WorldWideScience

Sample records for version-6 precipitation radar

  1. Comparison of TRMM 2A25 Products Version 6 and Version 7 with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.

    2012-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.

  2. GRIP AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Airborne Second Generation Precipitation Radar (APR-2) dataset was collected from the Second Generation Airborne Precipitation Radar (APR-2), which is a...

  3. NAMMA SECOND GENERATION AIRBORNE PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Second Generation Airborne Precipitation Radar (APR-2) dataset was collected by using the Second Generation Airborne Precipitation Radar (APR-2), which is...

  4. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  5. GRIP AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Airborne Precipitation Radar (APR-2) is a dual-frequency (13 GHz and 35 GHz), Doppler, dual-polarization radar system. It has a downward...

  6. Uncertainty Model For Quantitative Precipitation Estimation Using Weather Radars

    Directory of Open Access Journals (Sweden)

    Ernesto Gómez Vargas

    2016-06-01

    Full Text Available This paper introduces an uncertainty model for the quantitatively estimate precipitation using weather radars. The model considers various key aspects associated to radar calibration, attenuation, and the tradeoff between accuracy and radar coverage. An S-band-radar case study is presented to illustrate particular fractional-uncertainty calculations obtained to adjust various typical radar-calibration elements such as antenna, transmitter, receiver, and some other general elements included in the radar equation. This paper is based in “Guide to the expression of Uncertainty in measurement” and the results show that the fractional uncertainty calculated by the model was 40 % for the reflectivity and 30% for the precipitation using the Marshall Palmer Z-R relationship.

  7. Utilizing the Vertical Variability of Precipitation to Improve Radar QPE

    Science.gov (United States)

    Gatlin, Patrick N.; Petersen, Walter A.

    2016-01-01

    Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the vertical distribution of precipitation. Hence, we characterized the vertical profile of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the profile of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the vertical profile of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.

  8. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  9. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    OpenAIRE

    Jinyu Gao; Guoqiang Tang; Yang Hong

    2017-01-01

    Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM) mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR), was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM). This study matches the swath data of TRMM PR and GPM DPR Leve...

  10. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  11. A method to combine spaceborne radar and radiometric observations of precipitation

    Science.gov (United States)

    Munchak, Stephen Joseph

    %) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties.

  12. Radar-based summer precipitation climatology of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Kašpar, Marek; Müller, Miloslav

    2018-01-01

    Roč. 38, č. 2 (2018), s. 677-691 ISSN 0899-8418 R&D Projects: GA ČR GA17-23773S; GA MZe QJ1520265 Institutional support: RVO:68378289 Keywords : weather radar * rain gauges * adjustment * precipitation climatology * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5202/full

  13. Nowcasting of kinetic energy of hail precipitation using radar

    Science.gov (United States)

    Sánchez, J. L.; López, L.; García-Ortega, E.; Gil, B.

    2013-04-01

    The detection of hail precipitation generated by a storm is a complicated task due to the limited spatial extension and the space-time irregularity of impacts generated on the ground. Some of the most extensive methods to create climatology of these impacts are observer networks or hailpad networks. Both methods are affected by numerous inconveniences, overall when it is necessary to work with an extensive area, in which it is necessary to maintain an operating network that has numerous maintenance costs. In this sense, there are numerous works done that have developed different models with the objective of detecting hail precipitation using meteorological radar. Some of these methods use discriminant statistic techniques that, through the combination of different radar parameters, can achieve very satisfactory results. On the other hand, it would be very interesting to know not only the probability of hail, but also some of the characteristics of the hailstones precipitated, such as the number or their kinetic energy, since these parameters are directly related to the damage generated in infrastructures and/or crops. The estimation of kinetic energy of hail precipitation using meteorological radar has caught the interest of some authors. In our case, we used the databases obtained by hailpad networks and the databases of C-band and S-Band radar to build an algorithm to estimate the vertical component of kinetic energy produced by a hail precipitation. In order to carry out this study, data on hail was gathered and analyzed from the hailpad networks in the province of Zaragoza (in the north-east of Spain) and the province of Mendoza (in Argentina, close to the Andes range on the border with Chile). These are two geographically distant regions, but which share a common characteristic: a high frequency of storms with hail precipitation, mainly during the summer months (Sánchez et al., 2009a). In order to compile the database, we have established two categories of

  14. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA)

    Science.gov (United States)

    Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed

    2015-12-01

    The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by Ca

  15. Ground validation of radar reflectivity and rain rate retrieved by the TRMM precipitation radar

    Science.gov (United States)

    Shimizu, S.; Oki, R.; Igarashi, T.

    2001-01-01

    The National Space Development Agency of Japan (NASDA) has calibrated and validated radar reflectivity and rain rate retrieved by the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) based on the data of operational meteorological radars and the field campaign. Well-calibrated radars and disdrometers demonstrated good agreement with PR within 1 to 2dBZ accuracy and are quite stable. Some ground-based radars exhibited quantitatively higher values than PR, and others were, lower values. Therefore we could not get as good agreement with ground-based radards as expected. PR-estimated rain rates were compared with ground-based rain-gauge data and radar-based rain data on an instantaneous and a monthly basis. So far, PR estimates are lower than ground-based measurements. There is also a seasonal dependence of rain intensity estimated by PR 2A25. The sampling error may not be as large as it had been feared. It is necessary to take statistics to determine the amounts of sampling errors at various area sizes.

  16. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Airborne Precipitation Radar (APR-2) is a dual-frequency (13 GHz and 35 GHz), Doppler, dual-polarization radar system. It has a downward...

  17. Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes

    Science.gov (United States)

    Pegram, G. G. S.; Bardossy, A.

    2016-12-01

    Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and

  18. Mobile Three Frequency Radar as Research Platform for Precipitation Profiling

    Science.gov (United States)

    Schmidt, Walter; Rautiainen, Kimmo; Harri, Ari-Matti

    2014-05-01

    Precipitation profiling at the frequency bands of Ku, Ka and W bands are becoming increasingly popular in the studies of atmospheric microphysics. Ever since the introduction of Ku / Ka pair of frequencies for the Global Precipitation Measurement mission (GPM) and the success of W band in Cloudsat, the interest in precipitation profiling using these frequencies has increased. The profiling observations will also serve as ground validation instruments for several space missions such as GPM and EarthCARE [1]. In order to get better information to retrieve ice microphysics as well as to enhance sensitivity, we need to move from the standard S- and C-band weather radars to higher frequencies [2]. As was recently shown, the use of multi- frequency profiling yields important additional information compared to single-frequency radar mapping [3]. During the past four years a consortium of research, academic and private industries in Finland has been developing a flexible low-cost mobile three-band radar system for precipitation profiling. The feasibility of the concept is being demonstrated by implementing the Ku- and Ka-band part of the system. The antenna structure with antennas for Ku-, Ka- and W-band is completed allowing the pointing of all three antenna systems into the same direction during an azimuth and elevation scan. Using a freely programmable digital waveform generator and decoding electronics for the received data, the implementation of different wave form generation, compression and decoding schemes and their influence on the radar performance in the different bands can be evaluated and optimized. The modular design allows the connection of different transmitter control and receiver decoding units to any of the three band front-end electronics to evaluate the performance of different approaches in the various bands simultaneously. A real-time analysis software supports the data interpretation and system optimization during field tests. Via mobile internet

  19. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes

    Science.gov (United States)

    Pegram, Geoff; Bardossy, Andras; Sinclair, Scott

    2017-04-01

    The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this presentation we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the presentation is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to un-sampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the sub-daily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. In addition, a statistical procedure not based on a matching day by day correction is tested. In this last procedure, as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these 12 day maxima is first interpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest 12 radar based days in each year. Of course, the timings of radar and gauge maxima can be different, so the new method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated

  20. Combining C- and X-band Weather Radars for Improving Precipitation Estimates over Urban Areas

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk

    The topic of this thesis is weather radar precipitation measurements. Measuring the spatial and temporal variations of the precipitation by weather radars has significant advantages compared to point measurements from rain gauges within urban drainage applications. Knowledge on how the rainfall...... individually and owned by local water utility companies. Although the two radar systems use similar working principles, the systems have significant differences regarding technology, temporal resolution, spatial resolution, range and scanning strategy. The focus of the research was to combine the precipitation...... measurements from the two radar systems into a single radar data product, which utilises strengths and compensates for weaknesses of the individual radar system. The core of the research has thereby been to investigate the consequences of the differences of the two radar systems in order to understand...

  1. Monitoring precipitation intensity and type - combined use of radar and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gjertsen, U.; Dahl, J.I.; Oedegaard, V.; Kristensen, A. [Norwegian Meteorological Inst., Oslo (Norway)

    2004-07-01

    Two new products developed for road authorities and other customers of the Norwegian Meteorological Institutes Market Division are presented and verified in this paper: A precipitation type forecast and a radar precipitation type product. The HIRLAM model is used to forecast the precipitation types rain, sleet and snow. The operational HIRLAM-forecasts are biased towards predicting too many cases with snow. The paper shows that additional calculations of snow melting based on temperature and humidity in the lowest model layer reduce this error. For the radar product, the precipitation type is estimated from synoptic observations of 2m-temperature and dew point temperature. The observations are interpolated in space using a Digital Elevation Model (DEM) after deriving local vertical temperature gradients. A precipitation type dataset is derived and combined with the actual radar precipitation intensity image. The radar product is verified against observed precipitation types at the synoptic stations for the winter season 2002/2003 (October to March). The percentage correct is 85%. The Probability of Detection is 0.9 for rain and 0.91 for snow. A comparison of estimated and forecasted precipitation types is carried out for January 2002 against an independent set of precipitation stations in Southern Norway. The results confirm the good quality of the radar product and show that the adjustment of HIRLAM precipitation type to real topography improves the forecast. (orig.)

  2. GPM Satellite Radar Measurements of Precipitation and Freezing Level in Atmospheric Rivers: Comparison With Ground-Based Radars and Reanalyses

    Science.gov (United States)

    Cannon, Forest; Ralph, F. Martin; Wilson, Anna M.; Lettenmaier, Dennis P.

    2017-12-01

    Atmospheric rivers (ARs) account for more than 90% of the total meridional water vapor flux in midlatitudes, and 25-50% of the annual precipitation in the coastal western United States. In this study, reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) are used to evaluate precipitation and temperature characteristics of ARs over the western coast of North America and the eastern North Pacific Ocean. Evaluation of GPM-DPR bright-band height using a network of ground-based vertically pointing radars along the West Coast demonstrated exceptional agreement, and comparison with freezing level height from reanalyses over the eastern North Pacific Ocean also consistently agreed, indicating that GPM-DPR can be used to independently validate freezing level in models. However, precipitation comparison with gridded observations across the western United States indicated deficiencies in GPM-DPR's ability to reproduce the spatial distribution of winter precipitation, likely related to sampling frequency. Over the geographically homogeneous oceanic portion of the domain, sampling frequency was not problematic, and significant differences in the frequency and intensity of precipitation between GPM-DPR and reanalyses highlighted biases in both satellite-observed and modeled AR precipitation. Reanalyses precipitation rates below the minimum sensitivity of GPM-DPR accounted for a 20% increase in total precipitation, and 25% of radar-derived precipitation rates were greater than the 99th percentile precipitation rate in reanalyses. Due to differences in the proportions of precipitation in convective, stratiform bright-band, and non-bright-band conditions, AR conditions contributed nearly 10% more to total precipitation in GPM-DPR than reanalyses.

  3. Ku/Ka/W-band Antenna for Electronically-Scanned Cloud and Precipitation Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of the key antenna technologies for Tri-band (Ku/Ka/W), scanning precipitation and cloud radar is a required milestone in preparation for one or more...

  4. A Novel Low-Cost Dual-Wavelength Precipitation Radar Sensor Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote Sensing Solutions, Inc. (RSS) has developed a novel, practical design that will produce a low-cost precipitation radar / radiometer sensor. Operating in a...

  5. GPM Ground Validation Airborne Precipitation Radar 3rd Generation (APR-3) OLYMPEX V2.3

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Airborne Precipitation Radar 3rd Generation (APR-3) OLYMPEX dataset was collected from November 12, 2015 to December 19, 2015 during the...

  6. Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems

    NARCIS (Netherlands)

    Berne, A.D.; Delrieu, G.; Andrieu, H.

    2005-01-01

    The present study aims at a preliminary approach of multiradar compositing applied to the estimation of the vertical structure of precipitation¿an important issue for radar rainfall measurement and prediction. During the HYDROMET Integrated Radar Experiment (HIRE¿98), the vertical profile of

  7. Identifying Precipitation Types Using Dual-Polarization-Based Radar and Numerical Weather Prediction Model Data

    Science.gov (United States)

    Seo, B. C.; Bradley, A.; Krajewski, W. F.

    2015-12-01

    The recent upgrade of dual-polarization with NEXRAD radars has assisted in improving the characterization of microphysical processes in precipitation and thus has enabled precipitation estimation based on the identified precipitation types. While this polarimetric capability promises the potential for the enhanced accuracy in quantitative precipitation estimation (QPE), recent studies show that the polarimetric estimates are still affected by uncertainties arising from the radar beam geometry/sampling space associated with the vertical variability of precipitation. The authors, first of all, focus on evaluating the NEXRAD hydrometeor classification product using ground reference data (e.g., ASOS) that provide simple categories of the observed precipitation types (e.g., rain, snow, and freezing rain). They also investigate classification uncertainty features caused by the variability of precipitation between the ground and the altitudes where radar samples. Since this variability is closely related to the atmospheric conditions (e.g., temperature) at near surface, useful information (e.g., critical thickness and temperature profile) that is not available in radar observations is retrieved from the numerical weather prediction (NWP) model data such as Rapid Refresh (RAP)/High Resolution Rapid Refresh (HRRR). The NWP retrieved information and polarimetric radar data are used together to improve the accuracy of precipitation type identification at near surface. The authors highlight major improvements and discuss limitations in the real-time application.

  8. How Spaceborne Radar Helps Ground Radar in Precipitation Estimation: Real-time Incorporation of TRMM PR into NOAA NMQ System

    Science.gov (United States)

    Cao, Q.; Hong, Y.; Wen, Y.; Gourley, J. J.; Qi, Y.; Zhang, J.; Kirstetter, P.

    2012-12-01

    The U.S. Next-Generation Radar (NEXRAD) network provides operational precipitation products for the National Weather Service. However, the effective coverage of NEXRAD at low levels is restricted in complex terrain leading to insufficient surveillance of low-level portions of the atmosphere. This problem is especially most severe in the intermountain region of the western US. Quantitative precipitation estimation (QPE) based on radar measurements at high levels above the surface can be over- or underestimated, depending on if the radar beam intercepts or overshoots the melting layer. To mitigate this problem, researchers at the University of Oklahoma (OU) have proposed a VPR Identification and Enhancement (VPR-IE) approach to improve radar-based QPE near the surface. VPR-IE applies the VPR observed by Ku-band Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to correct the S-band NEXRAD radar reflectivity contaminated by ice-related signals such as the bright band (BB) and dry snow signals. The real-time incorporation of TRMM-PR into the NEXRAD-based National Mosaic and Multi-sensor QPE (NMQ) system faces challenges because of their big difference in temporal resolution. The current study explores how to obtain representative VPRs for the real-time implementation of VPR-IE and investigates the potential error of VPR-IE attributed to the temporal variation of precipitation. The real-time VPR-IE is tested using the archived NMQ data collected in the mountainous West region of the U.S. (southern California, Arizona, and western New Mexico). Analysis results demonstrate the great potential of real-time VPR-IE in improving radar QPE in complex terrain.

  9. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields

    Directory of Open Access Journals (Sweden)

    S. Vogl

    2012-07-01

    Full Text Available This study addresses the problem of combining radar information and gauge measurements. Gauge measurements are the best available source of absolute rainfall intensity albeit their spatial availability is limited. Precipitation information obtained by radar mimics well the spatial patterns but is biased for their absolute values.

    In this study copula models are used to describe the dependence structure between gauge observations and rainfall derived from radar reflectivity at the corresponding grid cells. After appropriate time series transformation to generate "iid" variates, only the positive pairs (radar >0, gauge >0 of the residuals are considered. As not each grid cell can be assigned to one gauge, the integration of point information, i.e. gauge rainfall intensities, is achieved by considering the structure and the strength of dependence between the radar pixels and all the gauges within the radar image. Two different approaches, namely Maximum Theta and Multiple Theta, are presented. They finally allow for generating precipitation fields that mimic the spatial patterns of the radar fields and correct them for biases in their absolute rainfall intensities. The performance of the approach, which can be seen as a bias-correction for radar fields, is demonstrated for the Bavarian Alps. The bias-corrected rainfall fields are compared to a field of interpolated gauge values (ordinary kriging and are validated with available gauge measurements. The simulated precipitation fields are compared to an operationally corrected radar precipitation field (RADOLAN. The copula-based approach performs similarly well as indicated by different validation measures and successfully corrects for errors in the radar precipitation.

  10. Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2006-01-01

    Full Text Available Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes – caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes – and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1 calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2 correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3 topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be

  11. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  12. An operational weather radar-based Quantitative Precipitation Estimation and its application in catchment water resources modeling

    DEFF Research Database (Denmark)

    He, Xin; Vejen, Flemming; Stisen, Simon

    2011-01-01

    The Danish Meteorological Institute operates a radar network consisting of five C-band Doppler radars. Quantitative precipitation estimation (QPE) using radar data is performed on a daily basis. Radar QPE is considered to have the potential to signifi cantly improve the spatial representation...... of precipitation compared with rain-gauge-based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance-dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment...... in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar- and ground-based precipitation input scenarios. Results showed that radar QPE products are able to generate...

  13. TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product (TRMM Product 2A25) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Precipitation Radar (PR), the first of its kind in space, is an electronically scanning radar, operating at 13.8 GHz that measures the 3-D rainfall...

  14. TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product (TRMM Product 2A25) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Precipitation Radar (PR), the first of its kind in space, is an electronically scanning radar, operating at 13.8 GHz that measures the 3-D rainfall...

  15. Improving high-resolution quantitative precipitation estimation via fusion of multiple radar-based precipitation products

    Science.gov (United States)

    Rafieeinasab, Arezoo; Norouzi, Amir; Seo, Dong-Jun; Nelson, Brian

    2015-12-01

    For monitoring and prediction of water-related hazards in urban areas such as flash flooding, high-resolution hydrologic and hydraulic modeling is necessary. Because of large sensitivity and scale dependence of rainfall-runoff models to errors in quantitative precipitation estimates (QPE), it is very important that the accuracy of QPE be improved in high-resolution hydrologic modeling to the greatest extent possible. With the availability of multiple radar-based precipitation products in many areas, one may now consider fusing them to produce more accurate high-resolution QPE for a wide spectrum of applications. In this work, we formulate and comparatively evaluate four relatively simple procedures for such fusion based on Fisher estimation and its conditional bias-penalized variant: Direct Estimation (DE), Bias Correction (BC), Reduced-Dimension Bias Correction (RBC) and Simple Estimation (SE). They are applied to fuse the Multisensor Precipitation Estimator (MPE) and radar-only Next Generation QPE (Q2) products at the 15-min 1-km resolution (Experiment 1), and the MPE and Collaborative Adaptive Sensing of the Atmosphere (CASA) QPE products at the 15-min 500-m resolution (Experiment 2). The resulting fused estimates are evaluated using the 15-min rain gauge observations from the City of Grand Prairie in the Dallas-Fort Worth Metroplex (DFW) in north Texas. The main criterion used for evaluation is that the fused QPE improves over the ingredient QPEs at their native spatial resolutions, and that, at the higher resolution, the fused QPE improves not only over the ingredient higher-resolution QPE but also over the ingredient lower-resolution QPE trivially disaggregated using the ingredient high-resolution QPE. All four procedures assume that the ingredient QPEs are unbiased, which is not likely to hold true in reality even if real-time bias correction is in operation. To test robustness under more realistic conditions, the fusion procedures were evaluated with and

  16. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    Science.gov (United States)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; hide

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  17. CLUJ-NAPOCA PRECIPITATION FORECAST USING WSR-98D DOPPLER RADAR

    Directory of Open Access Journals (Sweden)

    Narcis MAIER

    2011-11-01

    Full Text Available CLUJ-NAPOCA precipitation forecast using WSR-98D Doppler radar. Forecasting inundations requires accurate spatial and temporal estimation of rainfalls in an area. Depending on the Z-R relationship (reflectivity-precipitation rate, the thresholds, maximum reflectivity data processing, VIL, cloud height or speed, provided by the WSR-98D affects the estimated precipitation used in the prediction of inundations. How much precipitation receives a watershed during an extreme event and what response will result depends on the basin hydrographic characteristics. A study of summer weather events between the years 2004-2008 and a new method in establishing relations between the radar estimated and recorded precipitations led to the determination of new relations between them which will balance the connections between them.

  18. Meteorological radar methods for validating space observations of precipitation

    Science.gov (United States)

    Thiele, Otto W.

    1991-01-01

    Meteorological approaches to verification of space measurements of rainfall are examined; validation of Tropical Rainfall Measuring Mission (TRMM) observations is expected to depend significantly on ground-based radars. Two methods of comparison are initially contemplated. TRMM rainfall data over time periods of a month for large areas (500 x 500 km) are averaged and compared with similarly averaged ground truth measurements. Both the rainfall and height distribution data from TRMM are compared with the instantaneous values observed at one or more 'ground truth' stations and from airborne radar and radiometers as available.

  19. Current Scientific Progress and Future Scientific Prospects Enabled by Spaceborne Precipitation Radar Measurements

    Science.gov (United States)

    Smith, Eric A.; Im, Eastwood; Tripoli, Gregory J.; Yang, Song

    2008-01-01

    First, we examine current scientific progress and understanding that have been possible through use of spaceborne precipitation radar measurements being provided by the TRMM and CloudSat satellites. Second, we look across a future 20-year time frame to assess how and why anticipated improvements in space radar systems will further advance scientific progress into topic areas once considered beyond the realm of space-based remote sensing. JAXA's 13.8 GHz Ku-band cross-track scanning Precipitation Radar (PR) developed for flight on NASA's non-sun-synchronous, diurnally-precessing TRMM satellite, was the first Earth radar flown in space that was designed specifically for precipitation measurement. Its proven accuracy in measuring global rainfall in the tropics and sub-tropics and its unanticipated longevity in continuing these measurements beyond a full decade have established the standards against which all follow-up and future space radars will be evaluated. In regards to the current PR measurement time series, we will discuss a selection of major scientific discoveries and impacts which have set the stage for future radar measuring systems. In fact, the 2nd contemporary space radar applicable for terrestrial precipitation measurement, i.e., JPL-CSA's 94 GHz nadir-staring Cloud Profiling Radar (CPR) flown on NASA's sun-synchronous CloudSat satellite, although designed primarily for measurement of non-precipitating cloud hydrometeors and aerosols, has also unquestionably advanced precipitation measurement because CPR's higher frequency and greatly increased sensitivity (approximately 30 dBZ) has enabled global observations of light rain rate spectrum processes (i.e., rain rates below 0.05 mm per hourand of precipitation processes in the high troposphere (particularly ice phase processes). These processes are beyond reach of the TRMM radar because the PR sensitivity limit is approximately 17 dBZ which means its lower rain rate cutoff is around 0.3 mm per hour and its

  20. Forecast of muddy floods using high-resolution radar precipitation forcasting data and erosion modelling

    Science.gov (United States)

    Hänsel, Phoebe; Schindewolf, Marcus; Schmidt, Jürgen

    2016-04-01

    In the federal province of Saxony, Eastern Germany, almost 60 % of the agricultural land is endangered by erosion processes, mainly caused by heavy rainfall events. Beside the primary impact of soil loss and decreasing soil fertility, erosion can cause significant effects if transported sediments are entering downslope settlements, infrastructure or traffic routes. Available radar precipitation data are closing the gap between the conventional rainfall point measurements and enable the nationwide rainfall distribution with high spatial and temporal resolution. By means of the radar precipitation data of the German Weather Service (DWD), high-resolution radar-based rainfall data totals up to 5 minute time steps are possible. The radar data are visualised in a grid-based hourly precipitation map. In particular, the daily and hourly precipitation maps help to identify regions with heavy rainfall and possible erosion events. In case of an erosion event on agricultural land, these areas are mapped with an unmanned airborne vehicle (UAV). The camera-equipped UAV delivers high-resolution images of the erosion event, that allow the generation of high-resolution orthophotos. By the application of the high-resolution radar precipitation data as an input for the process-based soil loss and deposition model EROSION 3D, these images are for validation purposes. Future research is focused on large scale soil erosion modelling with the help of the radar forecasting product and an automatic identification of sediment pass over points. The study will end up with an user friendly muddy flood warning tool, which allows the local authorities to initiate immediate measures in order to prevent severe damages in settlements, infrastructure or traffic routes.

  1. Using TRMM and GPM precipitation radar for calibration of weather radars in the Philippines

    Science.gov (United States)

    Crisologo, Irene; Bookhagen, Bodo; Smith, Taylor; Heistermann, Maik

    2016-04-01

    Torrential and sustained rainfall from tropical cyclones, monsoons, and thunderstorms frequently impact the Philippines. In order to predict, assess, and measure storm impact, it is imperative to have a reliable and accurate monitoring system in place. In 2011, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) established a weather radar network of ten radar devices, eight of which are single-polarization S-band radars and two dual-polarization C-band radars. Because of a low-density hydrometeorological monitoring networks in the Philippines, calibration of weather radars becomes a challenging, but important task. In this study, we explore the potential of scrutinizing the calibration of ground radars by using the observations from the Tropical Rainfall Measuring Mission (TRMM). For this purpose, we compare different TRMM level 1 and 2 orbital products from overpasses over the Philippines, and compare these products to reflectivities observed by the Philippine ground radars. Differences in spatial resolution are addressed by computing adequate zonal statistics of the local radar bins located within the corresponding TRMM cell in space and time. The wradlib package (Heistermann et al. 2013; Heistermann et al. 2015) is used to process the data from the Subic S-band single-polarization weather radar. These data will be analyzed in conjunction with TRMM data for June to August 2012, three months of the wet season. This period includes the enhanced monsoon of 2012, locally called Habagat 2012, which brought sustained intense rainfall and massive floods in several parts of the country including the most populated city of Metro Manila. References Heistermann, M., Jacobi, S., Pfaff, T. (2013): Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863-871, doi: 10.5194/hess-17-863-2013. Heistermann, M., S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J

  2. Estimation of precipitation over the OLYMPEX domain during winter 2015-2016 using radar, gauge precipitation and ASO snow estimates

    Science.gov (United States)

    Cao, Q.; Lettenmaier, D. P.; Painter, T. H.; Lundquist, J. D.; Petersen, W. A.

    2016-12-01

    A primary goal of Global Precipitation Mission (GPM) is to measure precipitation globally especially in areas lacking ground observations. In order to better assess precipitation products based on GPM and other satellites in cold seasons and where orographic factors exert strong controls on precipitation, the Olympic Mountain Experiment (OLYMPEX) was conducted on the Olympic Peninsula of Washington State during winter 2015-2016. OLYMPEX aims to provide validation data for satellite precipitation products such as NASA's IMERG. We constructed estimates of daily and finer scale precipitation at 1/32 degree spatial resolution over the OLYMPEX domain, which for our purposes was defined as the Olympic Peninsula plus the Chehalis River basin. The observation-based estimates we produced are based on NOAA WSR-88D (primarily the site at Langley Hill, on the Washington Coast), and gauge estimates as incorporated in NOAA's National Severe Storms Laboratory (NSSL) gauge-corrected radar QPE product, augmented with additional 135 gauges that were operational during at least 50% of the period Nov 1 2015 - Mar 31 2016. Few stations are located in the interior of the Olympic Peninsula at elevations higher than about 500m, and in this part of the domain we utilized snow depth maps from two flights of NASA/JPL's Airborne Snow Observatory (ASO) on Feb 8 and Mar 29 2016. We converted the depth maps to Snow Water Equivalent (SWE) maps using snow density fields integrated from a combination of simulations from the Variable Infiltration Capacity (VIC) hydrology model adjusted by in-situ point measurements conducted close to the ASO flight dates. We used the VIC model to invert the ASO-derived SWE estimates for precipitation through adjustment of the temperature lapse rate and precipitation on a grid cell by grid cell basis. We compare IMERG precipitation over our entire domain with our precipitation estimates, and find that IMERG tends to underestimate winter precipitation and especially

  3. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    Science.gov (United States)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  4. A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements

    Directory of Open Access Journals (Sweden)

    E. Todini

    2001-01-01

    Full Text Available The paper introduces a new technique based upon the use of block-Kriging and of Kalman filtering to combine, optimally in a Bayesian sense, areal precipitation fields estimated from meteorological radar to point measurements of precipitation such as are provided by a network of rain-gauges. The theoretical development is followed by a numerical example, in which an error field with a large bias and a noise to signal ratio of 30% is added to a known random field, to demonstrate the potentiality of the proposed algorithm. The results analysed on a sample of 1000 realisations, show that the final estimates are totally unbiased and the noise variance reduced substantially. Moreover, a case study on the upper Reno river in Italy demonstrates the improvements in rainfall spatial distribution obtainable by means of the proposed radar conditioning technique. Keywords: Rainfall, meteorological radar, Bayesian technique, block-Kriging, Kalman filtering

  5. Evaluation of radar-based precipitation estimates for flash flood forecasting in the Three Gorges Region

    Directory of Open Access Journals (Sweden)

    Z. Li

    2015-05-01

    Full Text Available Spatial rainfall pattern plays a critical role in determining hydrological responses in mountainous areas, especially for natural disasters such as flash floods. In this study, to improve the skills of flood forecasting in the mountainous Three Gorges Region (TGR of the Yangtze River, we developed a first version of a high-resolution (1 km radar-based quantitative precipitation estimation (QPE consideration of many critical procedures, such as beam blockage analysis, ground-clutter filter, rain type identification and adaptive Z–R relations. A physically-based distributed hydrological model (GBHM was established and further applied to evaluate the performance of radar-based QPE for regional flood forecasting, relative to the gauge-driven simulations. With two sets of input data (gauge and radar collected during summer 2010, the applicability of the current radar-based QPE to rainstorm monitoring and flash flood forecasting in the TGR is quantitatively analysed and discussed.

  6. Detection and quantification of precipitations signatures on synthetic aperture radar imagery at X band

    Science.gov (United States)

    Mori, Saverio; Montopoli, Mario; Pulvirenti, Luca; Marzano, Frank S.; Pierdicca, Nazzareno

    2016-10-01

    Nowadays a well-established tool for Earth remote sensing is represented by Spaceborne synthetic aperture radars (SARs) operating at L-band and above that offers a microwave perspective at very high spatial resolution in almost all-weather conditions. Nevertheless, atmospheric precipitating clouds can significantly affect the signal backscattered from the ground surface on both amplitude and phase, as assessed by numerous recent works analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, such sensitivity could allow detecting and quantifying precipitations through SARs. In this work, we propose an innovative processing framework aiming at producing X-SARs precipitation maps and cloud masks. While clouds masks allow the user to detect areas interested by precipitations, precipitation maps offer the unique opportunity to ingest within flood forecasting model precipitation data at the catchment scale. Indeed, several issues still need to be fully addressed. The proposed approach allows distinguishing flooded areas, precipitating clouds together with permanent water bodies. The detection procedure uses image segmentation techniques, fuzzy logic and ancillary data such as local incident angle map and land cover; an improved regression empirical algorithm gives the precipitation estimation. We have applied the proposed methodology to 16 study cases, acquired within TSX and CSK missions over Italy and United States. This choice allows analysing different typologies of events, and verifying the proposed methodology through the available local weather radar networks. In this work, we will discuss the results obtained until now in terms of improved rain cell localization and precipitation quantification.

  7. Remote Sensing of Precipitation from Airborne and Spaceborne Radar. Chapter 13

    Science.gov (United States)

    Munchak, S. Joseph

    2017-01-01

    Weather radar measurements from airborne or satellite platforms can be an effective remote sensing tool for examining the three-dimensional structures of clouds and precipitation. This chapter describes some fundamental properties of radar measurements and their dependence on the particle size distribution (PSD) and radar frequency. The inverse problem of solving for the vertical profile of PSD from a profile of measured reflectivity is stated as an optimal estimation problem for single- and multi-frequency measurements. Phenomena that can change the measured reflectivity Z(sub m) from its intrinsic value Z(sub e), namely attenuation, non-uniform beam filling, and multiple scattering, are described and mitigation of these effects in the context of the optimal estimation framework is discussed. Finally, some techniques involving the use of passive microwave measurements to further constrain the retrieval of the PSD are presented.

  8. A Radar Climatology for Germany - a 16-year high resolution precipitation data and its possibilities

    Science.gov (United States)

    Walawender, Ewelina; Winterrath, Tanja; Brendel, Christoph; Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Weigl, Elmar; Becker, Andreas

    2017-04-01

    One of the main features of heavy precipitation events is their small-scale distribution. Despite a local occurrence, these intensive rainfalls may, however, cause most serious damage and have significant impact on the whole river basin area resulting in e.g. flash floods or urban flooding. Thus, it is of great importance not only to detect the life-cycle of extreme precipitation during its occurrence but also to collect precise climatological information on such events. The German weather service (Deutscher Wetterdienst) operates a very dense network of more than 2000 weather stations collecting data on precipitation. It is however not sufficient for detecting spatially limited phenomena. Thanks to radar data, current monitoring of such events is possible. A quality control process is applied to real-time radar products, however only automatic rain gauges data can be used in the adjustment procedure. To merge both radar data and all available rain gauges data, the radar climatology dataset was established. Within the framework of a project financed by the federal agencies' strategic alliance 'Adaptation to Climate Change', 16 years (2001-2016) of radar data have been reanalyzed in order to gain a homogenous, quality-controlled, high-resolution precipitation data set suitable for analyzing extreme events in a climatological approach. Additional corrections methods (e.g. clutter, spokes and beam height correction) were defined and used for the reprocessing procedure to enhance the data quality. Although the time series is still rather short for a climatology, for the first time the data set allows an insight into e.g. the distribution, size, life cycle, and duration of extreme events that cannot be measured by point measurements alone. All radar climatology products share the same spatial and temporal coverage. The whole dataset has been produced for the area of Germany. With the relatively high spatial resolution of 1km, the data can be used as a component of wide

  9. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  10. Estimation of convective precipitation: the meteorological radar versus an automatic rain gauge network

    Directory of Open Access Journals (Sweden)

    M. C. Llasat

    2005-01-01

    Full Text Available The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain. Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.

  11. Multi-Frequency Radar/Passive Microwave retrievals of Cold Season Precipitation from OLYMPEX data

    Science.gov (United States)

    Tridon, Frederic; Battaglia, Alessandro; Turk, Joe; Tanelli, Simone; Kneifel, Stefan; Leinonen, Jussi; Kollias, Pavlos

    2017-04-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation over the variety of Earth surface conditions remain a longstanding open issue for space-based radar and passive microwave (MW) observing systems, such those on board the current NASA-JAXA Global Precipitation measurement (GPM) core and constellation satellites. Observations from the NASA DC-8 including radar profiles from the triple frequency Advanced Precipitation Radar (APR-3) and brightness temperatures from PMW radiometers with frequencies ranging from 89 to 183 GHz were collected during November-December 2015 as part of the OLYMPEX-RADEX campaign in western Washington state. Observations cover orographically-driven precipitation events with flight transects over ocean, coastal areas, vegetated and snow-covered surfaces. This study presents results obtained by a retrieval optimal estimation technique capable of combining the various radar and radiometer measurements in order to retrieve the snow properties such as equivalent water mass and characteristic size. The retrieval is constrained by microphysical a-priori defined by in situ measurements whilst the most recent ice scattering models are used in the forward modelling. The vast dataset collected during OLYMPEX is particular valuable because it can provide very strong tests for the fidelity of ice scattering models deep in the non-Rayleigh regime. In addition, the various scattering tables of snow aggregates with different degrees of riming can be exploited to assess the potential of multi-wavelength active and passive microwave systems in identifying the primary ice growth process (i.e. aggregation vs riming vs deposition). First comparisons with in-situ observations from the coordinated flights of the Citation aircraft will also be presented.

