mSv for CR (P=0.054). CR detected bone involvement in 127 out of 486 regions (26%; Prib fractures compared with CR (188 vs. 47; Pfractures, vertebral compressions and extraskeletal findings, which results in up- or downstaging in 24% patients according to the IMWG criteria. The attenuation of osteolytic lesions can be measured with the avoidance of the partial volume effect.

  5. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhang

    2017-09-01

    Full Text Available Objective The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20 was smaller than that in Texel sheep (17 to 21. The individuals with 19 thoracolumbar vertebrae (T13L6 were dominant in Kazakh sheep (79.2%. The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP (rs426367238 was suggested to associate with thoracic vertebral number statistically. Conclusion The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238 with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  6. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    Science.gov (United States)

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  7. A multi-cell, multi-scale model of vertebrate segmentation and somite formation.

    Directory of Open Access Journals (Sweden)

    Susan D Hester

    2011-10-01

    Full Text Available Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length.

  8. Theoretical analysis of alendronate and risedronate effects on canine vertebral remodeling and microdamage

    OpenAIRE

    Wang, Xiang; Erickson, Antonia M.; Allen, Matthew R.; Burr, David B.; Martin, R. Bruce; Hazelwood, Scott J.

    2009-01-01

    Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the current study were to develop a mathematical model that simulates control and 1 year experimental results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar vertebral body, validate the model by comparing simulation predictions to 3 year experimental res...

  9. Early nutrition and its effect on growth, body composition, and later obesity

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Larnkjær, Anni; Mølgaard, Christian

    2017-01-01

    , intervention studies, and studies focusing on the potential mechanisms behind associations between early nutrition and different aspects of growth. There has been a special interest in factors with potential mediating effects between early nutrition and later growth such as growth factors and growth-related......Early nutrition is an important factor regulating both early and long-term growth and body composition, and therefore has important effects on the risk of later overweight and obesity. There is a lot of activity within this research area with a wealth of publications including observational studies...... hormones, appetite-related hormones, and factors with a potential programming effect, e.g., epigenetic programming. For this short review we have included 11 papers which we found of special interest published during the period from July 1, 2015 to June 30, 2016. We have chosen to focus mainly on 2 areas...

  10. Growth Hormone Improves Cardiopulmonary Capacity and Body Composition in Children With Growth Hormone Deficiency.

    Science.gov (United States)

    Capalbo, Donatella; Barbieri, Flavia; Improda, Nicola; Giallauria, Francesco; Di Pietro, Elisa; Rapacciuolo, Antonio; Di Mase, Raffaella; Vigorito, Carlo; Salerno, Mariacarolina

    2017-11-01

    Growth hormone deficiency (GHD) in children may be associated with early cardiovascular risk factors and alterations in left ventricular (LV) structure and function; data on cardiopulmonary functional capacity are lacking. Aim of the study was to evaluate the effect of GHD and growth hormone (GH) therapy on cardiopulmonary functional capacity, left and right cardiac structure and function, and body composition in children and adolescents. Prospective, case-control study. Twenty-one untrained GHD children (11.3 ± 0.8 years) underwent cardiopulmonary exercise testing, echocardiography and dual-energy x-ray absorptiometry, before and after 12 months of GH therapy. Twenty-one controls matched for sex, pubertal status, body mass index, and physical activity (PA) were evaluated at baseline and after 1 year. At baseline, GHD patients showed reduced LV mass (LVM; 63.32 ± 7.80 vs 80.44 ± 26.29 g/m2, P = 0.006), peak oxygen consumption (VO2peak; 22.92 ± 4.80 vs 27.48 ± 6.71 mL/Kg/min, P = 0.02), peak workload (80.62 ± 29.32 vs 103.76 ± 36.20 W, P = 0.02), and O2 pulse (4.93 ± 1.30 vs 7.67 ± 2.93 mL/beat, P = 0.0003), compared with controls. GHD patients also exhibited lower lean body mass (LBM 65.36 ± 7.84% vs 76.13 ± 8.23%, P controls. GH therapy resulted in a significant increase of LVM (72.01 ± 15.88, P = 0.03), VO2peak (26.80 ± 4.97; P = 0.01), peak workload (103.67 ± 32.24, P = 0.001), O2 pulse (6.64 ± 1.68, P = 0.0007), and LBM (75.36 ± 7.59%, P = 0.0001), with a reduction in FM (22.62 ± 7.73%, P = 0.001). No difference was found in either left or right ventricular function. Our results suggest that cardiac structure, body composition and cardiopulmonary functional capacity are impaired in children with untreated GHD and can be restored after short-term GH replacement therapy. Copyright © 2017 Endocrine Society

  11. Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi) caudal fin from palaeoecological data.

    Science.gov (United States)

    Ferrón, Humberto G; Martínez-Pérez, Carlos; Botella, Héctor

    2017-01-01

    Our knowledge about the body morphology of many extinct early vertebrates is very limited, especially in regard to their post-thoracic region. The prompt disarticulation of the dermo-skeletal elements due to taphonomic processes and the lack of a well-ossified endoskeleton in a large number of groups hinder the preservation of complete specimens. Previous reconstructions of most early vertebrates known from partial remains have been wholly based on phylogenetically closely related taxa. However, body design of fishes is determined, to a large extent, by their swimming mode and feeding niche, making it possible to recognise different morphological traits that have evolved several times in non-closely related groups with similar lifestyles. Based on this well-known ecomorphological correlation, here we propose a useful comparative framework established on extant taxa for predicting some anatomical aspects in extinct aquatic vertebrates from palaeoecological data and vice versa. For this, we have assessed the relationship between the locomotory patterns and the morphological variability of the caudal region in extant sharks by means of geometric morphometrics and allometric regression analysis. Multivariate analyses reveal a strong morphological convergence in non-closely related shark species that share similar modes of life, enabling the characterization of the caudal fin morphology of different ecological subgroups. In addition, interspecific positive allometry, affecting mainly the caudal fin span, has been detected. This phenomenon seems to be stronger in sharks with more pelagic habits, supporting its role as a compensation mechanism for the loss of hydrodynamic lift associated with the increase in body size, as previously suggested for many other living and extinct aquatic vertebrates. The quantification of shape change per unit size in each ecological subgroup has allowed us to establish a basis for inferring not only qualitative aspects of the caudal fin

  12. Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi caudal fin from palaeoecological data

    Directory of Open Access Journals (Sweden)

