Sample records for verifying seismic design

  1. Seismic methods for verifying nuclear test bans (United States)

    Sykes, Lynn R.; Evernden, Jack F.; Cifuentes, Inés


    Seismological research of the past 25 years related to verification of a Threshold Test Ban Treaty (TIBT) indicates that a treaty banning nuclear weapons tests in all environments, including underground explosions, can be monitored with high reliablility down to explosions of very small size (about one kiloton). There would be high probability of successful identification of explosions of that size even if elaborate measures were taken to evade detection. Seismology provides the principal means of detecting, locating and identifying underground explosions and of determining their yields. We discuss a number of methods for identifying detected seismic events as being either explosions or earthquakes including the event's location, depth and spectral character. The seismic waves generated by these two types of sources differ in a number of fundamental ways that can be utilized for identification or discrimination. All of the long-standing issues related to a comprehensive treaty were resolved in principle (and in may cases in detail) in negotiations between the U.S., the U.S.S.R. and Britian from 1977 to 1980. Those negotiations have not resumed since 1980. Inadequate seismic means of verifying a CTBT, Soviet cheating on the 150-kt limit of the Treshold Test Ban Treaty of 1976, and the need to develop and test new nuclear weapons were cited in 1982 by the U.S. government as reasons for not continuing negotiations for a CTBT. The first two reservations, which depend heavily on seismological information, are not supported scientifically. A CTBT could help to put a lid on the seemingly endless testing of new generations of nuclear weapons by both superpowers.

  2. Verifying design patterns in Hoare Type Theory

    DEFF Research Database (Denmark)

    Svendsen, Kasper; Buisse, Alexandre; Birkedal, Lars

    In this technical report we document our experiments formally verifying three design patterns in Hoare Type Theory.......In this technical report we document our experiments formally verifying three design patterns in Hoare Type Theory....

  3. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)


    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  4. Attacks on One Designated Verifier Proxy Signature Scheme

    Directory of Open Access Journals (Sweden)

    Baoyuan Kang


    Full Text Available In a designated verifier proxy signature scheme, there are three participants, namely, the original signer, the proxy signer, and the designated verifier. The original signer delegates his or her signing right to the proxy signer, then the proxy signer can generate valid signature on behalf of the original signer. But only the designated verifier can verify the proxy signature. Several designated verifier proxy signature schemes have been proposed. However, most of them were proven secure in the random oracle model, which has received a lot of criticism since the security proofs in the random oracle model are not sound with respect to the standard model. Recently, by employing Water's hashing technique, Yu et al. proposed a new construction of designated verifier proxy signature. They claimed that the new construction is the first designated verifier proxy signature, whose security does not rely on the random oracles. But, in this paper, we will show some attacks on Yu et al.'s scheme. So, their scheme is not secure.

  5. Seismic Conceptual Design of Buildings

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. Seismic Conceptual Design of Buildings. K R Y Simha. Book Review Volume 12 Issue 8 August 2007 pp 82-84. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  6. Verifying Architectural Design Rules of the Flight Software Product Line (United States)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen


    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  7. Establishing seismic design criteria to achieve an acceptable seismic margin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P. [RPK Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States)


    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented.

  8. Seismic hazard versus design accelerograms

    Directory of Open Access Journals (Sweden)

    Horea SANDI


    Full Text Available The developments presented herewith arise from the legitimate wish and task of structural engineers of performing consistent analyses of risk and safety for works located in seismic regions. The paper adopts a probabilistic viewpoint, or philosophy. The starting point of this discussion is based on well – established approaches, while at the same time addressing specific research problems that could represent the task of the future, even if not an immediate one. The main topics are as follows: a brief view of (3-rd level probabilistic safety and risk analysis, based on simplifying assumptions, which serves as a starting point for subsequent developments; a review of seismic action and hazard representation from two perspectives: ground motion during one event (advocating design accelerograms and stochastic models and recurrence of successive events (considering, after the usual 1D approach, a generalized approach based on the consideration of a multi-dimensional space of characteristic action parameters; the development of a multi-dimensional stochastic model of ground motion (basically for a half-space consisting of successive horizontal homogeneous layers; a brief discussion of alternative possible objectives of engineering safety analyses.

  9. Seismic design verification of LMFBR structures

    Energy Technology Data Exchange (ETDEWEB)


    The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.

  10. Structural concepts and details for seismic design

    Energy Technology Data Exchange (ETDEWEB)


    This manual discusses building and building component behavior during earthquakes, and provides suggested details for seismic resistance which have shown by experience to provide adequate performance during earthquakes. Special design and construction practices are also described which, although they might be common in some high-seismic regions, may not be common in low and moderate seismic-hazard regions of the United States. Special attention is given to describing the level of detailing appropriate for each seismic region. The UBC seismic criteria for all seismic zones is carefully examined, and many examples of connection details are given. The general scope of discussion is limited to materials and construction types common to Department of Energy (DOE) sites. Although the manual is primarily written for professional engineers engaged in performing seismic-resistant design for DOE facilities, the first two chapters, plus the introductory sections of succeeding chapters, contain descriptions which are also directed toward project engineers who authorize, review, or supervise the design and construction of DOE facilities. 88 refs., 188 figs.