  12. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of

  13. The regional and diurnal variability of the vertical structure of precipitation systems in Africa, based on TRMM precipitation radar data

    Science.gov (United States)

    Demissie, Yonas; Dejene Demissie, Teferi; D'Odorico, Paolo; Sharma, Rishi

    2013-04-01

    Five years of the Tropical Rainfall Measuring Mission (TRMM) 2A25 radar reflectivity profiles and derived surface rain rates are used to describe the vertical structure of precipitation systems in boreal and austral summer rainy seasons in Africa. The continent is divided into several climatologically rather homogenous regions and those regions are characterized and contrasted. To place the composite reflectivity profiles in context, they are also contrasted against TRMM 2A25 observations over the Amazon. Precipitation systems tend to be deeper and more intense in all of tropical Africa than in the Amazon, and shallow warm-rain events are less common. Storms, in all African regions, are characterized by high echo tops, high hydro-meteor loading aloft, little indication of a radar bright band maximum at the freezing level, and evidence for low-level evaporation. The diurnal modulation is regionally variable. The amplitude of the diurnal cycle of the mean echo top height decreases from the arid margins of the zenithal rain region toward the equatorial region, and is smallest in the Amazon. A secondary predawn (0000-0600 LT) maximum occurs in the Congo, in terms of rainfall frequency, rainfall intensity, and echo tops. The difference between all African regions and the Amazon, and the relatively smaller differences between regions in Africa, can be understood in terms of the climatological humidity, CAPE, and low-level shear values.

  14. MCNP Version 6.2 Release Notes

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, C. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McKinney, Gregg Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Roger Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cox, Lawrence James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zukaitis, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forster, Robert Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    Monte Carlo N-Particle or MCNP® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guide for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).

  15. Hydrological Applications of a High-Resolution Radar Precipitation Data Base for Sweden

    Science.gov (United States)

    Olsson, Jonas; Berg, Peter; Norin, Lars; Simonsson, Lennart

    2017-04-01

    There is an increasing need for high-resolution observations of precipitation on local, regional, national and even continental level. Urbanization and other environmental changes often make societies more vulnerable to intense short-duration rainfalls (cloudbursts) and their consequences in terms of e.g. flooding and landslides. Impact and forecasting models of these hazards put very high demands on the rainfall input in terms of both resolution and accuracy. Weather radar systems obviously have a great potential in this context, but also limitations with respect to e.g. conversion algorithms and various error sources that may have a significant impact on the subsequent hydrological modelling. In Sweden, the national weather radar network has been in operation for nearly three decades, but until recently the hydrological applications have been very limited. This is mainly because of difficulties in managing the different errors and biases in the radar precipitation product, which made it hard to demonstrate any distinct added value as compared with gauge-based precipitation products. In the last years, however, in light of distinct progress in developing error correction procedures, substantial efforts have been made to develop a national gauge-adjusted radar precipitation product - HIPRAD (High-Resolution Precipitation from Gauge-Adjusted Weather Radar). In HIPRAD, the original radar precipitation data are scaled to match the monthly accumulations in a national grid (termed PTHBV) created by optimal interpolation of corrected daily gauge observations, with the intention to attain both a high spatio-temporal resolution and accurate long-term accumulations. At present, HIPRAD covers the period 2000-present with resolutions 15 min and 2×2 km2. A key motivation behind the development of HIPRAD is the intention to increase the temporal resolution in the national flood forecasting system from 1 day to 1 hour. Whereas a daily time step is sufficient to describe the

  16. Rainfall and Snowfall Observations by the Airborne Dual-frequency Precipitation Radar during the Wakasa Bay Experiment

    Science.gov (United States)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.; Meagher, Jonathan P.

    2004-01-01

    Radar data obtained through the NASA/JPL Airborne Precipitation Radar APR-2 during the Wakasa Bay Experiment in January/February 2003 were processed to obtain calibrated reflectivity measurements, rainfall/snowfall velocity measurements, classification of the surface type and detection of the boundaries of the melting layer of precipitation. In this paper the processing approach is described together with an overview of the resulting data quality and known issues.

  17. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial

  18. Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia

    Directory of Open Access Journals (Sweden)

    F. Renggono

    2001-08-01

    Full Text Available Temporal variations of precipitating clouds in equatorial Indonesia have been studied based on observations with 1357.5 MHz boundary layer radars at Serpong (6.4° S, 106.7° E near Jakarta and Bukittinggi (0.2° S, 100.3° E in West Sumatera. We have classified precipitating clouds into four types: stratiform, mixed stratiform-convective, deep convective, and shallow convective clouds, using the Williams et al. (1995 method. Diurnal variations of the occurrence of precipitating clouds at Serpong and Bukittinggi have showed the same characteristics, namely, that the precipitating clouds primarily occur in the afternoon and the peak of the stratiform cloud comes after the peak of the deep convective cloud. The time delay between the peaks of stratiform and deep convective clouds corresponds to the life cycle of the mesoscale convective system. The precipitating clouds which occur in the early morning at Serpong are dominated by stratiform cloud. Concerning seasonal variations of the precipitating clouds, we have found that the occurrence of the stratiform cloud is most frequent in the rainy season, while the occurrence of the deep convective cloud is predominant in the dry season.Key words. Meteorology and atmospheric dynamics (convective processes; precipitation; tropical meteorology

  19. The Potential of Water Vapor & Precipitation Estimation with a Differential-frequency Radar

    Science.gov (United States)

    Meneghini, Robert; Liao, Liang; Tian, Lin

    2006-01-01

    In the presence of rain, the radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. Conversely, the difference in radar reflectivity factors (in dB) between the upper and lower frequencies is independent of water vapor absorption and can be used to estimate the median mass diameter of the hydrometeors. For a down-looking radar, path-integrated estimates of water vapor absorption may be possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Cross-talk or interference between the precipitation and water vapor estimates depends on the frequency separation of the channels as well as on the phase state and the median mass diameter of the hydrometeors. Simulations of the retrieval of water vapor absorption show that the largest source of variability arises from the variance in the measured radar return powers while the largest biases occur in the mixed-phase region. Use of high pulse repetition frequencies and signal whitening methods may be needed to obtain the large number of independent samples required. Measurements over a fractional bandwidth, defined as the ratio of the difference between the upper and lower frequencies to the center frequency, up to about 0.2 should be passible in a differential frequency mode, where a single transceiver and antenna are used. Difficulties in frequency allocation may require alternative choices of frequency where the water vapor absorptions at the low and high frequencies are unequal. We consider the degradation in the retrieval accuracy when the frequencies are not optimum.

  20. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation

    Science.gov (United States)

    Das, Saurabh; Maitra, Animesh

    2017-03-01

    Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).

  1. A Consistent Treatment of Microwave Emissivity and Radar Backscatter for Retrieval of Precipitation over Water Surfaces

    Science.gov (United States)

    Munchak, S. Joseph; Meneghini, Robert; Grecu, Mircea; Olson, William S.

    2016-01-01

    The Global Precipitation Measurement satellite's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (sigma(sub 0)) models for water surfaces in CORRA. An empirical model for DPR Ku and Ka sigma(sub 0) as a function of 10m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the sigma(sub 0) measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m/s for Ku+GMI and 3.2 m/s for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m/s for clear-sky GMI-only), and there is a reduction in bias from GANAL background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (less than 1 mm/h) and decrease in moderate to heavy precipitation (greater than 1 mm/h). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (less than 5 m/s) relative to retrievals using the surface reference estimate of PIA as input.

  2. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    for vector field estimation already known from short-term weather radar nowcasting. However, instead of forecasting the weather radar rainfall, the proposed interpolation method exploits the advection of the rainfall in the interpolation. The interpolated rainfall fields are validated by measurements......The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...... at ground level from laser disdrometers. The proposed interpolation method performs better when compared to traditional interpolation of weather radar rainfall where the radar observation is considered constant in time between measurements. It is demonstrated that the advection-based interpolation method...

  3. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    OpenAIRE

    Marco Gabella; Peter Speirs; Ulrich Hamann; Urs Germann; Alexis Berne

    2017-01-01

    The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1) the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE); (2) the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR); (3) a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip) is used; (4) spaceborne observatio...

  4. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  5. D region HF radar echoes associated with energetic particle precipitation and pulsating aurora

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2008-07-01

    Full Text Available Milan et al. (2001 identified a class of narrow, slow-moving HF radar backscatter echoes which originate between altitudes of 80 and 100 km, the ionospheric D- and lower E-regions. These echoes appeared to be associated with the occurrence of pulsating aurora, which are known to be created by energetic electrons capable of penetrating to D region altitudes. In this study we show that these echoes are observed in tandem with enhancements in cosmic noise absorption (auroral absorption, additional evidence that energetic (>30 keV particle precipitation is responsible for generating the irregularities from which a radar can scatter. In addition, we show that the D region backscatter echoes occur predominantly in the post-midnight sector during substorm recovery phase, in common with auroral absorption events and pulsating aurora.

  6. Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval Algorithm

    Science.gov (United States)

    Masunaga, Hirohiko; Kummerow, Christian D.

    2005-01-01

    A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.

  7. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  8. LIMS Version 6 Level 3 Dataset

    Science.gov (United States)

    Remsberg, Ellis E.; Lingenfelser, Gretchen

    2010-01-01

    This report describes the Limb Infrared Monitor of the Stratosphere (LIMS) Version 6 (V6) Level 3 data products and the assumptions used for their generation. A sequential estimation algorithm was used to obtain daily, zonal Fourier coefficients of the several parameters of the LIMS dataset for 216 days of 1978-79. The coefficients are available at up to 28 pressure levels and at every two degrees of latitude from 64 S to 84 N and at the synoptic time of 12 UT. Example plots were prepared and archived from the data at 10 hPa of January 1, 1979, to illustrate the overall coherence of the features obtained with the LIMS-retrieved parameters.

  9. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  10. Introducing uncertainty of radar-rainfall estimates to the verification of mesoscale model precipitation forecasts

    Directory of Open Access Journals (Sweden)

    M. P. Mittermaier

    2008-05-01

    Full Text Available A simple measure of the uncertainty associated with using radar-derived rainfall estimates as "truth" has been introduced to the Numerical Weather Prediction (NWP verification process to assess the effect on forecast skill and errors. Deterministic precipitation forecasts from the mesoscale version of the UK Met Office Unified Model for a two-day high-impact event and for a month were verified at the daily and six-hourly time scale using a spatially-based intensity-scale method and various traditional skill scores such as the Equitable Threat Score (ETS and log-odds ratio. Radar-rainfall accumulations from the UK Nimrod radar-composite were used.

    The results show that the inclusion of uncertainty has some effect, shifting the forecast errors and skill. The study also allowed for the comparison of results from the intensity-scale method and traditional skill scores. It showed that the two methods complement each other, one detailing the scale and rainfall accumulation thresholds where the errors occur, the other showing how skillful the forecast is. It was also found that for the six-hourly forecasts the error distributions remain similar with forecast lead time but skill decreases. This highlights the difference between forecast error and forecast skill, and that they are not necessarily the same.

  11. Precipitation radar nowcasting in complex orography: a pyramidal-dynamical approach

    Science.gov (United States)

    Montopoli, M.; Marzano, F. S.

    2009-04-01

    Nowadays, quantitative forecast of rainfall is usually obtained with Numerical Weather Prediction (NWP) models that allow to obtain reliable forecasts up to few hours. Due to physical basis these models are able to predict the formation of new rainy systems but often fail to forecast them at small scales because of, for example, their coarse temporal and spatial resolution. On the other hand, applications in the fields of hydrology, civil protection, flight assistance, agriculture warning, require quantitative precipitation forecasts (QPF) at high resolution in space and in time. These concepts lead to the need of so called short-term forecasts till few hours in advance (here referred as nowcasting) that can be used, in a operational framework, complementing the NWP models in order to fill their weakness at smaller temporal and spatial scales. Nowcasting techniques usually are based on the extrapolations of weather conditions in the future assuming no significant changes in the future general behavior of the forecasted precipitation pattern. Starting from the work of Seed, 2003, a new nowcasting algorithm, based on ground based radar observations, named SPARE (Spectral Pyramidal Advection Radar Estimator) has been recently developed by the authors of this work. SPARE algorithm deal with the prediction problem separating the component associated with the growth of precipitation field (or roughly speaking its temporal evolution) and the component associated with changes in the field motion. An auto-regressive model of order 1 (indicated by AR(1)) revealed adequate to account the evolution component where for the field motion a multi scale field advection approach, labeled as Pyramidal Phase Correlation Motion Estimation (PPCME) method, has been set up In this work further refinements of the SPARE algorithm are shown and discussed. Firstly the PPCME technique is reinforced by considering a variable past time history of radar observations, instead of only two; secondly

  12. Error and Uncertainty Quantification in Precipitation Retrievals from GPM/DPR Using Ground-based Dual-Polarization Radar Observations

    Science.gov (United States)

    Chandra, Chandrasekar V.; Chen*, Haonan; Petersen, Walter

    2017-04-01

    The active Dual-frequency Precipitation Radar (DPR) and passive radiometer onboard Global Precipitation Measurement (GPM) mission's Core Observatory extend the observation range attained by Tropical Rainfall Measuring Mission (TRMM) from tropical to most of the globe [1]. Through improved measurements of precipitation, the GPM mission is helping to advance our understanding of Earth's water and energy cycle, as well as climate changes. Ground Validation (GV) is an indispensable part of the GPM satellite mission. In the pre-launch era, several international validation experiments had already generated a substantial dataset that could be used to develop and test the pre-launch GPM algorithms. After launch, more ground validation field campaigns were conducted to further evaluate GPM precipitation data products as well as the sensitivities of retrieval algorithms. Among various validation equipment, ground based dual-polarization radar has shown great advantages to conduct precipitation estimation over a wide area in a relatively short time span. Therefore, radar is always a key component in all the validation field experiments. In addition, the radar polarization diversity has great potential to characterize precipitation microphysics through the identification of raindrop size distribution and different hydrometeor types [2]. Currently, all the radar sites comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88DP) network are operating in dual-polarization mode. However, most of the operational radar based precipitation products are produced at coarse resolution typically on 1 km by 1 km spatial grids, focusing on precipitation accumulations at temporal scales of 1-h, 3-h, 6-h, 12-h, and/or 24-h (daily). Their capability for instantaneous GPM product validation is severely limited due to the spatial and temporal mismatching between observations from the ground and space. This paper first presents the rationale and

  13. Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars

    Science.gov (United States)

    Gabella, M.; Morin, E.; Notarpietro, R.; Michaelides, S.

    2013-01-01

    The spaceborne weather radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite can be used to adjust Ground-based Radar (GR) echoes, as a function of the range from the GR site. The adjustment is based on the average linear radar reflectivity in circular rings around the GR site, for both the GR and attenuation-corrected NearSurfZ TRMM Precipitation Radar (TPR) images. In previous studies, it was found that in winter, for the lowest elevation of the Cyprus C-band radar, the GR/TPR equivalent rain rate ratio was decreasing, on average, of approximately 8 dB per decade. In this paper, the same analysis has been applied to another C-band radar in the southeastern Mediterranean area. For the lowest elevation of the "Shacham" radar in Israel, the GR/TPR equivalent rain rate ratio is found to decrease of approximately 6 dB per decade. The average departure at the "reference", intermediate range is related to the calibration of the GR. The negative slope of the range dependence is considered to be mainly caused by an overshooting problem (increasing sampling volume of the GR with range combined with non-homogeneous beam filling and, on average, a decreasing vertical profile of radar reflectivity). To check this hypothesis, we have compared the same NearSurfZ TPR images versus GR data acquired using the second elevation. We expected these data to be affected more by overshooting, especially at distant ranges: the negative slope of the range dependence was in fact found to be more evident than in the case of the lowest GR elevation for both the Cypriot and Israeli radar.

  14. Remote-Sensing of Precipitation Characteristics Using Multi-frequency Microwave Links and Polarimetric Radar Techniques

    Science.gov (United States)

    Eastment, J. D.; Bradford, W. J.; Goddard, J. W.; Willis, M. J.

    2002-05-01

    The Radio Communications Research Unit at Rutherford Appleton Laboratory (RAL) currently operates two separate experimental studies aimed at characterising the properties of rainfall using microwave remote-sensing. The first study involves the use of dual-frequency microwave measurements of precipitation-induced attenuation on a number of radio paths spanning a river catchment area to estimate path-integrated rainfall rate. This data is of interest for hydrological research connected with urban drainage, river level management and flood forecasting. Dual-frequency attenuation measurements have been employed because theoretical modelling showed them to be far less sensitive to rainfall drop-size distribution effects than single-frequency data. The experimental network comprises 9 microwave links spanning the frequency range 13 to 38 GHz installed on 5 different paths covering the catchment area of the rivers Croal and Irwell near Bolton in North-West England. For each transmitter-receiver link, excess path attenuation relative to the clear-air value is determined from measurements of received signal power level at a rate of 1 Hz. These data are logged by local computers at each receiver site, and periodically downloaded by modem to RAL for archiving and quality control. Analysis by colleagues at the Universities of Essex and Salford has shown that, due to the path-integrated nature of the attenuation measurements and the wide area-coverage obtained by a suitable choice of the multiple-path geometry, a small number of dual-frequency links can provide comparable hydrological data to that obtained from the more conventional dense network of rain-gauges. The second study employs a scanning polarimetric Doppler radar developed by RAL to measure the spatial distribution of hydrometeors along various operational microwave and mm-wave communication links within a 50 km radius of the University of St. Andrews in South-East Scotland. The UK Radiocommunications Agency and

  15. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  16. Combining weather radar nowcasts and numerical weather prediction models to estimate short-term quantitative precipitation and uncertainty

    DEFF Research Database (Denmark)

    Jensen, David Getreuer

    The topic of this Ph.D. thesis is short term forecasting of precipitation for up to 6 hours called nowcasts. The focus is on improving the precision of deterministic nowcasts, assimilation of radar extrapolation model (REM) data into Danish Meteorological Institutes (DMI) HIRLAM numerical weather...

  17. Precipitation and microphysical studies with a low cost high resolution X-band radar: an innovative project prospective

    Directory of Open Access Journals (Sweden)

    J. Van Baelen

    2009-03-01

    Full Text Available This paper describes an innovative project which has just been launched at the "Laboratoire de Météorologie Physique" (LaMP in Clermont-Ferrand in collaboration with the "Meteorologische Institut" in Hamburg, where a low cost X-band high resolution precipitation radar is combined with supporting measurements and a bin microphysical cloud resolving model in order to develop adapted Z–R relationships for accurate rain rate estimates over a local area such as a small catchment basin, an urban complex or even an agriculture domain.

    In particular, the use of K-band micro rain radars which can retrieve vertical profiles of drop size distribution and the associated reflectivity will be used to perform direct comparisons with X-band radar volume samples while a network of rain-gauges provides ground truth to which our rain estimates will be compared. Thus, the experimental suite of instrumentation should provide a detailed characterization of the various rain regimes and their associated Z–R relationship. Furthermore, we will make use of the hilly environment of the radar to test the use of novel attenuation methods in order to estimate rainfall rates.

    A second important aspect of this work is to use the detailed cloud modeling available at LaMP. Simulations of precipitating clouds in highly resolved 3-D dynamics model allow predicting the spectra of rain drops and precipitating ice particles. Radar reflectivity determined from these model studies will be compared with the observations in order to better understand which raindrop size spectrum shape factor should be applied to the radar algorithms as a function of the type of precipitating cloud. Likewise, these comparisons between the modeled and the observed reflectivity will also give us the opportunity to further improve our model microphysics and the parameterizations for meso-scale models.

  18. Influence of Different Areal Precipitation Estimation Methods Using Rain Gauges and Radar on the Simulation of Floods

    Science.gov (United States)

    Verworn, Alexander; Haberlandt, Uwe

    2010-05-01

    Precipitation data with a high resolution in space and time are the most important driving forces for hydrological modelling of floods. While there are terrestrial stations, which record precipitation with a sufficient temporal resolution, the network density is often too sparse for a reliable estimation of mean areal rainfall. Meanwhile radar data have been used more frequently as input for hydrological modelling due to its advantage of the high spatial resolution. A number of studies have shown though, that uncorrected radar data can have a large space-time variable bias. Considering these circumstances the best strategy is obviously to make use of all available information about rainfall and applying sophisticated interpolation and merging methods. In this study precipitation is spatially interpolated with the multivariate geostatistical method external drift kriging (EDK) using additional information from topography, rainfall data from the denser daily networks and weather radar data. The focus is on the evaluation of the benefit of improved precipitation estimation for hydrological modelling of floods. The main problem for an objective assessment is to avoid a biased model calibration in favour of one precipitation data set. In the first strategy re-calibration of the hydrological model for each input with cross-validation on an event basis is applied. The second strategy uses a Monte-Carlo approach, where a large number of model parameter sets is randomly generated. For each parameter set the model is run with all precipitation inputs. The smallest average error indicates the best precipitation estimate. This procedure is more objective compared to the conventional calibration procedure. Investigations are carried out for several flood events in the time period between 2000 and 2005 caused by different meteorological conditions. The 125 km radius around the radar station Ummendorf in northern Germany covers the overall study area including 21 recording

  19. Major Upgrades to the AIRS Version-6 Ozone Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting in the talk Improved Water Vapor and Ozone Profiles in SRT AIRS Version-6.X and the AIRS February 11, 2015 NetMeeting Further improvements in water vapor and ozone profiles compared to Version-6.AIRS Version-6 was finalized in late 2012 and is now operational. Version-6 contained many significant improvements in retrieval methodology compared to Version-5. However, Version-6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version-5, or even from Version-4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version-6. This talk will concentrate on O3 profile retrievals. Improvements in water vapor profile retrievals are given in a separate presentation.

  20. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on Board the GPM Core Observatory

    Science.gov (United States)

    Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko

    2016-01-01

    A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

  1. Evaluating precipitation in a regional climate model using ground-based radar measurements in Dronning Maud Land, East Antarctica

    Science.gov (United States)

    Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole

    2017-04-01

    Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR

  2. A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model

    DEFF Research Database (Denmark)

    Korsholm, Ulrik Smith; Petersen, Claus; Sass, Bent Hansen

    2015-01-01

    A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction...... and then a free forecast. The precipitation fields are based on a 2D composite CAPPI (constant altitude plan position indicator) field made from observations with the DMI weather radars, and have a 10 min time resolution. The results obtained in this study indicate that the new method implies fast adjustment....... The method was implemented in the Danish Meteorological Institute numerical weather prediction (DMI NWP) nowcasting system, running with hourly cycles, performing a surface analysis and 3D variational analysis for upper air assimilation at each cycle restart, followed by nudging assimilation of precipitation...

  3. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    Science.gov (United States)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C. D.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2016-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. The MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes any GPM estimates, providing great flexibility in matching MRMS samples to grid scales or "footprints". Collectively, these MRMS products provide an independent and consistent reference research framework for directly evaluating post-launch GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. A comparison framework was developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification. Several aspects of satellite precipitation retrieval are evaluated such as precipitation distributions, separation of systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. At the Level II precipitation features are introduced to analyze satellite estimates under various precipitation processes. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Comparison with TRMM products serves as a benchmark to evaluate GPM precipitation estimates. A the Level III the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the

  4. Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden

    Science.gov (United States)

    Berg, Peter; Norin, Lars; Olsson, Jonas

    2016-10-01

    Hydrological forecasting systems require accurate initial conditions, particularly for real time precipitation data, which are problematic to retrieve. This is especially difficult for high temporal and spatial resolutions, e.g. sub-daily and less than 10-20 km. Forecasting fast processes such as flash flood are, however, dependent on such high resolution data. Gridded gauge data produces too smooth fields and underestimates small scale phenomena, such as convection, whereas radar composites contain the small scale information, but suffer from inconsistencies between individual radars and have poor long term statistics. Here, we present a method to merge a radar composite with daily resolution gridded gauge data for Sweden for the time period 2009-2014 to produce a one hourly 4 × 4 km2 data set. The method consists of a main step where monthly accumulations of the radar data are scaled by those retrieved from the gridded data for each month. An optional quantile mapping based bias correction step makes sure that the daily intensity distribution agrees with the gridded observations. Finally, the data are dis-aggregated to an hourly time resolution. This results in a data set which has the same long-term spatial properties as the gridded observations, but with the spatial and temporal details of the radar data. Validation of the method is performed with high resolution gauge data, and shows a high quality of the derived product.

  5. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    Science.gov (United States)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be

  6. Benefit of merging precipitation from rain gauges and radar for event based and continuous simulations of floods

    Science.gov (United States)

    Verworn, A.; Haberlandt, U.

    2012-04-01

    Several merging methods combining radar or satellite data with gauge data have been developed in order to make available better input data for distributed hydrological modelling. However, in many studies the performance of the merging methods is only validated using precipitation data, while the benefit of using improved precipitation estimation for hydrological modelling is not evaluated. In this study the objective was to test the hypothesis that better rainfall data according to precipitation cross-validation should enable a better simulation of floods. For interpolation different methods of varying complexity were chosen: the nearest neighbour method as the simplest one, ordinary kriging as standard geostatistical approach and kriging with external drift (KED) as a more sophisticated geostatistical method merging point observations with weather radar data. The investigations were conducted on the basis of 12 flood events caused by precipitation with different characteristics as well as continuous simulations over a period of four years. For hydrological modelling the raster-based runoff and water balance simulation model WaSiM-ETH with the topmodel approach was chosen. Hydrological modelling was conducted on an hourly time step for three mesoscale catchments with diverse physiographic characteristics and rainfall network configurations located on the foothills of the Harz Mountains. According to precipitation cross-validation the most complex interpolation method KED using radar rainfall intensities as additional information was the best interpolation method by far. Regarding the simulation of floods though, a general improvement for all cases could not be detected. Only for specific events and time periods, always additionally dependent on the catchment, advantages could be achieved.

  7. Open science: Investigating precipitation cycles in dynamically downscaled data using openly available radar data and open source software

    Science.gov (United States)

    Collis, Scott; helmus, Jonathan; Kotamarthi, Rao; Wang, Jiali; Feng, Yan; Ghate, Virendra

    2016-04-01

    In order to assess infrastructure resilience to climate change in urban centers, climate model output is needed at spatial resolutions required for urban planning. This is most commonly achieved using either empirical or dynamic downscaling at present. The utility of these downscaling methods for assessments depends on having estimates of biases in the models estimate climate variables and their extremes, surface temperature and precipitation as an example, developed using historical data sets. Since precipitation is a multi-scale stochastic process direct comparison with observations is challenging and even modern data sets work at scales too coarse to capture extreme events. Gauge data requires a direct hit by a storm to see the highest rain rates, often leading to an underestimation in the 1-100 year rainfall. This is exacerbated by phenomena such as training that can cause very high gradients in accumulation. This presentation details a long-term (multi-year) study of precipitation derived from open data from the NOAA Next-Generation Radar (NEXRAD) network. Two locations are studied; Portland, Maine, location for a pilot study conducted by the US Department of Homeland Security's on regional resilience to climate change and the Southern Great Plains of Oklahoma, home to the Department of Energy's ARM program. Both are located within 40km of a NEXRAD radar allowing retrievals of rainfall rates on the order of one kilometer using the Python-ARM Radar Toolkit (Py-ART). Both the diurnal and season cycle of precipitation is studied and compared to WRF dynamically downscaled precipitation rates. This project makes heavy use of open source community tools such as project Jupyter and the Scientific Python ecosystem to manage and process 10's of TB of data on midrange cluster infrastructure. Both the meteorological aspects and the data infrastructure and architecture will be discussed.

  8. Scanning Radar Investigations to Characterize Cloud and Precipitation Processes for ASR

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, Chandrasekar [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical and Computer Engineering. Cooperative Inst. for Research in the Atmosphere (CIRA)

    2016-12-17

    The project conducted investigations in the following areas related to scanning radar retrievals: a) Development for Cloud drizzle separation studies for the ENA site based on Doppler Spectra b) Advanced radar retrieval for the SGP site c) Characterizing falling snow using multifrequency dual-polarization measurements d) BAECC field experiment. More details about these investigations can be found within each subtopic within the report.

  9. Accurate Characterization of Winter Precipitation Using In-Situ Instrumentation, CSU-CHILL Radar, and Advanced Scattering Methods

    Science.gov (United States)

    Newman, A. J.; Notaros, B. M.; Bringi, V. N.; Kleinkort, C.; Huang, G. J.; Kennedy, P.; Thurai, M.

    2015-12-01

    We present a novel approach to remote sensing and characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced in-situ instrumentation for microphysical and geometrical measurements of ice and snow particles, image processing methodology to reconstruct complex particle three-dimensional (3D) shapes, computational electromagnetics to analyze realistic precipitation scattering, and state-of-the-art polarimetric radar. Our in-situ measurement site at the Easton Valley View Airport, La Salle, Colorado, shown in the figure, consists of two advanced optical imaging disdrometers within a 2/3-scaled double fence intercomparison reference wind shield, and also includes PLUVIO snow measuring gauge, VAISALA weather station, and collocated NCAR GPS advanced upper-air system sounding system. Our primary radar is the CSU-CHILL radar, with a dual-offset Gregorian antenna featuring very high polarization purity and excellent side-lobe performance in any plane, and the in-situ instrumentation site being very conveniently located at a range of 12.92 km from the radar. A multi-angle snowflake camera (MASC) is used to capture multiple different high-resolution views of an ice particle in free-fall, along with its fall speed. We apply a visual hull geometrical method for reconstruction of 3D shapes of particles based on the images collected by the MASC, and convert these shapes into models for computational electromagnetic scattering analysis, using a higher order method of moments. A two-dimensional video disdrometer (2DVD), collocated with the MASC, provides 2D contours of a hydrometeor, along with the fall speed and other important parameters. We use the fall speed from the MASC and the 2DVD, along with state parameters measured at the Easton site, to estimate the particle mass (Böhm's method), and then the dielectric constant of particles, based on a Maxwell-Garnet formula. By calculation of the "particle-by-particle" scattering

  10. Evaluating the Global Precipitation Measurement Mission with NOAA/NSSL Multi-Radar Multisensor: Past, Current Status and Future Directions.

    Science.gov (United States)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.

    2014-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. GPM precipitation level II estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multisensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities. These new polarimetric variables are being incorporated in MRMS to improve quality control of reflectivity data and to correct for partial beam blockages. The MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes of the GPM radar and radiometer observations. They are used by a number of NASA investigators to evaluate level II and level III satellite rainfall algorithms. The at-launch GPM Radiometer algorithm uses matches of coincident overpasses of various radiometers with surface rainfall from the MRMS database developed for the GPM project. Statistics from TRMM level II products serve as a benchmark to evaluate GPM precipitation estimates. Comparisons have been carried out at fine scale (e.g. instantaneous and 5 km for DPR) within a comparison framework developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, characterization (e.g. convective, stratiform) and quantification. Specific error factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Systematic biases and random errors quantified at the satellite estimation scale are useful for satellite-based Level III precipitation products. An online validation tool was designed to provide, for the first

  11. Analysis of the extinction effect on precipitation measurements with C-Band Radar by means of simulation and measurement; Analyse des Extinktionseffektes bei Niederschlagsmessungen mit einem C-Band Radar anhand von Simulation und Messung

    Energy Technology Data Exchange (ETDEWEB)

    Blahak, U.

    2005-02-01

    The extinction of microwave energy by hydrometeors is an error source when interpreting radar precipitation measurements quantitatively. Energy is constantly detracted from a travelling radar pulse, which ultimately leeds to an underestimation of the precipitation intensity. Correction procedures proposed in literature mostly rely on the assumption of a well-defined relation between radar reflectivity and extinction which is valid on average for rain; those algorithms often proof to be unstable. With regard to that, the present thesis deals with the variability of extinction for given radar reflectivity (taking into account different precipitation types, including melting particles), since this can be an important source of the abovementioned instability. First, theoretical methods are applied (Mie-scattering, effective complex refractive index for melting hydrometeors). Those calculations suffer from a lot of uncertainties. Therefore, extinction parameters are derived experimentally as well, using measurements of two radars whose measuring volumes overlap. To this end, a new dual radar method was developed, which tries to take into account the various error sources in the best possible way. As a result, it is found that the extinction of microwaves by hydrometeors is extremely variable for given radar reflectivity, which has important consequences for the development of correction procedures. (orig.)

  12. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    Science.gov (United States)

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  13. Processing of next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data for the DuPage County streamflow simulation system

    Science.gov (United States)

    Bera, Maitreyee; Ortel, Terry W.

    2018-01-12

    The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.

  14. Fusion of multiple radar-based quantitative precipitation estimates (QPE) for high-resolution flash flood forecasting in large urban areas

    Science.gov (United States)

    Rafieei Nasab, A.; Norouzi, A.; Kim, B.; Seo, D. J.

    2014-12-01

    With increasingly widespread use of weather radars, multiple radar-based QPEs are now routinely available in many places. In the Dallas-Fort Worth Metroplex (DFW), for example, the Multisensor Precipitation Estimator (MPE), Q2 (Next Generation QPE) and CASA (Collaborative Adaptive Sensing of Atmosphere) QPEs are available. Because these products are based on different radar systems, different sources of additional information, and/or processing algorithms, they have different error characteristics and spatiotemporal resolutions. In this work, we explore improving the accuracy of the highest-resolution radar QPE by fusing it with lower-resolution QPE(s). Two approaches are examined. The first is to pose fusion as a Fisher estimation problem in which the state vector is the true unknown precipitation at the highest resolution and the observation vector is made of all radar QPEs at their native resolutions. The second is to upscale the higher resolution QPE(s) to the lowest resolution, merge them via optimal estimation, and disaggregate the merged estimates based on the spatiotemporal patterns of precipitation in the high resolution QPE. In both approaches, we compare Fisher estimation with conditional bias-penalized Fisher-like estimation which improves estimation of heavy-to-extreme precipitation. For evaluation, we compare the precipitation estimates from the two approaches with rain gauge observations in the DFW area.

  15. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  16. Comparison Of Quantitative Precipitation Estimates Derived From Rain Gauge And Radar Derived Algorithms For Operational Flash Flood Support.

    Science.gov (United States)

    Streubel, D. P.; Kodama, K.

    2014-12-01

    To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii and Alaska. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hybrid reflectivity, a Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ¼ HRAP grid using PRISM climatology. The third analysis is derived from a rain gauge network where rain gauges are assigned static pre-determined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 20 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. However this result was not consistent for all 20 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one USGS gage. Implications of this indicate that a more robust QPE forcing with the inclusion of uncertainty derived from the three analyses may provide a better input for simulating extreme peak flow events.

  17. Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event

    Directory of Open Access Journals (Sweden)

    Basile Pauthier

    2016-01-01

    Full Text Available A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1 PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2 both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3 PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE. This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.