    Humberto G. Ferrón

    2017-12-01

    Full Text Available Our knowledge about the body morphology of many extinct early vertebrates is very limited, especially in regard to their post-thoracic region. The prompt disarticulation of the dermo-skeletal elements due to taphonomic processes and the lack of a well-ossified endoskeleton in a large number of groups hinder the preservation of complete specimens. Previous reconstructions of most early vertebrates known from partial remains have been wholly based on phylogenetically closely related taxa. However, body design of fishes is determined, to a large extent, by their swimming mode and feeding niche, making it possible to recognise different morphological traits that have evolved several times in non-closely related groups with similar lifestyles. Based on this well-known ecomorphological correlation, here we propose a useful comparative framework established on extant taxa for predicting some anatomical aspects in extinct aquatic vertebrates from palaeoecological data and vice versa. For this, we have assessed the relationship between the locomotory patterns and the morphological variability of the caudal region in extant sharks by means of geometric morphometrics and allometric regression analysis. Multivariate analyses reveal a strong morphological convergence in non-closely related shark species that share similar modes of life, enabling the characterization of the caudal fin morphology of different ecological subgroups. In addition, interspecific positive allometry, affecting mainly the caudal fin span, has been detected. This phenomenon seems to be stronger in sharks with more pelagic habits, supporting its role as a compensation mechanism for the loss of hydrodynamic lift associated with the increase in body size, as previously suggested for many other living and extinct aquatic vertebrates. The quantification of shape change per unit size in each ecological subgroup has allowed us to establish a basis for inferring not only qualitative aspects of

  13. Lumbar Vertebral Canal Diameters in Adult Ugandan Skeletons ...

    African Journals Online (AJOL)

    Background: Normal values of lumbar vertebral canal diameters are useful in facilitating diagnosis of lumbar vertebral canal stenosis. Various studies have established variation on values between different populations, gender, age, and ethnic groups. Objectives: To determine the lumbar vertebral canal diameters in adult ...

  14. Growth hormone treatment improves body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, J; Jensen, M B; Frandsen, E

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  15. The shape of the human lumbar vertebral canal

    OpenAIRE

    Zarzur,Edmundo

    1996-01-01

    Literature on the anatomy of the human vertebral column characterizes the shape of the lumbar vertebral canal as triangular. The purpose of the present study was to determine the precise shape of the lumbar vertebral canal. Ten lumbar vertebral columns of adult male cadavers were dissected. Two transverse sections were performed in the third lumbar vertebra. One section was performed at the level of the lower border of the ligamenta flava, and the other section was performed at the level of t...

  16. Risk factor analysis for predicting vertebral body re-collapse after posterior instrumented fusion in thoracolumbar burst fracture.

    Science.gov (United States)

    Jang, Hae-Dong; Bang, Chungwon; Lee, Jae Chul; Soh, Jae-Wan; Choi, Sung-Woo; Cho, Hyeung-Kyu; Shin, Byung-Joon

    2018-02-01

    In the posterior instrumented fusion surgery for thoracolumbar (T-L) burst fracture, early postoperative re-collapse of well-reduced vertebral body fracture could induce critical complications such as correction loss, posttraumatic kyphosis, and metal failure, often leading to revision surgery. Furthermore, re-collapse is quite difficult to predict because of the variety of risk factors, and no widely accepted accurate prediction systems exist. Although load-sharing classification has been known to help to decide the need for additional anterior column support, this radiographic scoring system has several critical limitations. (1) To evaluate risk factors and predictors for postoperative re-collapse in T-L burst fractures. (2) Through the decision-making model, we aimed to predict re-collapse and prevent unnecessary additional anterior spinal surgery. Retrospective comparative study. Two-hundred and eight (104 men and 104 women) consecutive patients with T-L burst fracture who underwent posterior instrumented fusion were reviewed retrospectively. Burst fractures caused by high-energy trauma (fall from a height and motor vehicle accident) with a minimum 1-year follow-up were included. The average age at the time of surgery was 45.9 years (range, 15-79). With respect to the involved spinal level, 95 cases (45.6%) involved L1, 51 involved T12, 54 involved L2, and 8 involved T11. Mean fixation segments were 3.5 (range, 2-5). Pedicle screw instrumentation including fractured vertebra had been performed in 129 patients (62.3%). Clinical data using self-report measures (visual analog scale score), radiographic measurements (plain radiograph, computed tomography, and magnetic resonance image), and functional measures using the Oswestry Disability Index were evaluated. Body height loss of fractured vertebra, body wedge angle, and Cobb angle were measured in serial plain radiographs. We assigned patients to the re-collapse group if their body height loss progressed greater

  17. A Case of Duplicated Right Vertebral Artery.

    Science.gov (United States)

    Motomura, Mayuko; Watanabe, Koichi; Tabira, Yoko; Iwanaga, Joe; Matsuuchi, Wakako; Yoshida, Daichi; Saga, Tsuyoshi; Yamaki, Koh-Ichi

    2018-04-27

    We encountered a case of duplicated right vertebral artery during an anatomical dissection course for medical students in 2015. Two vertebral arteries were found in the right neck of a 91-year-old female cadaver. The proximal leg of the arteries arose from the area between the right subclavian artery and the right common carotid artery that diverged from the brachiocephalic artery. The distal leg arose from the right subclavian artery as expected. The proximal leg entered the transverse foramen of the fourth cervical vertebra and the distal leg entered the transverse foramen of the sixth cervical vertebra. The two right vertebral arteries joined to form one artery just after the origin of the right vertebral artery of the brachiocephalic artery entered the transverse foramen of the fourth cervical vertebra. This artery then traveled up in the transverse foramina and became the basilar artery, joining with the left vertebral artery. We discuss the embryological origin of this case and review previously reported cases.

  18. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    Science.gov (United States)

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  19. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  20. Fracture-associated and idiopathic subchondral vertebral lesions: a magnetic resonance study in autopsy specimens with histologic correlation

    International Nuclear Information System (INIS)

    Peters, C.A.; Berg, B.C. vande; Lecouvet, F.E.; Malghem, J.; Galand, C.