  11. Seismic hazard versus design accelerograms


    Horea SANDI


    The developments presented herewith arise from the legitimate wish and task of structural engineers of performing consistent analyses of risk and safety for works located in seismic regions. The paper adopts a probabilistic viewpoint, or philosophy. The starting point of this discussion is based on well – established approaches, while at the same time addressing specific research problems that could represent the task of the future, even if not an immediate one. The main topics are as follows...

  12. Seismic Design Guidelines For Port Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Bernal, Alberto; Blazquez, Rafael

    In order to mitigate hazards and losses due to earthquakes, seismic design methodologies have been developed and implemented in design practice in many regions since the early twentieth century, often in the form of codes and standards. Most of these methodologies are based on a force-balance app...

  13. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo


    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  14. Short Course on Seismic Design of Bridges

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Short Course on Seismic Design of Bridges. Information and Announcements Volume 9 Issue 8 August 2004 pp 88-88. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  15. Including secondary illumination in seismic acquisition design

    NARCIS (Netherlands)

    Kumar, A.; Blacquière, G.


    A subsurface image obtained from seismic data is influenced by the acquisition geometry, as it contains an acquisition foot-print which can obscure the true reflection response of the subsurface. Hence, the acquisition geometry should be designed in such a way that it allows high-quality images and

  16. Earthquake Hazards Program: U.S. Seismic Design Maps (United States)

    U.S. Geological Survey, Department of the Interior — The USGS collaborates with organizations (such as the Building Seismic Safety Council) that develop model building and bridge design codes to make seismic design...

  17. Verification/development of seismic design specifications for downstate zone. (United States)


    The New York City Department of Transportation (NYCDOT) Seismic Design Guidelines Report was : updated in September 2008 by Weidlinger Associates to reflect current state-of-the-art knowledge. The : NYCDOT seismic design guidelines are for use in the...

  18. A Preliminary study on the seismic conceptual design (United States)

    Zhao, Zhen; Xie, Lili


    The seismic conceptual design is an essential part of seismic design codes. It points out that the term "seismic conceptual design" should imply three aspects, i.e., the given concept itself, the specific provisions related to the given concept and the designing following the provisions. Seismic conceptual design can be classified into two categories: the strict or traditional seismic conceptual design and the generalized seismic conceptual design. The authors are trying to define for both conceptual designs their connotations and study their characteristics, in particular, the differences between them. Authors emphasize that both conceptual designs sound very close, however, their differences are apparent. The strict conceptual designs are usually worked out directly from engineering practice and/or lessons learnt from earthquake damage, while the generalized conceptual designs are resulted in a series of visions aiming to realize the general objectives of the seismic codes. The strict conceptual designs, (traditional conceptual designs) are indispensable elements of seismic codes in assuring designed structures safer and the generalized conceptual designs are playing key roles in directing to a more advanced and effective seismic codes.

  19. Tritium glovebox stripper system seismic design evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grinnell, J. J. [Savannah River Site (SRS), Aiken, SC (United States); Klein, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  20. Design, analysis, and seismic performance of a hypothetical seismically isolated bridge on legacy highway. (United States)


    The need to maintain the functionality of critical transportation lifelines after a large seismic event motivates the : strategy to design certain bridges for performance standards beyond the minimum required by bridge design codes. : To design a bri...

  1. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.


    In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime ...

  2. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio


    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  3. Implied preference for seismic design level and earthquake insurance. (United States)

    Goda, K; Hong, H P


    Seismic risk can be reduced by implementing newly developed seismic provisions in design codes. Furthermore, financial protection or enhanced utility and happiness for stakeholders could be gained through the purchase of earthquake insurance. If this is not so, there would be no market for such insurance. However, perceived benefit associated with insurance is not universally shared by stakeholders partly due to their diverse risk attitudes. This study investigates the implied seismic design preference with insurance options for decisionmakers of bounded rationality whose preferences could be adequately represented by the cumulative prospect theory (CPT). The investigation is focused on assessing the sensitivity of the implied seismic design preference with insurance options to model parameters of the CPT and to fair and unfair insurance arrangements. Numerical results suggest that human cognitive limitation and risk perception can affect the implied seismic design preference by the CPT significantly. The mandatory purchase of fair insurance will lead the implied seismic design preference to the optimum design level that is dictated by the minimum expected lifecycle cost rule. Unfair insurance decreases the expected gain as well as its associated variability, which is preferred by risk-averse decisionmakers. The obtained results of the implied preference for the combination of the seismic design level and insurance option suggest that property owners, financial institutions, and municipalities can take advantage of affordable insurance to establish successful seismic risk management strategies.