  18. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    Chih-Chien Tsai

    2014-03-01

    Full Text Available This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. The benefits of this system to quantitative precipitation nowcasting (QPN are evaluated with observing system simulation experiments on Typhoon Morakot (2009, which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The results indicate that the assimilation of radial velocity and reflectivity observations improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. The patterns of spiral rainbands become more consistent between different ensemble members after radar data assimilation. The rainfall intensity and distribution during the 6-hour deterministic nowcast are also improved, especially for the first 3 hours. The nowcasts with and without radar data assimilation have similar evolution trends driven by synoptic-scale conditions. Furthermore, we carry out a series of sensitivity experiments to develop proper assimilation strategies, in which a mixed localisation method is proposed for the first time and found to give further QPN improvement in this typhoon case.

  19. The spatial and temporal variability of the vertical structure of precipitation systems in Africa, based on TRMM precipiation radar data

    Science.gov (United States)

    Demissie, Fasil; Dejene Demissie, Teferi; Sharma, Rishi

    2014-05-01

    Five years of the Tropical Rainfall Measuring Mission (TRMM) 2A25 radar reflectivity profiles and derived surface rain rates are used to describe the vertical structure of precipitation systems in boreal and austral summer rainy seasons in Africa. The continent is divided into several climatologically rather homogenous regions and those regions are characterized and contrasted. To place the composite reflectivity profiles in context, they are also contrasted against TRMM 2A25 observations over the Amazon. Precipitation systems tend to be deeper and more intense in all of tropical Africa than in the Amazon, and shallow warm-rain events are less common. Storms, in all African regions, are characterized by high echo tops, high hydro-meteor loading aloft, little indication of a radar bright band maximum at the freezing level, and evidence for low-level evaporation. The diurnal modulation is regionally variable. The amplitude of the diurnal cycle of the mean echo top height decreases from the arid margins of the zenithal rain region toward the equatorial region, and is smallest in the Amazon. A secondary predawn (0000-0600 LT) maximum occurs in the Congo, in terms of rainfall frequency, rainfall intensity, and echo tops. The difference between all African regions and the Amazon, and the relatively smaller differences between regions in Africa, can be understood in terms of the climatological humidity, CAPE, and low-level shear values.

  20. Percentile-based neighborhood precipitation verification and its application to a landfalling tropical storm case with radar data assimilation

    Science.gov (United States)

    Zhu, Kefeng; Yang, Yi; Xue, Ming

    2015-11-01

    The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.

  1. Precipitation evidences on X-Band Synthetic Aperture Radar imagery: an approach for quantitative detection and estimation

    Science.gov (United States)

    Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno

    2017-04-01

    Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et

  2. GLUE Based Uncertainty Estimation of Urban Drainage Modeling Using Weather Radar Precipitation Estimates

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2011-01-01

    the uncertainty of the weather radar rainfall input. The main findings of this work, is that the input uncertainty propagate through the urban drainage model with significant effects on the model result. The GLUE methodology is in general a usable way to explore this uncertainty although; the exact width...

  3. Explorations in Aeolian Ecology: Radar and Visual Studies of the Aerofauna during the Convection and Precipitation/electrification (cape) Experiment.

    Science.gov (United States)

    Russell, Robert William

    I studied the ecology of aerial insects and birds (the "aerofauna") during the Convection and Precipitation/Electrification (CaPE) Experiment in Florida during the summer of 1991. Visual observations were coordinated with simultaneous measurements of atmospheric motions, permitting novel explorations of: (1) patterns and processes in the distribution of "aerial plankton" (i.e., small, weakly flying insects that drift with boundary-layer winds); (2) the feeding ecology of "aerial planktivores" (i.e., predators that feed on aerial plankton); and (3) the flight tactics of soaring birds. Sensitive Doppler radars regularly detected fine lines of enhanced reflectivity in boundary-layer convergence zones. These "fine lines" were attributable to dense concentrations of aerial plankton entrained by the convergent airflow. Insect densities were inferred to be about an order of magnitude higher inside convergence zones then elsewhere. Anecdotal observations suggested that large quantities of aerial plankton entrained in convergence zones were sometimes "scrubbed" from the boundary layer by precipitation. Radar images clearly depicted the rapid aeolian transport of aerial plankton across the landscape, but also showed that densities of aerial plankton became concentrated along coastlines when winds blew toward the sea. In contrast, airspace over the adjacent ocean remained largely free of radar echoes under all wind conditions. The coastal concentrations, together with the absence of overwater echoes, indicate that the organisms comprising the aerial plankton respond behaviorally to coastlines to avoid being blown out to sea. Several species of aerial insectivorous predators commonly exploited boundary-layer fine lines as food resources. Chimney swifts (Chaetura pelagica), barn swallows (Hirundo rustica), and wandering gliders (Pantala flavescens) showed significant responses to fine lines. Details of these responses differed, but this variation clearly reflected species

  4. TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product (TRMM Product 2A23) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  5. TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product (TRMM Product 2A23) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  6. TRMM Precipitation Radar (PR) Gridded Surface Rain Total Product (TRMM Product 3A26) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  7. TRMM Precipitation Radar (PR) Gridded Surface Rain Total Product (TRMM Product 3A26) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  8. A Wide-band, Ka-band Amplifier and Radar System for Precipitation Retrievals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is committed to measuring precipitation on a global scale. In 1997, NASA launched the Tropical Rain Measuring Mission which carried the first spaceborne...

  9. A Novel Low-Cost Dual-Wavelength Precipitation Radar Sensor Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is committed to measuring precipitation on a global scale. In 1997, NASA launched the Tropical Rain Measuring Mission which carried the first spaceborne...

  10. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2008-01-01

    An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

  11. The characteristics of weakly forced mountain-to-plain precipitation systems based on radar observations and high-resolution reanalysis

    Science.gov (United States)

    Xiao, Xian; Sun, Juanzhen; Chen, Mingxuan; Qie, Xiushu; Wang, Yingchun; Ying, Zhuming

    2017-03-01

    The metropolis of Beijing in China is located on a plain adjacent to high mountains to its northwest and the gulf of the Bohai Sea to its southeast. One of the most challenging forecast problems for Beijing is to predict whether thunderstorms initiating over the mountains will propagate to the adjacent plains and intensify. In this study, 18 warm season convective cases between 2008 and 2013 initiating on the mountains and intensifying on the plains under weak synoptic forcing were analyzed to gain an understanding of their characteristics. The statistical analysis was based on mosaic reflectivity data from six operational Doppler radars and reanalysis data produced by the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). The analysis of the radar reflectivity data shows that convective precipitation strengthened on the plains at certain preferred locations. To investigate the environmental conditions favoring the strengthening of the mountain-to-plain convective systems, statistical diagnoses of the rapid-update (12 min) 3 km reanalyses from VDRAS for the 18 cases were performed by computing the horizontal and temporal means of convective available potential energy, convective inhibition, vertical wind shear, and low-level wind for the plain and mountain regions separately. The results were compared with those from a baseline representing the warm season average and from a set of null cases and found considerable differences in these fields between the three data sets. The mean distributions of VDRAS reanalysis fields were also examined. The results suggest that the convergence between the low-level outflows associated with cold pools and the south-southeasterly environmental flows corresponds well with the preferred locations of convective intensification on the plains.

  12. Combined High Spectral Resolution Lidar and Millimeter Wavelength Radar Measurement of Ice Crystal Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, Edwin [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-28

    The goal of this research has been to improve measurements of snowfall using a combination of millimeter-wavelength radar and High Spectral Resolution Lidar (HSRL) Observations. Snowflakes are large compared to the 532nm HSRL wavelength and small compared to the 3.2 and 8.6 mm wavelength radars used in this study. This places the particles in the optical scattering regime of the HSRL, where extinction cross-section is proportional to the projected area of the particles, and in the Rayleigh regime for the radar, where the backscatter cross-section is proportional to the mass-squared of the particles. Forming a ratio of the radar measured cross-section to the HSRL measured cross section eliminates any dependence on the number of scattering particles, yielding a quantity proportional to the average mass-squared of the snowflakes over the average area of the flakes. Using simultaneous radar measurements of particle fall velocities, which are dependent particle mass and cross-sectional area it is possible to derive the average mass of the snow flakes, and with the radar measured fall velocities compute the snowfall rate. Since this retrieval requires the optical extinction cross-section we began by considering errors this quantity. The HSRL is particularly good at measuring the backscatter cross-section. In previous studies of snowfall in the high Arctic were able to estimate the extinction cross-section directly as a fixed ratio to the backscatter cross-section. Measurements acquired in the STORMVEX experiment in Colorado showed that this approach was not valid in mid-latitude snowfalls and that direct measurement of the extinction cross-section is required. Attempts to measure the extinction directly uncovered shortcomings in thermal regulation and mechanical stability of the newly deployed DOE HSRL systems. These problems were largely mitigated by modifications installed in both of the DOE systems. We also investigated other sources of error in the HSRL direct

  13. Quantitative measurement of precipitation using radar in comparison with ground-level measurements, taking orographic influences into account; Quantitative Niederschlagsmessung mit Radar im Vergleich mit Bodenmessungen in orographisch gegliedertem Gelaende

    Energy Technology Data Exchange (ETDEWEB)

    Gysi, H. [Radar-Info, Karlsruhe (Germany)

    1998-01-01

    The methods of correction applied to the determination of the spatial distribution of precipitation on the basis of the volumes established by the Karlsruhe C-band precipitation radar distinctly enhance the quality of statements regarding precipitation intensities and their time integration both in summer and winter. (orig./KW) [Deutsch] Die fuer die Bestimmung der raeumlichen Niederschlagsverteilung aus Volumendaten des Karlsruher C-Band Niederschlagradars angewandten Korrekturverfahren verbessern sowohl im Sommer als auch im Winter deutlich die Qualitaet und quantitative Aussagekraft der dargestellten Niederschlagsintensitaeten und deren zeitlichen Integrationen. (orig./KW)

  14. A Cloud and Precipitation Radar System Concept for the ACE Mission

    Science.gov (United States)

    Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.; hide

    2011-01-01

    One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.

  15. Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals.

    Science.gov (United States)

    Battaglia, A; Tanelli, S; Mroz, K; Tridon, F

    2015-05-16

    This paper illustrates how multiple scattering signatures affect Global Precipitation Measuring (GPM) Mission Dual-Frequency Precipitation Radar (DPR) Ku and Ka band reflectivity measurements and how they are consistent with prelaunch assessments based on theoretical considerations and confirmed by airborne observations. In particular, in the presence of deep convection, certain characteristics of the dual-wavelength reflectivity profiles cannot be explained with single scattering, whereas they are readily explained by multiple-scattering theory. Examples of such signatures are the absence of surface reflectivity peaks and anomalously small reflectivity slopes in the lower troposphere. These findings are relevant for DPR-based rainfall retrievals and stratiform/convective classification algorithms when dealing with deep convective regions. A path to refining the rainfall inversion problem is proposed by adopting a methodology based on a forward operator which accounts for multiple scattering. A retrieval algorithm based on this methodology is applied to a case study over Africa, and it is compared to the standard DPR products obtained with the at-launch version of the standard algorithms.

  16. Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014

    Science.gov (United States)

    Duan, Y.; Wilson, A. M.; Barros, A. P.

    2015-03-01

    A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the southern Appalachian Mountains, USA, since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 Version 7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA; missed detection, MD) and magnitude errors (underestimation, UND; overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter) and especially in the inner region. Although UND dominates the error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total, consistent with regional hydrometeorology. The 2A25 V7 product underestimates low-level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this

  17. An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite

    Science.gov (United States)

    Meneghini, Robert; Kim, Hyokyung; Liao, Liang; Jones, Jeffrey A.; Kwiatkowski, John M.

    2015-01-01

    It has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band-Ka-band combination. The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or sigma(0)) of the surface, the statistics of sigma(0) derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.

  18. The MOPITT Version 6 product: algorithm enhancements and validation

    Directory of Open Access Journals (Sweden)

    M. N. Deeter

    2014-11-01

    Full Text Available The Measurements of Pollution in the Troposphere (MOPITT Version 6 (V6 product for carbon monoxide (CO incorporates several enhancements which will benefit many users of MOPITT data. V6 algorithm improvements are described in detail, and V6 validation results are presented. First, a geolocation bias related to the orientation of the MOPITT instrument relative to the TERRA platform was characterized and eliminated. Second, the variable a priori for CO concentrations for V6 is based on simulations performed with the chemical transport model Community Atmosphere Model with Chemistry (CAM-chem for the years 2000–2009 instead of the model-derived climatology for 1997–2004 used for V5. Third, meteorological fields required for V6 retrieval processing are extracted from the MERRA (Modern-Era Retrospective Analysis For Research And Applications reanalysis. Finally, a significant latitude-dependent retrieval bias in the upper troposphere in Version 5 products has been substantially reduced.

  19. Characteristics of precipitating monsoon clouds over rain-shadow and drought-hit regions of India using radar

    Science.gov (United States)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Kulkarni, J. R.

    2017-07-01

    C-band radars were installed at Baramati and Shegaon as a part of operational cloud seeding program of Maharashtra State in the monsoon season (June-September) 2004. These provided first time a unique opportunity to study (1) characteristics of precipitating monsoon clouds (2) convection and (3) number of seedable clouds over Indian meteorological subdivisions of Madhya Maharashtra (rain-shadow) and Vidarbha (drought-hit). The monsoon season is divided into active and break periods. The cloud characteristics studied are: diurnal variation, cloud top heights and durations. Diurnal variation of cloud frequency shows maximum in the afternoon hours (10-11 UTC) and minimum in the early morning hours (3-4 UTC) in both the periods. Cloud tops show trimodal distributions with modes at 2-3, 8-9 and above 9 km. Mean cloud duration is 55 min. Congestus has been found prominent cloud type (65%) with mean top height of 6.76 km. Frequency of cumulonimbus clouds is found higher in the break periods. Cloud scale is taken as a metric for characterization of convection. Maximum frequency of cloud scale is found at C scale (mesoscale: area 100-1000 km2). Mesoscale Convective System has been found dominating convection type. The convection over the area has been shown to be hybrid type, consisting of basic oceanic type modulated by land convection. Convective clouds having maximum reflectivities between 25 and 35 dBZ, suitable for hygroscopic and glaciogenic seeding, are found in a large number. Understanding of characteristics of clouds and convection is useful for the diagnostic and precipitation enhancement studies over the rain-shadow/drought-hit regions.

  20. UAH Version 6 global satellite temperature products: Methodology and results

    Science.gov (United States)

    Spencer, Roy W.; Christy, John R.; Braswell, William D.

    2017-02-01

    Version 6 of the UAH MSU/AMSU global satellite temperature dataset represents an extensive revision of the procedures employed in previous versions of the UAH datasets. The two most significant results from an end-user perspective are (1) a decrease in the global-average lower tropospheric temperature (LT) trend from +0.14°C decade-1 to +0.11°C decade-1 (Jan. 1979 through Dec. 2015); and (2) the geographic distribution of the LT trends, including higher spatial resolution, owing to a new method for computing LT. We describe the major changes in processing strategy, including a new method for monthly gridpoint averaging which uses all of the footprint data yet eliminates the need for limb correction; a new multi-channel (rather than multi-angle) method for computing the lower tropospheric (LT) temperature product which requires an additional tropopause (TP) channel to be used; and a new empirical method for diurnal drift correction. We show results for LT, the midtroposphere (MT, from MSU2/AMSU5), and lower stratosphere (LS, from MSU4/AMSU9). A 0.03°C decade-1 reduction in the global LT trend from the Version 5.6 product is partly due to lesser sensitivity of the new LT to land surface skin temperature (est. 0.01°C decade-1), with the remainder of the reduction (0.02°C decade-1) due to the new diurnal drift adjustment, the more robust method of LT calculation, and other changes in processing procedures.

  1. The National Energy Audit (NEAT) Engineering Manual (Version 6)

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.B.

    2001-04-20

    Government-funded weatherization assistance programs resulted from increased oil prices caused by the 1973 oil embargo. These programs were instituted to reduce US consumption of oil and help low-income families afford the increasing cost of heating their homes. In the summer of 1988, Oak Ridge National Laboratory (ORNL) began providing technical support to the Department of Energy (DOE) Weatherization Assistance Program (WAP). A preliminary study found no suitable means of cost-effectively selecting energy efficiency improvements (measures) for single-family homes that incorporated all the factors seen as beneficial in improving cost-effectiveness and usability. In mid-1989, ORNL was authorized to begin development of a computer-based measure selection technique. In November of 1992 a draft version of the program was made available to all WAP state directors for testing. The first production release, Version 4.3, was made available in october of 1993. The Department of Energy's Weatherization Assistance Program has continued funding improvements to the program increasing its user-friendliness and applicability. initial publication of this engineering manual coincides with availability of Version 6.1, November 1997, though algorithms described generally apply to all prior versions. Periodic updates of specific sections in the manual will permit maintaining a relevant document. This Engineering Manual delineates the assumptions used by NEAT in arriving at the measure recommendations based on the user's input of the building characteristics. Details of the actual data entry are available in the NEAT User's Manual (ORNL/Sub/91-SK078/1) and will not be discussed in this manual.

  2. Improvements to the MODIS Land Products in Collection Version 6

    Science.gov (United States)

    Wolfe, R. E.; Devadiga, S.; Masuoka, E. J.; Running, S. W.; Vermote, E.; Giglio, L.; Wan, Z.; Riggs, G. A.; Schaaf, C.; Myneni, R. B.; Friedl, M. A.; Wang, Z.; Sulla-menashe, D. J.; Zhao, M.

    2013-12-01

    The MODIS (Moderate Resolution Imaging Spectroradiometer) Adaptive Processing System (MODAPS), housed at the NASA Goddard Space Flight Center (GSFC), has been processing the earth view data acquired by the MODIS instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites to generate suite of land and atmosphere data products using the science algorithms developed by the MODIS Science Team. These data products are used by diverse set of users in research and other applications from both government and non-government agencies around the world. These validated global products are also being used in interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment. Hence an increased emphasis is being placed on generation of high quality consistent data records from the MODIS data through reprocessing of the records using improved science algorithms. Since the launch of Terra in December 1999, MODIS land data records have been reprocessed four times. The Collection Version 6 (C6) reprocessing of MODIS Land and Atmosphere products is scheduled to start in Fall 2013 and is expected to complete in Spring 2014. This presentation will describe changes made to the C6 science algorithms to correct issues in the C5 products, additional improvements made to the products as deemed necessary by the data users and science teams, and new products introduced in this reprocessing. In addition to the improvements from product specific changes to algorithms, the C6 products will also see significant improvement in the calibration by the MODIS Calibration Science Team (MCST) of the C6 L1B Top of the Atmosphere (TOA) reflectance and radiance product, more accurate geolocation, and an improved Land Water mask. For the a priori land cover input, this reprocessing will use the multi-year land cover product generated with three years of MODIS data as input as opposed to one

  3. Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2011-03-01

    Full Text Available X-band Synthetic Aperture Radars (X-SARs, able to image the Earth's surface at metric resolution, may provide a unique opportunity to measure rainfall over land with spatial resolution of about few hundred meters, due to the atmospheric moving-target degradation effects. This capability has become very appealing due to the recent launch of several X-SAR satellites, even though several remote sensing issues are still open. This work is devoted to: (i explore the potential of X-band high-resolution detection and retrieval of rainfall fields from space using X-SAR signal backscattering amplitude and interferometric phase; (ii evaluate the effects of spatial resolution degradation by precipitation and inhomogeneous beam filling when comparing to other satellite-based sensors. Our X-SAR analysis of precipitation effects has been carried out using both a TerraSAR-X (TSX case study of Hurricane "Gustav" in 2008 over Mississippi (USA and a COSMO-SkyMed (CSK X-SAR case study of orographic rainfall over Central Italy in 2009. For the TSX case study the near-surface rain rate has been retrieved from the normalized radar cross section by means of a modified regression empirical algorithm (MREA. A relatively simple method to account for the geometric effect of X-SAR observation on estimated rainfall rate and first-order volumetric effects has been developed and applied. The TSX-retrieved rain fields have been compared to those estimated from the Next Generation Weather Radar (NEXRAD in Mobile (AL, USA. The rainfall detection capability of X-SAR has been tested on the CSK case study using the repeat-pass coherence response and qualitatively comparing its signature with ground-based Mt. Midia C-band radar in central Italy. A numerical simulator to represent the effect of the spatial resolution and the antenna pattern of TRMM satellite Precipitation Radar (PR and Microwave Imager (TMI, using high-resolution TSX-retrieved rain images, has been also set up in

  4. Comparison between weather radar and rain gauges data of precipitations that triggered debris flows in the Dolomites (North Eastern Italian Alps)

    Science.gov (United States)

    Bernard, Martino; Gregoretti, Carlo

    2016-04-01

    High intensity and short duration (usually 15-30 minutes) rainfalls are able to generate sudden and abundant runoff in rocky cliffs that can entrain large quantities of sediments and originate debris flow phenomena. A rain gauge network has been set up in two different areas of Dolomites (North Eastern Italian Alps) far each other about 15 km: Fiames (Cortina d'Ampezzo) and Rovina di Cancia (Borca di Cadore). The first network is composed of 9 rain gauges in an area of 1 km2, while the second is composed of 6 rain gauges in an area of 2 km2. In both the areas, the rain gauges are positioned both upstream and downstream the initiation areas of the occurring debris flows. Another single rain gauge is positioned close to the initiation area of Rudavoi debris flow (Auronzo di Cadore) and is far about 5 km from the Fiames rain gauges network. All the rain gauges sample precipitation depth at 5 minutes intervals. In the years 2009-2015 records of rainfalls that triggered 22 debris flows were taken. In most cases, the recorded rainfalls show an higher variability both along distance (200-500 m) and along altitude (200-600 m). Precipitation data recorded by the rain gauges are then compared with those estimated by means of a C-Band weather radar about 70 km away from there, to verify the possible interchangeability of the two measurement systems. Rainfall depths estimated by radar are provided with the temporal interval of the rain gauges (5 minutes) but with a different spatial scale (500 x 500 m raster resolution). To avoid the observation scale gap between the different techniques, in addition to standard comparisons between point gauge and radar rainfall measures, mean areal precipitations were derived from rain gauge network and compared with radar data. Results seem to demonstrate that radar tends to underestimate precipitation evaluated from rain gauges network, both on different measurement scales and on mean spatial data. On average, underestimation regards both

  5. Joint statistical correction of clutters, spokes and beam height for a radar derived precipitation climatology in southern Germany

    Directory of Open Access Journals (Sweden)

    A. Wagner

    2012-11-01

    Full Text Available First results of radar derived climatology have emerged over the last years, as datasets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as continuous storage of radar data was often not achieved before. This kind of climatology demands a high level of data quality. Small deviations or minor systematic under- or overestimations in single radar images become a major cause of error in statistical analysis. Extensive corrections of radar data are a crucial prerequisite for radar derived climatology. We present a new statistical post-correction scheme based on a climatological analysis of seven years of radar data of the Munich weather radar (2000–2006 operated by DWD (German Weather Service. Original radar products are used subject only to corrections within the signal processor without any further corrections on single radar images. The aim of this statistical correction is to make up for the average systematic errors caused by clutter, propagation, or measuring effects but to conserve small-scale natural variations in space.

    The statistical correction is based on a thorough analysis of the different causes of possible errors for the Munich weather radar. This analysis revealed the following basic effects: the decrease of rain amount as a function of height and distance from the radar, clutter effects such as clutter remnants after filtering, holes by eliminated clutter or shading effects from obstacles near the radar, visible as spokes, as well as the influence of the bright band. The correction algorithm is correspondingly based on these results. It consists of three modules. The first one is an altitude correction which minimises measuring effects. The second module corrects clutter effects and disturbances and the third one realises a mean adjustment to selected rain gauges. Two different sets of radar products are used. The statistical analysis as well as

  6. Joint statistical correction of clutters, spokes and beam height for a radar derived precipitation climatology in southern Germany

    Science.gov (United States)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2012-11-01

    First results of radar derived climatology have emerged over the last years, as datasets of appropriate extent are becoming available. Usually, these statistics are based on time series lasting up to ten years as continuous storage of radar data was often not achieved before. This kind of climatology demands a high level of data quality. Small deviations or minor systematic under- or overestimations in single radar images become a major cause of error in statistical analysis. Extensive corrections of radar data are a crucial prerequisite for radar derived climatology. We present a new statistical post-correction scheme based on a climatological analysis of seven years of radar data of the Munich weather radar (2000-2006) operated by DWD (German Weather Service). Original radar products are used subject only to corrections within the signal processor without any further corrections on single radar images. The aim of this statistical correction is to make up for the average systematic errors caused by clutter, propagation, or measuring effects but to conserve small-scale natural variations in space. The statistical correction is based on a thorough analysis of the different causes of possible errors for the Munich weather radar. This analysis revealed the following basic effects: the decrease of rain amount as a function of height and distance from the radar, clutter effects such as clutter remnants after filtering, holes by eliminated clutter or shading effects from obstacles near the radar, visible as spokes, as well as the influence of the bright band. The correction algorithm is correspondingly based on these results. It consists of three modules. The first one is an altitude correction which minimises measuring effects. The second module corrects clutter effects and disturbances and the third one realises a mean adjustment to selected rain gauges. Two different sets of radar products are used. The statistical analysis as well as module 1 and module 2 of the

  7. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  8. Recent Observations of Clouds and Precipitation by the Airborne Precipitation Radar 2nd Generation in Support of the GPM and ACE Missions

    Science.gov (United States)

    Durden, Stephen L.; Tanelli, Simone; Im, Eastwood

    2012-01-01

    In this paper we illustrate the unique dataset collected during the Global Precipitation Measurement Cold-season Precipitation Experiment (GCPEx, US/Canada Jan/Feb 2012). We will focus on the significance of these observations for the development of algorithms for GPM and ACE, with particular attention to classification and retrievals of frozen and mixed phase hydrometeors.

  9. Ku/Ka-band electrically-scanned line array for tri-band cloud and precipitation radar applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A spaceborne radar system that operates simultaneously at multiple frequency bands from microwave through millimeter-wave frequencies can exploit the largely varying...

  10. Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data

    Directory of Open Access Journals (Sweden)

    D. Tetzlaff

    2005-01-01

    Full Text Available The importance of considering the spatial distribution of rainfall for process-oriented hydrological modelling is well-known. However, the application of rainfall radar data to provide such detailed spatial resolution is still under debate. In this study the process-oriented TACD (Tracer Aided Catchment model, Distributed model had been used to investigate the effects of different spatially distributed rainfall input on simulated discharge and runoff components on an event base. TACD is fully distributed (50x50m2 raster cells and was applied on an hourly base. As model input rainfall data from up to 7 ground stations and high resolution rainfall radar data from operational C-band radar were used. For seven rainfall events the discharge simulations were investigated in further detail for the mountainous Brugga catchment (40km2 and the St. Wilhelmer Talbach (15.2km2 sub-basin, which are located in the Southern Black Forest Mountains, south-west Germany. The significance of spatial variable precipitation data was clearly demonstrated. Dependent on event characteristics, localized rain cells were occasionally poorly captured even by a dense ground station network, and this resulted in inadequate model results. For such events, radar data can provide better input data. However, an extensive data adjustment using ground station data is required. For this purpose a method was developed that considers the temporal variability in rainfall intensity in high temporal resolution in combination with the total rainfall amount of both data sets. The use of the distributed catchment model allowed further insights into spatially variable impacts of different rainfall estimates. Impacts for discharge predictions are the largest in areas that are dominated by the production of fast runoff components. The improvements for distributed runoff simulation using high resolution rainfall radar input data are strongly dependent on the investigated scale, the event

  11. Results from CrIS/ATMS Obtained Using an AIRS "Version-6 like" Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    We tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other. CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS over land, especially under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differences. Updates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.

  12. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  13. Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA

    Directory of Open Access Journals (Sweden)

    C. A. Orem

    2016-11-01

    Full Text Available Flood-envelope curves (FECs are useful for constraining the upper limit of possible flood discharges within drainage basins in a particular hydroclimatic region. Their usefulness, however, is limited by their lack of a well-defined recurrence interval. In this study we use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e., the frequency–magnitude–area-curve (FMAC method that incorporates recurrence intervals. The FMAC method is demonstrated in two well-studied US drainage basins, i.e., the Upper and Lower Colorado River basins (UCRB and LCRB, respectively, using Stage III Next-Generation-Radar (NEXRAD gridded products and the diffusion-wave flow-routing algorithm. The FMAC method can be applied worldwide using any radar-derived precipitation estimates. In the FMAC method, idealized basins of similar contributing area are grouped together for frequency–magnitude analysis of precipitation intensity. These data are then routed through the idealized drainage basins of different contributing areas, using contributing-area-specific estimates for channel slope and channel width. Our results show that FMACs of precipitation discharge are power-law functions of contributing area with an average exponent of 0.82 ± 0.06 for recurrence intervals from 10 to 500 years. We compare our FMACs to published FECs and find that for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the UCRB is on par with the US FEC for contributing areas of  ∼ 102 to 103 km2. FMACs of flood discharge for the LCRB exceed the published FEC for the LCRB for contributing areas in the range of  ∼ 103 to 104 km2. The FMAC method retains the power of the FEC method for constraining flood hazards in basins that are ungauged or have short flood records, yet it has the added advantage that it includes recurrence-interval information necessary for estimating event probabilities.

  14. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector†

    Directory of Open Access Journals (Sweden)

    Tyler B. Coplen

    2015-12-01

    Full Text Available During landfall of extratropical cyclones between 2005 and 2011, nearly 1400 precipitation samples were collected at intervals of 30-min time resolution with novel automated collectors at four NOAA sites in northern California [Alta (ATA, Bodega Bay (BBY, Cazadero (CZD and Shasta Dam (STD] during 43 events. Substantial decreases were commonly followed hours later by substantial increases in hydrogen isotopic composition (δ 2HVSMOW where VSMOW is Vienna Standard Mean Ocean Water and oxygen isotopic composition (δ 18OVSMOW of precipitation. These variations likely occur as pre-cold frontal precipitation generation transitions from marine vapour masses having low rainout to cold cloud layers having much higher rainout (with concomitant brightband signatures measured by an S-band profiling radar and lower δ 2HVSMOW values of precipitation, and finally to shallower, warmer precipitating clouds having lower rainout (with non-brightband signatures and higher δ 2HVSMOW values of precipitation, in accord with ‘seeder–feeder’ precipitation. Of 82 intervals identified, a remarkable 100.5 ‰ decrease in δ 2HVSMOW value was observed for a 21 January 2010 event at BBY. Of the 61 intervals identified with increases in δ 2HVSMOW values as precipitation transitioned to shallower, warmer clouds having substantially less rainout (the feeder part of the seeder–feeder mechanism, a remarkable increase in δ 2HVSMOW value of precipitation of 82.3 ‰ was observed for a 10 February 2007 event at CZD. All CZD and ATA events having δ 2HVSMOW values of precipitation below −105 ‰ were atmospheric rivers (ARs, and of the 13 events having δ 2HVSMOW values of precipitation below −80 ‰, 77 % were ARs. Cloud echo-top heights (a proxy for atmospheric temperature were available for 23 events. The mean echo-top height is greater for higher rainout periods than that for lower rainout periods in 22 of the 23 events. The lowest δ 2HVSMOW of precipitation of

  15. TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products (TRMM Product 1C21) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  16. TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products (TRMM Product 1C21) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  17. TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products (TRMM Product 1B21) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  18. TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products (TRMM Product 1B21) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  19. TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product (TRMM Product 2A21) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  20. TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product (TRMM Product 2A21) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  1. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  2. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    . Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  3. The use of land- and satellite-based precipitation radar to forecast debris flows and high water discharge: case study from June 2nd, 2016 in southern Norway.

    Science.gov (United States)

    Devoli, Graziella; Mengistu, Zelalem T.; Elo, Christoffer A.; Boje, Søren; Rønning, Snorre S.; Engeland, Kolbjørn; Lussana, Cristian

    2017-04-01

    The Norwegian flood- and landslide forecasting service at the Norwegian Water Resources and Energy Directorate (NVE) (www.varsom.no), has issued flood forecasts since 1989, and since 2013 the occurrence of many landslides events at regional level, due either to severe storms or intense snow melting, has been predicted. High intensity and short duration (less than 1 hour) rainfalls may cause sudden and abundant runoff that can entrain large quantities of loose sediments and originate debris flows. Intense convective rainstorms often develop quickly, especially during summer, and they are difficult to forecast and even to observe with a standard (synoptic) network of precipitation gauges. In those cases, the forecaster on duty can send warning messages for a very large area (encompassing many counties and many municipalities), because of the large spatial uncertainty of the prognoses and amount of rain. A standard sentence in the warning message is always included, recommending to the population to monitor the evolution of the rainstorm with weather radar products, which are available on institutional websites. In other cases, especially when the convective rainstorm is spatially confined in a small area and highly uncertain, the forecaster may choose to not issue any warning. The first situation yields false alarms for some areas, while the second situation could result in a missing event, if a landslide actually occurs. The Norwegian Meteorological Institute (MET) and NVE are working on a project to further promote the use of radar-derived products in landslides and flood forecasting. In this study, we focus on the description of a case study to present the potential of MET-NVE collaboration on the topic. As a case study, we have chosen a short-lived rainstorm occurred on June 2nd, 2016 in Motland (Rogaland county, Southern Norway), which had triggered 2 debris flows that were not forecasted. Land- and satellite-based weather radar and lighting data were used to

  4. Characterising regional landslide initiation thresholds in Scotland, UK using NIMROD c-band precipitation radar and the BGS National Landslide Database.

    Science.gov (United States)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2016-04-01

    Forecasting changes in slope stability and the location and timing of landslide events is of great scientific and societal interest. This is particularly the case in the context of critical infrastructure systems as these can cross many geological and hydro-geological domains and provide essential societal services. An established area of enquiry is that of characterising site, regional and national scale hydro-meteorological proxies (e.g. precipitation intensity/duration, antecedent precipitation or soil moisture deficit) to distil antecedent and initiation landslide threshold conditions. However, the application of such methods often suffers from limited spatio-temporal availability of meteorological data and landslide inventories. There are relatively few studies applying remotely sensed meteorological data to examine precursory conditions at national, regional and local scale. This study seeks to address this by applying remotely sensed meteorological data to examine precursory conditions at national, regional and local scale in combination with information derived from the BGS National Landslide Database. There are a total 115 landslides in Scotland, UK with recorded date of failure in the BGS National Landslide Database covering the period 2004 to 2015. To determine landslide initiation thresholds high resolution (15 minute 5km2) c-band precipitation intensity (mm/hr) radar data are analysed leading to the establishment of precipitation intensity time series for each landslide location. These time series enable calculation of derived explanatory variables including daily mean, max, volume and the aggregation of antecedent values at 3, 6, 18, 36 and 72 days. The statistical significance of each variable is determined, with the lowest probability of the observed occurrences being due to chance taken as indicating the best explanation. Combinations of thresholds and various spatial scales are examined to identify national and regional triggering conditions

  5. A preliminary test of the application of the Lightning Detection and Ranging System (LDAR) as a thunderstorm warning and location device for the FHA including a correlation with updrafts, turbulence, and radar precipitation echoes

    Science.gov (United States)

    Poehler, H. A.