    2009-01-01

    The aim of this study was to describe and compare the magnetic resonance (MR) and histological appearance of subchondral vertebral lesions that are idiopathic or that develop with vertebral fractures. T1- and T2-weighted spin-echo images and radiographs were obtained in 81 cadaveric spine specimens. All subchondral vertebral lesions that were considered to be idiopathic or associated with vertebral end plate fractures were selected. Lesions due to growth disturbance were excluded. Radiographs and MR images were analyzed in consensus by two radiologists, and sampled specimens were analyzed by a pathologist. Eleven idiopathic and ten fracture-associated vertebral lesions were available. On T1-weighted images, all lesion signal intensity was low and homogeneous. On T2-weighted images, all idiopathic lesions showed a heterogeneous signal with a central low or intermediate signal component and a peripheral high or intermediate component. All but one fracture-related lesions showed a homogeneous intermediate to high signal intensity. Histological analysis of idiopathic lesions showed a central acellular fibrous connective tissue in all cases surrounded by loose connective tissue in nine cases. Herniated disk material and cartilage metaplasia were found in one lesion only. Fracture-associated lesions contained herniated disk material, necrotic tissue, and loose connective tissue with a peripheral component of loose fibrovascular connective tissue in four cases only. MR and histological appearance of idiopathic and fracture-associated subchondral vertebral lesions differ, suggesting that they might have a different origin. (orig.)

  1. SURGICAL TREATMENT OF VERTEBRAL FRACTURES ASSOCIATED WITH LOW MINERAL BONE DENSITY

    Directory of Open Access Journals (Sweden)

    V. V. Rerikh

    2010-01-01

    Full Text Available Surgical treatment of 177 patients with monolocal fractures of thoracic and lumbar vertebral bodies was performed using transpedicular fixation (n=17, transpedicular fixation and osteoplasty (n=101, vertebroplasty (n=48 or kyphoplasty (n=ll. Restoration of support ability of the fractured osteoporotic vertebrae within ventral column by means of plasty particularly in combination with internal fixation allows achievement of better clinical outcomes, improvement of the quality of life in patients in the early and late periods after surgery.

  2. Duplication of the Left Vertebral Artery Origin: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun [Dept. of Radiology, College of Medicine, Hanyang University, Hanyang University Guri Hospital, Guri (Korea, Republic of)

    2013-01-15

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  3. Duplication of the Left Vertebral Artery Origin: A Case Report

    International Nuclear Information System (INIS)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun

    2013-01-01

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  4. Automatic vertebral identification using surface-based registration

    Science.gov (United States)

    Herring, Jeannette L.; Dawant, Benoit M.

    2000-06-01

    This work introduces an enhancement to currently existing methods of intra-operative vertebral registration by allowing the portion of the spinal column surface that correctly matches a set of physical vertebral points to be automatically selected from several possible choices. Automatic selection is made possible by the shape variations that exist among lumbar vertebrae. In our experiments, we register vertebral points representing physical space to spinal column surfaces extracted from computed tomography images. The vertebral points are taken from the posterior elements of a single vertebra to represent the region of surgical interest. The surface is extracted using an improved version of the fully automatic marching cubes algorithm, which results in a triangulated surface that contains multiple vertebrae. We find the correct portion of the surface by registering the set of physical points to multiple surface areas, including all vertebral surfaces that potentially match the physical point set. We then compute the standard deviation of the surface error for the set of points registered to each vertebral surface that is a possible match, and the registration that corresponds to the lowest standard deviation designates the correct match. We have performed our current experiments on two plastic spine phantoms and one patient.

  5. Multi-detector thoracic CT findings in cerebro-costo-mandibular syndrome: rib gaps and failure of costo-vertebral separation

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Tom Anthony; Arthurs, Owen John; Calder, Alistair Duncan [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom); Muthialu, Nagarajan [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Cardiothoracic surgery, London (United Kingdom)

    2014-02-15

    Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects (''rib gaps''). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia. (orig.)

  6. Multi-detector thoracic CT findings in cerebro-costo-mandibular syndrome: rib gaps and failure of costo-vertebral separation

    International Nuclear Information System (INIS)

    Watson, Tom Anthony; Arthurs, Owen John; Calder, Alistair Duncan; Muthialu, Nagarajan

    2014-01-01

    Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects (''rib gaps''). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia. (orig.)

  7. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Siminoski, Kerry [University of Alberta, Department of Radiology and Diagnostic Imaging and Division of Endocrinology and Metabolism, Department of Medicine, Edmonton (Canada); Lentle, Brian [University of British Columbia, Department of Radiology, Vancouver (Canada); BC Children' s Hospital, Department of Radiology, Vancouver (Canada); Matzinger, Mary Ann; Shenouda, Nazih [University of Ottawa, Department of Diagnostic Imaging, Ottawa (Canada); Children' s Hospital of Eastern Ontario, Department of Medical Imaging, Ottawa (Canada); Ward, Leanne M. [University of Ottawa, Department of Pediatrics, Children' s Hospital of Eastern Ontario, Ottawa (Canada); Children' s Hospital of Eastern Ontario, Research Institute, Ottawa (Canada); Collaboration: The Canadian STOPP Consortium

    2014-04-15

    The Genant semiquantitative (GSQ) method has been a standard procedure for diagnosis of vertebral fractures in adults but has only recently been shown to be of clinical utility in children. Observer agreement using the GSQ method in this age group has not been described. To evaluate observer agreement on vertebral readability and vertebral fracture diagnosis using the GSQ method in pediatric vertebral morphometry. Spine radiographs of 186 children with acute lymphoblastic leukemia were evaluated independently by three radiologists using the same GSQ methodology as in adults. A subset of 100 radiographs was evaluated on two occasions. An average of 4.7% of vertebrae were unreadable for the three radiologists. Intraobserver Cohen's kappa (κ) on readability ranged from 0.434 to 0.648 at the vertebral level and from 0.416 to 0.611 at the patient level, while interobserver κ for readability had a range of 0.330 to 0.504 at the vertebral level and 0.295 to 0.467 at the patient level. Intraobserver κ for the presence of vertebral fracture had a range of 0.529 to 0.726 at the vertebral level and was 0.528 to 0.767 at the patient level. Interobserver κ for fracture at the vertebral level ranged from 0.455 to 0.548 and from 0.433 to 0.486 at the patient level. Most κ values for both intra- and interobserver agreement in applying the GSQ method to pediatric spine radiographs were in the moderate to substantial range, comparable to the performance of the technique in adult studies. The GSQ method should be considered for use in pediatric research and clinical practice. (orig.)

  8. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis

    International Nuclear Information System (INIS)

    Siminoski, Kerry; Lentle, Brian; Matzinger, Mary Ann; Shenouda, Nazih; Ward, Leanne M.