  4. Seismic analysis for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon, Republic of Korea (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)


    Highlights: • The seismic analysis of KO HCCR TBM-set are performed. • The seismic envents like SL-1, SL-2, and SMHV are selected and evaluated with FEM code (ANSYS). • The results of the stresses and deformations are confirmed to meet the design criteria. - Abstract: Using the conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a seismic analysis is performed. According to the ITER TBM port plug (TBM PP) system load specifications, seismic events are selected as SL-1 (seismic level-1), SL-2 (seismic level-2), and SMHV (seismes maximaux historiquement vraisemblables, Maximum Histroically Probable Earthquakes). In a modal analysis a total of 50 modes are obtained. Then, a spectra response analysis for each seismic event is carried out using ANSYS based on the modal analysis results. For each event, the obtained Tresca stress is evaluated to confirm the design integrity, by comparing the resulting stress to the design criteria. The Tresca strain and displacement are also estimated for the HCCR TBM-set. From the analysis, it was concluded that the maximum stresses by the seismic events meet the design criteria, and the displacements are lower than the designed gap from the TBM PP frame. The results are provided to a load combination analysis.

  5. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Michael Horsfall

    Keywords: Seismic Isolation, Base Isolation, Earthquake Resistant Design, Seismic Protective Systems .... KV which is the dominant parameter controlling the verticalfrequency of an isolated structure. The vertical stiffness of a rubber bearing is given by the formula 1: ... The non-linear force-deformation characteristic of.

  6. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yuxian [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics


    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  7. Seismic Endoscopy: Design of New Instruments (United States)

    Conil, F.; Nicollin, F.; Gibert, D.


    In order to perform 3D images around shallow-depth boreholes, in conditions in the field and within reasonable times of data acquisitions, several instrumental developments have been performed. The first development concerns the design of a directional probe working in the 20-100 kHz frequency range; the idea is to create a tool composed of multiple elementary piezoelectric entities able to cover the whole space to explore; made of special polyurethane rigid foam with excellent attenuation performances, the prototypes are covered by flexible polyurethane electric resin. By multiplying the number of elementary receptors around the vertical axes and piling up each elementary sensor, a complete design of multi-azimuth and multi-offset has been concepted. In addition to this, a test site has been built in order to obtain a controlled medium at typical scales of interest for seismic endoscopy and dedicated to experiment near the conditions in the field. Various reflectors are placed in well known positions and filled in an homogeneous cement medium; the whole edifice (2.2 m in diameter and 8 metres in depth) also contains 4 PVC tubes to simulate boreholes. The second part of this instrumental developments concern the synthesis of input signals; indeed, many modern devices used in ultrasonic experiment have non linear output response outside their nominal range: this is especially true in geophysical acoustical experiments when high acoustical power is necessary to insonify deep geological targets. Thanks to the high speed electronic and computerised devices now available, it is possible to plug in experimental set-ups into non linear inversions algorithms like simulated annealing. First experiments showed the robustness of the method in case of non linear analogic architecture. Large wavelet families have or example been constructed thanks to the method and multiscale Non Destructive Testing Method have been performed as an efficient method to detect and characterise

  8. A Formal Specification Framework for Designing and Verifying Reliable and Dependable Software for CNC Systems

    Directory of Open Access Journals (Sweden)

    Yunan Cao


    Full Text Available As a distributed computing system, a CNC system needs to be operated reliably, dependably, and safely. How to design reliable and dependable software and perform effective verification for CNC systems becomes an important research problem. In this paper, we propose a new modeling method called TTM/ATRTTL (timed transition models/all-time real-time temporal logics for specifying CNC systems. TTM/ATRTTL provides full supports for specifying hard real time and feedback that are needed for modeling CNC systems. We also propose a verification framework with verification rules and theorems and implement it with STeP and SF2STeP. The proposed verification framework can check reliability, dependability, and safety of systems specified by our TTM/ATRTTL method. We apply our modeling and verification techniques on an open architecture CNC (OAC system and conduct comprehensive studies on modeling and verifying a system controller that is the key part of OAC. The results show that our method can effectively model and verify CNC systems and generate CNC software that can satisfy system requirements in reliability, dependability, and safety.

  9. Verified by Visa and MasterCard SecureCode: Or, How Not to Design Authentication (United States)

    Murdoch, Steven J.; Anderson, Ross

    Banks worldwide are starting to authenticate online card transactions using the '3-D Secure' protocol, which is branded as Verified by Visa and MasterCard SecureCode. This has been partly driven by the sharp increase in online fraud that followed the deployment of EMV smart cards for cardholder-present payments in Europe and elsewhere. 3-D Secure has so far escaped academic scrutiny; yet it might be a textbook example of how not to design an authentication protocol. It ignores good design principles and has significant vulnerabilities, some of which are already being exploited. Also, it provides a fascinating lesson in security economics. While other single sign-on schemes such as OpenID, InfoCard and Liberty came up with decent technology they got the economics wrong, and their schemes have not been adopted. 3-D Secure has lousy technology, but got the economics right (at least for banks and merchants); it now boasts hundreds of millions of accounts. We suggest a path towards more robust authentication that is technologically sound and where the economics would work for banks, merchants and customers - given a gentle regulatory nudge.