    1978-01-01

    Results of a test of the use of a Lightning Detection and Ranging (LDAR) remote display in the Patrick AFB RAPCON facility are presented. Agreement between LDAR and radar precipitation echoes of the RAPCON radar was observed, as well as agreement between LDAR and pilot's visual observations of lightning flashes. A more precise comparison between LDAR and KSC based radars is achieved by the superposition of LDAR precipitation echoes. Airborne measurements of updrafts and turbulence by an armored T-28 aircraft flying through the thunderclouds are correlated with LDAR along the flight path. Calibration and measurements of the accuracy of the LDAR System are discussed, and the extended range of the system is illustrated.

  6. ZFITTER: A Semi-analytical program for fermion pair production in e+ e- annihilation, from version 6.21 to version 6.42

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B.; Awramik, M.; Czakon, M.; Freitas, A.; Grunewald, M.W.; Monig, K.; Riemann, S.; Riemann, T.; /Dubna, JINR /DESY, Zeuthen /Cracow, INP /Wurzburg U. /Silesia

    2005-07-01

    ZFITTER is a Fortran program for the calculation of fermion pair production and radiative corrections at high energy e{sup +}e{sup -} colliders; it is also suitable for other applications where electroweak radiative corrections appear. ZFITTER is based on a semi-analytical approach to the calculation of radiative corrections in the Standard Model. They present a summary of new features of the ZFITTER program version 6.42 compared to version 6.21. The most important additions are: (1) some higher-order QED corrections to fermion pair production, (2) electroweak one-loop corrections to atomic parity violation, (3) electroweak one-loop corrections to {bar {nu}}{sub e}{nu}{sub e} production, (4) electroweak two-loop corrections to the W boson mass and the effective weak mixing angle.

  7. Comparison of atmospheric instability indices derived from radiosonde observations and precipitation values measured with a weather radar and a rain gauge network in Sao Paulo, Brazil.

    Science.gov (United States)

    Alves, Mauro; Martin, Inacio; Shkevov, Rumen; Gusev, Anatoly; De Abreu, Alessandro

    2016-07-01

    Radio soundings are carried out daily in more than 800 stations throughout the world. The data collected in the soundings are used in many meteorological applications such as numerical weather prediction and climate models. Despite the relatively large number of sounding stations, they are unevenly distributed over the globe. It is generally assumed that the desired distance between stations is 300 km. In this study, we performed a comparison of 20 soundings of two stations located 85 km apart (State of São Paulo, Brazil; 23.511811° S, 46.637528° W, and 23.212578° S, 45.866581° W) to determine whether there is a concordance between atmospheric instability indices derived from the data collected by soundings at the these different locations. Additionally, precipitation data obtained by a meteorological radar and a rain gauge network during the same period as the soundings are compared to the stability indices to establish a correlation between precipitation values and these indices.

  8. Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data

    Science.gov (United States)

    Chavez, Steven P.; Takahashi, Ken

    2017-06-01

    The Andes-Amazon transition, along the eastern Peruvian Andes, features "hot spots" with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13-18 LT) convection in the Amazon plains, while on the eastern slopes (1000-2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01-06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01-06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases.

  9. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .

  10. Recent status scores for version 6 of the Addiction Severity Index (ASI-6).

    Science.gov (United States)

    Cacciola, John S; Alterman, Arthur I; Habing, Brian; McLellan, A Thomas

    2011-09-01

    To describe the derivation of recent status scores (RSSs) for version 6 of the Addiction Severity Index (ASI-6). 118 ASI-6 recent status items were subjected to nonparametric item response theory (NIRT) analyses followed by confirmatory factor analysis (CFA). Generalizability and concurrent validity of the derived scores were determined. A total of 607 recent admissions to variety of substance abuse treatment programs constituted the derivation sample; a subset (n = 252) comprised the validity sample. The ASI-6 interview and a validity battery of primarily self-report questionnaires that included at least one measure corresponding to each of the seven ASI domains were administered. Nine summary scales describing recent status that achieved or approached both high scalability and reliability were derived; one scale for each of six areas (medical, employment/finances, alcohol, drug, legal, psychiatric) and three scales for the family/social area. Intercorrelations among the RSSs also supported the multi-dimensionality of the ASI-6. Concurrent validity analyses yielded strong evidence supporting the validity of six of the RSSs (medical, alcohol, drug, employment, family/social problems, psychiatric). Evidence was weaker for the legal, family/social support and child problems RSSs. Generalizability analyses of the scales to males versus females and whites versus blacks supported the comparability of the findings, with slight exceptions. The psychometric analyses to derive Addiction Severity Index version 6 recent status scores support the multi-dimensionality of the Addiction Severity Index version 6 (i.e. the relative independence of different life functioning areas), consistent with research on earlier editions of the instrument. In general, the Addiction Severity Index version 6 scales demonstrate acceptable scalability, reliability and concurrent validity. While questions remain about the generalizability of some scales to population subgroups, the overall findings

  11. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014–2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar

    Science.gov (United States)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.

    2017-12-01

    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  12. GPM, DPR Level 2A Ka Precipitation V03

    Data.gov (United States)

    National Aeronautics and Space Administration — The 2AKa algorithm provides precipitation estimates from the Ka radar of the Dual-Frequency Precipitation Radar on the core GPM spacecraft. The product contains two...

  13. GPM, DPR Level 2A Ku Precipitation V03

    Data.gov (United States)

    National Aeronautics and Space Administration — The 2AKu algorithm provides precipitation estimates from the Ku radar of the Dual-Frequency Precipitation Radar on the core GPM spacecraft. The product contains one...

  14. Identification and Quantification of Uncertainties Related to Using Distributed X-band Radar Estimated Precipitation as input in Urban Drainage Models

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth

    The Local Area Weather Radar (LAWR) is a small scale weather radar providing distributed measurements of rainfall primarily for use as input in hydrological applications. As any other weather radar the LAWR measurement of the rainfall is an indirect measurement since it does not measure the rainf...... revealing interesting new spatial characteristics of extreme rainfall events not earlier observed....... in connection with boundary assignment besides general improved understanding of the benefits and pitfalls in using distributed rainfall data as input to models. In connection with the use of LAWR data in urban drainage context, the potential for using LAWR data for extreme rainfall statistics has been studied...

  15. McGill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network. Part I: Sensitivity studies of the Variational Echo Tracking (VET) technique

    Science.gov (United States)

    Bellon, Aldo; Zawadzki, Isztar; Kilambi, Alamelu; Lee, Hee Choon; Lee, Yong Hee; Lee, Gyuwon

    2010-08-01

    A Variational Echo Tracking (VET) technique has been applied to four months of archived data from the South Korean radar network in order to examine the influence of the various user-selectable parameters on the skill of the resulting 20-min to 4-h nowcasts. The latter are computed over a (512 × 512) array at 2-km resolution. After correcting the original algorithm to take into account the motion of precipitation across the boundaries of such a smaller radar network, we concluded that the set of default input parameters initially assumed is very close to the optimum combination. Decreasing to (5 sx 5) or increasing to (50 × 50) the default vector density of (25 × 25), using two or three maps for velocity determination, varying the relative weights for the constraints of conservation of reflectivity and of the smoothing of the velocity vectors, and finally the application of temporal smoothing all had only marginal effects on the skill of the forecasts. The relatively small sensitivity to significant variations of the VET default parameters is a direct consequence of the fact that the major source of the loss in forecast skill cannot be attributed to errors in the forecast motion, but to the unpredictable nature of the storm growth and decay. Changing the time interval between maps, from 20 to 10 minutes, and significantly increasing the reflectivity threshold from 15 to 30 dBZ had a more noticeable reduction on the forecast skill. Comparisons with the Eulerian "zero velocity" forecast and with a "single" vector forecast have also been performed in order to determine the accrued skill of the VET algorithm. Because of the extensive stratiform nature of the precipitation areas affecting the Korean peninsula, the increased skill is not as large as may have been anticipated. This can be explained by the greater extent of the precipitation systems relative to the size of the radar coverage domain.

  16. Nuclear Facility Accident (NFAC) Unit Test Report For HPAC Version 6.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ronald W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Morris, Robert W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division; Sulfredge, Charles David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division

    2015-12-01

    This is a unit test report for the Nuclear Facility Accident (NFAC) model for the Hazard Prediction and Assessment Capability (HPAC) version 6.3. NFAC’s responsibility as an HPAC component is three-fold. First, it must present an interactive graphical user interface (GUI) by which users can view and edit the definition of an NFAC incident. Second, for each incident defined, NFAC must interact with RTH to create activity table inputs and associate them with pseudo materials to be transported via SCIPUFF. Third, NFAC must create SCIPUFF releases with the associated pseudo materials for transport and dispersion. The goal of NFAC unit testing is to verify that the inputs it produces are correct for the source term or model definition as specified by the user via the GUI.

  17. BOREAS RSS-16 AIRSAR CM Images: Integrated Processor Version 6.1 Level-3b

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Saatchi, Susan; Newcomer, Jeffrey A.; Strub, Richard; Irani, Fred

    2000-01-01

    The BOREAS RSS-16 team used satellite and aircraft SAR data in conjunction with various ground measurements to determine the moisture regime of the boreal forest. RSS-16 assisted with the acquisition and ordering of NASA JPL AIRSAR data collected from the NASA DC-8 aircraft. The NASA JPL AIRSAR is a side-looking imaging radar system that utilizes the SAR principle to obtain high resolution images that represent the radar backscatter of the imaged surface at different frequencies and polarizations. The information contained in each pixel of the AIRSAR data represents the radar backscatter for all possible combinations of horizontal and vertical transmit and receive polarizations (i.e., HH, HV, VH, and VV). Geographically, the data cover portions of the BOREAS SSA and NSA. Temporally, the data were acquired from 12-Aug-1993 to 31-Jul-1995. The level-3b AIRSAR CM data are in compressed Stokes matrix format, which has 10 bytes per pixel. From this data format, it is possible to synthesize a number of different radar backscatter measurements. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. River Forecasting Center Quantitative Precipitation Estimate Archive

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Radar indicated-rain gage verified and corrected hourly precipitation estimate on a corrected ~4km HRAP grid. This archive contains hourly estimates of precipitation...

  19. xdamp Version 6 : an IDL-based data and image manipulation program.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker

    2012-04-01

    The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sign)-based workstations, a replacement was needed. This package uses the IDL(reg sign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sign) workstations, Hewlett Packard workstations, SUN(reg sign) workstations, Microsoft(reg sign) Windows{trademark} computers, Macintosh(reg sign) computers and Digital Equipment Corporation VMS(reg sign) and Alpha(reg sign) systems. Thus, xdamp is portable across many platforms. We have verified operation, albeit with some minor IDL bugs, on personal computers using Windows 7 and Windows Vista; Unix platforms; and Macintosh computers. Version 6 is an update that uses the IDL Virtual Machine to resolve the need for licensing IDL.

  20. Simion 3D Version 6.0 User`s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, D.A.

    1995-11-01

    The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

  1. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  2. The new Passive microwave Neural network Precipitation Retrieval (PNPR algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    Directory of Open Access Journals (Sweden)

    P. Sanò

    2016-11-01

    Full Text Available The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2, an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1, developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF, with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR. In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013–2014 dataset of coincident observations over a regular grid at 0.5°  ×  0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast, and the root mean squared error (RMSE was equal to 1.30 mm h−1 over ocean and 1.11 mm h−1 over

  3. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance.

    Science.gov (United States)

    Heavner, Benjamin D; Smallbone, Kieran; Price, Nathan D; Walker, Larry P

    2013-01-01

    Updates to maintain a state-of-the art reconstruction of the yeast metabolic network are essential to reflect our understanding of yeast metabolism and functional organization, to eliminate any inaccuracies identified in earlier iterations, to improve predictive accuracy and to continue to expand into novel subsystems to extend the comprehensiveness of the model. Here, we present version 6 of the consensus yeast metabolic network (Yeast 6) as an update to the community effort to computationally reconstruct the genome-scale metabolic network of Saccharomyces cerevisiae S288c. Yeast 6 comprises 1458 metabolites participating in 1888 reactions, which are annotated with 900 yeast genes encoding the catalyzing enzymes. Compared with Yeast 5, Yeast 6 demonstrates improved sensitivity, specificity and positive and negative predictive values for predicting gene essentiality in glucose-limited aerobic conditions when analyzed with flux balance analysis. Additionally, Yeast 6 improves the accuracy of predicting the likelihood that a mutation will cause auxotrophy. The network reconstruction is available as a Systems Biology Markup Language (SBML) file enriched with Minimium Information Requested in the Annotation of Biochemical Models (MIRIAM)-compliant annotations. Small- and macromolecules in the network are referenced to authoritative databases such as Uniprot or ChEBI. Molecules and reactions are also annotated with appropriate publications that contain supporting evidence. Yeast 6 is freely available at http://yeast.sf.net/ as three separate SBML files: a model using the SBML level 3 Flux Balance Constraint package, a model compatible with the MATLAB® COBRA Toolbox for backward compatibility and a reconstruction containing only reactions for which there is experimental evidence (without the non-biological reactions necessary for simulating growth). Database URL: http://yeast.sf.net/

  4. On the quality of the Nimbus 7 LIMS Version 6 water vapor profiles and distributions

    Directory of Open Access Journals (Sweden)

    B. T. Marshall

    2009-12-01

    Full Text Available This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS water vapor (H2O profiles of 1978/79 that were processed with a Version 6 (V6 algorithm and archived in 2002. The V6 profiles incorporate a better knowledge of the instrument attitude for the LIMS measurements along its orbits, leading to improvements for its temperature profiles and for the registration of its water vapor radiances with pressure. As a result, the LIMS V6 zonal-mean distributions of H2O exhibit better hemispheric symmetry than was the case from the original Version 5 (V5 dataset that was archived in 1982. Estimates of the precision and accuracy of the V6 H2O profiles are developed and provided. Individual profiles have a precision of order 5% and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa. Profile segments within about 2 km of the tropopause are often affected by emissions from clouds that appear in the finite field-of-view of the detector for the LIMS H2O channel. Zonally-averaged distributions of the LIMS V6 H2O are compared with those from the more recent Microwave Limb Sounder (MLS satellite experiment for November, February, and May of 2004/05. The patterns and values of their respective distributions are similar in many respects. Effects of a strengthened Brewer-Dobson circulation are indicated in the MLS distributions of the recent decade versus those of LIMS from 1978/79. A tropical tape recorder signal is present in the 7-month time series of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-averaged "entry-level" H2O is 3.5 to 3.8 ppmv. It is judged that this historic LIMS water vapor dataset is of good quality for studies of the near global-scale chemistry and transport for pressure levels from 3 hPa to about 70 to 100 hPa.

  5. The impact of reflectivity correction and accounting for raindrop size distribution variabilty to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    NARCIS (Netherlands)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2014-01-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and

  6. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  7. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  8. Analysis of CrIS-ATMS Data Using an AIRS Science Team Version 6 - Like Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis C.

    2013-01-01

    CrIS/ATMS is flying on NPP and is scheduled to fly on JPSS-1. CrIS/ATMS has roughly equivalent capabilities to AIRS/AMSU. The AIRS Science Team Version 6 retrieval algorithm is currently producing very high quality level-3 Climate Data Records (CDR's) that will be critical for understanding climate processes AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS AMSU. I have been asked by Ramesh Kakar if CrIS/ATMS can be counted on to adequately continue the AIRS/AMSU CDRs beyond 2020, or is something better needed? This research is being done to answer that question. A minimum requirement to obtain a yes answer is that CrIS/ATMS be analyzed using an AIRS Version 6 - like algorithm. NOAA is currently generating CrIS/ATMS products using 2 algorithms: IDPS and NUCAPS

  9. Global Precipitation Measurement (GPM) Validation Network

    Science.gov (United States)

    Schwaller, Mathew; Moris, K. Robert

    2010-01-01

    The method averages the minimum TRMM PR and Ground Radar (GR) sample volumes needed to match-up spatially/temporally coincident PR and GR data types. PR and GR averages are calculated at the geometric intersection of the PR rays with the individual Ground Radar(GR)sweeps. Along-ray PR data are averaged only in the vertical, GR data are averaged only in the horizontal. Small difference in PR & GR reflectivity high in the atmosphere, relatively larger differences. Version 6 TRMM PR underestimates rainfall in the case of convective rain in the lower part of the atmosphere by 30 to 40 percent.

  10. A Comparative Review Of Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6)

    OpenAIRE

    Babatunde, Olabenjo; Al-Debagy, Omar

    2014-01-01

    Many computers and devices are becoming more connected to the internet in recent years; the use of the Internet Protocol (IP) has made the connectivity and identification of these devices possible in large scale. In this paper, we will discuss the evolution of Internet Protocol version 4 (IPv4), its features, issues and limitations and how Internet Protocol version 6 (IPv6) tends to solve some of these issues including the differences and transition between these two protocols.

  11. GPM Ground Validation Micro Rain Radar (MRR) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Micro Rain Radar (MRR) OLYMPEX dataset was gathered during the Global Precipitation Measurement (GPM) Ground Validation OLYMPEX field...

  12. The MST Radar Technique

    Science.gov (United States)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  13. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (IBM PC VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  14. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (MACINTOSH VERSION)

    Science.gov (United States)

    Riley, G.

    1994-01-01

    and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  15. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (UNIX VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  16. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  17. An Experimental Study of the Rainfall Variability Within TRMM/GPM Precipitation Radar and Microwave Sensor Instantaneous Field of View During MC3E

    Science.gov (United States)

    Tokay, Ali; Petersen, Walter Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.

    2011-01-01

    Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm/h for 20 minutes. We will compare the findings with previous studies.

  18. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  19. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  20. Vertical Pointing Weather Radar for Built-up Urban Areas

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2008-01-01

      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  1. Challenges in X-band Weather Radar Data Calibration

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.

    2009-01-01

    Application of weather radar data in urban hydrology is evolving and radar data is now applied for both modelling, analysis and real time control purposes. In these contexts, it is all-important that the radar data well calibrated and adjusted in order to obtain valid quantitative precipitation e...... estimates. This paper compares two calibration procedures for a small marine X-band radar by comparing radar data with rain gauge data. Validation shows a very good consensus with regards to precipitation volumes, but more diverse results on peak rain intensities....

  2. Rainfall estimation for hydrology using volumetric weather radar

    NARCIS (Netherlands)

    Hazenberg, P.

    2013-01-01

    This thesis focuses specifically on weather radar rainfall measurements in strati form precipitation. In North-Western Europe this type of precipitation is most dominant in winter and leads to the largest hydro logical response of catchments. Unfortunately, the quality of uncorrected radar rainfall

  3. Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    Science.gov (United States)

    Atlas, D. (Editor); Thiele, O. W. (Editor)

    1981-01-01

    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.

  4. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation

    Science.gov (United States)

    Tang, Guoqiang; Wen, Yixin; Gao, Jinyu; Long, Di; Ma, Yingzhao; Wan, Wei; Hong, Yang

    2017-05-01

    Precipitation is one of the most important components in the water and energy cycles. Radars are considered the best available technology for observing the spatial distribution of precipitation either from the ground since the 1980s or from space since 1998. This study, for the first time ever, compares and evaluates the only three existing spaceborne precipitation radars, i.e., the Ku-band precipitation radar (PR), the W-band Cloud Profiling Radar (CPR), and the Ku/Ka-band Dual-frequency Precipitation Radar (DPR). The three radars are matched up globally and intercompared in the only period which they coexist: 2014-2015. In addition, for the first time ever, TRMM PR and GPM DPR are evaluated against hourly rain gauge data in Mainland China. Results show that DPR and PR agree with each other and correlate very well with gauges in Mainland China. However, both show limited performance in the Tibetan Plateau (TP) known as the Earth's third pole. DPR improves light precipitation detectability, when compared with PR, whereas CPR performs best for light precipitation and snowfall. DPR snowfall has the advantage of higher sampling rates than CPR; however, its accuracy needs to be improved further. The future development of spaceborne radars is also discussed in two complementary categories: (1) multifrequency radar instruments on a single platform and (2) constellations of many small cube radar satellites, for improving global precipitation estimation. This comprehensive intercomparison of PR, CPR, and DPR sheds light on spaceborne radar precipitation retrieval and future radar design.

  5. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  6. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  7. Radar history

    Science.gov (United States)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  8. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  9. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  10. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  11. GPP Version 6 User's Guide A General-Purpose Postprocessor for Wind-Turbine Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, M. L., Jr.; Weaver, N. L.

    1999-06-07

    GPP (pronounced ''jeep'') is a general-purpose postprocessor for wind turbine data analysis. The original author, Marshall Buhl, a member of the National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory (NREL), developed GPP to postprocess test data and simulation predictions. Norman Weaver of InterWeaver Consulting is responsible for coding most of the recent additions to Version 6. GPP reads data into large arrays and allows the user to run many types of analyses on the data stored in memory. It runs on inexpensive computers common in the wind industry. One can even use it on a laptop in the field. We wrote the program in such a way as to make it easy to add new types of analyses and to port it to many types of computers. Although GPP is very powerful and feature rich, it is still very easy to learn and easy to use. Exhaustive error trapping prevents one from losing valuable work caused by input errors. We believe that GPP can make a significant impact on engineering productivity in the wind industry.

  12. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  13. GPM Ground Validation Duke Micro Rain Radar (MRR) IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Duke Micro Rain Radar (MRR) IPHEx dataset was gathered during the Global Precipitation Measurement (GPM) Ground Validation Integrated...

  14. GPM GROUND VALIDATION MICRO RAIN RADAR (MRR) NASA ACHIEVE IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Micro Rain Radar (MRR) NASA ACHIEVE IPHEx dataset was gathered during the Global Precipitation Measurement (GPM) Ground Validation...

  15. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    Science.gov (United States)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  16. Radar detection

    CERN Document Server

    DiFranco, Julius

    2004-01-01

    This book presents a comprehensive tutorial exposition of radar detection using the methods and techniques of mathematical statistics. The material presented is as current and useful to today's engineers as when the book was first published by Prentice-Hall in 1968 and then republished by Artech House in 1980. The book is divided into six parts.

  17. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...... that footprints are identical for the radar and the radiometer. The instrument will be flown in a pod under a Gulfstream G3 normally cruising with 240 m/sec at 12500 m, and will thus be able to sense clouds and precipitation from above...

  18. TRMM Ground Validation Radar Reflectivity L1B 1 hour V7 (TRMM_1B51) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM_1B51 product displays the existence of rain in the radar volume scan. 'Existence' is the fraction of the radar FOV which has measurable precipitation. The...

  19. APR-2 Dual-frequency Airborne Radar Observations, Wakasa Bay

    Data.gov (United States)

    National Aeronautics and Space Administration — In January and February 2003, the Airborne Second Generation Precipitation Radar (APR-2) collected data in the Wakasa Bay AMSR-E validation campaign over the sea of...

  20. ChemSkill Builder 2000, Version 6.1 [CD-ROM] (by James D. Spain and Harold J. Peters)

    Science.gov (United States)

    Keeney-Kennicutt, Reviewed By Wendy L.

    2000-07-01

    One of the major challenges for faculty teaching general chemistry is how to encourage students to practice solving problems. We know that for students to develop chemical intuition and problem-solving skills, they must "get their hands dirty" as they decipher and unravel problems inherent to our discipline. One tool that I've used since its release in 1996 is the ChemSkill Builder, an electronic homework package. The latest version, ChemSkill Builder (CSB) 2000, version 6.1, is an excellent, effective integration of teaching and testing most quantitative and conceptual learning objectives in an interactive way. It is inexpensive and easy to use for both students and faculty. The CSB 2000 package of personalized problem sets, specifically designed to complement most general chemistry courses, is a program on CD-ROM for PC Windows users (3.1, 95, or 98), with more than 1500 questions and a 3 1/2-in. record-management disk. There is a separate grade-management disk for the instructor. It has 24 gradable chapters, each with 5 or 6 sections, plus two new chapters that are not graded: Polymer Chemistry and an Appendix of Chemical Skills. Each section begins with a short review of the topic and many have interactive explanations. If students miss an answer, they are given a second chance for 70% credit. If they still miss, the worked-out solution is presented in detail. Students can work each section as many times as they wish to improve their scores. Periodically, the students download their data directly into a PC set up by the instructor. The data can be easily converted into an ASCII file and merged with a spreadsheet. The use of CD-ROM solves the sporadic problems associated with previous versions on 3 1/2-in. disks: software glitches, failed disks, and system incompatibilities. The quality and number of graphics and interactive exercises are much improved in this latest version. I particularly enjoyed the interactive explanations of significant figures and

  1. Marine X-band Weather Radar Data Calibration

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    estimates. This paper presents some of the challenges in small marine X-band radar calibration by comparing three calibration procedures for assessing the relationship between radar and rain gauge data. Validation shows similar results for precipitation volumes but more diverse results on peak rain...

  2. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    Science.gov (United States)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  3. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  4. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  5. Quantitative analysis of X-band weather radar attenuation correction accuracy

    NARCIS (Netherlands)

    Berne, A.D.; Uijlenhoet, R.

    2006-01-01

    At short wavelengths, especially C-, X-, and K-band, weather radar signals arc attenuated by the precipitation along their paths. This constitutes a major source of error for radar rainfall estimation, in particular for intense precipitation. A recently developed stochastic simulator of range

  6. Global Precipitation Measurement (GPM) Mission Development Status

    Science.gov (United States)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  7. Radar Sounder

    Science.gov (United States)

    1988-09-01

    free" measurements on the same or previous orbits. The Scatterometer is an integral part of the radar. The proposed system which is currently called...Right Arrays SATELLITE ( I ATOMOS PHERE/ SWATHWI DTH Figure 3.1.1 Metrad Coverage 18 4 05. 4 1-4 " -u a . .4 c4 641 C Ov31 N -4 a ~ U . - I.44m 41 44...application is not a study objective, but could be considered as part of an experimental program utilizing scatterometer, radiometer and high resolution

  8. Alpine radar conversion for LAWR

    Science.gov (United States)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  9. Estimating Runoff Coefficients Using Weather Radars

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...

  10. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (DEC VAX VMS VERSION)

    Science.gov (United States)

    Donnell, B.

    1994-01-01

    and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  11. A laser radar experiment

    Science.gov (United States)

    Stiglitz, Martin R.; Blanchard, Christine

    1990-09-01

    An experiment demonstrating the feasibility of using a laser radar for long-range target acquisition and tracking is discussed. A CO2 laser was used to collect range Doppler images, while a medium-power argon ion laser was employed for angular tracking. Laser-radar operation is outlined with emphasis on isotopic laser radars. Laser-radar imaging is covered, and a laser-radar range equation is given. Experimental laser-radar transmitter, receiver, and telescope are described. A 35-foot long surface-to-air missile and payload were tracked in the experiment, with the laser radar acquiring the targets as they reached 480 km in altitude, 750 km from the radar site. The 4-ft-diameter aperture laser-radar telescope provided the resolution and range accuracy equivalent to that of a 120-ft microwave radar antenna.

  12. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  13. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  14. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  15. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  16. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  17. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  18. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  19. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  20. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  1. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  2. Skill assessment of precipitation nowcasting in Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2013-04-01

    Very short-term precipitation forecasting (i.e nowcasting) systems may provide valuable support in the weather surveillance process as they allow to issue automated early warnings for heavy precipitation events (HPE) as reviewed recently by Pierce et al. (2012). The need for warnings is essential in densely populated regions of small catchments, such as those typically found in Mediterranean coastal areas, prone to flash-floods. Several HPEs that occurred in NE Spain are analyzed using a nowcasting system based on the extrapolation of rainfall fields observed with weather radar following a Lagrangian approach developed and tested successfully in previous studies (Berenguer et al. 2005, 2011). Radar-based nowcasts, with lead times up to 3 h, are verified here against quality-controlled weather radar quantitative precipitation estimates and also against a dense network of raingauges. The basic questions studied are the dependence of forecast quality with lead time and rainfall amounts in several high-impact HPEs such as the 7 September 2005 Llobregat Delta river tornado outbreak (Bech et al. 2007) or the 2 November 2008 supercell tornadic thunderstorms (Bech et al. 2011) - both cases had intense rainfall rates (30' amounts exceeding 38.2 and 12.3 mm respectively) and daily values above 100 mm. Verification scores indicated that forecasts of 30' precipitation amounts provided useful guidance for lead times up to 60' for moderate intensities (up to 1 mm in 30') and up to 2.5h for lower rates (above 0.1 mm). On the other hand correlations of radar estimates and forecasts exceeded Eulerian persistence of precipitation estimates for lead times of 1.5 h for moderate intensities (up to 0.8 mm/h). We complete the analysis with a discussion on the reliability of threshold to lead time dependence based on the event-to-event variability found. This work has been done in the framework of the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M

  3. Radar Reflectivity and Specific Attenuation in Melting Layer measured with Ground-based Ka-Radar System

    Science.gov (United States)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiko; Furukawa, Kinji; Suzuki, Kenji

    2017-04-01

    The scattering/attenuation characteristics of Ka-band radiowaves are measured with a dual Ka-band radar system whichi has been developed by JAXA. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars are observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) are simultaneously obtained. Since calculation of k includes double differences along the radio path, the result is sensitive to the experimental parameters. Parameter tunings in data analysis including small change of radar elevation angles, etc are applied. After the parameter tuning, the k and Ze are reasonably obtained for clear melting layers, where Ze has a shape of a shelf, and k had a peak at the shoulder of the shelf. The results are qualitatively consistent with ground-based particle measurements. The results are used to evaluate the scattering/attenuation assumptions in the dual-frequency precipitation radar (DPR) aboard the Global Precipitation Measurement (GPM) core satellite.

  4. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  5. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  6. Simulations of Radar Bright Band at Multiple Frequencies and Its Comparisons with Airborne Radar Measurements

    Science.gov (United States)

    Liao, L.; Meneghini, R.

    2010-12-01

    The melting layer, often observed by the radar as a layer of enhanced radar reflectivity (the so-called radar bright band), is an important meteorological process. An understanding of the microphysical properties of the melting hydrometeors and their electric scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers, such as TRMM PR and TMI and future GPM DPR and GMI. However, one of the most difficult problems in the study of the radar signature of the melting layer is the determination of the effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants of dry and melting snow, their results vary to a great extent when the particles are partially melted. Furthermore, it is physically unclear as to how to select among these various formulas. In this study, we first derive the effective dielectric constants of uniformly mixed snow and water particles at X-, Ku-, Ka- and W-bands from their internal electric fields by using a high-resolution computational model in which the particles are precisely described not only by shape but also by particle composition. The stratified-sphere scattering model, a sphere composed of multiple layers, is then employed to compute scattering parameters for non-uniformly melting hydrometeors whose fractional water content is prescribed as a function of the radius of the sphere. In conjunction with a melting layer model that describes the melting fractions and fall velocities of hydrometeors as a function of the distance below the 0C isotherm, the radar bright-band profiles are simulated for air- or space-borne radars operating at X-, Ku-, Ka- and W-bands. These simulated profiles will then be compared with the simultaneous measurements of the bright band made by the NICT (then the Communications Research Lab. of Japan) X- and Ka-band airborne radar

  7. Radar: Human Safety Net

    Science.gov (United States)

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  8. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  9. On the Relationship between PMSE Strength and Particle Precipitation

    OpenAIRE

    Antonsen, Tarjei; Havnes, Ove

    2015-01-01

    Proc. ‘22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research’, Tromsø, Norway, 7–12 June 2015 We have studied the relationship between particle precipitation and PMSE strength on days where we observe PMSE layers both with the EISCAT VHF and UHF radars. The UHF observations of the ionization and its variation, above the PMSE layer, is used as a measure of precipitation. Variations of the precipitation is compared with variations of the PMSE str...

  10. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  11. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  12. Characteristics of summer and winter precipitation over northern China

    Science.gov (United States)

    Wen, Guang; Xiao, Hui; Yang, Huiling; Bi, Yongheng; Xu, Wenjing

    2017-11-01

    In this paper, the statistical properties of summer and winter precipitation over the northern China plain are investigated by using a two-dimensional video disdrometer (2DVD) and a micro-rain radar (MRR). The properties of summer precipitation presented herein are bulk properties (radar reflectivity, reflectivity-weighted fall velocity, liquid water content, and rainfall rate), raindrop fall velocity, axis ratio, and particle size distribution. Well correlations can be found among the diurnal cycles of radar reflectivity, liquid water content, and rainfall rate, whereas reflectivity-weighted fall velocity is poorly related to other bulk properties. The vertical profiles exhibit that radar reflectivity for stratiform rain is increasing with the altitude decreasing, in contrast, liquid water content and rainfall rate are reducing during the falling. These facts are useful for the radar-based rainfall rate retrieval algorithm. Axis ratio measurements are, for the first time, obtained and analyzed in northern China, which are particularly important for improving microphysical scheme in the climate models. In the constraint gamma model, the μ - Λ relation is adapted to the particle size distribution of stratiform rain, while the normalized gamma distributions for convective rain are separated to maritime-like and continental categories following the orientations and mechanisms of the storms. A new bulk-property-based algorithm is developed for the classification of convective and stratiform precipitation. For winter precipitation, radar reflectivity and snowfall rate for aggregates are calculated from the disdrometer data. The relationship of radar reflectivity and snowfall rate is obtained and validated with MRR data. The characteristics of summer and winter precipitation will be used to improve the microphysical scheme and evaluate the representation of precipitation in the climate models.

  13. UNICOS Evolution: CPC Version 6

    CERN Document Server

    Blanco Vinuela, E; Bradu, B; Durand, Ph; Fernandez Adiego, B; Izquierdo Rosas, S; Merezhin, A; Ortola Vidal, J; Rochez, J; Willeman, D

    2011-01-01

    The UNICOS (UNified Industrial COntrol System) framework was created back in 1998. Since then a noticeable number of applications in different domains have used this framework. Furthermore UNICOS has been formalized and its supervision layer has been reused in other kinds of applications (e.g. monitoring or supervisory tasks) where a control layer is not necessarily UNICOS oriented. The process control package has been reformulated as the UNICOS CPC package (Continuous Process Control) and a reengineering process has been followed. The drive behind these noticeable changes was (1) being able to upgrade to the new more performing IT technologies in the automatic code generation, (2) being flexible enough to create new additional device types to cope with other needs (e.g. Vacuum or Cooling and Ventilation applications) without major impact on the framework or the PLC code baselines and (3) enhance the framework with new functionalities (e.g. recipes). This publication addresses the motivation, changes, new fun...

  14. GPM GROUND VALIDATION ACHIEVE W-BAND CLOUD RADAR IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation ACHIEVE W-Band Cloud Radar IPHEx dataset was gathered during the GPM Ground Validation Integrated Precipitation and Hydrology Experiment...

  15. GPM GROUND VALIDATION ER-2 X-BAND RADAR (EXRAD) IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation ER-2 X-band Radar (EXRAD) IPHEx dataset was gathered during the GPM Ground Validation Integrated Precipitation and Hydrology Experiment...

  16. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) MICRO RAIN RADAR (MRR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Environment Canada (EC) collected data from the Micro Rain Radar (MRR) during the GPM Cold-season Precipitation Experiment (GCPEx) in Ontario, Canada during the...

  17. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IPHEx dataset was collected during the GPM Ground Validation Integrated Precipitation...