    2014-01-01

    The Genant semiquantitative (GSQ) method has been a standard procedure for diagnosis of vertebral fractures in adults but has only recently been shown to be of clinical utility in children. Observer agreement using the GSQ method in this age group has not been described. To evaluate observer agreement on vertebral readability and vertebral fracture diagnosis using the GSQ method in pediatric vertebral morphometry. Spine radiographs of 186 children with acute lymphoblastic leukemia were evaluated independently by three radiologists using the same GSQ methodology as in adults. A subset of 100 radiographs was evaluated on two occasions. An average of 4.7% of vertebrae were unreadable for the three radiologists. Intraobserver Cohen's kappa (κ) on readability ranged from 0.434 to 0.648 at the vertebral level and from 0.416 to 0.611 at the patient level, while interobserver κ for readability had a range of 0.330 to 0.504 at the vertebral level and 0.295 to 0.467 at the patient level. Intraobserver κ for the presence of vertebral fracture had a range of 0.529 to 0.726 at the vertebral level and was 0.528 to 0.767 at the patient level. Interobserver κ for fracture at the vertebral level ranged from 0.455 to 0.548 and from 0.433 to 0.486 at the patient level. Most κ values for both intra- and interobserver agreement in applying the GSQ method to pediatric spine radiographs were in the moderate to substantial range, comparable to the performance of the technique in adult studies. The GSQ method should be considered for use in pediatric research and clinical practice. (orig.)

  9. Origins of gonadotropin-releasing hormone (GnRH) in vertebrates: identification of a novel GnRH in a basal vertebrate, the sea lamprey.

    Science.gov (United States)

    Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A

    2008-08-01

    We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.

  10. IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.

    Science.gov (United States)

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-02-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data

  11. Vascular complications of prosthetic inter-vertebral discs

    OpenAIRE

    Daly, Kevin J.; Ross, E. Raymond S.; Norris, Heather; McCollum, Charles N.

    2006-01-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had e...

  12. Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki

    Directory of Open Access Journals (Sweden)

    Michael G. Newbrey

    2015-12-01

    Full Text Available Cardabiodon ricki and Cardabiodon venator were large lamniform sharks with a patchy but global distribution in the Cenomanian and Turonian. Their teeth are generally rare and skeletal elements are less common. The centra of Cardabiodon ricki can be distinguished from those of other lamniforms by their unique combination of characteristics: medium length, round articulating outline with a very thick corpus calcareum, a corpus calcareum with a laterally flat rim, robust radial lamellae, thick radial lamellae that occur in low density, concentric lamellae absent, small circular or subovate pores concentrated next to each corpus calcareum, and papillose circular ridges on the surface of the corpus calcareum. The large diameter and robustness of the centra of two examined specimens suggest that Cardabiodon was large, had a rigid vertebral column, and was a fast swimmer. The sectioned corpora calcarea show both individuals deposited 13 bands (assumed to represent annual increments after the birth ring. The identification of the birth ring is supported in the holotype of Cardabiodon ricki as the back-calculated tooth size at age 0 is nearly equal to the size of the smallest known isolated tooth of this species. The birth ring size (5–6.6 mm radial distance [RD] overlaps with that of Archaeolamna kopingensis (5.4 mm RD and the range of variation of Cretoxyrhina mantelli (6–11.6 mm RD from the Smoky Hill Chalk, Niobrara Formation. The revised, reconstructed lower jaw dentition of the holotype of Cardabiodon ricki contains four anterior and 12 lateroposterior files. Total body length is estimated at 5.5 m based on 746 mm lower jaw bite circumference reconstructed from associated teeth of the holotype.

  13. The Effect of Xylopia Aethiopica Leaves on Body Weight and Growth ...

    African Journals Online (AJOL)

    The effect of Xylopia aethiopica leaves on body weight and growth performance was studied on growing Wistar rats. The study involved twenty-four rats of comparable sizes and weights ranging from 150 to 300g and divided into four groups of six rats each. Group A served as the control while groups B, C and D served as ...

  14. Constrained vertebrate evolution by pleiotropic genes.

    Science.gov (United States)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  15. Detection of occult vertebral fractures by quantitative assessment of bone marrow attenuation values at MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Henes, Frank Oliver, E-mail: f.henes@uke.de [Department of Diagnostic and Interventional Radiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Groth, Michael [Department of Diagnostic and Interventional Neuroradiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Kramer, Harald [Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 Munich (Germany); Department of Radiology, University of Wisconsin – Madison, Clinical Science Center, 600 Highland Avenue, Madison, WI 53792 (United States); Schaefer, Christian [Department of Trauma-, Hand- and Reconstructive Surgery, Spine Center, Center for Surgical Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg (Germany); Regier, Marc; Derlin, Thorsten; Adam, Gerhard; Bannas, Peter [Department of Diagnostic and Interventional Radiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2014-01-15

    Objectives: To determine a cut-off value of Hounsfield attenuation units (HU) at multidetector computed tomography (MDCT) for valid and reliable detection of bone marrow oedema (BME) related to occult vertebral fractures. Methods: 36 patients underwent both MDCT and Magnetic Resonance Imaging (MRI) for evaluation of vertebral fractures of the thoracolumbar spine and were included in this retrospective study. Two readers independently assessed HU values at MDCT in a total of 196 vertebrae. Reliability was assessed by intraclass correlation coefficient and Bland–Altman analysis. For each patient we determined the vertebra with the lowest HU value and calculated the HU-difference to each other vertebral body. HU-differences were subjected to receiver operating characteristic (ROC) curve analysis to determine the diagnostic accuracy for detection of BME as determined by MRI, which served as the reference standard. Results of HU-measurements were compared with standard visual evaluation of MDCT. Results: HU measurements demonstrated a high interrater reliability (ICC = 0.984). ROC curve analysis (AUC = 0.978) exhibited an ideal cut-off value of 29.6 HU for detection of BME associated with vertebral fractures with an accuracy of 97.4% as compared to 93.4% accuracy of visual evaluation. Particularly, HU-measurements increased the sensitivity for detection of vertebral fractures from 78.0% to 92.7% due to the detection of 7 of 9 occult fractures that were missed by visual evaluation alone. Conclusions: Assessing bone marrow density by HU measurements using the cut-off of 29.6 HU is a valid and reliable tool for detection of BME related to occult vertebral fractures in MDCT. The introduced technique may allow more accurate treatment decisions and may make further diagnostic work-up with MRI unnecessary.