  10. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)


    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  11. A provably secure identity-based strong designated verifier proxy signature scheme from bilinear pairings

    Directory of Open Access Journals (Sweden)

    SK Hafizul Islam


    Full Text Available The proxy signature, a variant of the ordinary digital signature, has been an active research topic in recent years; it has many useful applications, including distributed systems and grid computing. Although many identity-based proxy signature schemes have been proposed in the literature, only a few proposals for identity-based strong designated verifier proxy signature (ID-SDVPS schemes are available. However, it has been found that most of the ID-SDVPS schemes that have been proposed to date are not efficient in terms of computation and security, and a computationally efficient and secured ID-SDVPS scheme using elliptic curve bilinear pairing has been proposed in this paper. The security of the scheme is mainly based on the hardness assumption of CDH and GBDH problems in the random oracle model, which is existentially unforgeable against different types of adversaries. Furthermore, the security of our scheme is simulated in the AVISPA (Automated Validation of Internet Security Protocols and Applications software, a widely used automated internet protocol validation tool, and the simulation results confirm strong security against both active and passive attacks. In addition, because of a high processing capability and supporting additional security features, the scheme is suitable for the environments in which less computational cost with strong security is required.

  12. Investigation of techniques for the development of seismic design basis using the probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.; Boissonnade, A.C.; Short, C.M.


    The Nuclear Regulatory Commission asked Lawrence Livermore National Laboratory to form a group of experts to assist them in revising the seismic and geologic siting criteria for nuclear power plants, Appendix A to 10 CFR Part 100. This document describes a deterministic approach for determining a Safe Shutdown Earthquake (SSE) Ground Motion for a nuclear power plant site. One disadvantage of this approach is the difficulty of integrating differences of opinions and differing interpretations into seismic hazard characterization. In answer to this, probabilistic seismic hazard assessment methodologies incorporate differences of opinion and interpretations among earth science experts. For this reason, probabilistic hazard methods were selected for determining SSEs for the revised regulation, 10 CFR Part 100.23. However, because these methodologies provide a composite analysis of all possible earthquakes that may occur, they do not provide the familiar link between seismic design loading requirements and engineering design practice. Therefore, approaches used to characterize seismic events (magnitude and distance) which best represent the ground motion level determined with the probabilistic hazard analysis were investigated. This report summarizes investigations conducted at 69 nuclear reactor sites in the central and eastern U.S. for determining SSEs using probabilistic analyses. Alternative techniques are presented along with justification for key choices. 16 refs., 32 figs., 60 tabs.

  13. Update of bridge design standards in Alabama for AASHTO LRFD seismic design requirements. (United States)


    The Alabama Department of Transportation (ALDOT) has been required to update their bridge design to the LRFD Bridge Design Specifications. This transition has resulted in changes to the seismic design standards of bridges in the state. Multiple bridg...

  14. Department of Energy seismic siting and design decisions: Consistent use of probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.K.; Chander, H.


    The Department of Energy (DOE) requires that all nuclear or non-nuclear facilities shall be designed, constructed and operated so that the public, the workers, and the environment are protected from the adverse impacts of Natural Phenomena Hazards including earthquakes. The design and evaluation of DOE facilities to accommodate earthquakes shall be based on an assessment of the likelihood of future earthquakes occurrences commensurate with a graded approach which depends on the potential risk posed by the DOE facility. DOE has developed Standards for site characterization and hazards assessments to ensure that a consistent use of probabilistic seismic hazard is implemented at each DOE site. The criteria included in the DOE Standards are described, and compared to those criteria being promoted by the staff of the Nuclear Regulatory Commission (NRC) for commercial nuclear reactors. In addition to a general description of the DOE requirements and criteria, the most recent probabilistic seismic hazard results for a number of DOE sites are presented. Based on the work completed to develop the probabilistic seismic hazard results, a summary of important application issues are described with recommendations for future improvements in the development and use of probabilistic seismic hazard criteria for design of DOE facilities.

  15. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design philosophy (United States)

    Ramanathan, Karthik Narayan

    Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions’ economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations

  16. Seismic performance evaluation of existing RC buildings designed ...

    Indian Academy of Sciences (India)

    1. Introduction. For earthquake resistant design, evaluation of the seismic performance of buildings, it is ... LS. III. Note: DL: Dead Load; LL: Live Load; EQL: Earthquake Load; LS: Limit State; WS: Working Stress ..... axial load applied with respect to the ultimate one, (iii) ratio between the shear length to the sec- tion height ...