  18. A test for Improvement of high resolution Quantitative Precipitation Estimation for localized heavy precipitation events

    Science.gov (United States)

    Lee, Jung-Hoon; Roh, Joon-Woo; Park, Jeong-Gyun

    2017-04-01

    Accurate estimation of precipitation is one of the most difficult and significant tasks in the area of weather diagnostic and forecasting. In the Korean Peninsula, heavy precipitations are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. In addition to, various geographical and topographical elements make production of temporal and spatial distribution of precipitation is very complicated. Especially, localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances. In weather radar data with high temporal and spatial resolution, accurate estimation of rain rate from radar reflectivity data is too difficult. Z-R relationship (Marshal and Palmer 1948) have adapted representatively. In addition to, several methods such as support vector machine (SVM), neural network, Fuzzy logic, Kriging were utilized in order to improve the accuracy of rain rate. These methods show the different quantitative precipitation estimation (QPE) and the performances of accuracy are different for heavy precipitation cases. In this study, in order to improve the accuracy of QPE for localized heavy precipitation, ensemble method for Z-R relationship and various techniques was tested. This QPE ensemble method was developed by a concept based on utilizing each advantage of precipitation calibration methods. The ensemble members were produced for a combination of different Z-R coefficient and calibration method.

  19. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  20. On Comparing NWP and Radar Nowcast Models for Forecasting of Urban Runoff

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Bøvith, T.; Rasmussen, Michael R.

    2012-01-01

    The paper compares quantitative precipitation forecasts using weather radars and numerical weather prediction models. In order to test forecasts under different conditions, point-comparisons with quantitative radar precipitation estimates and raingauges are presented. Furthermore, spatial...... comparisons of forecasts and observations have shown good results during stratiform conditions, but more scattered results during convective conditions. Finally, the potential for applying forecasts as input to urban drainage models is investigated. Results prove promising....

  1. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  2. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  3. Calibration of weather radar using region probability matching method (RPMM)

    Science.gov (United States)

    Ayat, Hooman; Reza Kavianpour, M.; Moazami, Saber; Hong, Yang; Ghaemi, Esmail

    2017-09-01

    This research aims to develop a novel method named region probability matching method (RPMM) for calibrating the Amir-Abad weather radar located in the north of Iran. This approach also can overcome the limitations of probability matching method (PMM), window probability matching method (WPMM), and window correlation matching method (WCMM). The employing of these methods for calibrating the radars in light precipitation is associated with many errors. Additionally, in developing countries like Iran where ground stations have low temporal resolution, these methods cannot be benefited from. In these circumstances, RPMM by utilizing 18 synoptic stations with a temporal resolution of 6 h and radar data with a temporal resolution of 15 min has indicated an accurate estimation of cumulative precipitation over the entire study area in a specific period. Through a comparison of the two methods (RPMM and traditional matching method (TMM)) on March 22, 2014, the obtained correlation coefficients for TMM and RPMM were 0.13 and 0.95, respectively. It is noted that the cumulative precipitation of the whole rain gauges and the calibrated radar precipitation at the same pixels were 38.5 and 36.9 mm, respectively. Therefore, the obtained results prove the inefficiency of TMM and the capability of RPMM in the calibration process of the Amir-Abad weather radar. Besides, in determining the uncertainty associated with the calculated values of A and B in the Z e -R relation, a sensitivity analysis method was employed during the estimation of cumulative light precipitation for the period from 2014 to 2015. The results expressed that in the worst conditions, 69% of radar data are converted to R values by a maximum error less than 30%.

  4. Spatial variability of extreme rainfall at radar subpixel scale

    Science.gov (United States)

    Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2018-01-01

    Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.

  5. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  6. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  7. The influences on radar-based rainfall estimation due to complex terrain

    Science.gov (United States)

    Craciun, Cristian; Stefan, Sabina

    2017-04-01

    One of the concerns regarding radar-based quantitative precipitation estimation (QPE) is the level of reliability of radar data, on which the forecaster should trust when he must issue warnings regarding weather phenomena that might put human lives and good in danger. The aim of the current study is to evaluate, by objective means, the difference between radar estimated and gauge measured precipitation over an area with complex terrain. Radar data supplied for the study comes from an S-band, single polarization, Doppler weather system, Weather Surveillance Radar 98 Doppler (WSR-98D), that is located in center part of Romania. Gage measurements are supplied by a net of 27 weather stations, located within the coverage area of the radar. The approach consists in a few steps. In the first one the field of reflectivity data is converted into rain rate, using the radar's native Z-R relationship, and the rain rate field is then transformed into rain accumulation over certain time intervals. In the next step were investigated the differences between radar and gauge rainfall accumulations by using four objective functions: mean bias between radar estimations and ground measurements, root mean square factor, and Spearman and Pearson correlations. The results shows that the differences and the correlations between radar-based accumulations and rain gauge amounts have rather local significance than general relevance over the studied area.

  8. nowCOAST's Map Service for NOAA Quantitative Precipitation Estimates (Time Enabled)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-enabled map service provides maps depicting the NWS Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate mosaics...

  9. Developments and applications of the Global Satellite Mapping of Precipitation (GSMaP) for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Kachi, Misako; Aonashi, Kazumasa; Kubota, Takuji; Shige, Shoichi; Ushio, Tomoo; Mega, Tomoaki; Yamamoto, Munehisa; Hamada, Atsushi; Seto, Shinta; Takayabu, Yukari N.; Oki, Riko

    2016-04-01

    The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall map based on a blended Microwave-Infrared product and has been developed in Japan for the Global Precipitation Measurement (GPM) mission. To fulfill gaps of passive microwave observations, we developed a method to interpolate observations between each microwave imager by utilizing information from the Infrared imagers on board the geostationary satellites, and achieved production of an hourly global rainfall map in 0.1-degree latitude/longitude grid. The latest GSMaP version 6 product was released in September 2014 to the public as one of Japanese GPM products after the launch of the GPM Core Observatory, which is Japan and U.S. joint mission and carrying both the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), in February 2014. In the next version (version 7), which is scheduled to be released in the summer 2016, we plan to apply databases produced from DPR instead of those from PR, and to introduce snow retrieval algorithm for the passive microwave instruments that have higher frequency channels. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. To assure near-real-time data availability, the GSMaP_NRT system simplified part of the algorithm and its processing procedure. Therefore, the GSMaP_NRT product gives higher priority to data latency than accuracy. Since its data release, GSMaP_NRT data has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There are, however, several requirements from users for GSMaP improvements not only for accuracy but also specification. Among those requests for data specification, the most popular ones are shortening of data latency time and higher horizontal resolution. To reduce

  10. Uncertainty of Flood Forecasting Based on Radar Rainfall Data Assimilation

    Directory of Open Access Journals (Sweden)

    Xinchi Chen

    2016-01-01

    Full Text Available Precipitation is the core data input to hydrological forecasting. The uncertainty in precipitation forecast data can lead to poor performance of predictive hydrological models. Radar-based precipitation measurement offers advantages over ground-based measurement in the quantitative estimation of temporal and spatial aspects of precipitation, but errors inherent in this method will still act to reduce the performance. Using data from White Lotus River of Hubei Province, China, five methods were used to assimilate radar rainfall data transformed from the classified Z-R relationship, and the postassimilation data were compared with precipitation measured by rain gauges. The five sets of assimilated rainfall data were then used as input to the Xinanjiang model. The effect of precipitation data input error on runoff simulation was analyzed quantitatively by disturbing the input data using the Breeding of Growing Modes method. The results of practical application demonstrated that the statistical weight integration and variational assimilation methods were superior. The corresponding performance in flood hydrograph prediction was also better using the statistical weight integration and variational methods compared to the others. It was found that the errors of radar rainfall data disturbed by the Breeding of Growing Modes had a tendency to accumulate through the hydrological model.

  11. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  12. Radar illusion via metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  13. Aspects of Radar Polarimetry

    OpenAIRE

    Lüneburg, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  14. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  15. Decoders for MST radars

    Science.gov (United States)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  16. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  17. Micropower impulse radar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  18. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  19. Applicability of Doppler weather radar based rainfall data for runoff ...

    Indian Academy of Sciences (India)

    Revista Mexicana de Ciencias Geológicas 24(2): 185–196. Jeremy G 2011 Peak flow and runoff volume estimation using historical weather radar maps. Proc. AECOM. Manitoba, Canada. Kathol J, Werner H and Trooien T 2003 Predicting runoff for frequency based storms using a precipitation- runoff model. Proceedings of ...

  20. On the Relationship Between PMSE Strength and Particle Precipitation

    Science.gov (United States)

    Antonsen, T.; Havnes, O.

    2015-09-01

    We have studied the relationship between particle precipitation and PMSE strength on days where we observe PMSE layers both with the EISCAT VHF and UHF radars. The UHF observations of the ionization and its variation, above the PMSE layer, is used as a measure of precipitation. Variations of the precipitation is compared with variations of the PMSE strengths observed with both radars. Although many cases apparently show a clear connection between precipitation and PMSE, where an increased precipitation leads to a strengthening of the PMSE, our findings confirm that there is no general and simple proportionality between the two. For the weakest PMSE there appears to be no correlation between precipitation and PMSE strength. For PMSEs around average strength of our observations there appears to be a weak positive correlation, which can be predicted by a time-dependent dust cloud charge model. On some occasions an increased precipitation can, apparently, initially lead to an increase of PMSE strength which at some point starts to decline even if the precipitation continue to increase. This feature can also be seen in the results from the statistical analysis, however the number of occurrences is too low to conclude with significance and the time-dependent charge model described here does not reproduce such features. We have studied to what degree models for the PMSE scattering can explain the various cases of reaction of PMSE to changes in precipitation.

  1. Predictibility in Nowcasting of Precipitation

    Science.gov (United States)

    Zawadzki, I.; Sourcel, M.; Berenguer, M.

    2009-05-01

    Present short term precipitation forecasting is based on two methods: Lagrangian persistence (nowcasting) and numerical weather prediction (NWP). An improvement over these methods is obtained by the combination of the two. The obvious shortcoming of nowcasting is its severe limitation in capturing new development or dissipation of precipitation. NWP has the ability to predict both but very imprecisely. An attempt to correct model errors by post-processing leads to some improvement in the skill of NWP, but the improvement, although significative, is not very impressive. The goal of our effort is to take a step back and to describe, in a quantitative manner, a) the nature of the uncertainties affecting Lagrangian persistence and NWP forecasts, as well as to determineb) the physical causes of the uncertainties. We quantify the uncertainties in short term forecasting due to limitation of nowcasting algorithms and NWP to capture correctly some of the physical phenomena that determine the predictability of precipitation. The first factor considered is the diurnal cycle that appears as the one physically determined factors that limit the precision of short term prediction. We study the cycle in radar mosaics over US and compare this to nowcasts and model outputs. The seasonal and geographical dependence of the diurnal cycle is quantitatively evaluated.

  2. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  3. Comparisons of Wind Field Effects on Radar Rainfall Adjustments

    Science.gov (United States)

    Song, Y.; Han, D.; Rico-Ramirez, M. A.

    2016-12-01

    Weather radar-based rainfall estimates are prone to many sources of uncertainties due to its complicated measurement procedure and intricate synoptic regimes. Rain gauge measurement as the "ground-truth" is widely implemented in radar data adjustments, which is crucial and essential to reduce their systematic bias in hydrological applications, especially for radar bias corrections in spatial matching of precipitation patterns with rain gauge. The conventional practice is to build radar-gauge pairs on the basis of their vertical projection on the ground, which assumes the rainfall observed by radar falls vertically to the ground and should be in accordance with the surface rainfall directly below each radar pixel. Since wind is a typical weather factor, which not only incurs measurement error of rain gauge, but also induces the raindrops observed by radar drifting to the ground, consequently, it could contribute inconsistent spatial relationship between radar and gauge measurements. As a result, this study explores the trajectory of raindrops in the air based on the previous study which incorporates the wind field effect into a bias correlation scheme using downscaled 3-D wind data from weather research and forecasting model (WRF). The new prompted adjustment method is to simulate the raindrop trajectory by implementing the 3-D wind field created by WRF directly. The displacement of rainfall is estimated and radar-gauge spatial relationships are reconstructed and compared. Based on these, this study attempts to compare and evaluate two different adjustment methods on radar data with and without consideration of the wind-drift effect in different rainfall events and locations. The proposed adjustment method is expected to be a promising improvement to minimize wind-drift effect.

  4. The Global Precipitation Measurement (GPM) Project

    Science.gov (United States)

    Azarbarzin, Ardeshir; Carlisle, Candace

    2010-01-01

    The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.

  5. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  6. Using raindrop size distributions from different types of disdrometer to establish weather radar algorithms

    Science.gov (United States)

    Baldini, Luca; Adirosi, Elisa; Roberto, Nicoletta; Vulpiani, Gianfranco; Russo, Fabio; Napolitano, Francesco

    2015-04-01

    Radar precipitation retrieval uses several relationships that parameterize precipitation properties (like rainfall rate and liquid water content and attenuation (in case of radars at attenuated frequencies such as those at C- and X- band) as a function of combinations of radar measurements. The uncertainty in such relations highly affects the uncertainty precipitation and attenuation estimates. A commonly used method to derive such relationships is to apply regression methods to precipitation measurements and radar observables simulated from datasets of drop size distributions (DSD) using microphysical and electromagnetic assumptions. DSD datasets are determined both by theoretical considerations (i.e. based on the assumption that the radar always samples raindrops whose sizes follow a gamma distribution) or from experimental measurements collected throughout the years by disdrometers. In principle, using long-term disdrometer measurements provide parameterizations more representative of a specific climatology. However, instrumental errors, specific of a disdrometer, can affect the results. In this study, different weather radar algorithms resulting from DSDs collected by diverse types of disdrometers, namely 2D video disdrometer, first and second generation of OTT Parsivel laser disdrometer, and Thies Clima laser disdrometer, in the area of Rome (Italy) are presented and discussed to establish at what extent dual-polarization radar algorithms derived from experimental DSD datasets are influenced by the different error structure of the different type of disdrometers used to collect the data.

  7. Variation of weather radar sensitivity at ground level and from space: case studies and possible causes

    Energy Technology Data Exchange (ETDEWEB)

    Joss, J. [Motto, Intragna (Switzerland); Gabella, M.; Perona, G. [Politecnico di Torino - Electronics Dept., Torino (Italy); Michaelides, S.C. [Meteorological Service, Nicosia (Cyprus)

    2006-10-15

    Firstly, this paper summarizes the procedure for correcting the variation of sensitivity of radars at ground level, using a radar in space for reference, as already described in the literature. Around 10dB have to be added to the measured radar reflectivity Z (in mm{sup 6}/m{sup 3}), when increasing the range from 10 km to 100 km. In other words, instead of an r{sup -2}-dependence (where r is the range, i.e. the distance between the radar and the meteorological target), we find an apparent reduction proportional to r{sup -3}. A similar procedure is used to analyze the dependence of the TRMM radar, using the adjusted data of the radar at ground level for reference. We have to add around 3dB to the measured reflectivity, when increasing the distance from close to Nadir (10 km) to the edge of the swath (100 km). In other words, instead of a constant sensitivity over the swath of the satellite, we find a reduction of sensitivity with the range, proportional to r{sup -0.3}. Secondly, the paper illustrates possible causes of the systematic range dependence of both radars. The old, dominant cause - overshooting of precipitation - is already vastly discussed in literature. We describe the variability of the precipitation with three case studies. The variability of the precipitation is difficult to quantify. It is concluded to be responsible for the variable range dependence and for many disillusions with radar. (orig.)

  8. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  9. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  10. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Science.gov (United States)

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  11. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  12. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  13. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  14. Assimilation of radar-based nowcast into HIRLAM NWP model

    DEFF Research Database (Denmark)

    Jensen, David Getreuer; Petersen, Claus; Rasmussen, Michael R.

    2015-01-01

    . A selection criterion based on spatial coverage and temporal duration is applied to identify rain events for evaluation. Eight events from August 2010 comply with the criteria and additionally, an extreme event on 2 July 2011 is also evaluated. The RED assimilated NWP model is verified against a non...... by correlation) methodology and are generated from cleaned radar mosaics from the Danish weather radar network. The assimilation technique is a newly developed method that increases model precipitation by increasing low-level convergence and decreasing convergence aloft in order to increase the vertical velocity....... The level of improved predictability relies on the RED quality, which again relies on the type of event....

  15. Cross-validation of spaceborne radar and ground polarimetric radar observations

    Science.gov (United States)

    Bolen, Steven Matthew

    There is great potential for spaceborne weather radar to make significant observations of the precipitating medium on global scales. The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall in the tropics from space using radar. The Precipitation Radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit at 350 km altitude and 35 degree inclination. The PR is a single frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant, which can be as high as 10--15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR returns. Direct inter-comparison of meteorological measurements between space and ground radar observations can be used to evaluate spaceborne processing algorithms. Though conceptually straightforward, this can be a challenging task. Differences in viewing aspects between space and earth point observations, propagation frequencies, resolution volume size and time synchronization mismatch between measurements can contribute to direct point-by-point inter-comparison errors. The problem is further complicated by spatial geometric distortions induced into the space-based observations caused by the movements and attitude perturbations of the spacecraft itself. A method is developed to align space and ground radar observations so that a point-by-point inter-comparison of measurements can be made. Ground-based polarimetric observations are used to estimate the attenuation of PR signal returns along individual PR beams, and a technique is formulated to determine the true PR return from GR measurements via theoretical modeling of specific attenuation (k) at PR wavelength with ground-based S-band radar observations. The statistical behavior of the parameters

  16. Propagation of radar rainfall uncertainty in urban flood simulations

    Science.gov (United States)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    , 2010. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surveys in Geophysics 31: 107-129. [4] Rossa A, Liechti K, Zappa M, Bruen M, Germann U, Haase G, Keil C, Krahe P, 2011. The COST 731 Action: A review on uncertainty propagation in advanced hydrometeorological forecast systems. Atmospheric Research 100, 150-167. [5] Rossa A, Bruen M, Germann U, Haase G, Keil C, Krahe P, Zappa M, 2010. Overview and Main Results on the interdisciplinary effort in flood forecasting COST 731-Propagation of Uncertainty in Advanced Meteo-Hydrological Forecast Systems. Proceedings of Sixth European Conference on Radar in Meteorology and Hydrology ERAD 2010. [6] Germann U, Berenguer M, Sempere-Torres D, Zappa M, 2009. REAL - ensemble radar precipitation estimation for hydrology in a mountainous region. Quarterly Journal of the Royal Meteorological Society 135: 445-456. [8] Bowler NEH, Pierce CE, Seed AW, 2006. STEPS: a probabilistic precipitation forecasting scheme which merges and extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society 132: 2127-2155. [9] Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmospheric Science Letters 9, 80-87. [10] Liguori S, Rico-Ramirez MA. Quantitative assessment of short-term rainfall forecasts from radar nowcasts and MM5 forecasts. Hydrological Processes, accepted article. DOI: 10.1002/hyp.8415 [11] Liguori S, Rico-Ramirez MA, Schellart ANA, Saul AJ, 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research 103: 80-95. [12] Harrison DL, Driscoll SJ, Kitchen M, 2000. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications 7: 135-144. [13] Harrison DL, Scovell RW, Kitchen

  17. Constructing a climatology of precipitation system organization in North Carolina

    Science.gov (United States)

    Rickenbach, T. M.; Nieto-Ferreira, R.; Hall, L.; Nelson, B. R.; Ansari, S.; Del Greco, S.

    2011-12-01

    Since no major rivers flow into the State of North Carolina, precipitation falling within the state is the primary natural source of water to replenish that region's rivers, soils, and groundwater reservoirs. As climate and population pressures change, water management and sustainability policies in North Carolina will be increasingly dependent on an improved understanding of precipitation variability in that region. The premise of this NSF-funded study is that a novel climatology of precipitation system mode of delivery in North Carolina, developed with newly available high resolution precipitation and three-dimensional radar reflectivity data sets, will lead to improved regional climate and hydrological forecasts. Mode of delivery refers to the spatial, temporal and water phase characteristics of a precipitation system. Examples of mode of delivery that occur in North Carolina within various synoptic regimes include short duration and spatially heterogeneous convective cells, large mesoscale convective systems, widespread long-lasting frontal precipitation, tropical cyclones, and winter precipitation. Each mode of delivery may produce similar time-averaged precipitation totals, but have very different climate and hydrological impacts. A mode of delivery climatology will provide a unique tool for process-based downscaling of climate simulations. This paper reports on the preliminary steps in constructing the mode of delivery climatology. We present highlights of several case studies of different types of precipitation system morphology in North Carolina, in order to illustrate the methodology that will be used to build a multi-year climatology. The project is collaborating with the NOAA Satellite and Information Service at NCDC to harness a multi-sensor precipitation dataset based on the portion of the NMQ Q2 national radar reflectivity mosaic centered on North Carolina to identify and analyze each precipitation system. The NCEP North American Regional Reanalysis

  18. Regional Attenuation Correction of Weather Radar Using a Distributed Microwave-Links Network

    Directory of Open Access Journals (Sweden)

    Yang Xue

    2017-01-01

    Full Text Available The complex temporal-spatial variation of raindrop size distribution will affect the precision of precipitation quantitative estimates (QPE produced from radar data, making it difficult to correct echo attenuation. Given the fact that microwave links can obtain the total path attenuation accurately, we introduce the concept of regional attenuation correction using a multiple-microwave-links network based on the tomographic reconstruction of attenuation coefficients. Derived from the radar-based equation, the effect of rainfall distribution on the propagation of radar and microwave link signals was analyzed. This article focuses on modeling of the tomographic reconstruction of attenuation coefficients and regional attenuation correction algorithms. Finally, a numerical simulation of regional attenuation correction was performed to verify the algorithms employed here. The results demonstrate that the correction coefficient (0.9175 falls between the corrected and initial field of radar reflectivity factor (root mean square error, 2.3476 dBz; average deviation, 0.0113 dBz. Compared with uncorrected data, the accuracy of the corrected radar reflectivity factor was improved by 26.12%, and the corrected rainfall intensity distribution was improved by 51.85% validating the region attenuation correction algorithm. This method can correct the regional attenuation of weather radar echo effectively and efficiently; it can be widely used for the radar attenuation correction and the promotion of quantitative precipitation estimation by weather radar.

  19. Radar for tracer particles

    Science.gov (United States)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  20. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  1. A Preliminary Analysis of Precipitation Properties and Processes during NASA GPM IFloodS

    Science.gov (United States)

    Carey, Lawrence; Gatlin, Patrick; Petersen, Walt; Wingo, Matt; Lang, Timothy; Wolff, Dave

    2014-01-01

    The Iowa Flood Studies (IFloodS) is a NASA Global Precipitation Measurement (GPM) ground measurement campaign, which took place in eastern Iowa from May 1 to June 15, 2013. The goals of the field campaign were to collect detailed measurements of surface precipitation using ground instruments and advanced weather radars while simultaneously collecting data from satellites passing overhead. Data collected by the radars and other ground instruments, such as disdrometers and rain gauges, will be used to characterize precipitation properties throughout the vertical column, including the precipitation type (e.g., rain, graupel, hail, aggregates, ice crystals), precipitation amounts (e.g., rain rate), and the size and shape of raindrops. The impact of physical processes, such as aggregation, melting, breakup and coalescence on the measured liquid and ice precipitation properties will be investigated. These ground observations will ultimately be used to improve rainfall estimates from satellites and in particular the algorithms that interpret raw data for the upcoming GPM mission's Core Observatory satellite, which launches in 2014. The various precipitation data collected will eventually be used as input to flood forecasting models in an effort to improve capabilities and test the utility and limitations of satellite precipitation data for flood forecasting. In this preliminary study, the focus will be on analysis of NASA NPOL (S-band, polarimetric) radar (e.g., radar reflectivity, differential reflectivity, differential phase, correlation coefficient) and NASA 2D Video Disdrometers (2DVDs) measurements. Quality control and processing of the radar and disdrometer data sets will be outlined. In analyzing preliminary cases, particular emphasis will be placed on 1) documenting the evolution of the rain drop size distribution (DSD) as a function of column melting processes and 2) assessing the impact of range on ground-based polarimetric radar estimates of DSD properties.

  2. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  3. Radar data smoothing filter study

    Science.gov (United States)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  4. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  5. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  6. Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling

    DEFF Research Database (Denmark)

    He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian

    2013-01-01

    QPE data is in fact more obvious to groundwater than to surface water at daily scale. Moreover, substantial negative impact on the simulated hydrological responses is observed due to the cut down in operational rain gauge network between 2006 and 2010. The radar QPE based model demonstrates the added......Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...... of using multiannual radar QPE data in coupled surface water—groundwater modeling with emphasis given to the groundwater component. Since the radar QPE is partly dependent on the rain gauge observations, it is necessary to evaluate the impact of rain gauge network density on the quality of the estimated...

  7. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale......-space ensemble method is used for classification and the clutter detection method is illustrated on a case of severe sea clutter contaminated radar data. Detection accuracies above 90 % are achieved and using an ensemble classification method the error rate is reduced by 40 %....

  8. Dual Ka-band radar field campaign for GPM/DPR algorithm development

    Science.gov (United States)

    Nakagawa, K.; Nishikawa, M.; Nakamura, K.; Komachi, K.; Hanado, H.; Kawamura, S.; Sugitani, S.; Minda, H.; Shimizu, S.; Oki, R.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  9. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  10. The effect of polarization on radar detection of lightning

    Science.gov (United States)

    Mazur, V.; Walker, G. B.

    1982-01-01

    The polarization dependence of lightning echoes received with a 23-cm wavelength radar is estimated theoretically and experimentally. The reduction in the lightning radar cross-section due to the transmission of circular polarization instead of linear is measured to be about 4 dB and is much smaller than the 15-30 dB reduction in reflectivity of weak precipitation regions. The 8.7 dB average reduction in reflectivity maxima has been observed. This leads to an increase in the detected lightning flash rate by as much as 40%. The radar cross-section ratio of circular to linear polarization obtained experimentally suggests that lightning elements tend to be horizontally oriented.

  11. Regional Attenuation Correction of Weather Radar Using a Distributed Microwave-Links Network

    OpenAIRE

    Yang Xue; Xi-chuan Liu; Tai-chang Gao; Chang-ye Yang; Kun Song

    2017-01-01

    The complex temporal-spatial variation of raindrop size distribution will affect the precision of precipitation quantitative estimates (QPE) produced from radar data, making it difficult to correct echo attenuation. Given the fact that microwave links can obtain the total path attenuation accurately, we introduce the concept of regional attenuation correction using a multiple-microwave-links network based on the tomographic reconstruction of attenuation coefficients. Derived from the radar-ba...

  12. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  13. Netted LPI RADARs

    Science.gov (United States)

    2011-09-01

    that range bin masking should also be quite effective. They argue that if a section of the radar waveform recorded by DRFM or repeater...effective. A Digital RF Memory ( DRFM ) can be used to focus the available power of the jammer and inject Doppler noise only a few KHz wide, matching to the

  14. Metamaterial for Radar Frequencies

    Science.gov (United States)

    2012-09-01

    capacitive coupling with adjacent patches, as shown in Figure 3. The via provides inductance to ground. Figure 3. (a) Planar LH distributed periodic...After [20]). The capacitance in the structure balances out the inductance present when the cylinder is placed in a square array. The metallic... RADAR FREQUENCIES by Szu Hau Tan September 2012 Thesis Advisor: David C. Jenn Second Reader: James Calusdian

  15. The use of radar in hydrological modeling in the Czech Republic – case studies of flash floods

    Directory of Open Access Journals (Sweden)

    M. Šálek

    2006-01-01

    Full Text Available Flash flood induced by severe convection is the hydrometeorological phenomenon that is very difficult to forecast. However, the implementation of radar measurements, especially radar-based Quantitative Precipitation Estimate (QPE and/or radar-based quantitative Precipitation Nowcast (QPN can improve this situation. If the radar is able to capture the development of severe convection and can produce reasonably accurate QPE in short time intervals (e.g. 10 min, then it can be used also with hydrological model. A hydrological model named Hydrog was used for investigation of simulation and possible forecasts of two flash floods that took place in the Czech Republic in 2002 and 2003. The precipitation input consisted of mean-field-bias-adjusted or original radar 10-min estimates along with quantitative precipitation nowcasts up to 2 h based on COTREC method (extrapolation. Taking into account all the limited predictability of the severe convection development and the errors of the radar-based precipitation estimates, the aim of the simulations was to find out to what extend the hydrometeorological prediction system, specifically tuned for these events, was able to forecast a the flash floods. As assumed, the hydrometeorological simulations of the streamflow forecasts lagged behind the actual development but there is still some potential for successful warning, especially for areas where the flood hits lately.

  16. Using NDVI to measure precipitation in semi-arid landscapes

    Science.gov (United States)

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  17. Stochastic, radar-based short term flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, U.; Bardossy, A.; Gysi, H. [Stuttgart Univ. (Germany). Inst. fuer Wasserbau; Radar Info Karlsuhe (Germany)

    2000-07-01

    The concept for a radar-based precipitation and flood forecasting system is introduced together with preliminary results. The system is developed for small mesoscale catchments ({proportional_to} 100 km{sup 2}) and short forecasting periods (up to a few hours). The rainfall and subsequent flood forecast are generated applying the Monte Carlo technique. The result, an ensemble of possible future rainfall and discharge scenarios, provides decision makers with information about the probability of discharge magnitudes, thus enabling risk assessment. (orig.)

  18. The lidar dark band: An oddity of the radar bright band analogy

    Energy Technology Data Exchange (ETDEWEB)

    Sassen, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  19. WSR-88D doppler radar detection of corn earworm moth migration

    Science.gov (United States)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  20. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  1. Investigation of the relationship between optical auroral forms and HF radar E region backscatter

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2000-06-01

    Full Text Available The SuperDARN HF radars have been employed in the past to investigate the spectral characteristics of coherent backscatter from L-shell aligned features in the auroral E region. The present study employs all-sky camera observations of the aurora from Husafell, Iceland, and the two SuperDARN radars located on Iceland, Þykkvibær and Stokkseyri, to determine the optical signature of such backscatter features. It is shown that, especially during quiet geomagnetic conditions, the backscatter region is closely associated with east-west aligned diffuse auroral features, and that the two move in tandem with each other. This association between optical and radar aurora has repercussions for the instability mechanisms responsible for generating the E region irregularities from which radars scatter. This is discussed and compared with previous studies investigating the relationship between optical and VHF radar aurora. In addition, although it is known that E region backscatter is commonly observed by SuperDARN radars, the present study demonstrates for the first time that multiple radars can observe the same feature to extend over at least 3 h of magnetic local time, allowing precipitation features to be mapped over large portions of the auroral zone.Key words: Ionosphere (particle precipitation; plasma waves and instabilities

  2. Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data

    Science.gov (United States)

    Pallardy, Quinn; Fox, Neil I.

    2018-02-01

    Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.

  3. Satellite-based Precipitation Measurements For Science and Society

    Science.gov (United States)

    Skofronick Jackson, G.; Huffman, G. J.

    2016-12-01

    Water is essential to Earth. Thus, knowing when, where, and how precipitation falls is of paramount importance for science and society. Some areas of the world have dense ground-based rain observations, but the vast oceans, less populated regions, and parts of developing countries lack adequate surface precipitation data. Satellites provide an optimal platform to measure precipitation globally. In the 1970's satellites started measuring precipitation and, over time, satellite precipitation sensors improved considerably. A major breakthrough was the 1998 launch of the joint NASA-Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM). The TRMM spacecraft had both a multi-frequency passive microwave imaging radiometer for measuring wide-swath rainfall surface intensity and horizontal structures, and a single-frequency radar channel capable of generating 3D views of rain in clouds. In 2014, NASA and JAXA launched the Global Precipitation Measurement Core Observatory (GPM-CO) spacecraft carrying the most advanced precipitation sensors currently in space, including a dual-frequency precipitation radar and a well-calibrated, multi-frequency passive microwave radiometer. The GPM-CO was designed to measure precipitation rates from 0.2-110 mm hr-1, to provide 3D particle size distributions, and to detect moderate to intense snow events, considerably improving over TRMM's capabilities. The GPM-CO serves as a reference for unifying data from a constellation of partner satellites to provide next-generation, merged estimates globally and with high temporal (30 min) and spatial (0.1ox0.1o) resolutions. GPM data have been used for observing hurricanes from the tropics to mid-latitudes; developing susceptibility maps for floods, landslides, and droughts; providing inputs into weather and climate models; and offering new insights into agricultural productivity and world health. The current status of GPM, its ongoing science, and the future plans will be

  4. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  5. Can we estimate precipitation rate during snowfall using a scanning terrestrial LiDAR?

    Science.gov (United States)

    LeWinter, A. L.; Bair, E. H.; Davis, R. E.; Finnegan, D. C.; Gutmann, E. D.; Dozier, J.

    2012-12-01

    Accurate snowfall measurements in windy areas have proven difficult. To examine a new approach, we have installed an automatic scanning terrestrial LiDAR at Mammoth Mountain, CA. With this LiDAR, we have demonstrated effective snow depth mapping over a small study area of several hundred m2. The LiDAR also produces dense point clouds by detecting falling and blowing hydrometeors during storms. Daily counts of airborne detections from the LiDAR show excellent agreement with automated and manual snow water equivalent measurements, suggesting that LiDAR observations have the potential to directly estimate precipitation rate. Thus, we suggest LiDAR scanners offer advantages over precipitation radars, which could lead to more accurate precipitation rate estimates. For instance, uncertainties in mass-diameter and mass-fall speed relationships used in precipitation radar, combined with low reflectivity of snow in the microwave spectrum, produce errors of up to 3X in snowfall rates measured by radar. Since snow has more backscatter in the near-infrared wavelengths used by LiDAR compared to the wavelengths used by radar, and the LiDAR detects individual hydrometeors, our approach has more potential for directly estimating precipitation rate. A key uncertainty is hydrometeor mass. At our study site, we have also installed a Multi Angle Snowflake Camera (MASC) to measure size, fallspeed, and mass of individual hydrometeors. By combining simultaneous MASC and LiDAR measurements, we can estimate precipitation density and rate.

  6. Artificial intelligence techniques for clutter identification with polarimetric radar signatures

    Science.gov (United States)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Srivastava, Prashant K.

    2012-06-01

    The use of different artificial intelligence (AI) techniques for clutter signals identification in the context of radar based precipitation estimation is presented. The clutter signals considered are because of ground clutter, sea clutter and anomalous propagation whereas the explored AI techniques include the support vector machine (SVM), the artificial neural network (ANN), the decision tree (DT), and the nearest neighbour (NN) systems. Eight different radar measurement combinations comprising of various polarimetric spectral signatures — the reflectivity (ZH), differential reflectivity (ZDR), differential propagation phase (ΦDP), cross-correlation coefficient (ρHV), velocity (V) and spectral width (W) from a C-band polarimetric radar are taken into account as input vectors to the AI systems. The results reveal that all four AI classifiers can identify the clutter echoes with around 98-99% accuracy when all radar input signatures are used. As standalone input vectors, the polarimetric textures of the ΦDP and the ZDR have also demonstrated excellent skills distinguishing clutter echoes with an accuracy of 97-98% approximately. If no polarimetric signature is available, a combination of the texture of ZH, V and W representing typical measurements from a single-polarization Doppler radar may be used for clutter identification, but with a lower accuracy when compared to the use of polarimetric radar measurements. In contrast, the use of ZH or W alone is found less reliable for clutter classification. Among the AI techniques, the SVM has a slightly better score in terms of various clutter identification indicators as compared to the others. Conversely, the NN algorithm has shown a lower performance in identifying the clutter echoes correctly considering the standalone radar signatures as inputs. Despite this, the performance among the different AI techniques is comparable indicating the suitability of the developed systems, and this is further supported when

  7. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  8. Ada Compiler Validation Summary Report: Certificate Number: 921004W1. 1290, Verdix Corporation, VADS MP Sun SPARC Solaris 2.1 VAda-110-4141, Version 6.2, Sun SPARCserver 690 under Solaris 2.1

    Science.gov (United States)

    1992-11-18

    Sun SPARC Solaris 2.1, VAda-1 10-4141, Version 6.2, Sun SPARCserver 690 under Solaris 2.1 (Host & Target), 921004Wl . 11290 6. AUTHOR(S) Wright...We, the undersigned, declare that we have no knowledge of deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in...Programming Langua, ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987. [Pro90l Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program

  9. Creating synergy between ground and space-based precipitation measurements

    Science.gov (United States)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.