  16. Detection of occult vertebral fractures by quantitative assessment of bone marrow attenuation values at MDCT

    International Nuclear Information System (INIS)

    Henes, Frank Oliver; Groth, Michael; Kramer, Harald; Schaefer, Christian; Regier, Marc; Derlin, Thorsten; Adam, Gerhard; Bannas, Peter

    2014-01-01

    Objectives: To determine a cut-off value of Hounsfield attenuation units (HU) at multidetector computed tomography (MDCT) for valid and reliable detection of bone marrow oedema (BME) related to occult vertebral fractures. Methods: 36 patients underwent both MDCT and Magnetic Resonance Imaging (MRI) for evaluation of vertebral fractures of the thoracolumbar spine and were included in this retrospective study. Two readers independently assessed HU values at MDCT in a total of 196 vertebrae. Reliability was assessed by intraclass correlation coefficient and Bland–Altman analysis. For each patient we determined the vertebra with the lowest HU value and calculated the HU-difference to each other vertebral body. HU-differences were subjected to receiver operating characteristic (ROC) curve analysis to determine the diagnostic accuracy for detection of BME as determined by MRI, which served as the reference standard. Results of HU-measurements were compared with standard visual evaluation of MDCT. Results: HU measurements demonstrated a high interrater reliability (ICC = 0.984). ROC curve analysis (AUC = 0.978) exhibited an ideal cut-off value of 29.6 HU for detection of BME associated with vertebral fractures with an accuracy of 97.4% as compared to 93.4% accuracy of visual evaluation. Particularly, HU-measurements increased the sensitivity for detection of vertebral fractures from 78.0% to 92.7% due to the detection of 7 of 9 occult fractures that were missed by visual evaluation alone. Conclusions: Assessing bone marrow density by HU measurements using the cut-off of 29.6 HU is a valid and reliable tool for detection of BME related to occult vertebral fractures in MDCT. The introduced technique may allow more accurate treatment decisions and may make further diagnostic work-up with MRI unnecessary

  17. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  18. Loss of col8a1a Function during Zebrafish Embryogenesis Results in Congenital Vertebral Malformations

    Science.gov (United States)

    Gray, Ryan S.; Wilm, Thomas; Smith, Jeff; Bagnat, Michel; Dale, Rodney M.; Topczewski, Jacek; Johnson, Stephen L.; Solnica-Krezel, Lilianna

    2014-01-01

    Congenital vertebral malformations (CVM) occur in 1 in 1,000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles (m531, vu41, vu105) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. PMID:24333517

  19. The relationship of flow velocities to vessel diameters differs between extracranial carotid and vertebral arteries of stroke patients.

    Science.gov (United States)

    Owolabi, Mayowa O; Agunloye, Atinuke M; Ogunniyi, Adesola

    2014-01-01

    Chronic changes in flow rate through arteries produce adjustment of arterial diameters. We compared the relationship between flow velocity and diameter in the carotid and in the vertebral arteries of stroke patients. Using triplex ultrasonography, the internal diameter and flow velocities of the common carotid, internal carotid, and vertebral arteries of 176 consecutive stroke patients were measured. Correlations were examined with Pearson's statistics at an alpha level of 0.05. Mean age of the patients was 59.3 ± 12 years, and 66% had cerebral infarcts. Diameter and blood flow velocities showed significant negative correlations (-0.115 ≥ r ≥ -0.382) in the carotid arteries on both sides, but positive correlations (0.211 ≤ r ≤ 0.320) in the vertebral arteries, even after controlling for age, gender, and blood pressure. Our study demonstrated different diameter/flow relationships in the carotid and the vertebral arteries of stroke patients, which may suggest pathologic changes in the adaptive processes governing vessel diameter and growth, especially in the carotid arteries. Copyright © 2013 Wiley Periodicals, Inc.

  20. Improvements in the management of rheumatic patients from vertebral image obtained through dual-energy X-ray absorptiometry

    Directory of Open Access Journals (Sweden)

    D. Gatti

    2011-09-01

    Full Text Available The diagnosis of asymptomatic vertebral fracture is clinically useful and the identification of new fractures may influences the choice of appropriate therapeutic measures. In order to identify moderate and asymptomatic vertebral deformities in an objective and reproducible manner, vertebral morphometry is performed. This method measures the vertebral body’s anterior, middle and posterior heights at the dorsal and lumbar level. Currently this technique is performed on lateral images of the spine obtained through the traditional X-ray method (radiological morphometry or morphometric X-ray radiography, MRX and, more recently from images obtained through dual-energy X-ray absorptiometry (DXA machines (visual assessment of x-ray absoptiometry scans or morphometric X-ray absorptiometry, MXA, commonly used to measure bone mineral density. The main advantage of MXA relative to MRX is the lower radiation dose to which the patient is exposed during the exam. In addition, MXA scans offers the advantage of acquiring a single image of thoracic and lumbar spine, without any distortion (e.g.: coning. The most obvious advantage of MXA is the opportunity of obtaining during the same session a bone mineral density evaluation, and digital images that are easily processable, manageable, recordable and comparable for the patient’s follow up. A limitation of the MXA technique is the inferior quality of the images, that make often impossible the detection of the vertebral edges, and the impossibility to visualize the upper thoracic vertebral bodies. MXA, despite its intrinsic limitations, when carried out by trained personnel may provide substantial improvements in the management (diagnosis and follow-up of rheumatic patients.

  1. Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates

    Science.gov (United States)

    Lamsdell, James C.; Braddy, Simon J.

    2010-01-01

    Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates. PMID:19828493

  2. Modulación del crecimiento vertebral mediante electrocoagulación hemicircunferencial vertebral asistida

    OpenAIRE

    Caballero García, Alberto

    2011-01-01

    Nuestro trabajo está basado en la posibilidad de controlar el desarrollo asimétrico de los cartílagos de crecimiento vertebral, mediante la realización de una fisiodesis hemivertebral, con electrocoagulación, videoasistida por toracoscópica. Se realizará en cinco niveles torácicos, con un abordaje anterior mínimamente invasivo. Por lo tanto, planteamos como hipótesis de trabajo que La destrucción de las fisis de crecimiento vertebral mediante electrocoagulación, videoasistida por vía toracosc...