  17. Preventing Undesirable Seismic Behaviour of Infill Walls in Design Process

    Directory of Open Access Journals (Sweden)

    Azadeh Noorifard


    Full Text Available Dividing walls are usually considered as non-structural elements, but experiences of past earthquakes show that some buildings designed and constructed by engineers have been damaged during earthquakes because of disregarding the negative effects of walls. Apart from the poor quality of construction and materials, inattention in design process is the main reason for undesirable seismic behaviour of walls.The main aim of this paper is to investigate the measures taken in different stages of architectural and structural design for improving the seismic behaviour of infilled concrete structures. As a general principle, with the further progress of project from basic architectural design to detailed structural design, there is a need to reduce designer authority and increase obligation, furthermore the cost of project increases too. The conclusion of this study implies that, in order to achieve the desirable seismic behaviour of walls, close collaboration between architects and structural engineers is required from the early stages of design. The results of this study are presented in a check list for designing reinforced concrete (RC moment resisting frame and RC shear wall.

  18. Influence of the new LRFD seismic guidelines on the design of bridges in Virginia. (United States)


    The Virginia Department of Transportation is currently using the AASHTO Standard Specifications for Highway Bridges, with some modifications, for its seismic highway bridge design. In April 2001, the Recommended LRFD Guidelines for the Seismic Design...

  19. Frozen soil lateral resistance for the seismic design of highway bridge foundations : [summary]. (United States)


    With recent seismic activity and earthquakes in Alaska and throughout the Pacific Rim, seismic design is becoming an increasingly important public safety concern for : highway bridge designers. Hoping to generate knowledge that can improve the seismi...

  20. Seismic Design Criteria for Soil Liquefaction

    National Research Council Canada - National Science Library

    Ferritto, J


    .... Safe and effective structural design of waterfront facilities requires calculating the expected site specific ground motion and determining the response of these complex structures to the induced loading...

  1. 7 CFR 1792.103 - Seismic design and construction standards for new buildings. (United States)


    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Seismic design and construction standards for new..., REGULATIONS, AND EXECUTIVE ORDERS Seismic Safety of Federally Assisted New Building Construction § 1792.103 Seismic design and construction standards for new buildings. (a) In the design and construction of...

  2. Seismic Design of ITER Component Cooling Water System-1 Piping (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.


    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.


    Directory of Open Access Journals (Sweden)



    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  4. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.


    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  5. Equivalent Viscous Damping Models in Displacement Based Seismic Design

    Directory of Open Access Journals (Sweden)

    Raul Zaharia


    Full Text Available The paper reviews some equivalent viscous damping models used in the displacement based seismic design considering the equivalent linearization. The limits of application of the models are highlighted, based on comparison existing in the literature. The study is part of research developed by author, aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquakes compatible with given response spectra.

  6. Evaluation of seismic design spectrum based on UHS implementing fourth-generation seismic hazard maps of Canada (United States)

    Ahmed, Ali; Hasan, Rafiq; Pekau, Oscar A.


    Two recent developments have come into the forefront with reference to updating the seismic design provisions for codes: (1) publication of new seismic hazard maps for Canada by the Geological Survey of Canada, and (2) emergence of the concept of new spectral format outdating the conventional standardized spectral format. The fourth -generation seismic hazard maps are based on enriched seismic data, enhanced knowledge of regional seismicity and improved seismic hazard modeling techniques. Therefore, the new maps are more accurate and need to incorporate into the Canadian Highway Bridge Design Code (CHBDC) for its next edition similar to its building counterpart National Building Code of Canada (NBCC). In fact, the code writers expressed similar intentions with comments in the commentary of CHBCD 2006. During the process of updating codes, NBCC, and AASHTO Guide Specifications for LRFD Seismic Bridge Design, American Association of State Highway and Transportation Officials, Washington (2009) lowered the probability level from 10 to 2% and 10 to 5%, respectively. This study has brought five sets of hazard maps corresponding to 2%, 5% and 10% probability of exceedance in 50 years developed by the GSC under investigation. To have a sound statistical inference, 389 Canadian cities are selected. This study shows the implications of the changes of new hazard maps on the design process (i.e., extent of magnification or reduction of the design forces).

  7. A New Design of Seismic Stations Deployed in South Tyrol (United States)

    Melichar, P.; Horn, N.