    2010-12-01

    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; http://nmq.ou.edu) system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  10. Dual-Polarization Observations of Precipitation: State of the Art in Operational and Research Applications

    Science.gov (United States)

    Chandra, C. V.; Moisseev, D. N.; Baldini, L.; Bechini, R.; Cremonini, R.; Wolff, D. B.; Petersen, W. A.; Junyent, F.; Chen, H.; Beauchamp, R.

    2016-12-01

    Dual-polarization weather radars have been widely used for rainfall measurement applications and studies of the microphysical characteristics of precipitation. Ground-based, dual-polarization radar systems form the cornerstones of national severe weather warning and forecasting infrastructure in many developed countries. As a result of the improved performance of dual-polarization radars for these applications, large scale dual-polarization upgrades are being planned for India and China. In addition to national forecast and warning operations, dual-polarization radars have also been used for satellite ground validation activities. The operational Dual-Polarization radars in the US are mostly S band systems whereas in Europe are mostly C band systems. In addition a third class of systems is emerging in urban regions where networks of X band systems are being deployed operationally. There are successful networks planned or already deployed in big cities such as Dallas Fort Worth, Tokyo or Beijing. These X band networks are developing their own operational domain. In summary a large infrastructure in terms of user specified products and dual use of operational research applications are also emerging in these systems. This paper will discuss some of the innovative uses of the operational dual-polarization radar networks for research purposes, with references to calibration, hydrometeor classification and quantitative precipitation estimation. Additional application to the study of precipitation processes will also be discussed.

  11. Current status of Dual Ka-band radar field campaign in Japan for GPM/DPR mission

    Science.gov (United States)

    Kaneko, Yuki; Nakagawa, Katsuhiro; Nishikawa, Masanori; Nakamura, Kenji; Fujiyoshi, Yasushi; Hanado, Hiroshi; Minda, Haruya; Yamamoto, Kazuhide; Oki, Riko; Furukawa, Kinji

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  12. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and...

  13. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast...

  14. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  15. Adaptive reconstruction of radar reflectivity maps based on their space-time structure

    Science.gov (United States)

    Park, Shinju; Berenguer, Marc

    2013-04-01

    The production of Radar Quantitative Precipitation Estimates (QPE) requires processing the observations to ensure their quality and its conversion into the variable of interest (i.e. precipitation rates). This processing is done through a chain of algorithms applied to mitigate the sources of uncertainty affecting radar observations. Some algorithms involve the reconstruction of the meteorological signal in areas where the signal is lost or strongly contaminated, for instance in areas affected by ground, sea clutter, total beam blockage or severe path attenuation by heavy rain. For post-processing of radar uncorrected moment data, the reconstruction has been done with spatial interpolation after the identification of clutter based on the analysis of statistical properties of radar measurements. The aim of this work has been to develop an improved reconstruction method that adapts to the different rainfall situations by using the information of the time and space variability of the rainfall field. The n-dimensional semi-variogram is formulated to reconstruct the radar fields in a n-Dimensional Ordinary Kriging framework: i.e., (i) the horizontal plane, (ii) the closest non-contaminated PPI, and (iii) the closest radar volume scan in time. The last one takes into account the effect of the motion that is very similar to the extrapolation of reflectivity observations to the future in many nowcasting algorithms. Each formulation of the reconstruction methods and their combinations have been studied. The radar fields have been reconstructed over the areas labeled as clutter (with a fuzzy logic algorithm) under different rainfall situations, including scattered convection, organized convection, and widespread precipitation. Also, the comparison between the reconstructed radar rainfall accumulations and collocated raingauge observations have been used for the evaluation.

  16. Uncertainty Analysis of Radar and Gauge Rainfall Estimates in the Russian River Basin

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Willie, D.; Reynolds, D.; Campbell, C.; Sukovich, E.

    2013-12-01

    Radar Quantitative Precipitation Estimation (QPE) has been a very important application of weather radar since it was introduced and made widely available after World War II. Although great progress has been made over the last two decades, it is still a challenging process especially in regions of complex terrain such as the western U.S. It is also extremely difficult to make direct use of radar precipitation data in quantitative hydrologic forecasting models. To improve the understanding of rainfall estimation and distributions in the NOAA Hydrometeorology Testbed in northern California (HMT-West), extensive evaluation of radar and gauge QPE products has been performed using a set of independent rain gauge data. This study focuses on the rainfall evaluation in the Russian River Basin. The statistical properties of the different gridded QPE products will be compared quantitatively. The main emphasis of this study will be on the analysis of uncertainties of the radar and gauge rainfall products that are subject to various sources of error. The spatial variation analysis of the radar estimates is performed by measuring the statistical distribution of the radar base data such as reflectivity and by the comparison with a rain gauge cluster. The application of mean field bias values to the radar rainfall data will also be described. The uncertainty analysis of the gauge rainfall will be focused on the comparison of traditional kriging and conditional bias penalized kriging (Seo 2012) methods. This comparison is performed with the retrospective Multisensor Precipitation Estimator (MPE) system installed at the NOAA Earth System Research Laboratory. The independent gauge set will again be used as the verification tool for the newly generated rainfall products.

  17. Lightning and precipitation history of a microburst-producing storm

    Science.gov (United States)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David

    1988-01-01

    Quantitative measurements of the lightning and precipitation life cycle of a microburst-producing storm are discussed. The storm, which occurred on July 20, 1986 at Huntsville, Alabama, was studied using Doppler radar data. The storm produced 116 flashes, 6 of which were discharges to the ground. It is suggested that an abrupt decrease in the total flash rates is associated with storm collapse, and serves as a precursor to the arrival of the maximum microburst outflows at the surface. Ice-phase precipitation is shown to be an important factor in both the formation of the strong downdraft and the electrification of the storm.

  18. Regional frequency analysis of extreme rainfall in Belgium based on radar estimates

    Directory of Open Access Journals (Sweden)

    E. Goudenhoofdt

    2017-10-01

    Full Text Available In Belgium, only rain gauge time series have been used so far to study extreme rainfall at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE from a single weather radar is evaluated. For the period 2005–2016, 1 and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The peak intensities are fitted to the exponential distribution using regression in Q-Q plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift associated with convective cells and strong radar signal attenuation. Differences between radar and gauge rainfall values are caused by spatial and temporal sampling, gauge underestimations and radar errors. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis for 1 h duration is performed at the locations of four gauges with 1965–2008 records using the spatially independent QPE data in a circle of 20 km. The confidence interval of the radar fit, which is small due to the sample size, contains the gauge fit for the two closest stations from the radar. In Brussels, the radar extremes are significantly higher than the gauge rainfall extremes, but similar to those observed by an automatic gauge during the same period. The extreme statistics exhibit slight variations related to topography. The radar-based extreme value analysis can be extended to other durations.

  19. Regional frequency analysis of extreme rainfall in Belgium based on radar estimates

    Science.gov (United States)

    Goudenhoofdt, Edouard; Delobbe, Laurent; Willems, Patrick

    2017-10-01

    In Belgium, only rain gauge time series have been used so far to study extreme rainfall at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005-2016, 1 and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The peak intensities are fitted to the exponential distribution using regression in Q-Q plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift associated with convective cells and strong radar signal attenuation. Differences between radar and gauge rainfall values are caused by spatial and temporal sampling, gauge underestimations and radar errors. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis for 1 h duration is performed at the locations of four gauges with 1965-2008 records using the spatially independent QPE data in a circle of 20 km. The confidence interval of the radar fit, which is small due to the sample size, contains the gauge fit for the two closest stations from the radar. In Brussels, the radar extremes are significantly higher than the gauge rainfall extremes, but similar to those observed by an automatic gauge during the same period. The extreme statistics exhibit slight variations related to topography. The radar-based extreme value analysis can be extended to other durations.

  20. Research on Radar Importance with Decision Matrix

    Science.gov (United States)

    Meng, Lingjie; Du, Yu; Wang, Liuheng

    2017-12-01

    Considering the characteristic of radar, constructed the evaluation index system of radar importance, established the comprehensive evaluation model based on decision matrix. Finally, by means of an example, the methods of this evaluation on radar importance was right and feasibility.

  1. Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification

    Science.gov (United States)

    Kelley, Owen A.; Stout, John; Halverson, Jeffrey B.

    2004-12-01

    The association of tall precipitation with tropical cyclone intensification may have implications for the difficult task of forecasting the destructive potential of tropical cyclones. This study uses all of the well-centered overflights of tropical cyclones from 1998 to 2003 seen by the TRMM Precipitation Radar. The chance of intensification increases when one or more extremely tall convective towers exist in the tropical cyclone's eyewall. We define an extremely tall convective tower as a convective cell with a 20 dBZ reflectivity signal that reaches an altitude of at least 14.5 km. In addition, we adapt this radar technique for use with more plentiful infrared and passive microwave data.

  2. Rain/snow radar remote sensing with two X-band radars operating over an altitude gradient in the French Alps

    Science.gov (United States)

    Delrieu, Guy; Cazenave, Frédéric; Yu, Nan; Boudevillain, Brice; Faure, Dominique; Gaussiat, Nicolas

    2017-04-01

    Operating weather radars in high-mountain regions faces the following well-known dilemma: (1) installing radar on top of mountains allows for the detection of severe summer convective events over 360° but may give poor QPE performance during a very significant part of the year when the 0°C isotherm is located below or close to the radar altitude; (2) installing radar at lower altitudes may lead to better QPE over sensitive areas such as cities located in valleys, but at the cost of reduced visibility and detection capability in other geographical sectors. We have the opportunity to study this question in detail in the region of Grenoble (an Alpine city of 500 000 inhabitants with an average altitude of 210 m asl) with a pair of X-band polarimetric weather radars operated respectively by Meteo-France on top of Mount Moucherotte (1920 m asl) and by IGE on the Grenoble Campus (213 m asl). The XPORT radar (IGE) performs a combination of PPIs at elevations of 3.5, 7.5, 15 and 25° complemented by two RHIs in the vertical plane passing by the two radar sites, in order to document the 4D precipitation variability within the Grenoble intermountain valley. In the proposed communication, preliminary results of this experiment (started in September 2016) will be presented with highlights on (1) the calibration of the two radar systems, (2) the characterization of the melting layer during significant precipitation events (>5mm/day) occurring in autumn, winter and spring; (3) the simulation of the relative effects of attenuation and non-uniform beam filling at X-band and (4) the possibility to use the mountain returns for quantifying the attenuation by the rain and the melting layer.

  3. Status and Update of the International Precipitation Working Group

    Science.gov (United States)

    Kucera, Paul; Lapeta, Bozena; Wang, Nai-Yu; Aonashi, Kazumasa

    2013-04-01

    ranged from new and upcoming satellite sensors, applications, precipitation datasets, and verification and validation. Several key outcomes were recommended at the IPWG6 Workshop. One key recommendation included the provision of in situ precipitation validation data is critical for the improvement of satellite estimates of precipitation, particularly over data sparse regions. Another recommendation is the long-term continuity of conically-scanning microwave imagers as well as space based radars. Additionally, IPWG recommends that the satellite agencies continue with the implementation of new technology, such as geostationary microwave and advanced radar instrumentation to advance the capability to measure precipitation from space. The presentation will provide a status update of IPWG activities and discuss the recommendations in further detail.

  4. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  5. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    Science.gov (United States)

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  6. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  7. Ground validation of DPR precipitation rate over Italy using H-SAF validation methodology

    Science.gov (United States)

    Puca, Silvia; Petracca, Marco; Sebastianelli, Stefano; Vulpiani, Gianfranco

    2017-04-01

    The H-SAF project (Satellite Application Facility on support to Operational Hydrology and Water Management, funded by EUMETSAT) is aimed at retrieving key hydrological parameters such as precipitation, soil moisture and snow cover. Within the H-SAF consortium, the Product Precipitation Validation Group (PPVG) evaluate the accuracy of instantaneous and accumulated precipitation products with respect to ground radar and rain gauge data adopting the same methodology (using a Unique Common Code) throughout Europe. The adopted validation methodology can be summarized by the following few steps: (1) ground data (radar and rain gauge) quality control; (2) spatial interpolation of rain gauge measurements; (3) up-scaling of radar data to satellite native grid; (4) temporal comparison of satellite and ground-based precipitation products; and (5) production and evaluation of continuous and multi-categorical statistical scores for long time series and case studies. The statistical scores are evaluated taking into account the satellite product native grid. With the recent advent of the GPM era starting in march 2014, more new global precipitation products are available. The validation methodology developed in H-SAF can be easily applicable to different precipitation products. In this work, we have validated instantaneous precipitation data estimated from DPR (Dual-frequency Precipitation Radar) instrument onboard of the GPM-CO (Global Precipitation Measurement Core Observatory) satellite. In particular, we have analyzed the near surface and estimated precipitation fields collected in the 2A-Level for 3 different scans (NS, MS and HS). The Italian radar mosaic managed by the National Department of Civil Protection available operationally every 10 minutes is used as ground reference data. The results obtained highlight the capability of the DPR to identify properly the precipitation areas with higher accuracy in estimating the stratiform precipitation (especially for the HS). An

  8. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  9. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    Science.gov (United States)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  10. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  11. Interferometric radar measurements

    Science.gov (United States)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  12. On the Implementation of a Regional X-Band Weather Radar Network

    Directory of Open Access Journals (Sweden)

    Andrea Antonini

    2017-01-01

    Full Text Available In the last few years, the number of worldwide operational X-band weather radars has rapidly been growing, thanks to an established technology that offers reliability, high performance, and reduced efforts and costs for installation and maintenance, with respect to the more widespread C- and S-band systems. X-band radars are particularly suitable for nowcasting activities, as those operated by the LaMMA (Laboratory of Monitoring and Environmental Modelling for the sustainable development Consortium in the framework of its institutional duties of operational meteorological surveillance. In fact, they have the capability to monitor precipitation, resolving very local scales, with good spatial and temporal details, although with a reduced scanning range. The Consortium has recently installed a small network of X-band weather radars that partially overlaps and completes the existing national radar network over the north Tyrrhenian area. This paper describes the implementation of this regional network, detailing the aspects related with the radar signal processing chain that provides the final reflectivity composite, starting from the acquisition of the signal power data. The network performances are then qualitatively assessed for three case studies characterised by different precipitation regimes and different seasons. Results are satisfactory especially during intense precipitations, particularly regarding what concerns their spatial and temporal characterisation.

  13. Radar Chaff: A Bibliography

    Science.gov (United States)

    1983-11-01

    presented and a general literature review is given. ii loerner. W-M., W. D. fl-Arini. C-Y. Chan, S. Satchi, W-S. Ip, P. W. Mastoria, and 5-Y. Foo, (cont...evolution of the chaff cloud in response to atmospheric processes _n terms of the mean concentration of various dipole " clases " (defined . dipole...Clutter." Arpendix III (Reviaion 1) of Volume It (Radar Clutter) of Book II (Appendixes) of Assessment of Requirements of 1985-20OO Era U. S. Navy Surface

  14. Weather Radar Studies.

    Science.gov (United States)

    1986-03-31

    Cartesian grid . Specifi software odles ane shown in, Table 151-3 ail ’ecIbe briefly in this section below. TAi S- _ _ _ UT LUWL ps mw Lqw Tomn am DWq..G. Se 2...beman the weather radar project software devalopmet personnel and the Limoa Control Syms Egiesering Oroup personnel who rde’-d and implementd the moun...We a~ad hove smard our dom collecton wish the FL-2 ainanmd whh the musmmot umm. Data amum ope ea lymA Mmnhb mod carnatly a sshdukd so coomm -kbro

  15. Catalyzed precipitation in aluminum

    Science.gov (United States)

    Mitlin, David

    The work reported in Chapter 1 concerned the influence of Si on the precipitation of theta' (metastable Al2Cu) during the isothermal aging of Al-2Cu-1Si (wt. %). The binary alloys Al-2Cu and Al-1Si were studied for comparison. Only two precipitate phases were detected: pure Si in Al-Si and Al-Cu-Si, and theta' (metastable Al 2Cu) in Al-Cu and Al-Cu-Si. On aging the ternary, Si precipitates first, and provides heterogeneous sites to nucleate theta'. As a consequence, the density of theta' precipitates in Al-Cu-Si is much higher than in the binary Al-Cu. Also, the theta ' precipitates in the ternary alloy have lower aspect ratio (at given particle size) and lose coherence on their broad faces at a slower rate. The principal focus of Chapter 2 is to explain precipitation in Al-lat.%Si-lat%Ge. The microstructure is characterized using conventional and high resolution transmission electron microscopy, as well as energy dispersive X-ray spectroscopy. The first precipitates to come out of solid solution have a cube-cube orientation relationship with the matrix. High resolution TEM demonstrated that all the precipitates start out, and remain multiply twinned throughout the aging treatment. There is a variation in the stoichiometry of the precipitates, with the mean composition being Si-44.5at%Ge. It is also shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. The purpose of Chapters 3 and 4 is to explain these properties in terms of the role that the Si-Ge additions have on modifying the conventional Al-Cu aging sequence. In both AlCu and AlCuSiGe the room temperature microstructure consists of both GP zones and theta″ precipitates. Upon aging at 190°C Al-Cu displays the well known precipitation sequence; the slow dissolution of GP zones and theta″ and the gradual formation of theta

  16. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  17. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  18. SMAP's Radar OBP Algorithm Development

    Science.gov (United States)

    Le, Charles; Spencer, Michael W.; Veilleux, Louise; Chan, Samuel; He, Yutao; Zheng, Jason; Nguyen, Kayla

    2009-01-01

    An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed.

  19. Behavior Subtraction applied to radar

    NARCIS (Netherlands)

    Rossum, W.L. van; Caro Cuenca, M.

    2014-01-01

    An algorithm developed for optical images has been applied to radar data. The algorithm, Behavior Subtraction, is based on capturing the dynamics of a scene and detecting anomalous behavior. The radar application is the detection of small surface targets at sea. The sea surface yields the expected

  20. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  1. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  2. Equatorial MST radars: Further consideration

    Science.gov (United States)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  3. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  4. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    isolate the "debris ball" from precipitation signatures in the dual polarization radar data has been developed and verified using the NASA damage track data.

  5. System Concepts for the Advanced Post-TRMM Rainfall Profiling Radars

    Science.gov (United States)

    Im, Eastwood; Smith, Eric A.

    2000-01-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall

  6. Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    Science.gov (United States)

    Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali

    2010-01-01

    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles

  7. Automatized system of precipitation monitoring and recording with use of radiolocation for urban areas

    Science.gov (United States)

    Voronov, Nikolai; Dikinis, Alexandr; Ivanov, Maxim

    2016-04-01

    One of the most important lines of work in the field of increasing the efficiency of functioning of urban water disposal systems is automation of precipitation recording with application of new technological tools for measuring precipitations fallout and forecast. The developed Automatized Information System for Atmospheric Precipitation Recording (AIS «Osadki») includes a network of automatic precipitation stations on the basis of use of the precipitation gauge OTT Pluvio2; a Doppler meteorological radar; software for collection of information about precipitations and control of work of the precipitation stations network; a specialized database that provides direct access to meteorological information and statistical estimation of precipitation distribution for urban conditions. The main advantage of the System is the use of a Doppler meteorological radar which, in combination with the measurement data of the station in the automated mode with a 5-minute interval allows to estimate both the distribution of precipitations on the urban territory their intensity. As the result, it allows to drastically increase the speed of processing of hydrometeorological information and the efficiency of using it for the needs of urban services. This article was prepared within the framework of the Federal Targeted Programme for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014-2020 (agreement № 14.574.21.0088).

  8. Global precipitation measurements for validating climate models

    Science.gov (United States)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  9. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  10. Estimating Subcatchment Runoff Coefficients using Weather Radar and a Downstream Runoff Sensor

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate...

  11. Using Weather Radar to Optimise Operation of an Urban Drainage System with Distributed Rainwater Storage

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren Liedtke; Bentzen, Thomas Ruby

    2012-01-01

    The perspective of controlling the local rain water storage tanks for a small catchment is investigated to evaluate if a predictive control reduces the CSO from the storm drainage system. A weather radar based nowcast system is used to predict the actual precipitation two hours ahead. In case...

  12. Observations of Heavy Rainfall in a Post Wildland Fire Area Using X-Band Polarimetric Radar

    Science.gov (United States)

    Cifelli, R.; Matrosov, S. Y.; Gochis, D. J.; Kennedy, P.; Moody, J. A.

    2011-12-01

    Polarimetric X-band radar systems have been used increasingly over the last decade for rainfall measurements. Since X-band radar systems are generally less costly, more mobile, and have narrower beam widths (for same antenna sizes) than those operating at lower frequencies (e.g., C and S-bands), they can be used for the "gap-filling" purposes for the areas when high resolution rainfall measurements are needed and existing operational radars systems lack adequate coverage and/or resolution for accurate quantitative precipitation estimation (QPE). The main drawback of X-band systems is attenuation of radar signals, which is significantly stronger compared to frequencies used by "traditional" precipitation radars operating at lower frequencies. The use of different correction schemes based on polarimetric data can, to a certain degree, overcome this drawback when attenuation does not cause total signal extinction. This presentation will focus on examining the use of high-resolution data from the NOAA Earth System Research Laboratory (ESRL) mobile X-band dual polarimetric radar for the purpose of estimating precipitation in a post-wildland fire area. The NOAA radar was deployed in the summer of 2011 to examine the impact of gap-fill radar on QPE and the resulting hydrologic response during heavy rain events in the Colorado Front Range in collaboration with colleagues from the National Center for Atmospheric Research (NCAR), Colorado State University (CSU), and the U.S. Geological Survey (USGS). A network of rain gauges installed by NCAR, the Denver Urban Drainage Flood Control District (UDFCD), and the USGS are used to compare with the radar estimates. Supplemental data from NEXRAD and the CSU-CHILL dual polarimetric radar are also used to compare with the NOAA X-band and rain gauges. It will be shown that rainfall rates and accumulations estimated from specific differential phase measurements (KDP) at X-band are in good agreement with the measurements from the gauge

  13. Simulation and Prediction of Weather Radar Clutter Using a Wave Propagator on High Resolution NWP Data

    DEFF Research Database (Denmark)

    Benzon, Hans-Henrik; Bovith, Thomas

    2008-01-01

    Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...

  14. Short-term ensemble radar rainfall forecasts for hydrological applications

    Science.gov (United States)

    Codo de Oliveira, M.; Rico-Ramirez, M. A.

    2016-12-01

    Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.

  15. Influence of magnetospheric processes on winter HF radar spectra characteristics

    Directory of Open Access Journals (Sweden)

    R. André

    2002-11-01

    Full Text Available This study investigates further the relationship between regions of the magnetosphere and the characteristics of HF radar Doppler spectra recorded in the ionospheric projection of those regions. It builds on earlier work, which has reported a relationship between the Doppler spectral width and the ionospheric projection of the magnetospheric cusp region, by introducing novel techniques for classifying the Doppler spectra recorded by the SuperDARN radars. We first review the geophysical factors that can condition the characteristics of the autocorrelation function (ACF data produced by the radars. This leads to a classification scheme of the ACF data which is then applied to a large database compiled from winter data taken by the Northern Hemisphere Super-DARN radars. This statistical study shows that the ACF characteristics are not randomly distributed in space, but rather are spatially organized in the ionosphere. This paper suggests that these regions are ordered primarily by the low energy ( 1 keV electron precipitation region and the presence of intense ULF wave activity.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  16. Radar altimetry assimilation in catchment-scale hydrological models

    Science.gov (United States)

    Bauer-Gottwein, P.; Michailovsky, C. I. B.

    2012-04-01

    Satellite-borne radar altimeters provide time series of river and lake levels with global coverage and moderate temporal resolution. Current missions can detect rivers down to a minimum width of about 100m, depending on local conditions around the virtual station. Water level time series from space-borne radar altimeters are an important source of information in ungauged or poorly gauged basins. However, many water resources management applications require information on river discharge. Water levels can be converted into river discharge by means of a rating curve, if sufficient and accurate information on channel geometry, slope and roughness is available. Alternatively, altimetric river levels can be assimilated into catchment-scale hydrological models. The updated models can subsequently be used to produce improved discharge estimates. In this study, a Muskingum routing model for a river network is updated using multiple radar altimetry time series. The routing model is forced with runoff produced by lumped-parameter rainfall-runoff models in each subcatchment. Runoff is uncertain because of errors in the precipitation forcing, structural errors in the rainfall-runoff model as well as uncertain rainfall-runoff model parameters. Altimetric measurements are translated into river reach storage based on river geometry. The Muskingum routing model is forced with a runoff ensemble and storages in the river reaches are updated using a Kalman filter approach. The approach is applied to the Zambezi and Brahmaputra river basins. Assimilation of radar altimetry significantly improves the capability of the models to simulate river discharge.

  17. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  18. Is extreme precipitation changing?

    Science.gov (United States)

    Papalexiou, Simon Michael

    2015-04-01

    For most of the scientists climate change is a fact. Climate change implies changes not only on the behavior of the temperature but also on other climatic variables like the precipitation. The question raised in this study is whether or not the annual daily maximum precipitation has changed. In order to evaluate if this question can be answered, several thousands of precipitation records are analyzed from all over the globe. Initially the annual daily maxima time series are carefully formed and sequentially all possible trends are estimated in a moving window framework and for several interannual periods, e.g., from 10 years to 100 years. The aim is to estimate the difference between the percentage of increasing and decreasing trends in the annual daily maximum precipitation and assess if this difference indicates any specific pattern.

  19. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  20. Towards a Radar/Radiometer Mode on the Dual-Frequency, Dual-Polarized, Doppler Radar (D3R) System

    Science.gov (United States)

    Vega, Manuel A.; Chandrasekar, V.

    2016-01-01

    The dual-­frequency, dual-­polarized, Doppler radar (D3R) system was developed in support of the ground validation segment of the Global Precipitation Measurement (GPM) mission. Although its main purpose is to provide active, Ku/Ka­-band, dual­-polarized measurements of precipitation, the design presents an opportunity to study its operation in an active/passive mode. The opportunity arises from use of solid-­state transmitters employing a multi­-frequency waveform and receiving system. Typically, a sequence of three pulses separated in frequency is transmitted to achieve its radar sensitivity and minimum range. However, one of the three pulses can be disabled with a tolerable decrease in sensitivity and its receive channel can be repurposed to support passive measurements. This work focuses on progress in the characterization of the Ku-­band H polarized passive channel operating simultaneously with two active as a step towards the provision of brightness temperatures along with the other radar derived products. The methodology developed will be applied to the V polarized channel and Ka­-band subsystem in the near future. The study consists on the analysis of the antenna performance, receiver architecture, transfer function and achievable number of independent samples, calibration method and preliminary observation analysis. All within the context of the instrument's current configuration and possible future improvements.

  1. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    Science.gov (United States)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  2. Precipitation Estimation from Remotely Sensed Data Using Deep Neural Network

    Science.gov (United States)

    Tao, Y.; Gao, X.; Hsu, K. L.; Sorooshian, S.; Ihler, A.

    2015-12-01

    This research develops a precipitation estimation system from remote sensed data using state-of-the-art machine learning algorithms. Compared to ground-based precipitation measurements, satellite-based precipitation estimation products have advantages of temporal resolution and spatial coverage. Also, the massive amount of satellite data contains various measures related to precipitation formation and development. On the other hand, deep learning algorithms were newly developed in the area of machine learning, which was a breakthrough to deal with large and complex dataset, especially to image data. Here, we attempt to engage deep learning techniques to provide hourly precipitation estimation from satellite information, such as long wave infrared data. The brightness temperature data from infrared data is considered to contain cloud information. Radar stage IV dataset is used as ground measurement for parameter calibration. Stacked denoising auto-encoders (SDAE) is applied here to build a 4-layer neural network with 1000 hidden nodes for each hidden layer. SDAE involves two major steps: (1) greedily pre-training each layer as a denoising auto-encoder using the outputs of previous trained hidden layer output starting from visible layer to initialize parameters; (2) fine-tuning the whole deep neural network with supervised criteria. The results are compared with satellite precipitation product PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System). Based on the results, we have several valuable conclusions: By properly training the neural network, it is able to extract useful information for precipitation estimation. For example, it can reduce the mean squared error of the precipitation by 58% for the summer season in the central United States of the validation period. The SDAE method captures the shape of the precipitation from the cloud shape better compared to the CCS product. Design of

  3. Long-term validation of ESA operational retrieval (version 6.0) of MIPAS Envisat vertical profiles of methane, nitrous oxide, CFC11, and CFC12 using balloon-borne observations and trajectory matching

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Schwarzenberger, Tim; Haase, Hans-Peter; Grunow, Katja; Abalichin, Jana; Sala, Stephan

    2016-03-01

    MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.

  4. Radar, Insect Population Ecology, and Pest Management

    Science.gov (United States)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  5. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  6. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  7. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  8. The Shared Mobile Atmospheric Research and Teaching Radar: A Collaboration to Enhance Research and Teaching.

    Science.gov (United States)

    Biggerstaff, Michael I.; Wicker, Louis J.; Guynes, Jerry; Ziegler, Conrad; Straka, Jerry M.; Rasmussen, Erik N.; Doggett, Arthur, IV; Carey, Larry D.; Schroeder, John L.; Weiss, Chris

    2005-09-01

    A group of scientists from three universities across two different states and from one federal research laboratory joined together to build and deploy two mobile C-band Doppler weather radars to enhance research and promote meteorological education. This 5-yr project led to the development of the Shared Mobile Atmospheric Research and Teaching (SMART) radar coalition that built the first mobile C-band Doppler weather radar in the United States and also successfully deployed the first mobile C-band dual-Doppler network in a landfalling hurricane. This accomplishment marked the beginning of an era in which high temporal and spatial resolution precipitation and dual-Doppler wind data over mesoscale (100 km) regions can be acquired from mobile ground-based platforms during extreme heavy rain and high-wind events.In this paper, we discuss the rationale for building the mobile observing systems, highlight some of the challenges that were encountered in creating a unique multia-gency coalition, provide examples of how the SMART radars have contributed to research and education, and discuss future plans for continued development and management of the radar facility, including how others may use the radars for their own research and teaching programs.The capability of the SMART radars to measure winds in non-precipitating environments, to capture rapidly evolving, short-lived, small-scale tornadic circulations, and to sample mesoscale regions with high spatial resolution over broad regions of heavy rainfall is demonstrated. Repeated successful intercepts provide evidence that these radars are capable of being used to study a wide range of atmospheric phenomena.

  9. Storm Motion Tracking Over The Arno River Basin Through Multiscale Radar Reflectivity Classification and Correlation

    Science.gov (United States)

    Facheris, L.; Tanelli, S.; Giuli, D.

    A method is presented for analyzing the storm motion through the application of a nowcasting technique based on radar echoes tracking through multiscale correlation. The application of the correlation principle to weather radar image processing - the so called TREC (Tracking Radar Echoes by Correlation) and derived algorithms - is de- scribed in [1] and in references cited therein. The block matching approach exploited there is typical of video compression applications, whose purpose is to remove the temporal correlation between two subsequent frames of a sequence of images. In par- ticular, the wavelet decomposition approach to motion estimation seems particularly suitable for weather radar maps. In fact, block matching is particularly efficient when the images have a sufficient level of contrast. Though this does not hold for original resolution radar maps, it can be easily obtained by changing the resolution level by means of the wavelet decomposition. The technique first proposed in [2] (TREMC - Tracking of Radar Echoes by means of Multiscale Correlation) adopts a multiscale, multiresolution, and partially overlapped, block grid which adapts to the radar reflec- tivity pattern. Multiresolution decomposition is performed through 2D wavelet based filtering. Correlation coefficients are calculated taking after preliminary screening of unreliable data (e.g. those affected by ground clutter or beam shielding), so as to avoid strong undesired motion estimation biases due to the presence of stationary features. Such features are detected by a previous analysis carried out as discussed in [2]. In this paper, motion fields obtained by analyzing precipitation events over the Arno river basin are compared to the related Doppler velocity fields in order to identify growth and decay areas and orographic effects. Data presented have been collected by the weather radar station POLAR 55C sited in Montagnana (Firenze-Italy), a polarimetric C-band system providing absolute and

  10. Draco,Version 6.x.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-03

    Draco is an object-oriented component library geared towards numerically intensive, radiation (particle) transport applications built for parallel computing hardware. It consists of semi-independent packages and a robust build system. The packages in Draco provide a set of components that can be used by multiple clients to build transport codes. The build system can also be extracted for use in clients. Software includes smart pointers, Design-by-Contract assertions, unit test framework, wrapped MPI functions, a file parser, unstructured mesh data structures, a random number generator, root finders and an angular quadrature component.

  11. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  12. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  13. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  14. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  15. Recent updates of a GPM Radar Simulator using CRM data with Bulk Microphysics

    Science.gov (United States)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2012-12-01

    The goal of Global Precipitation Measurement (GPM) mission is to provide more accurate global precipitation information within ±65° latitude every 2~4 hour. GPM core satellite which carries the Dual-frequency Precipitation Radar (DPR) operating at Ku- and Ka-band will be launched in February, 2014. A number of radar precipitation retrieval algorithms are being developed for Level-2 radar processing. To support radar algorithm developers who need test data to evaluate the performance of their algorithm, a GPM radar simulator has been developed to generate synthetic Level-1 products which include the most important component, the received echo power, as well as radar parameters required for Level-2 algorithm processing. The GPM radar simulator consists of two modules. One is the DPR scanning geometry module that specifies the characteristics of the DPR sensor and emulates the scan and antenna geometry of the DPR. The other module is the forward calculation module that takes as input the prognostic variables (mixing ratio of hydrometeors) of high resolution cloud-resolving model data, using a one moment bulk microphysics scheme, and computes radar scattering parameters consistent with the microphysical assumptions of the hydrometeors. The forward calculation module also includes a surface scattering model to compute the radar return power from the illuminated surface area by means of a model for the normalized radar cross section (σ0 or NRCS), given as a function of incidence angle and surface type (land/ocean). The simulation of the surface return power plays an important role for one of primary DPR retrieval algorithms, the Surface Reference Technique (SRT), that estimates path-integrated attenuation (PIA) from the surface returns under rain and no-rain condition. Recently, we have completed an update of the surface scattering model for land. Like the NRCS over ocean, the NRCS over land is modeled by taking realizations from a jointly Gaussian random variable

  16. Radar essentials a concise handbook for radar design and performance

    CERN Document Server

    Curry, G Richard

    2012-01-01

    When you need vital data fast, turn to Radar Essentials. This compact yet comprehensive reference has compiled the most used principles, data, tables, and equations that are used by radar and aerospace system designers on a daily basis. Experts and non-experts alike will find this to be their go-to source for recalling and understanding the fundamentals and employing them in design and performance analysis.