  3. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  4. SpineAnalyzer™ is an accurate and precise method of vertebral fracture detection and classification on dual-energy lateral vertebral assessment scans

    International Nuclear Information System (INIS)

    Birch, C.; Knapp, K.; Hopkins, S.; Gallimore, S.; Rock, B.

    2015-01-01

    Osteoporotic fractures of the spine are associated with significant morbidity, are highly predictive of hip fractures, but frequently do not present clinically. When there is a low to moderate clinical suspicion of vertebral fracture, which would not justify acquisition of a radiograph, vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. Different approaches to the classification of vertebral fractures have been documented. The aim of this study was to measure the precision and accuracy of SpineAnalyzer™, a quantitative morphometry software program. Lateral vertebral assessment images of 64 men were analysed using SpineAnalyzer™ and standard GE Lunar software. The images were also analysed by two expert readers using a semi-quantitative approach. Agreement between groups ranged from 95.99% to 98.60%. The intra-rater precision for the application of SpineAnalyzer™ to vertebrae was poor in the upper thoracic regions, but good elsewhere. SpineAnalyzer™ is a reproducible and accurate method for measuring vertebral height and quantifying vertebral fractures from VFA scans. - Highlights: • Vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. • Agreement between VFA software (SpineAnalyzer™) and expert readers is high. • Intra-rater precision of SpineAnalyzer™ applied to upper thoracic vertebrae is poor, but good elsewhere. • SpineAnalyzer™ is reproducible and accurate for vertebral height measurement and fracture quantification from VFA scans

  5. Rehabilitation in osteoporotic vertebral fractures

    OpenAIRE

    Pratelli, Elisa; Cinotti, Irene; Pasquetti, Pietro

    2010-01-01

    Vertebral fractures occur particularly in osteoporotic patients due to an increased bone fragility. Vertebral fractures influence the quality of life, mobility and mortality. Preventive training exercises and proprioception reeducation can be utilised for improving posture, balance and level of daily function and for decreasing pain. Quality of life is improved even beyond the active training period. This mini review provides information based on the literature for the rehabilitation of osteo...

  6. An overview of vertebrate mineralization with emphasis on collagen-mineral interaction

    Science.gov (United States)

    Landis, W. J.

    1999-01-01

    The nucleation, growth, and development of mineral crystals through their interaction principally with collagen in normal bone and calcifying tendon have been elaborated by applying a number of different techniques for analysis of the inorganic and organic constituents of these tissues. The methods have included conventional and high voltage electron microscopy, electron diffraction, microscopic tomography and 3D image reconstruction, and atomic force microscopy. This summary presents results of these studies that have now characterized the size, shape, and aspects of the chemical nature of the crystals as well as their orientation, alignment, location, and distribution with respect to collagen. These data have provided the means for understanding more completely the formation and strength of the collagen-mineral composite present in most vertebrate calcifying tissues and, from that information, a basis for the adaptation of such tissues under mechanical constraints. In the context of the latter point, other data are given showing effects on collagen in bone cell cultures subjected to the unloading parameters of spaceflight. Implications of these results may be particularly relevant to explaining loss of bone by humans and other vertebrate animals during missions in space, during situations of extended fracture healing, long-term bedrest, physical immobilization, and related conditions. In a broader sense, the data speak to the response of bone and mineralized vertebrate tissues to changes in gravitational loading and applied mechanical forces in general.

  7. Role of BMI and age in predicting pathologic vertebral fractures in newly diagnosed multiple myeloma patients: A retrospective cohort study.

    Science.gov (United States)

    Chen, Yi-Lun; Liu, Yao-Chung; Wu, Chia-Hung; Yeh, Chiu-Mei; Chiu, Hsun-I; Lee, Gin-Yi; Lee, Yu-Ting; Hsu, Pei; Lin, Ting-Wei; Gau, Jyh-Pyng; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Liu, Jin-Hwang; Liu, Chia-Jen

    2018-04-01

    Vertebral fractures affect approximately 30% of myeloma patients and lead to a poor impact on survival and life quality. In general, age and body mass index (BMI) are reported to have an important role in vertebral fractures. However, the triangle relationship among age, BMI, and vertebral fractures is still unclear in newly diagnosed multiple myeloma (NDMM) patients. This study recruited consecutive 394 patients with NDMM at Taipei Veterans General Hospital between January 1, 2005 and December 31, 2015. Risk factors for vertebral fractures in NDMM patients were collected and analyzed. The survival curves were demonstrated using Kaplan-Meier estimate. In total, 301 (76.4%) NDMM patients were enrolled in the cohort. In the median follow-up period of 18.0 months, the median survival duration in those with vertebral fractures ≥ 2 was shorter than those with vertebral fracture BMI BMI ≥ 24.0 kg/m 2 (adjusted RR, 2.79; 95% CI, 1.44-5.43). In multivariable logistic regression, BMI BMI ≥ 24.0 kg/m 2 (adjusted OR, 6.05; 95% CI, 2.43-15.08). Among age stratifications, patients with both old age and low BMI were at a greater risk suffering from increased vertebral fractures, especially in patients > 75 years and BMI BMI. Elder patients with low BMI should consider to routinely receive spinal radiographic examinations and regular follow-up. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan; Goo, Jin Mo [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon Kyung Chul [Dept. of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); An, Sang Bu [Dept. of radiology, National Cancer Center, Goyang (Korea, Republic of); Kim, Kwang Gi [Dept. of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center, Goyang (Korea, Republic of)

    2011-05-15

    To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64- detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

  9. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency.

    Science.gov (United States)

    Högler, Wolfgang; Briody, Julie; Moore, Bin; Lu, Pei Wen; Cowell, Christopher T

    2005-11-01

    The state of bone health and the effect of growth hormone (GH) therapy on bone and body composition in children with idiopathic short stature (ISS) are largely unknown. A direct role of GH deficiency (GHD) on bone density is controversial. Using dual-energy X-ray absorptiometry, this study measured total body bone mineral content (TB BMC), body composition, and volumetric bone mineral density (vBMD) at the lumbar spine (LS) and femoral neck (FN) in 77 children (aged 3-17 years) with ISS (n = 57) and GHD (n = 20). Fifty-five children (GHD = 13) receiving GH were followed over 24 months including measurement of bone turnover. At diagnosis, size-corrected TB BMC SDS was greater (P bone relation, as assessed by the BMC/lean mass (LTM) ratio SDS was not different between groups. During GH therapy, prepubertal GHD children gained more height (1.58 [0.9] SDS) and LTM (0.87 [0.63] SDS) compared to prepubertal ISS children (0.75 [0.27] and 0.17 [0.25] SDS, respectively). Percent body fat decreased in GHD (-5.94% [4.29]) but not in ISS children. Total body BMC accrual was less than predicted in all groups accompanied by an increase in bone turnover. Puberty led to the greatest absolute, but not relative, increments in weight, LTM, BMI, bone mass, and LSvBMD. Our results show that children with ISS and GHD differ in their response to GH therapy in anthropometry, body composition, and bone measures. Despite low vBMD values at diagnosis in both prepubertal groups, size-corrected regional or TB bone data were generally within the normal range and did not increase during GH therapy in GHD or ISS children. Growth hormone had great effects on the growth plate and body composition with subsequent gains in height, LTM, bone turnover, and bone mass accrual, but no benefit for volumetric bone density over 2 years.