    When designing the seismic network in South Tyrol, the seismic service of Austria and the Civil defense in South Tyrol combined more that 10 years experience in running seismic networks and private communication systems. In recent years the high data return rate of > 99% and network uptime of > 99.% is achieved by the combination of high quality station design and equipment, and the use of the Antelope data acquisition and processing software which comes with suite of network monitoring & alerting tools including Nagios, etc. The new Data Center is located in city of Bolzano and is connected to the other Data Centers in Austria, Switzerland, and Italy for data back up purposes. Each Data Center uses also redundant communication system if the primary system fails. When designing the South Tyrol network, new improvements were made in seismometer installations, grounding, lighting protection and data communications in order to improve quality of data recorded as well as network up-time, and data return. The new 12 stations are equipped with 6 Channels Q330+PB14f connected to STS2 + EpiSensor sensor. One of the key achievements was made in the grounding concept for the whole seismic station - and aluminum boxes were introduced which delivered Faraday cage isolation. Lightning protection devices are used for the equipment inside the aluminum housing where seismometer and data logger are housed. For the seismometer cables a special shielding was introduced. The broadband seismometer and strong-motion sensor are placed on a thick glass plate and therefore isolated from the ground. The precise seismometer orientation was done by a special groove on the glass plate and in case of a strong earthquake; the seismometer is tide up to the base plate. Temperature stability was achieved by styrofoam sheets inside the seismometer aluminum protection box.

  8. Seismic design of RC buildings theory and practice

    CERN Document Server

    Manohar, Sharad


    This book is intended to serve as a textbook for engineering courses on earthquake resistant design. The book covers important attributes for seismic design such as material properties, damping, ductility, stiffness and strength. The subject coverage commences with simple concepts and proceeds right up to nonlinear analysis and push-over method for checking building adequacy. The book also provides an insight into the design of base isolators highlighting their merits and demerits. Apart from the theoretical approach to design of multi-storey buildings, the book highlights the care required in practical design and construction of various building components. It covers modal analysis in depth including the important missing mass method of analysis and tension shift in shear walls and beams. These have important bearing on reinforcement detailing. Detailed design and construction features are covered for earthquake resistant design of reinforced concrete as well as confined and reinforced masonry structures. Th...

  9. Correlation of shear design between AASHTO LRFD bridge design specifications and AASHTO Guide Specifications for the LRFD Seismic Bridge Design. (United States)


    This report presents the analytical study of the shear capacity of reinforced concrete columns using both the AASHTO LRFD Bridge Design Specifications and the AASHTO Guide Specifications for the LRFD Seismic Bridge Design. The study investigates vari...

  10. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P. (ed)


    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation. (JDB)

  11. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan


    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  12. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan


    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  13. Seismicity and Design Codes in Chile: Characteristic Features and a Comparison with Some of the Provisions of the Romanian Seismic Design Code


    Ene, Diana; Craifaleanu, Iolanda-Gabriela


    A brief history and the characteristics of the seismic region and events in Chile reveal interesting indices in understanding the present day Chilean seismic design code. The paper points out some of the most important prescriptions in the Chilean code that could have led to the relatively reduced number of casualties at the seismic event on February 27th, 2010. By comparing the Chilean code to the Romanian one, the goal is to underline the differences and the similarities regarding both the ...

  14. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali


    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  15. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)


    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  16. Sloped Connections and Connections with Fillet Welded Continuity Plates for Seismic Design of Special Moment Frames (United States)

    Mashayekh, Adel

    Steel Special Moment Frames (SMF) are one of the most popular lateral force-resisting systems for multistory building construction in high seismic regions due to their architectural versatility. With a significant amount of research that was conducted after the 1994 Northridge, California earthquake, AISC has published design guidelines (AISC 341 and AISC 358) to avoid brittle fracture of beam-to-column welded moment connections that occurred in more than 100 steel buildings. This dissertation addresses two issues related to the moment connection design of SMF. Unless the column flanges are sufficiently thick, AISC 341 requires that continuity plates be installed, and that expensive complete-joint-penetration (CJP) groove welds be used to connect the continuity plates to the column flanges; the conservative nature of this requirement stems from a lack of procedure that the designer can use to quantify the required seismic forces in the continuity plates such that more economical welds (e.g., fillet welds) can be used. The first objective of this research was to investigate a design procedure and to verify it with full-scale testing of two Reduced Beam Section (RBS) moment connections. It was shown that the proposed design procedure could result in a more economical weld design while developing the ductile response of the moment connection. AISC seismic design codes implicitly assume that beams are orthogonal to the columns in elevation, but in real-life construction beams are sometimes connected to the columns with a slope. To fill this knowledge gap, both experimental and analytical studies were conducted. Full-scale testing of two additional moment connections with a 25° angle of inclination showed that sloped connections are vulnerable to brittle fracture at the "heel" location, where the beam flange and column form an acute angle. Fracture would initiate from the end of beam web CJP weld and the weld access hole. Guided by finite element simulation, a truss

  17. Study of seismic design bases and site conditions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)


    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  18. Performance-Based Seismic Design of Bitlis River Viaduct Based on Damage Control Using Seismic Isolation and Energy Dissipation Devices (United States)