  17. Coordinated Radar Resource Management for Networked Phased Array Radars

    Science.gov (United States)

    2014-12-01

    computed, and the detection of a target is determined based on a Monte Carlo test. For each successful target confirmation, a measurement report is...detection based on Monte Carlo test • add appropriate random perturbations to detec- tion measurements Radar Targets Environment Input Parameters... Fuente and J.R. Casar-Corredera. Optimal radar pulse scheduling using a neural network. In IEEE Int. Conf. Neural Networks, volume 7, pages 4558–4591

  18. wradlib - An Open Source Library for Weather Radar Data Processing

    Science.gov (United States)

    Heistermann, M.; Pfaff, Th.; Jacobi, S.

    2012-04-01

    Weather radar data is potentially useful in meteorology, hydrology, disaster prevention and mitigation. Its ability to provide information on precipitation with high spatial and temporal resolution over large areas makes it an invaluable tool for short term weather forecasting or flash flood forecasting. The indirect method of measuring the precipitation field, however, leads to a significant number of data artifacts, which usually must be removed or dealt with before the data can be used with acceptable quality. Data processing requires e.g. the transformation of measurements from polar to cartesian coordinates and from reflectivity to rainfall intensity, the composition of data from several radar sites in a common grid, clutter identification and removal, attenuation and VPR corrections, gauge adjustment and visualization. The complexity of these processing steps is a major obstacle for many potential users in science and practice. Adequate tools are available either only at significant costs with no access to the uncerlying source code, or they are incomplete, insufficiently documented and intransparent. The wradlib project has been initiated in order to lower the barrier for potential users of weather radar data in the geosciences and to provide a common platform for research on new algorithms. wradlib is an open source library for the full range of weather radar related processing algorithms, which is well documented and easy to use. The main parts of the library are currently implemented in the python programming language. Python is well known both for its ease of use as well as its ability to integrate code written in other programming languages like Fortran or C/C++. The well established Numpy and Scipy packages are used to provide decent performance for pure Python implementations of algorithms. We welcome contributions written in any computer language and will try to make them accessible from Python. We would like to present the current state of this

  19. Rainfall estimation from TOGA radar observations during LBA field campaign

    Science.gov (United States)

    Anagnostou, Emmanouil N.; Morales, Carlos A.

    2002-10-01

    The TRMM Large Scale Biosphere-Atmosphere (LBA) experiment, conducted between January and February of 1999 in Southwest Amazon, deployed among other instruments NASA's C-band Doppler radar (TOGA) and four dense rain gauge networks. This paper presents a procedure devised to derive surface rainfall rate estimates from combination of TOGA observations and the in situ rain gauge rainfall measurements. The spatial and temporal scales considered are 2 × 2 km2 grids of instantaneous to hourly rain accumulations. The procedure includes evaluation of TOGA calibration through comparisons with TRMM Precipitation Radar (PR) data and implementation of an optimal quantitative precipitation estimation (QPE) algorithm. Comparisons with PR indicated a 4-dB calibration offset occurring in the later two thirds of the observation period. The implemented QPE algorithm applies a parameter that differentiates the Z-R conversion in convective and stratiform regimes and a stochastic filtering approach for estimation of mean-field bias on the basis of radar-rain gauge comparisons at the hourly timescale. The calibration of the algorithm parameter values is formulated as a global optimization problem, which is solved by minimizing the radar-rain gauge rainfall accumulation root-mean-square (rms) difference at the hourly timescale. A random resampling calibration/validation exercise is performed to evaluate the algorithm performance and its sensitivity to parameter values. Validation against gauges shows that the algorithm produces unbiased estimates with ˜57% relative RMS difference at the hourly scale. Comparison with S-POL rain estimates showed good correlation (0.9) but some overestimation (9%). Rainfall products are used to derive rainfall statistics for two distinct meteorological low-level wind regimes (easterly and westerly) that occurred during LBA. Finally, instantaneous rain estimates are compared against TRMM PR rainfall profiles for six coincident storm cases showing high

  20. Compressive Sensing for MIMO Radar

    CERN Document Server

    Yu, Yao; Poor, H Vincent

    2009-01-01

    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing.

  1. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  2. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  3. Application of MET for the validation of satellite precipitation estimates

    Science.gov (United States)

    Kucera, P.; Brown, B.; Bullock, R.; Ahijevych, D.

    2009-04-01

    The goal of this study is to demonstrate the usefulness of the NCAR Model Evaluation Tools (MET) applied to the validation of high-resolution satellite rainfall estimates. MET provides grid-to-point, grid-to-grid, and advanced spatial validation techniques in one unified, modular toolkit that can be applied to a variety of spatial fields (e.g., satellite precipitation estimates). Most validation studies rely on the use of standard validation measures (mean error, bias, mean absolute error, and root mean squared error, etc.) to quantify the quality of the precipitation estimates. Often these measures indicate poorer performance because, among other things, they are unable to account for small-scale variability or discriminate types of errors such as displacement in time and/or space (location, intensity, and orientation errors, etc.) in the precipitation estimates. This issue has motivated recent research and development of many new techniques such as, but not limited to, scale decomposition, fuzzy neighborhood, and object orientated methods for evaluating spatial precipitation estimates. This study will compute statistics for high resolution satellite estimates of precipitation using standard validation measures for the comparison with object orientated measures using the MET built-in Method for Object-based Diagnostic Evaluation (MODE) algorithm using the radar-rainfall estimates as the reference. Rainfall estimates generated by the TRMM Multi-satellite precipitation analysis (TMPA) and CPC Morphing technique (CMORPH) will be used demonstrate the new validation techniques.

  4. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  5. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer. This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal suppression.

  6. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  7. Coded continuous wave meteor radar

    Science.gov (United States)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  8. Bistatic and Multistatic Radar Systems

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2008-09-01

    Full Text Available Radar systems, based on bistatic radar concept attracted a substantial attention in the recent years. Passive coherent location systems using "transmitters of opportunity" like radio or TV broadcasters, GSM base stations, satellite communication and GNSS signals proved their potential in detection and tracking moving targets over a significant area. In this paper the multistatic location system with non-cooperative transmitters is described and various aspects of signal processing and signal parameters are discussed.

  9. Precipitation observations for operational flood forecasting in Scotland: Data availability, limitations and the impact of observational uncertainty

    Science.gov (United States)

    Parry, Louise; Neely, Ryan, III; Bennett, Lindsay; Collier, Chris; Dufton, David

    2017-04-01

    The Scottish Environment Protection Agency (SEPA) has a statutory responsibility to provide flood warning across Scotland. It achieves this through an operational partnership with the UK Met Office wherein meteorological forecasts are applied to a national distributed hydrological model, Grid- to- Grid (G2G), and catchment specific lumped PDM models. Both of these model types rely on observed precipitation input for model development and calibration, and operationally for historical runs to generate initial conditions. Scotland has an average annual precipitation of 1430mm per annum (1971-2000), but the spatial variability in totals is high, predominantly in relation to the topography and prevailing winds, which poses different challenges to both radar and point measurement methods of observation. In addition, the high elevations mean that in winter a significant proportion of precipitation falls as snow. For the operational forecasting models, observed rainfall data is provided in Near Real Time (NRT) from SEPA's network of approximately 260 telemetered TBR gauges and 4 UK Met Office C-band radars. Both data sources have their strengths and weaknesses, particularly in relation to the orography and spatial representativeness, but estimates of rainfall from the two methods can vary greatly. Northern Scotland, particularly near Inverness, is a comparatively sparse part of the radar network. Rainfall totals and distribution in this area are determined by the Northern Western Highlands and Cairngorms mountain ranges, which also have a negative impact on radar observations. In recognition of this issue, the NCAS mobile X-band weather radar (MXWR) was deployed in this area between February and August 2016. This study presents a comparison of rainfall estimates for the Inverness and Moray Firth region generated from the operational radar network, the TBR network, and the MXWR. Quantitative precipitation estimates (QPEs) from both sources of radar data were compared to

  10. Vertical Variability of Rain Drop Size Distribution from Micro Rain Radar Measurements during IFloodS

    Science.gov (United States)

    Adirosi, Elisa; Tokay, Ali; Roberto, Nicoletta; Gorgucci, Eugenio; Montopoli, Mario; Baldini, Luca

    2017-04-01

    Ground based weather radars are highly used to generate rainfall products for meteorological and hydrological applications. However, weather radar quantitative rainfall estimation is obtained at a certain altitude that depends mainly on the radar elevation angle and on the distance from the radar. Therefore, depending on the vertical variability of rainfall, a time-height ambiguity between radar measurement and rainfall at the ground can affect the rainfall products. The vertically pointing radars (such as the Micro Rain Radar, MRR) are great tool to investigate the vertical variability of rainfall and its characteristics and ultimately, to fill the gap between the ground level and the first available radar elevation. Furthermore, the knowledge of rain Drop Size Distribution (DSD) variability is linked to the well-known problem of the non-uniform beam filling that is one of the main uncertainties of Global Precipitation Measurement (GPM) mission Dual frequency Precipitation Radar (DPR). During GPM Ground Validation Iowa Flood Studies (IFloodS) field experiment, data collected with 2D video disdrometers (2DVD), Autonomous OTT Parsivel2 Units (APU), and MRR profilers at different sites were available. In three different sites co-located APU, 2DVD and MRR are available and covered by the S-band Dual Polarimetric Doppler radar (NPOL). The first elevation height of the radar beam varies, among the three sites, between 70 m and 1100 m. The IFloodS set-up has been used to compare disdrometers, MRR and NPOL data and to evaluate the uncertainties of those measurements. First, the performance of disdrometers and MRR in determining different rainfall parameters at ground has been evaluated and then the MRR based parameters have been compared with the ones obtained from NPOL data at the lowest elevations. Furthermore, the vertical variability of DSD and integral rainfall parameters within the MRR bins (from ground to 1085 m each 35 m) has been investigated in order to provide

  11. Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC

    Directory of Open Access Journals (Sweden)

    Udo Schneider

    2017-03-01

    Full Text Available The 2015 release of the precipitation climatology from the Global Precipitation Climatology Centre (GPCC for 1951–2000, based on climatological normals of about 75,100 rain gauges, allows for quantification of mean land surface precipitation as part of the global water cycle. In GPCC’s 2011-release, a bulk climatological correction was applied to compensate for gauge undercatch. In this paper we derive an improved correction approach based on the synoptic weather reports for the period 1982–2015. The compared results show that the climatological approach tends to overestimate the correction for Central and Eastern Europe, especially in the northern winter, and in other regions throughout the year. Applying the mean weather-dependent correction to the GPCC’s uncorrected precipitation climatology for 1951–2000 gives a value of 854.7 mm of precipitation per year (excluding Antarctica or 790 mm for the global land surface. The warming of nearly 1 K relative to pre-industrial temperatures is expected to be accompanied by a 2%–3% increase in global (land and ocean precipitation. However, a comparison of climatology for 30-year reference periods from 1931–1960 up to 1981–2010 reveals no significant trend for land surface precipitation. This may be caused by the large variability of precipitation, the varying data coverage over time and other issues related to the sampling of rain-gauge networks. The GPCC continues to enlarge and further improve the quality of its database, and will generate precipitation analyses with homogeneous data coverage over time. Another way to reduce the sampling issues is the combination of rain gauge-based analyses with remote sensing (i.e., satellite or radar datasets.

  12. Derivation of Z-R equation using Mie approach for a 77 GHz radar

    Science.gov (United States)

    Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni

    2017-04-01

    The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A

  13. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall

    Science.gov (United States)

    Villarini, Gabriele; Krajewski, Witold F.

    2010-01-01

    It is well acknowledged that there are large uncertainties associated with radar-based estimates of rainfall. Numerous sources of these errors are due to parameter estimation, the observational system and measurement principles, and not fully understood physical processes. Propagation of these uncertainties through all models for which radar-rainfall are used as input (e.g., hydrologic models) or as initial conditions (e.g., weather forecasting models) is necessary to enhance the understanding and interpretation of the obtained results. The aim of this paper is to provide an extensive literature review of the principal sources of error affecting single polarization radar-based rainfall estimates. These include radar miscalibration, attenuation, ground clutter and anomalous propagation, beam blockage, variability of the Z- R relation, range degradation, vertical variability of the precipitation system, vertical air motion and precipitation drift, and temporal sampling errors. Finally, the authors report some recent results from empirically-based modeling of the total radar-rainfall uncertainties. The bibliography comprises over 200 peer reviewed journal articles.

  14. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  15. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  16. Geo-spatial grid-based transformations of precipitation estimates using spatial interpolation methods

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Meskele, Tadesse; Pathak, Chandra S.

    2012-03-01

    Geo-spatial interpolation methods are often necessary in instances where the precipitation estimates available from multisensor source data on a specific spatial grid need to be transformed to another grid with a different spatial grid or orientation. The study involves development and evaluation of spatial interpolation or weighting methods for transforming hourly multisensor precipitation estimates (MPE) available in the form of 4×4 km2 HRAP (hydrologic rainfall analysis project) grid to a Cartesian 2×2 km2 radar (NEXt generation RADar:NEXRAD) grid. Six spatial interpolation weighting methods are developed and evaluated to assess their suitability for transformation of precipitation estimates in space and time. The methods use distances and areal extents of intersection segments of the grids as weights in the interpolation schemes. These methods were applied to transform precipitation estimates from HRAP to NEXRAD grids in the South Florida Water Management District (SFWMD) region in South Florida, United States. A total of 192 rain gauges are used as ground truth to assess the quality of precipitation estimates obtained from these interpolation methods. The rain gauge data in the SFWMD region were also used for radar data bias correction procedures. To help in the assessment, several error measures are calculated and appropriate weighting functions are developed to select the most accurate method for the transformation. Three local interpolation methods out of six methods were found to be competitive and inverse distance based on four nearest neighbors (grids) was found to be the best for the transformation of data.

  17. MST radar data management

    Science.gov (United States)

    Nastrom, G. D.

    1984-01-01

    One atmospheric variable which can be deduced from stratosphere-troposphere (ST) radar data other than wind speed and direction is C sub n sup 2, related to the eddy dissipation rate. The computation of C sub n sup 2 makes use of the transmitted power (average, or peak plus duty cycle), the range of the echoes, and the returned power. The returned power can be calibrated only if a noise source of known strength is imposed; e.g., in the absence of absolute calibration, one can compare the diurnal noise signal with the galactic sky temperature. Thus to compute C sub n sup 2 one needs the transmitter power, the returned signal as a function of height, and the returned noise at an altitude so high that it is not contaminated by any signal. Now C sub n sup 2 relates with the amount of energy within the inertial subrange, and for many research studies it may be desirable to relate this with background flow as well as shears or irregularities on the size of the sample volume. The latter are quantified by the spectral width.

  18. The Global Precipitation Mission

    Science.gov (United States)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  19. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  20. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    Science.gov (United States)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  1. Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany

    Directory of Open Access Journals (Sweden)

    Stephan Jacobi

    2016-11-01

    Full Text Available Rainfall-induced attenuation is a major source of underestimation for radar-based precipitation estimation at C-band. Unconstrained gate-by-gate correction procedures are known to be inherently unstable and thus not suited for unsupervised attenuation correction. In this study, we evaluate three different procedures to constrain gate-by-gate attenuation correction using reflectivity as the only input. These procedures are benchmarked against rainfall estimates from uncorrected radar data, using six years of radar observations from the single-polarized C-band radar in South-West Germany. The precipitation estimation error is obtained by comparing the radar-based estimates to rain gauge observations. All attenuation correction procedures benchmarked in this study lead to an effective improvement of precipitation estimation. The first method caps the corrections if the rain intensity increase exceeds a factor of two. The second method decreases the parameters of the attenuation correction iteratively for every radar beam calculation until attaining a stability criterion. The second method outperforms the first method and leads to a consistent distribution of path-integrated attenuation along the radar beam. As a third method, we propose a slight modification of Kraemer's approach which allows users to exert better control over attenuation correction by introducing an additional constraint that prevents unplausible corrections in cases of dramatic signal losses.

  2. Use of DOE SGP Radars in Support of ASR Modeling Activities

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, Steven A. [Colorado State Univ., Fort Collins, CO (United States)

    2015-12-13

    The objective of this work was to use the DOE Southern Great Plains (SGP) precipitation radars to investigate physical characteristics of clouds and precipitation, and use this knowledge in support of DOE ASR modeling efforts. The goal was to develop an integrated data set based on the SGP instrumentation to yield statistically robust fields to aid in the task of verifying simulated cloud dynamical and microphysical fields. For this effort we relied heavily on the ARM scanning precipitation radars, X-SAPR’s and C-SAPR, and also incorporating data from wind profilers, surface disdrometers and the nearby WSR-88D radar, KVNX. Initially we lent our expertise to quality controlling the data from the newly installed ARM radars, particularly the X-band polarimetric data, and additionally assessed automatic radial velocity unfolding algorithms developed by other ASR researchers. We focused our efforts on four cases from the MC3E field campaign in 2011 and developed a dataset including microphysical information derived from hydrometeor identification and kinematic analysis using multiple-Doppler retrieval techniques. This dataset became a PI product and was released to the community in 2014. This analysis was used to investigate the source of big drops (> 5 mm) observed with disdrometers at the surface. It was found that the big drops were coincident with the strongest updrafts, suggesting they resulted from the melting of large precipitation ice, likely hail. We teamed up with W-K Tao and T. Matsui to statistically compare radar-derived observational kinematics and microphysics to WRF model output for the 25 April 2011. Comparisons highlighted some areas where the model may need improvement, such as generating too much hail and big drops, as well as overly-strong updrafts and overly-weak of downdrafts.

  3. All-digital radar architecture

    Science.gov (United States)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  4. The sensitivity of precipitation simulations to the soot aerosol presence

    Science.gov (United States)

    Palamarchuk, Iuliia; Ivanov, Sergiy; Mahura, Alexander; Ruban, Igor

    2016-04-01

    The role of aerosols in nonlinear feedbacks on atmospheric processes is in a focus of many researches. Particularly, the importance of black carbon particles for evolution of physical weather including precipitation formation and release is investigated by numerical modelling as well as observation networks. However, certain discrepancies between results obtained by different methods are remained. The increasing of complexity in numerical weather modelling systems leads to enlarging a volume of output data and promises to reveal new aspects in complexity of interactions and feedbacks. The Harmonie-38h1.2 model with the AROME physical package is used to study changes in precipitation life-cycle under black carbon polluted conditions. A model configuration includes a radar data assimilation procedure on a high resolution domain covering the Scandinavia region. Model results show that precipitation rate and distribution as well as other variables of atmospheric dynamics and physics over the domain are sensitive to aerosol concentrations. The attention should also be paid to numerical aspects, such as a list of observation types involved in assimilation. The use of high resolution radar information allows to include mesoscale features in initial conditions and to decrease the growth rate of a model error with the lead time.

  5. Comparison of radar and numerical weather model rainfall forecasts in the perspective of urban flood prediction

    DEFF Research Database (Denmark)

    Lovring, M. M.; Löwe, Roland; Courdent, Vianney Augustin Thomas

    An early flood warning system has been developed for urban catchments and is currently running in online operation in Copenhagen. The system is highly dependent on the quality of rainfall forecast inputs. An investigation of precipitation inputs from Radar Nowcast (RN), Numerical Weather Prediction...... (NWP) with assimilation of radar and cloud data (RA3), and Ensemble NWP with 25 members (S05) is conducted by comparing against rain gauge measurements and flood extent. Despite lower spatial and temporal resolution, the ensemble product seems promising for forecasting extreme events. A combination...... of the three forecast products is expected to yield the optimal input for flood warning....

  6. Least square spline decomposition in time-frequency analysis of weather radar signals

    Science.gov (United States)

    Shelevytska, K. I.; Semenova, O. S.; Shelevytsky, I. V.; Yanovsky, F. J.

    2011-10-01

    Meteorology plays an important role in aviation, as it enables to predict weather conditions and detect flight dangerous meteorological phenomena. Meteorological radar is used to detect the intensity and possible location of precipitation and dangerous zones in them. Doppler radar systems are able to measure the speed of scatteres that constitute meteorological formations and phenomena. The tasks of measurement accuracy increasing and reliability rise of hazardous meteorological phenomena detection become much more relevant after establishing new flight control system CNS ATM adopted by ICAO - the International Civil Aviation Organization.

  7. Tropical echo-top height for precipitating clouds observed by multiple active instruments aboard satellites

    Science.gov (United States)

    Chen, Yilun; Fu, Yunfei

    2018-01-01

    The echo-top height observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) has been used by some studies as an approximate calculation of the precipitating-cloud-top height to simulate radiative forcing or to identify overshooting convection. However, due to the low sensitivity ( 17 dBZ) of PR, the PR-echo-top height is lower than the actual precipitating-cloud-top height. Here, the echo-top heights of the tropical precipitating cloud detected by PR, the Cloud Profiling Radar (CPR), and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were investigated to evaluate the underestimation of the PR-echo-top height to the actual precipitating-cloud-top height. The results show that there were significant spatial variations in the underestimates of precipitating-cloud-top height by PR. The model simulation showed that these underestimates led to an underestimation of the radiative forcing of the Earth system, the relative error of which was 10% with 1-km underestimation and 20% to 80% with 7-km underestimation when the cloud optical thickness was fixed to 10. Therefore, the underestimates of precipitating-cloud-top height by PR should be taken into consideration when using PR-echo-top height.

  8. Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won; Stein, Michael L.; Wang, Jiali; Kotamarthi, V. Rao; Moyer, Elisabeth J.

    2016-12-01

    Climate models robustly imply that some significant change in precipitation patterns will occur. Models consistently project that the intensity of individual precipitation events increases by approximately 6-7%/K, following the increase in atmospheric water content, but that total precipitation increases by a lesser amount (2-3%/K in the global average). Some other aspect of precipitation events must then change to compensate for this difference. We develop here a new methodology for identifying individual rainstorms and studying their physical characteristics - including starting location, intensity, spatial extent, duration, and trajectory - that allows identifying that compensating mechanism. We apply this technique to precipitation over the contiguous U.S. from both radar-based data products and high-resolution model runs simulating 100 years of business-as-usual warming. In model studies, we find that the dominant compensating mechanism is a reduction of storm size. In summer, rainstorms become more intense but smaller; in winter, rainstorm shrinkage still dominates, but storms also become less numerous and shorter duration. These results imply that flood impacts from climate change will be less severe than would be expected from changes in precipitation intensity alone. We show also that projected changes are smaller than model-observation biases, implying that the best means of incorporating them into impact assessments is via "data-driven simulations" that apply model-projected changes to observational data. We therefore develop a simulation algorithm that statistically describes model changes in precipitation characteristics and adjusts data accordingly, and show that, especially for summertime precipitation, it outperforms simulation approaches that do not include spatial information.

  9. Pronostico inmediato de tormentas convectivas por radar: una actualizacion Nowcasting of convective storms by radar: an actualization

    Directory of Open Access Journals (Sweden)

    Sadiel Novo

    2008-03-01

    Full Text Available Una de las principales aplicaciones del radar meteorológico es el pronóstico inmediato (decenas de minutos a unas pocas horas de antelación de los eventos de precipitación convectiva. Esto reviste gran importancia pues es precisamente en este lapso de tiempo donde son menos efectivos los pronósticos numéricos. Se repasan brevemente algunas de las técnicas de pronóstico inmediato reportadas en los últimos años, haciendo énfasis en aquellas que emplean solamente información de un radar convencional. Se distingue entre las que pronostican el movimiento de las tormentas como un todo y aquellas que permiten distinguir su movimiento interno, señalando sus ventajas y desventajas en situaciones meteorológicas concretas. Como ejemplo se presentan, para un caso de estudio escogido, aplicaciones simples de dos de estas técnicas. Por último se discute la utilidad de la técnica del sistema de referencia móvil para obtener las componentes del viento no observadas a partir de un solo radar Doppler o incluso un radar convencional, y sus implicaciones para la obtención de magnitudes termodinámicas.One of the main applications of the meteorological radar is the nowcasting (some tens of minutes to some hours forward of convective precipitation events. It has a great importance since this is the space of time in which the numerical forecasting is less effective. Some of the nowcasting techniques reported in the last years are reviewed shortly, making emphasis in those that use only information from a conventional radar. A distinction is made among those that predict the total movement of the storms and those that allow distinguishing their internal movement, pointing out their advantages and disadvantages in concrete meteorological situations. It is presented, for a chosen case of study, simple applications of two of these techniques. Finally, the utility of the moving frame of reference technique for obtaining the not observed wind components

  10. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    2000-12-01

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  11. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  12. A physical initialization algorithm for non-hydrostatic weather prediction models using radar derived rain rates

    Energy Technology Data Exchange (ETDEWEB)

    Haase, G. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2002-07-01

    The novel physical initialization algorithm developed at the University of Bonn (PIB) assimilates precipitation estimates from the German Weather Service (DWD) radar network into the operational non-hydrostatic lokal-modell (LM) at mid-latitudes. The methodology is based on the ideas of Krishnamurti et al. (1984), however, it is particularly designed to improve nowcasting of convective rainfall on the meso-{gamma} scale, because the LM has serious deficiencies in explicit forecasting of precipitation without orographic and frontal forcing. Assimilation of observed radar reflectivities has demonstrated that LM runs with PIB on a 2.8 km grid reduce spin-up and position errors of precipitation forecasts. The period of time with beneficial impact depends strongly on the weather situation. If the development of convection is quasi-chaotic, temporal and spatial misplacement of rainfall cells occurs earlier than for slowly moving objects. According to the case studies presented in this thesis, precipitation forecasts are improved at least for the following two hours after the pre-forecast period (60 minutes) corresponding to the lifetime of a single cell storm. In conclusion, PIB reduces the information gap between LM forecasts and nowcasts using only observations. Further benefits of the new technique are (i.) the use of operational DWD radar products as input, (ii.) its low computational costs compared to variational approaches, and (iii.) its compatibility with future LM developments like the introduction of additional model variables (e.g. specific cloud ice content). (orig.)

  13. Assimilation of precipitation Estimates from the Integrated Multisatellite Retrievals for GPM (IMERG, early Run in the Canadian Precipitation Analysis (CaPA

    Directory of Open Access Journals (Sweden)

    Alaba Boluwade

    2017-12-01

    Full Text Available Study region: The study area covers the whole Canada at 10-km grid. Analysis was further done at the regional scale by dividing the study area into four climatic zones: Atlantic, Central, Prairie, and West Coast. Study focus: The Canadian Precipitation Analysis (CaPA platform produces 6 h and 24 h precipitation accumulations on a 10-km grid over Canada by combining gauge observations with a background field provided by the Global Environmental Multiscale (GEM numerical weather prediction model. In this study, precipitation data from the Global Precipitation Measurement (GPM mission are included as an additional data source and are compared with CaPA benchmark estimates obtained without the Integrated Multisatellite Retrievals for GPM (IMERG Early Run, version 03 (V03. The data used are for the summer of 2014 and we specifically considered the 6 h accumulations. The frequency bias indicator (FBI and the equitable threat score (ETS are used as performance criteria. Results were analyzed at four climatic regions. New hydrological insights for the region: Results show that IMERG improves the ETS and FBI for all regions, with the Central and Prairie regions showing the most improvements over the benchmark. In these two regions, statistically significant improvements in ETS are obtained for all precipitation thresholds considered. In order to assess the value of IMERG in more remote areas that are nonetheless important for water resources management in Canada, a fifth zone that has a lower gauge density was considered. In this region, ETS was significantly improved for precipitation thresholds up to 10-mm/6-h. We believe that combining satellite information with other remotely sensed product such as radar will provide a significant increase in skill, especially for mountainous regions where there can be beam blockages that can affect the quality of radar data. Keywords: Canadian Precipitation Analysis, IMERG, Satellite observation, Global

  14. Radar-rain-gauge rainfall estimation for hydrological applications in small catchments

    Science.gov (United States)

    Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio

    2017-07-01

    The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.

  15. Preliminary microphysical characterization of precipitation at ground over Antarctica coast

    Science.gov (United States)

    Roberto, Nicoletta; Adirosi, Elisa; Montopoli, Mario; Baldini, Luca; Dietrich, Stefano; Porcù, Federico

    2017-04-01

    The primary mass input of the Antarctic ice sheet is snow precipitation which is one of the most direct climatic indicators. Climatic model simulations of precipitations over Antarctica is an important task to assess the variation of ice sheet over long temporal scale. The main source of precipitation information in Antarctica regions derive from satellite observations. However, satellite measurements and products need to be calibrated and validated with observations from ground sensors. In spite of their key role, precipitation measurements at ground are scarce and not appropriate to provide the specific characteristic of precipitation particles that influence the scattering and absorption properties of ice particles. Recently, different stations in Antarctica (Princess Elizabeth, McMurdo, Mario Zucchelli) are equipping observatories for cloud and precipitation observations. The setup of the observatory at the Italian Station, Mario Zucchelli (MZ) plans to integrate the current instrumentation for weather measurements with other instruments specific for precipitation observations, in particular, a 24-GHz vertical pointing radar and a laser disdrometer Parsivel. The synergetic use of the set of instruments allows for characterizing precipitation and studying properties of Antarctic precipitation such as dimension, shapes, fall behavior, density of particles, particles size distribution, particles terminal velocity, reflectivity factor and including some information on their vertical extent. Last November, the OTT Parsivel disdrometer was installed on the roof of a logistic container (at 6 m of height) of the MZ station (Latitude 74° 41' 42" S; Longitude 164° 07' 23E") in the Terranova Bay. The disdrometer measures size and fall velocity of particles, passing through a laser matrix from which the Particle Size Distribution (PSD) is obtained. In addition, some products such as reflectivity factor, snow rate and snow accumulation can be inferred by properly

  16. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  17. ASTEROID RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all asteroid radar detections. An entry for each detection reports radar cross-section and circular polarization, if known, as...

  18. Radar detection of mini-asteroids

    OpenAIRE

    Chernogor, Leonid F.

    2013-01-01

    Estimates of the possible early detection of decameter-size space bodies (mini-asteroids) by using the existing non-dedicated and dedicated (space surveillance) radars and also the upcoming radars are presented.

  19. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  20. Progress in existing and planned MST radars

    Science.gov (United States)

    Vanzandt, T. E.

    1986-01-01

    Radar systems are described which use two different wind measuring techniques: the partial-reflection drift technique and the mesosphere-stratosphere-troposphere (MST) or Doppler beam-swing radar technique. The advantages and disadvantages of each technique are discussed.

  1. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA TOGA Radar Data dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape...

  2. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  3. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  4. Are variations in PMSE intensity affected by energetic particle precipitation?

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2002-04-01

    Full Text Available The correlation between variations in Polar Mesosphere Summer Echoes (PMSE and variations in energetic particle precipitation is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53' N, 21°06' E. The 30 MHz riometer in Abisko (68°24' N, 18°54' E registered radio wave absorption caused by ionization changes in response to energetic particle precipitation. The relationship between the linear PMSE intensity and the square of absorption has been estimated using the Pearson linear correlation and the Spearman rank correlation. The mean diurnal variation of the square of absorption and the linear PMSE intensity are highly correlated. However, their day-to-day variations show significant correlation only during the late evening hours. The correlation in late evening does not exceed 0.6. This indicates that varying ionization cannot be considered as a primary source of varying PMSE, and the high correlation found when mean diurnal variations are compared is likely a by-product of daily variations caused by other factors.Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating Meteorology and atmospheric dynamics (precipitation

  5. Are variations in PMSE intensity affected by energetic particle precipitation?

    Directory of Open Access Journals (Sweden)

    V. Barabash

    Full Text Available The correlation between variations in Polar Mesosphere Summer Echoes (PMSE and variations in energetic particle precipitation is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53' N, 21°06' E. The 30 MHz riometer in Abisko (68°24' N, 18°54' E registered radio wave absorption caused by ionization changes in response to energetic particle precipitation. The relationship between the linear PMSE intensity and the square of absorption has been estimated using the Pearson linear correlation and the Spearman rank correlation. The mean diurnal variation of the square of absorption and the linear PMSE intensity are highly correlated. However, their day-to-day variations show significant correlation only during the late evening hours. The correlation in late evening does not exceed 0.6. This indicates that varying ionization cannot be considered as a primary source of varying PMSE, and the high correlation found when mean diurnal variations are compared is likely a by-product of daily variations caused by other factors.

    Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating Meteorology and atmospheric dynamics (precipitation

  6. SMAP RADAR Processing and Calibration

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  7. Scanning ARM Cloud Radar Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  8. Assimilation of Chinese Doppler Radar and Lightning Data Using WRF-GSI: A Case Study of Mesoscale Convective System

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2015-01-01

    Full Text Available The radar-enhanced GSI (version 3.1 system and the WRF-ARW (version 3.4.1 model were modified to assimilate radar/lightning-proxy reflectivity. First, cloud-to-ground lightning data were converted to reflectivity using a simple assumed relationship between flash density and reflectivity. Next, the reflectivity was used in the cloud analysis of GSI to adjust the cloud/hydrometeors and moisture. Additionally, the radar/lightning-proxy reflectivity was simultaneously converted to a 3D temperature tendency. Finally, the model-calculated temperature tendencies from the explicit microphysics scheme, as well as cumulus parameterization at 3D grid points at which the radar temperature tendency is available, were updated in a forward full-physics step of diabatic digital filter initialization in the WRF-ARW. The WRF-GSI system was tested using a mesoscale convective system that occurred on June 5, 2009, and by assimilating Doppler radar and lightning data, respectively. The forecasted reflectivity with assimilation corresponded more closely to the observed reflectivity than that of the parallel experiment without assimilation, particularly during the first 6 h. After assimilation, the short-range precipitation prediction improved, although the precipitation intensity was stronger than the observed one. In addition, the improvements obtained by assimilating lightning data were worse than those from assimilating radar reflectivity over the first 3 h but improved thereafter.

  9. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  10. Goldstone solar system radar signal processing

    Science.gov (United States)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  11. Radar monitoring of heartbeats and respiration

    OpenAIRE

    Aardal, Øyvind

    2013-01-01

    This thesis addresses the use of radar for heartbeat and respiration monitoring. Medical radar can be used for detecting vital signs at distances up to several meters. A medical radar works by transmitting electromagnetic waves towards a person, and receiving echoes reflected off the person. Vital signs appear as modulations in the radar data in period with the heartbeats and respiration. We have measured and analyzed these modulations. The ability to detect human heartbeats from a distanc...

  12. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  13. Fmcw Mmw Radar For Automotive Longitudinal Control

    OpenAIRE

    David, William

    1997-01-01

    This report presents information on millimeter wave (MMW) radar for automotive longitudinal control. It addresses the fundamental capabilities and limitations of millimeter waves for ranging and contrasts their operation with that of conventional microwave radar. The report analyzes pulsed and FMCW radar configurations, and provides detailed treatment of FMCW radar operating at MMW frequency, its advantages and disadvantages as they relate to range and velocity measurements.