  10. Early nutrition and its effect on growth, body composition and later obesity

    DEFF Research Database (Denmark)

    Eriksen, Kamilla Gehrt; Lind, Mads Vendelbo; Larnkjær, Anni

    2018-01-01

    and body composition as outcome measures in countries where obesity and related diseases in later life is a large public health problem. For this short review, we have included 10 publications on the topic of early nutrition and its effect on growth, body composition, and later obesity. We think these 10......Adequate nutrition in the first 2 years of life is essential for both short- and long-term health. Malnutrition in the early years of life increases the risk of later chronic diseases. There is a wealth of studies available within this area of research, and this chapter specifically looks at growth...... included publications, published during the period of July 1, 2016 to June 30, 2017, are of special interest and all present findings can shape future research on this topic. We have chosen to focus on 3 key areas in this review; (i) human milk composition, including studies on breast milk minerals...

  11. CT and MRI characteristics of vertebral tuberculosis (34 cases)

    International Nuclear Information System (INIS)

    Lu Wenbing; Liao Qinghou; Wu Shiqiang; Huang Tao; Deng Yufang; Liu Jianming

    2007-01-01

    Objective: To explore CT and MRI characteristics of vertebral tuberculosis. Methods: 34 patients with vertebral tuberculosis proved by clinic or pathology were analyzed retrospectively. Of these patients, 20 were performed with CT examination and 24 with MRI, 10 with both CT and MRI. The results were compared mutually. Results: The CT features of vertebral tuberculosis were bone destruction, paraspinal abscess, spinal canal involvement. The MRI features of vertebral tuberculosis were bone destruction, intervertebral disc destruction, paraspinal abscess, spinal canal involvement, sub-ligamental spread. Conclusion: Vertebral tuberculosis showed multiple characteristics on CT and MRI. CT is useful in showing sequester and calcification, and MRI is useful in showing sub-ligamental spread, epidural and spinal cord involvement. Combining CT with and MRI is helpful for the diagnosis and differential diagnosis of vertebral tuberculosis. (authors)

  12. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    Science.gov (United States)

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  13. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients.

    Science.gov (United States)

    Viswanathan, Ashwin; Abd-El-Barr, Muhammad M; Doppenberg, Egon; Suki, Dima; Gokaslan, Ziya; Mendel, Ehud; Rao, Ganesh; Rhines, Laurence D

    2012-01-01

    Vertebral body resection to treat spine tumors necessitates reconstruction to maintain spinal stability. The durability of reconstruction may be a challenge in cancer patients as treatment with chemotherapy and/or radiation coupled with poor nutritional status may compromise bone quality. We present a series of patients who underwent implantation of an expandable titanium cage (ETC) for reconstruction after vertebral body resection for primary or metastatic spine tumors. We report the functional outcome, assess the durability of reconstruction, and describe complications associated with this procedure. A retrospective review of patients undergoing placement of ETC after vertebrectomy for spinal tumor at our institution was performed. From September 2001 to August 2006, 95 patients underwent implantation of an ETC for reconstruction of the anterior spinal column following vertebrectomy for tumor (75 one-level, 19 two-level, 1 three-level). All patients underwent spinal stabilization as well. The median survival after surgery was 13.7 months; 23 patients had primary spinal tumors and 72 had metastatic tumors. Numerical pain scores were significantly improved postoperatively indicating a palliative benefit. No new neurological deficits were noted postoperatively, except when intentional neurological sacrifice was performed for oncologic reasons. Median height correction of 14% (range 0-118%) and median improvement in sagittal alignment of 6° (range 0-28°) were demonstrated on immediate postoperative imaging. Three patients experienced hardware related complications, one of which had posterior migration of the ETC. On postoperative imaging, 12 patients demonstrated subsidence of greater than 1 mm, but none required operative revision. Use of an ETC for spinal reconstruction in patients with spinal tumors is safe, decreases pain associated with pathologic fracture, protects neurologic function, and is durable. We found a very low incidence of cage-related construct

  14. The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS).

    Science.gov (United States)

    Clark, P; Cons-Molina, F; Deleze, M; Ragi, S; Haddock, L; Zanchetta, J R; Jaller, J J; Palermo, L; Talavera, J O; Messina, D O; Morales-Torres, J; Salmeron, J; Navarrete, A; Suarez, E; Pérez, C M; Cummings, S R

    2009-02-01

    In the first population-based study of vertebral fractures in Latin America, we found a 11.18 (95% CI 9.23-13.4) prevalence of radiographically ascertained vertebral fractures in a random sample of 1,922 women from cities within five different countries. These figures are similar to findings from studies in Beijing, China, some regions of Europe, and slightly lower than those found in the USA using the same standardized methodology. We report the first study of radiographic vertebral fractures in Latin America. An age-stratified random sample of 1,922 women aged 50 years and older from Argentina, Brazil, Colombia, Mexico, and Puerto Rico were included. In all cases a standardized questionnaire and lateral X-rays of the lumbar and thoracic spine were obtained after informed consent. A standardized prevalence of 11.18 (95% CI 9.23-13.4) was found. The prevalence was similar in all five countries, increasing from 6.9% (95% CI 4.6-9.1) in women aged 50-59 years to 27.8% (95% CI 23.1-32.4) in those 80 years and older (p for trend < 0.001). Among different risk factors, self-reported height loss OR = 1.63 (95% CI: 1.18-2.25), and previous history of fracture OR = 1.52 (95% CI: 1.14-2.03) were significantly (p < 0.003 and p < 0.04 respectably) associated with the presence of radiographic vertebral fractures in the multivariate analysis. In the bivariate analyses HRT was associated with a 35% lower risk OR = 0.65 (95% CI: 0.46-0.93) and physical activity with a 27% lower risk of having a vertebral fracture OR = 0.73 (95% CI: 0.55-0.98), but were not statistically significant in multivariate analyses We conclude that radiographically ascertained vertebral fractures are common in Latin America. Health authorities in the region should be aware and consider implementing measures to prevent vertebral fractures.