    Dicleli, Murat; Salem Milani, Ali


    This paper presents a sample application of seismic isolation techniques in performance-based design of a major viaduct. The Bitlis River viaduct is located in a seismically active region. The targeted performance goal required no damage at 475-year return period earthquake and repairable damage at 2475-year return period earthquake. The bridge is designed with a seismic isolation system composed of spherical bearings and MRSD (Multidirectional Re-centering steel Damper) hysteretic dampers. The MRSD is a recently-developed hysteretic damper with a controllable post-elastic stiffness. To keep the dampers from being activated during the thermal displacements, the attachment of the dampers to the deck are made through elongated holes oriented in the longitudinal direction of the bridge. The gaps are sized based on the amount of expected maximum thermal displacement in each pier. The gap length is thus different for different piers. This means that the number of the dampers to be engaged during an earthquake will depend on the intensity of the displacements. The distinct feature in this design is how it achieves double purpose: (i)preventing the dampers from engagement during service life as a result of thermal displacements and (ii) sequential engagement of the dampers depending on the level of seismically-induced displacements. The paper presents the basic design features of this seismically isolated bridge designed based on performance-based principles, a brief description of the newly-developed damper and a summary of analyses results.

  19. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)


    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  20. Seismic behavior and design of wall-EDD-frame systems

    Directory of Open Access Journals (Sweden)

    Oren eLavan


    Full Text Available Walls and frames have different deflection lines and, depending on the seismic mass they support, may often poses different natural periods. In many cases, wall-frame structures present an advantageous behavior. In these structures the walls and the frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly connected, an opportunity for an efficient passive control strategy would arise: Connecting the two systems by energy dissipation devices (EDDs to result in wall-EDD-frame systems. This, depending on the parameters of the system, is expected to lead to an efficient energy dissipation mechanism.This paper studies the seismic behavior of wall-EDD-frame systems in the context of retrofitting existing frame structures. The controlling non-dimensional parameters of such systems are first identified. This is followed by a rigorous and extensive parametric study that reveals the pros and cons of the new system versus wall-frame systems. The effect of the controlling parameters on the behavior of the new system are analyzed and discussed. Finally, tools are given for initial design of such retrofitting schemes. These enable both choosing the most appropriate retrofitting alternative and selecting initial values for its parameters.

  1. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    Energy Technology Data Exchange (ETDEWEB)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O. [Ministry of Environment and Natural Resources, (Ukraine)


    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  2. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)


    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  3. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    Energy Technology Data Exchange (ETDEWEB)


    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  4. Soil Influence in Seismic Design of Bridges in Cuba


    Dario Candebat Sánchez; Guillermo Godínez Melgares; Luis Felipe Caballero Cornier; Zulima Caridad Rivera Álvarez


    Soil geological conditions affect directly the seismic structural behavior of bridges. This work shows the importance of determining the site coefficient, a parameter used by Cuban seismic code for considering the influence of soil in the structural response. The research is based in the results obtained from the application of geophysical seismic refraction method. It is presented as an example a bridge located on Granma highway in Santiago de Cuba city, showing variations in lithology prese...

  5. Seismic behaviour of cable-stayed bridges : design, analysis and seismic devices


    Cámara Casado, Alfredo


    The social and economical importance of long-span bridges is extremely large; cablestayed bridges currently span distances ranging from 200 to even more than 1000 m, representing key points along infrastructure networks and requiring an outstanding knowledge of their seismic response. The objective of the study is three-fold; (i) to discern how project decisions affect the seismic behaviour of cable-stayed bridges;(ii) to shed light on appropriate analysis strategies in order to address th...

  6. Engineering and Design: Response Spectra and Seismic Analysis for Concrete Hydraulic Structures

    National Research Council Canada - National Science Library


    .... The manual provides guidance regarding how earthquake ground motions are characterized as design response spectra and how they are then used in the process of seismic structural analysis and design...

  7. An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria. (United States)

    Martinez-Vaz, Betsy M; Denny, Roxanne; Young, Nevin D; Sadowsky, Michael J


    Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR) and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students' knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students' verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G) showed an improvement of students' knowledge of microbial identification methods (LO4, G = 0.46), biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45), and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37). An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001.

  8. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture) (United States)

    Sullivan, T. J.


    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  9. The impact of surface-wave separation on seismic survey design

    NARCIS (Netherlands)

    Ishiyama, T.; Blacquiere, G.; Mulder, W.A.


    3-D seismic survey design provides an acquisition geometry for obtaining seismic data that enable imaging and amplitude-versus-offset applications of target reflectors with sufficient quality under given economical and operational constraints. However, in land or shallow water environments, surface

  10. Seismicity and Design Codes in Chile: Characteristic Features and a Comparison with Some of the Provisions of the Romanian Seismic Design Code

    Directory of Open Access Journals (Sweden)

    Diana ENE


    Full Text Available A brief history and the characteristics of the seismic region and events in Chile reveal interesting indices in understanding the present day Chilean seismic design code. The paper points out some of the most important prescriptions in the Chilean code that could have led to the relatively reduced number of casualties at the seismic event on February 27th, 2010. By comparing the Chilean code to the Romanian one, the goal is to underline the differences and the similarities regarding both the conceptual and the formal aspects. Observations are pointed out by means of comparative diagrams of significant parameters. Based on statistics of recorded damage published after the earthquake, some comments are made on the importance of the quality of seismic codes and of the effectiveness of their enforcement.