  14. Microwave emissions from police radar.

    Science.gov (United States)

    Fink, J M; Wagner, J P; Congleton, J J; Rock, J C

    1999-01-01

    This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode

  15. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Science.gov (United States)

    Grazioli, Jacopo; Tuia, Devis; Berne, Alexis

    2015-04-01

    Hydrometeor classification is the process that aims at identifying the dominant type of hydrometeor (e.g. rain, hail, snow aggregates, hail, graupel, ice crystals) in a domain covered by a polarimetric weather radar during precipitation. The techniques documented in the literature are mostly based on numerical simulations and fuzzy logic. This involves the arbitrary selection of a set of hydrometeor classes and the numerical simulation of theoretical radar observations associated to each class. The information derived from the simulation is then applied to actual radar measurements by means of fuzzy logic input-output association. This approach has some limitations: the number and type of the hydrometeor categories undergoing identification is selected arbitrarily and the scattering simulations are based on constraining assumptions, especially in case of solid hydrometeors. Furthermore, in presence of noise and uncertainties, it is not guaranteed that the selected hydrometeor classes can be effectively identified in actual observations. In the present work we propose a different starting point for the classification task, which is based on observations instead of numerical simulations. We provide criteria for the selection of the number of hydrometeor classes that can be identified, by looking at how polarimetric observations collected over different precipitation events form clusters in the multi-dimensional space of the polarimetric variables. Two datasets, collected by an X-band weather radar, are employed in the study. The first dataset covers mountainous weather conditions (Swiss Alps), while the second includes Mediterranean orographic precipitation events collected during the special observation period (SOP) 2012 of the HyMeX campaign. We employ an unsupervised hierarchical clustering method to group the observations into clusters and we introduce a spatial smoothness constraint for the groups, assuming that the hydrometeor type changes smoothly in space

  16. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  17. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  18. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  19. Portable receiver for radar detection

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  20. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  1. Realization of a scalable airborne radar

    NARCIS (Netherlands)

    Halsema, D. van; Jongh, R.V. de; Es, J. van; Otten, M.P.G.; Vermeulen, B.C.B.; Liempt, L.J. van

    2008-01-01

    Modern airborne ground surveillance radar systems are increasingly based on Active Electronically Scanned Array (AESA) antennas. Efficient use of array technology and the need for radar solutions for various airborne platforms, manned and unmanned, leads to the design of scalable radar systems. The

  2. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  3. 46 CFR 108.717 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  4. 46 CFR 130.310 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse. ...

  5. 46 CFR 167.40-40 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  6. Comparison of mimo radar concepts: Detection performance

    NARCIS (Netherlands)

    Rossum, W.L. van; Huizing, A.G.

    2007-01-01

    In this paper, four different array radar concepts are compared: pencil beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts show an increase in complexity accompanied by an increase in diversity. The comparison between the radar concepts is made by investigating the

  7. Comparison of radar data versus rainfall data

    Science.gov (United States)

    Espinosa, B.; Hromadka, T.V.; Perez, R.

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for “ground-truthing” of radar data, and•possible errors due to topographic interference. PMID:26649276

  8. Survey of Radar Refraction Error Corrections

    Science.gov (United States)

    2016-11-01

    ELECTRONIC TRAJECTORY MEASUREMENTS GROUP RCC 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS DISTRIBUTION A: Approved for...DOCUMENT 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS November 2016 Prepared by Electronic...This page intentionally left blank. Survey of Radar Refraction Error Corrections, RCC 266-16 iii Table of Contents Preface

  9. Jet stream related observations by MST radars

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  10. Radar observations in the vicinity of pre-noon auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2005-07-01

    Full Text Available A combination of EISCAT incoherent scatter radar measurements, optical and magnetometer data is used to study the plasma in and around pre-noon structured precipitation and auroral arcs. Particular attention is paid to regions of comparatively low E-region density observed adjacent to arcs or structured precipitation in the EISCAT Svalbard radar field-aligned measurements. Comparison between luminosity and incoherent scatter electron density measurements shows that the low-density regions occur primarily due to the absence of diffuse precipitation rather than to a cavity formation process. Two cases of arcs and low density/luminosity regions are identified. The first is related to a strong Pc5 pulsation event, and the absence of diffuse precipitation is due to a large-scale modulation of the diffuse precipitation. In the second case the equatormost arc is on a shielding boundary and the low-density region coincides with a strong flow region just poleward of this arc. Regions of high electric field and low luminosity and conductance are observed prior to intensification of the structured precipitation in both cases. The ionospheric current is enhanced in the low conductance region, indicating that the strong electric fields do not result solely from ionospheric polarization electric fields, and thus are mainly driven by magnetospheric processes. The average energy of the precipitating electrons in the arcs and structured precipitation is, according to EISCAT measurements, 500eV and the energy spectra are similar for the pulsation and shielding cases. The average energy is thus significantly less than in the diffuse precipitation region which shows central CPS-like energy spectra. We suggest that the low ionospheric conductance of 0.7S in the low density regions is favorable for the arc formation process. This is in quantitative agreement with recent simulations of the ionospheric feedback instability. Keywords. Magnetospheric physics (Auroral

  11. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  12. Space radar image of Ubar optical/radar

    Science.gov (United States)

    1995-01-01

    This pair of images from space shows a portion of the southern Empty Quarter of the Arabian Peninsula in the country of Oman. On the left is a radar image of the region around the site of the fabled Lost City of Ubar, discovered in 1992 with the aid of remote sensing data. On the right is an enhanced optical image taken by the shuttle astronauts. Ubar existed from about 2800 BC to about 300 AD. and was a remote desert outpost where caravans were assembled for the transport of frankincense across the desert. The actual site of the fortress of the Lost City of Ubar, currently under excavation, is too small to show in either image. However, tracks leading to the site, and surrounding tracks, show as prominent, but diffuse, reddish streaks in the radar image. Although used in modern times, field investigations show many of these tracks were in use in ancient times as well. Mapping of these tracks on regional remote sensing images provided by the Landsat satellite was a key to recognizing the site as Ubar. The prominent magenta colored area is a region of large sand dunes. The green areas are limestone rocks, which form a rocky desert floor. A major wadi, or dry stream bed, runs across the scene and appears as a white line. The radar images, and ongoing field investigations, will help shed light on an early civilization about which little in known. The radar image was taken by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) and is centered at 18 degrees North latitude and 53 degrees East longitude. The image covers an area about 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and the United

  13. Methods and Results for a Global Precipitation Measurement (GPM) Validation Network Prototype

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew R.

    2010-01-01

    As one component of a ground validation system to meet requirements for the upcoming Global Precipitation Measurement (GPM) mission, a quasi-operational prototype a system to compare satellite- and ground-based radar measurements has been developed. This prototype, the GPM Validation Network (VN), acquires data from the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite and from ground radar (GR) networks in the continental U.S. and participating international sites. PR data serve as a surrogate for similar observations from the Dual-frequency Precipitation Radar (DPR) to be present on GPM. Primary goals of the VN prototype are to understand and characterize the variability and bias of precipitation retrievals between the PR and GR in various precipitation regimes at large scales, and to improve precipitation retrieval algorithms for the GPM instruments. The current VN capabilities concentrate on comparisons of the base reflectivity observations between the PR and GR, and include support for rain rate comparisons. The VN algorithm resamples PR and GR reflectivity and other 2-D and 3-D data fields to irregular common volumes defined by the geometric intersection of the instrument observations, and performs statistical comparisons of PR and GR reflectivity and estimated rain rates. Algorithmic biases and uncertainties introduced by traditional data analysis techniques are minimized by not performing interpolation or extrapolation of data to a fixed grid. The core VN dataset consists of WSR-88D GR data and matching PR orbit subset data covering 21 sites in the southeastern U. S., from August, 2006 to the present. On average, about 3.5 overpass events per month for these WSR-88D sites meet VN criteria for significant precipitation, and have matching PR and GR data available. This large statistical sample has allowed the relative calibration accuracy and stability of the individual ground radars, and the quality of the PR reflectivity

  14. Warm-Rain Precipitation over Complex Terrain: a New Polarimetric Classification Scheme

    Science.gov (United States)

    Porcacchia, L.; Cheong, B. L.; Anagnostou, M.; Maggioni, V.; Gourley, J. J.; Kirstetter, P.

    2016-12-01

    Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally hard to obtain reliable precipitation information over complex areas, due to the scarce coverage of ground sensors associated to partial beam blockage and high elevation of the study sites. Warm-rain processes are characterized by precipitation growth due to collision-coalescence of droplets in the liquid layer of a cloud. These processes lead to high precipitation rates and have been observed in several flash flood events in complex terrain. Their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental high-resolution information on raindrop sizes, shapes, and particle size distributions (PSDs). This study analyzes a dataset collected during the IPHEx field campaign (North Carolina, US) over a mountainous basin, in which the NOXP X-band dual-polarimetric radar was used along with rain gauges, Parsivel and 2DVD disdrometers. Polarimetric variables are used to generate the Cao-Zhang and Kumjian-Ryzhkov parameter spaces, which provide clues on the segregation of warm-rain precipitation from convective and stratiform processes. A new classification algorithm is proposed to identify warm-rain precipitation by merging the information coming from the polarimetric parameter spaces. The method is validated with disdrometer PSDs for the classified warm-rain events: they show a clear shift towards high concentration of small median volume diameter (D0) drops compared to the PSD climatology for the field campaign. Finally, the rainfall rate derived from radar data without the assumption of warm-rain is found to underestimate the precipitation at the ground collected by rain gauges, suggesting the necessity of a correct classification of precipitation and subsequent estimate of rainfall rates. The proposed next-generation polarimetric

  15. Winter Precipitation Classification from Two Dimensional Video Disdrometer Data: Observations from Gcpex and Lpvex Experiments

    Science.gov (United States)

    Huang, G. J.; Chandra, C. V.; Moisseev, D.

    2014-12-01

    The liquid-equivalent snow rate (SR) quantitative precipitation estimation (QPE) using radar (both ground-base and satellite) is very important component of GPM research. Winter storms can have with different type of precipitations such as, pristine ice crystal, sleet, graupel-like snow, rimed and aggregated snow, and each type of precipitations have very different micro-physical properties (e.g. size, density, fall speed, dielectric constant), to estimate SR accurately using radar becomes a challenge. The first step to get a proper estimator from radar observations is the precipitation classification. The form of different winter precipitation relates to the environment especially the temperature and humidity. In addition, the different precipitation type also correspond to different shape and density resulting in different fall speeds. Recent research shows that 2DVD is able to observe winter precipitation successfully. The 2DVD can measure the fall speed of each particle falling into its observing area, and provide the contours from two orthogonal views. It is straight forward to estimate the diameter of snowflake from two views of 2DVD and compute the particle size distribution (PSD). In order to classify the different type of precipitation, we must not only estimate the diameter but also define several geometric features. In this paper we explore a technique to estimate features from the contours of 2D-Video images. In this paper, we analyze observations from two GPM winter campaigns namely, GCPEX and LPVEX. From these data sets , we derive the to get the statistics of fall speed and geometric features developed in this paper. Subsequently these are used to classify winter precipitation into four catalogs, namely rain, sleet, graupel-like snow and fluffy snow (may form by aggregation or aggregation with riming). We apply this procedure to two GCPEx cases which mixed with different type of precipitation in different time interval. Since we are using the

  16. Precipitation Indices Low Countries

    Science.gov (United States)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  17. Aspects of Applying Weather Radar Based Nowcast for Highways in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Quist, MIchael; Thorndahl, Søren Liedtke

    on the movement direction of the precipitation and the direction and speed of the road users. The paper compares and discusses the performance of the nowcast for a selected section of the highway to illustrate the potential in weather radar based forecast for highway applications over long distances.......The Danish road network consists of 73.331 km. of roads. 3.790 km. of these roads are state roads and are considered as major lines of transportation. Although these roads only represent 5% of the total network, 45% of all traffic is moving along these roads. Application of weather radar based...... scenarios. The first is often related to extreme rain intensities while the second can also include less extreme intensities (but maybe higher volume). In both the case of deteriorated traffic conditions and construction phase, a nowcast based on weather radar can provide valuable information...

  18. Analysis of severe convective events from two operational dual polarisation doppler radars

    Directory of Open Access Journals (Sweden)

    M. Celano

    2006-01-01

    Full Text Available The recent gradual increase in the use of polarimetric radars prompts for possible improvements in the estimation of precipitation and the identification of the prevailing hydrometeor type. An analysis of different convection episodes (20 May 2003, 4 and 7 May 2004 is conducted in order to explore the attenuation effects at C band and their consequences on the rainfall field estimation using two polarimetric radars in the Po Valley, Italy, located about 90 km apart. A hydrometeor classification scheme, developed at the National Severe Storms Laboratory (NSSL, is used to detect the microphysical structure of the different cloud systems. The work is focused on the reconstruction of the 3-D organisation of the convective events, highlighting how the two radar systems ''see'' the storms from different points of view. Furthermore, the two distinct observations and the temperature field are used to correct the effect of attenuation.

  19. Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica

    Science.gov (United States)

    Grazioli, Jacopo; Genthon, Christophe; Boudevillain, Brice; Duran-Alarcon, Claudio; Del Guasta, Massimo; Madeleine, Jean-Baptiste; Berne, Alexis

    2017-08-01

    The first results of a campaign of intensive observation of precipitation in Dumont d'Urville, Antarctica, are presented. Several instruments collected data from November 2015 to February 2016 or longer, including a polarimetric radar (MXPol), a Micro Rain Radar (MRR), a weighing gauge (Pluvio2), and a Multi-Angle Snowflake Camera (MASC). These instruments collected the first ground-based measurements of precipitation in the region of Adélie Land (Terre Adélie), including precipitation microphysics. Microphysical observations during the austral summer 2015/2016 showed that, close to the ground level, aggregates are the dominant hydrometeor type, together with small ice particles (mostly originating from blowing snow), and that riming is a recurring process. Eleven percent of the measured particles were fully developed graupel, and aggregates had a mean riming degree of about 30 %. Spurious precipitation in the Pluvio2 measurements in windy conditions, leading to phantom accumulations, is observed and partly removed through synergistic use of MRR data. The yearly accumulated precipitation of snow (300 m above ground), obtained by means of a local conversion relation of MRR data, trained on the Pluvio2 measurement of the summer period, is estimated to be 815 mm of water equivalent, with a confidence interval ranging between 739.5 and 989 mm. Data obtained in previous research from satellite-borne radars, and the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) provide lower yearly totals: 655 mm for ERA-Interim and 679 mm for the climatological data over DDU. ERA-Interim overestimates the occurrence of low-intensity precipitation events especially in summer, but it compensates for them by underestimating the snowfall amounts carried by the most intense events. Overall, this paper provides insightful examples of the added values of precipitation monitoring in Antarctica with a synergistic use of in situ and remote sensing

  20. Effect of Geostatistical Interpolation of Rainfall Using Weather Radar as Additional Information on the Simulation of Floods

    Science.gov (United States)

    Verworn, A.; Haberlandt, U.

    2009-04-01

    The most important input for distributed hydrological modelling of highly dynamic processes like floods are precipitation data with high resolution in space and time. In contrary to the sparse spatial resolution of hourly or shorter time step precipitation data from recording networks, radar derived precipitation provides a high spatial resolution, but often comes along with a large space-time variable bias in radar rainfall estimates. To provide optimal input for distributed hydrological modelling the best strategy is probably a combination of all available information about rainfall and applying sophisticated interpolation methods. Objective of this research was the investigation of spatial interpolation of hourly precipitation for mesoscale hydrological modelling. The multivariate geostatistical method external drift kriging (EDK) was applied and further developed for interpolation of short time precipitation using additional information, especially radar data, but also from denser daily measurement networks and physiographic factors. To address the problem of fractional precipitation coverage a multi-step interpolation applying binary indicator kriging as first step was used. Investigations were carried out for fifteen flood events from 2000 to 2005 caused by precipitation with different characteristics. The 125 km radius around the selected radar station, which is located northeast of the Harz Mountains in northern Germany, covers the study area including 22 recording stations. The hydrological modelling was carried out for a subcatchment of the Bode river basin in the southeastern part of the Harz Mountains with a drainage area of about 100 km2. For a first assessment of the interpolation performance of the multivariate methods cross validations in comparison with some univariate standard interpolation methods were carried out. Subsequently comparative hydrological simulations using the model WaSiM-ETH were applied for a more specific evaluation.

  1. Applications of high resolution rainfall radar data to quantify water temperature dynamics in urban catchments

    Science.gov (United States)

    Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David

    2017-04-01

    Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into

  2. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2011-04-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 daily gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The local version of the Unified Model and the Meteosat Second Generation satellite data are ideal components of precipitation estimation in data sparse regions such as Africa. In South Africa hourly accumulations of the Hydroestimator (originally from NOAA/NESDIS are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system, especially in regions which are not covered by radar. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field. The new product was tested over a two year period and provides a more accurate and comprehensive input to the Flash Flood Guidance systems in the data sparse southern Africa. Future work will include updating the period over which bias corrections were calculated.

  3. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  4. L-band radar scattering from grass

    Science.gov (United States)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  5. The MU radar now partly in operation

    Science.gov (United States)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1984-01-01

    The MU radar (middle- and upper-atmosphere radar) of RASC (Radio Atmospheric Science Center, Kyoto University) is now partly in operation, although the facility will be completed in 1985. The active array system of the radar makes it possible to steer the radar beam as fast as in each interpulse period. Various sophisticated experiments are expected to be performed by the system. A preliminary observation was successful to elucidate atmospheric motions during Typhoon No. 5 which approached the radar site in August, 1983.

  6. Shuttle Radar Topography Mission (SRTM)

    Science.gov (United States)

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  7. Synergetic use of millimeter- and centimeter-wavelength radars for retrievals of cloud and rainfall parameters

    Directory of Open Access Journals (Sweden)

    S. Y. Matrosov

    2010-04-01

    Full Text Available A remote sensing approach for simultaneous retrievals of cloud and rainfall parameters in the vertical column above the US Department of Energy's (DOE Climate Research Facility at the Tropical Western Pacific (TWP Darwin site in Australia is described. This approach uses vertically pointing measurements from a DOE Ka-band radar and scanning measurements from a nearby C-band radar pointing toward the TWP Darwin site. Rainfall retrieval constraints are provided by data from a surface impact disdrometer. The approach is applicable to stratiform precipitating cloud systems when a separation between the liquid hydrometeor layer, which contains rainfall and liquid water clouds, and the ice hydrometeor layer is provided by the radar bright band. Absolute C-band reflectivities and Ka-band vertical reflectivity gradients in the liquid layer are used for retrievals of the mean layer rain rate and cloud liquid water path (CLWP. C-band radar reflectivities are also used to estimate ice water path (IWP in regions above the melting layer. The retrieval uncertainties of CLWP and IWP for typical stratiform precipitation systems are about 500–800 g m−2 (for CLWP and a factor of 2 (for IWP. The CLWP retrieval uncertainties increase with rain rate, so retrievals for higher rain rates may be impractical. The expected uncertainties of layer mean rain rate retrievals are around 20%, which, in part, is due to constraints available from the disdrometer data. The applicability of the suggested approach is illustrated for two characteristic events observed at the TWP Darwin site during the wet season of 2007. A future deployment of W-band radars at the DOE tropical Climate Research Facilities can improve CLWP estimation accuracies and provide retrievals for a wider range of stratiform precipitating cloud events.

  8. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  9. Exploring Alternative Parameterizations for Snowfall with Validation from Satellite and Terrestrial Radars

    Science.gov (United States)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2009-01-01

    Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of

  10. Evaluation and Uncertainty Estimation of the Latest Radar and Satellite Snowfall Products Using SNOTEL Measurements over Mountainous Regions in Western United States

    Directory of Open Access Journals (Sweden)

    Yixin Wen

    2016-11-01

    Full Text Available Snow contributes to regional and global water budgets, and is of critical importance to water resources management and our society. Along with advancement in remote sensing tools and techniques to retrieve snowfall, verification and refinement of these estimates need to be performed using ground-validation datasets. A comprehensive evaluation of the Multi-Radar/Multi-Sensor (MRMS snowfall products and Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement (IMERG precipitation products is conducted using the Snow Telemetry (SNOTEL daily precipitation and Snow Water Equivalent (SWE datasets. Severe underestimations are found in both radar and satellite products. Comparisons are conducted as functions of air temperature, snowfall intensity, and radar beam height, in hopes of resolving the discrepancies between measurements by remote sensing and gauge, and finally developing better snowfall retrieval algorithms in the future.

  11. Radar rainfall estimates in an alpine environment using inverse hydrological modelling

    Directory of Open Access Journals (Sweden)

    A. Marx

    2006-01-01

    Full Text Available The quality of hydrological modelling is limited due to the restricted availability of high resolution temporal and spatial input data such as temperature, global radiation, and precipitation. Radar-based rain measurements provide good spatial information. On the other hand, using radar data is accompanied by basic difficulties such as clutter, shielding, variations of Z/R-relationships, beam-resolution and attenuation. Instead of accounting for all errors involved separately, a robust Z/R-relationship is estimated in this study for the short range (up to 40 km distance using inverse hydrological modelling for a continuous period of three months in summer 2001. River gauge measurements from catchment sizes around 100 km2 are used to estimate areal precipitation and finally Z/R-relationships using a calibrated hydrological model. The study is performed in the alpine Ammer catchment with very short reaction times of the river gauges to rainfall events.

  12. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  13. Koncept softverskog radara / Software radar concept

    Directory of Open Access Journals (Sweden)

    Dejan Ivković

    2007-01-01

    Full Text Available U ovom radu analiziran je koncept softverskog radara. Zbog velike fleksibilnosti softverski radar ima mnoge prednosti u odnosu na konvencionalne radare. Takođe, održavanje softverskog radarskog sistema je mnogo jeftinije. Predstavljena je teorijska i tehnološka osnovica softverskog radara i opisana njegova arhitektura, kao i način organizacije njegove mreže. Ploča DSP (Digital Signal Processing predstavlja centralni deo softverskog radara, pa je detaljno predstavljena njena uloga. Opisana je platforma quatro 6x i akviziciona kartica PCI-9812/10. Rezultat sprovedene tehno-ekonomske analize pokazuje da je za stvarnu implementaciju projektovanih softverskih modula radarskog prijemnika u konkretni konvencionalni radar potrebno izdvojiti oko 20 000 USD, što je mnogo manje od cene modernih radarskih sistema. / Software radar concept is described in this paper. Because of high level of flexibility software radar has many advantages in aspect to conventional radar. Also, service of the software radar system is much cheaper. Theoretical and technical basis of software radar is presented and its architecture is proposed. Organization method of the software radar network is specified. DSP (Digital, signal Processing board is central part of the software radar and its role is described in details. Quatro 6x platform and PCI-9812/10 acquisition card are described. Result of the given techno-economical analysis approves that it is necessary to invest around 20 000$ and that is much less than the price of modern radar systems.

  14. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  15. Clinical significance of precipitous labor.

    Science.gov (United States)

    Suzuki, Shunji

    2015-03-01

    Precipitous labor is defined as expulsion of the fetus within less than 3 hours of commencement of regular contractions. We retrospectively examined our cases of precipitous labor to identify the clinical significance and perinatal outcomes following precipitous labor in singleton vertex deliveries. A retrospective population-based study was conducted comparing women with singleton precipitous labor and those with labor of normal duration. We examined the clinical characteristics and outcomes by comparing patients with precipitous labor and those with labor of normal duration in 0 and two-parous singleton pregnant women. Using a multivariate analysis, precipitous labor in nulliparous women was independently associated with teenagers (adjusted OR: 1.71, 95% CI: 0.99 - 2.95, P = 0.049), preterm delivery (adjusted OR: 1.77, 95% CI: 1.16 - 2.70, P precipitous labor was associated with hypertensive disorders in singleton vertex deliveries, it was not associated with maternal or neonatal outcomes.

  16. Radar research at the University of Kansas

    Science.gov (United States)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  17. The Shuttle Radar Topography Mission

    Science.gov (United States)

    Farr, T. G.; Kobrick, M.

    2001-12-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA, the National Imagery and Mapping Agency, and the German and Italian Space Agencies. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and better than 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. Data processing will be completed by the end of 2002. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  18. Global Precipitation Measurement (GPM) launch, commissioning, and early operations

    Science.gov (United States)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2014-10-01

    The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and

  19. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  20. A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    Full Text Available In this paper, the correlation between cloud-to-ground (CG lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R and the number of CG lightning flashes (L in the main precipitation period is R = 1.69 ln (L - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.

    Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation

  1. Inter-comparison of the EUMETSAT H-SAF and NASA PPS precipitation products over Western Europe.

    Science.gov (United States)

    Kidd, Chris; Panegrossi, Giulia; Ringerud, Sarah; Stocker, Erich

    2017-04-01

    The development of precipitation retrieval techniques utilising passive microwave satellite observations has achieved a good degree of maturity through the use of physically-based schemes. The DMSP Special Sensor Microwave Imager/Sounder (SSMIS) has been the mainstay of passive microwave observations over the last 13 years forming the basis of many satellite precipitation products, including NASA's Precipitation Processing System (PPS) and EUMETSAT's Hydrological Satellite Application Facility (H-SAF). The NASA PPS product utilises the Goddard Profiling (GPROF; currently 2014v2-0) retrieval scheme that provides a physically consistent retrieval scheme through the use of coincident active/passive microwave retrievals from the Global Precipitation Measurement (GPM) mission core satellite. The GPM combined algorithm retrieves hydrometeor profiles optimized for consistency with both Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI); these profiles form the basis of the GPROF database which can be utilized for any constellation radiometer within the framework a Bayesian retrieval scheme. The H-SAF product (PR-OBS-1 v1.7) is based on a physically-based Bayesian technique where the a priori information is provided by a Cloud Dynamic Radiation Database (CDRD). Meteorological parameter constraints, derived from synthetic dynamical-thermodynamical-hydrological meteorological profile variables, are used in conjunction with multi-hydrometeor microphysical profiles and multispectral PMW brightness temperature vectors into a specialized a priori knowledge database underpinning and guiding the algorithm's Bayesian retrieval solver. This paper will present the results of an inter-comparison of the NASA PPS GPROF and EUMETSAT H-SAF PR-OBS-1 products over Western Europe for the period from 1 January 2015 through 31 December 2016. Surface radar is derived from the UKMO-derived Nimrod European radar product, available at 15 minute/5 km resolution. Initial results

  2. Analysis of Precipitation Characteristics Within an African Easterly Wave: A Multi-Platform Perspective

    Science.gov (United States)

    Cifelli, R.; Lang, T.; Rutledge, S. A.; Zipser, E. J.; Tanelli, S.

    2008-12-01

    The NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign was conducted primarily to explore the relationship between African Easterly Waves (AEWs) and tropical cyclogenesis in the Atlantic basin, as well as the role of the Saharan Air Layer (SAL) in modulating the intensity of the waves and incipient tropical cyclone growth. The NASA TOGA C-band radar was deployed near Praia, Republic of Cape Verde ( approximately 600 km west of Dakar, Senegal) from 16 August to 16 September 2006. This location provided a unique opportunity to observe the transition of continental convection over Africa into the maritime environment. The primary objective of TOGA was to document convection and accompanying mesoscale processes associated with passage of large-scale disturbances (i.e., AEWs) over the region. Herein, we describe the evolution of convection embedded within an AEW that passed through the region sampled by TOGA on 2-3 September, 2006. This AEW may have been the precursor to hurricane Gordon, the most intense tropical cyclone in the Atlantic basin during the 2006 season. Although the circulation center was located several hundred kilometers south of the Cape Verde Islands, the TOGA radar sampled extensive precipitation associated with the wave passage. Convective echoes, embedded within the stratiform precipitation region, produced significant flash flooding in the nearby city of Praia. The NASA DC-8 flew a series of coordinated flight tracks through the AEW on 3 September and collected a suite of in-situ and remote sensing observations. The DC-8 also coordinated observations with TOGA in order to provide a more detailed picture of the precipitation structure of the AEW. A spiral descent was performed within a broad area of stratiform precipitation near TOGA and dropsondes were launched to sample environmental winds and thermodynamic structure. In this study, the TOGA observations are combined with observations from the NASA 2nd generation airborne

  3. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  4. Global Precipitation Measurement (GPM) Mission after Three Years

    Science.gov (United States)

    Huffman, George; Skofronick-Jackson, Gail

    2017-04-01

    The Global Precipitation Measurement (GPM) mission is a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA) to advance scientific understanding and practical application of satellite-based global precipitation estimates. The GPM Core Observatory spacecraft, launched February 27, 2014, provides high-quality passive microwave (PMW) and radar observations. These data are subjects of study and application in their own right, and they are also used to unify and advance precipitation measurements from a constellation of research and operational satellite PMW sensors to provide "next-generation" precipitation products. Both uses are facilitated by the the GPM Core Observatory's 65° non-Sun-synchronous orbit at an altitude of 407 km, which precesses across all times of day and covers the tropics and mid-latitudes, where a majority of the Earth's population lives. GPM provides products ranging from raw instrument data to Core and partner swath precipitation estimates, to gridded and accumulated products, and finally to multi-satellite merged products. The U.S. GPM Science Team is developing such a merged product, the Integrated Multi-satellitE Retrievals for GPM (IMERG), which is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1° x 0.1° ( 10km x 10km). Some products have a 1-hour latency for societal applications, such as floods, landslides, hurricanes, blizzards, and typhoons, and all of these products have long-latency high-quality science products. After three years in orbit, GPM has fulfilled its initial mission requirements, which are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales, providing precipitation particle size distributions in the clouds, 5-15 km estimates of regional precipitation, and merged global precipitation

  5. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  6. Multifractal analysis of radar rainfall fields over the area of Rome

    Directory of Open Access Journals (Sweden)

    G. Calenda

    2005-01-01

    Full Text Available A scale-invariance analysis of space and time rainfall events monitored by meteorological radar over the area of Rome (Italy is proposed. The study of the scale-invariance properties of intense precipitation storms, particularly important in flood forecast and risk mitigation, allows to transfer rainfall information from the large scale predictive meteorological models to the small scale hydrological rainfall-runoff models. Precipitation events are monitored using data collected by the polarimetric Doppler radar Polar 55C (ISAC-CNR, located 15 km Southeast from downtown. The meteorological radar provides the estimates of rainfall intensity over an area of about 10 000 km2 at a resolution of 2×2 km2 in space and 5 min in time. Many precipitation events have been observed from autumn 2001 up to now. A scale-invariance analysis is performed on some of these events with the aim at exploring the multifractal properties and at understanding their dependence on the meteorological large-scale conditions.

  7. Flood Monitoring using X-band Dual-polarization Radar Network

    Science.gov (United States)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    A dense weather radar network is an emerging concept advanced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Using multiple radars observing over a common will create different data outcomes depending on the characteristics of the radar units employed and the network topology. To define this a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. Current weather radar surveillance networks are based upon conventional sensing paradigm of widely-separated, standalone sensing systems using long range radars that operate at wavelengths in 5-10 cm range. Such configuration has limited capability to observe close to the surface of the earth because of the earth's curvature but also has poorer resolution at far ranges. The dense network radar system, observes and measures weather phenomenon such as rainfall and severe weather close to the ground at higher spatial and temporal resolution compared to the current paradigm. In addition the dense network paradigm also is easily adaptable to complex terrain. Flooding is one of the most common natural hazards in the world. Especially, excessive development decreases the response time of urban watersheds and complex terrain to rainfall and increases the chance of localized flooding events over a small spatial domain. Successful monitoring of urban floods requires high spatiotemporal resolution, accurate precipitation estimation because of the rapid flood response as well as the complex hydrologic and hydraulic characteristics in an urban environment. This paper reviews various aspects in radar rainfall mapping in urban coverage using dense X-band dual-polarization radar networks. By reducing the maximum range and operating at X-band, one can ensure good azimuthal resolution with a small-size antenna and keep the radar beam closer to the ground. The networked topology helps to achieve satisfactory

  8. ISLSCP II Global Precipitation Climatology Centre (GPCC) Monthly Precipitation

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Global Precipitation Climatology Centre (GPCC), which is operated by the Deutscher Wetterdienst (National Meteorological Service of Germany), is a...

  9. ISLSCP II Global Precipitation Climatology Centre (GPCC) Monthly Precipitation

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Precipitation Climatology Centre (GPCC), which is operated by the Deutscher Wetterdienst (National Meteorological Service of Germany), is a component of...

  10. 3D And 4D Cloud Lifecycle Investigations Using Innovative Scanning Radar Analysis Methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [Stony Brook Univ., NY (United States)

    2017-04-23

    With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. The second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.

  11. A dual-polarisation radar rainfall estimation method using a multi-parameter fuzzy logic algorithm

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel Angel

    2017-04-01

    The emergence of dual-polarisation radar has resulted in a significant enhancement of quantitative precipitation estimation (QPE). It has enabled the measurement of rain drop size and shapes within a volume, the classification of hydrometeors, and the ability to more accurately account for attenuation of the radar beam. Previous methods for QPE have used only the radar reflectivity (Zh) to estimate rainfall, but more recent methods can use a combination of ZH, differential reflectivity (Zdr), specific differential phase (Kdp), and specific attenuation (Ah). The radar variables perform differently depending on rain rate, attenuation, and bright band presence. This has led to the use of fixed threshold values within which the different estimators are used, or the variables are weighted based on performance. This new method to be presented will use fuzzy logic to try to form a more robust algorithm using combinations of the rainfall estimators R(Zh), R(Kdp), and R(Ah). For this a C-band dual-polarised radar based in Hameldon Hill, near Burnley, UK, will be used, alongside a rain gauge network for calibration adn validation.

  12. Systematical estimation of GPM-based global satellite mapping of precipitation products over China

    Science.gov (United States)

    Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei

    2018-03-01

    As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (China. All the statistical metrics of GSMaP_MVK were slightly improved compared with GSMaP_NRT in spring, autumn, and winter, whereas GSMaP_NRT demonstrated superior Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG

  13. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Directory of Open Access Journals (Sweden)

    H. Kalesse

    2016-03-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  14. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  15. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65 degrees inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperature/humidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global water/energy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in

  16. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    Science.gov (United States)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  17. Precipitation-Based ENSO Indices

    Science.gov (United States)

    Adler, Robert; Curtis, Scott

    1998-01-01

    In this study gridded observed precipitation data sets are used to construct rainfall-based ENSO indices. The monthly El Nino and La Nina Indices (EI and LI) measure the steepest zonal gradient of precipitation anomalies between the equatorial Pacific and the Maritime Continent. This is accomplished by spatially averaging precipitation anomalies using a spatial boxcar filter, finding the maximum and minimum averages within a Pacific and Maritime Continent domain for each month, and taking differences. EI and LI can be examined separately or combined to produce one ENSO Precipitation Index (ESPI). ESPI is well correlated with traditional sea surface temperature and pressure indices, leading Nino 3.4. One advantage precipitation indices have over more conventional indices, is describing the strength and position of the Walker circulation. Examples are given of tracking the impact of ENSO events on the tropical precipitation fields.

  18. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    Science.gov (United States)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-01-01

    This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.

  19. Validating NEXRAD MPE and Stage III precipitation products for uniform rainfall on the Upper Guadalupe River Basin of the Texas Hill Country

    Science.gov (United States)

    Wang, Xianwei; Xie, Hongjie; Sharif, Hatim; Zeitler, Jon

    2008-01-01

    SummaryThis study examines the performance of the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimator (MPE) and Stage III precipitation products, using a high-density rain gauge network located on the Upper Guadalupe River Basin of the Texas Hill Country. As point-area representativeness error of gauge rainfall is a major concern in assessment of radar rainfall estimation, this study develops a new method to automatically select uniform rainfall events based on coefficient of variation criterion of 3 by 3 radar cells. Only gauge observations of those uniform rainfall events are used as ground truth to evaluate radar rainfall estimation. This study proposes a new parameter probability of rain detection (POD) instead of the conditional probability of rain detection (CPOD) commonly used in previous studies to assess the capability that a radar or gauge detects rainfall. Results suggest that: (1) gauge observations of uniform rainfall better represent ground truth of a 4 × 4 km 2 radar cell than non-uniform rainfall; (2) the MPE has higher capability of rain detection than either gauge-only or Stage III; (3) the MPE has much higher linear correlation and lower mean relative difference with gauge measurements than the Stage III does; (4) the Stage III tends to overestimate precipitation (20%), but the MPE tends to underestimate (7%).

  20. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.