  15. Minimal invasive stabilization of osteoporotic vertebral compression fractures. Methods and preinterventional diagnostics; Minimal-invasive Stabilisierung osteoporotischer Wirbelkoerpereinbrueche. Methodik und praeinterventionelle Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Grohs, J.G.; Krepler, P. [Orthopaedische Klinik, Universitaet Wien (Austria)

    2004-03-01

    Minimal invasive stabilizations represent a new alternative for the treatment of osteoporotic compression fractures. Vertebroplasty and balloon kyphoplasty are two methods to enhance the strength of osteoporotic vertebral bodies by the means of cement application. Vertebroplasty is the older and technically easier method. The balloon kyphoplasty is the newer and more expensive method which does not only improve pain but also restores the sagittal profile of the spine. By balloon kyphoplasty the height of 101 fractured vertebral bodies could be increased up to 90% and the wedge decreased from 12 to 7 degrees. Pain was reduced from 7,2 to 2,5 points. The Oswestry disability index decreased from 60 to 26 points. This effects persisted over a period of two years. Cement leakage occurred in only 2% of vertebral bodies. Fractures of adjacent vertebral bodies were found in 11%. Good preinterventional diagnostics and intraoperative imaging are necessary to make the balloon kyphoplasty a successful application. (orig.) [German] Minimal-invasive Stabilisierungen stellen eine Alternative zur bisherigen Behandlung osteoporotischer Wirbelfrakturen dar. Die Vertebroplastie und die Ballonkyphoplastik sind 2 Verfahren, um die Festigkeit der Wirbelkoerper nach osteoporotischen Kompressionsfrakturen durch Einbringen von Knochenzement wieder herzustellen. Die Vertebroplastie ist die aeltere, technisch einfachere und kostenguenstigere Technik, geht allerdings regelmaessig mit Zementaustritt einher. Die Ballonkyphoplastik ist die neuere kostenintensivere Technologie, mit der abgesehen von der Schmerzreduktion auch die Wiederherstellung des sagittalen Profils der Wirbelsaeule angestrebt werden kann. Mit der Ballonkyphoplastik konnten bei 101 frakturierten Wirbelkoerpern die Hoehe auf fast 90% des Sollwertes angehoben und die lokale Kyphose von 12 auf 7 vermindert werden. Die Schmerzen wurden - gemessen anhand einer 10-teiligen Skala - von 7,2 auf 2,5 reduziert. Der Oswestry disability

  16. Lower Jump Power Rather Than Muscle Mass Itself is Associated with Vertebral Fracture in Community-Dwelling Elderly Korean Women.

    Science.gov (United States)

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie

    2017-06-01

    Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.

  17. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken

    Directory of Open Access Journals (Sweden)

    Prabuddha Manjula

    2018-01-01

    Full Text Available Objective This study estimated the genetic parameters for body weight gain and growth curve parameter traits in Korean native chicken (KNC. Methods A total of 585 F1 chickens were used along with 88 of their F0 birds. Body weights were measured every 2 weeks from hatching to 20 weeks of age to measure weight gain at 2-week intervals. For each individual, a logistic growth curve model was fitted to the longitudinal growth dataset to obtain three growth curve parameters (α, asymptotic final body weight; β, inflection point; and γ, constant scale that was proportional to the overall growth rate. Genetic parameters were estimated based on the linear-mixed model using a restricted maximum likelihood method. Results Heritability estimates of body weight gain traits were low to high (0.057 to 0.458. Heritability estimates for α, β, and γ were 0.211±0.08, 0.249±0.09, and 0.095±0.06, respectively. Both genetic and phenotypic correlations between weight gain traits ranged from −0.527 to 0.993. Genetic and phenotypic correlation between the growth curve parameters and weight gain traits ranged from −0.968 to 0.987. Conclusion Based on the results of this study population, we suggest that the KNC could be used for selective breeding between 6 and 8 weeks of age to enhance the overall genetic improvement of growth traits. After validation of these results in independent studies, these findings will be useful for further optimization of breeding programs for KNC.

  18. Exercise x BCAA Supplementation in Young Trained Rats: What are their Effects on Body Growth?

    Science.gov (United States)

    de Campos-Ferraz, Patricia Lopes; Ribeiro, Sandra Maria Lima; Luz, Silmara Dos Santos; Lancha, Antonio Herbert; Tirapegui, Julio

    2011-01-01

    The purpose of this study was to evaluate whether Branched-chain amino acids (BCAAs) supplementation had any beneficial effects on growth and metabolic parameters of young rats submitted to chronic aerobic exercise. Thirty-two young rats (age: 21-d) were randomly assigned to four experimental groups (n = 8): Supplemented Trained (Sup/Ex), Control Trained (Ctrl/Ex), Supplemented Sedentary (Sup/Sed) and Control Sedentary (Ctrl/Sed). The trained groups underwent a five-week swimming protocol and received supplemented (45 mg BCAA/body weight/day) or control ration. Trained animals presented a lower body length and a higher cartilage weight, regardless of supplementation. Physical activity was responsible for a substantial reduction in proteoglycan synthesis in cartilage tissue, and BCAA supplementation was able to attenuate this reduction and also to improve glycogen stores in the liver, although no major differences were found in body growth associated to this supplementation. Key pointsCartilage proteoglycan synthesis was dramatically reduced in trained animals as a whole.BCAA supplementation augmented liver glycogen stores and reduced proteolysis in our experimental conditionsTrained animals receiving BCAA supplementation featured increased proteoglycan synthesis compared to sedentary ones, probably because BCAA may have attenuated the negative effects of exercise on cartilage development.BCAA supplementation was not capable of neutralizing directly the negative effects of long-term physical training and lower food intake in young male rats on body growth.

  19. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia.

    Directory of Open Access Journals (Sweden)

    Mark I Abrahams

    Full Text Available The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not "emptied" the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable

  20. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia

    Science.gov (United States)

    Peres, Carlos A.; Costa, Hugo C. M.

    2017-01-01

    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not “emptied” the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of