  11. A new methodology for energy-based seismic design of steel moment frames (United States)

    Mezgebo, Mebrahtom Gebrekirstos; Lui, Eric M.


    A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault-normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.

  12. An Alternative Approach to “Identification of Unknowns”: Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria

    Directory of Open Access Journals (Sweden)

    Betsy M. Martinez- Vaz


    Full Text Available Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students’ knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students’ verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G showed an improvement of students’ knowledge of microbial identification methods (LO4, G = 0.46, biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45, and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37. An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the

  13. Verifiably Truthful Mechanisms

    DEFF Research Database (Denmark)

    Branzei, Simina; Procaccia, Ariel D.


    the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money...

  14. Determination of Standard Response Spectra and Effective Peak Ground Accelerations for Seismic Design and Evaluation

    National Research Council Canada - National Science Library

    Matheu, Enrique E; Yule, Don E; Kala, Raju V


    ...) to generate standard acceleration response spectra and effective peak ground accelerations for seismic design and evaluation of structural features of projects under the responsibility of the U.S...

  15. Overcoming barriers to high performance seismic design using lessons learned from the green building industry (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  16. Development of guidelines for incorporation of vertical ground motion effects in seismic design of highway bridges. (United States)


    This study was undertaken with the objective of assessing the current provisions in SDC-2006 for incorporating : vertical effects of ground motions in seismic evaluation and design of ordinary highway bridges. A : comprehensive series of simulations ...

  17. Seismic Design Considerations : Volume I, Technical Approaches and Results; Volume II, Appendices II-VIII (United States)


    NJDOT has adopted AASHTO Guide Specifications for LRFD Seismic Bridge Design approved by the Highway : Subcommittee on Bridges and Structures in 2007. The main objective of research presented in this report has : been to resolve following issue...

  18. Seismic analysis and design of bridge abutments considering sliding and rotation (United States)


    Current displacement based seismic design of gravity retaining walls utilizes a sliding block idealization, and considers only a translation mode of deformation. Authors update and extend the coupled equations of motion that appear in the literature....

  19. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios


    The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...... with given yield displacement and capacity curve shape. For the 8-story case study building, deformation checking is the governing limit state. A conventional code-based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS-based approach was employed...... to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high-seismicity and high-importance midrise building, a stiffer system with higher...

  20. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu


    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  1. Design and development of spine phantom to verify dosimetric accuracy of stereotactic body radiation therapy using 3D prnter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seu Ran; Lee, Min Young; Kim, Min Joo; Park, So Hyun; Song Ji Hye; Suh, Tae Suk [Dept. of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sohn, Jason W. [Dept. of Radiation Oncology, College of Medicine, Case Western Reserve University, Cleveland (United States)


    The purpose of this study is to verify dosimetric accuracy of delivered dose in spine SBRT as highly precise radiotherapy depending on cancer position using dedicated spine phantom based on 3D printer. Radiation therapy oncology group (RTOG) 0631 suggest different planning method in spine stereotactic body radiation therapy (SBRT) according to location of cancer owing to its distinct shape. The developed phantom especially using DLP method can be utilized as spine SBRT dosimetry research. Our study was able to confirm that the phantom was indeed similar with HU value of human spine as well as its shape.

  2. Investigation on seismic characteristic in Muria Peninsula to asses the NPP seismic design

    Energy Technology Data Exchange (ETDEWEB)

    Kusnowo, A. [National Atomic Energy Agency, Jakarta (Indonesia)


    A feasibility study on first nuclear power plant was conducted during 4,5 years started on 22 November 1991. This study consists of two parts. First, the non site study, Second part is the site and environmental study. The scope of non site studies are economic financing, technical and safety aspect as well as fuel cycle and waste management aspect. The site and environmental studied consist of site conditions and qualification, seismological, environmental condition as well as social economic and cultural impact. In the first step of site study (step 1), the result come up to the three candidates named Ujung Lemahabang, Ujung Watu and Ujung Grenggengan. Further study on geology, topography, oceanography, geophysics, hydrology, seismology, vulcanology, man induced event, etc was done on those three candidates (named as step 2). The results come up with Ujung Lemahabang as the best candidates. It is important to know basic, characteristic of seismicity of nuclear power plant sitting region for seismic hazard assessment this was done as step 3. This paper describe the results of step 3. (J.P.N.)


    Directory of Open Access Journals (Sweden)



    Full Text Available Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if seismic design has to be implemented in Malaysian construction industry. If the cost is increasing, how much the increment and is it affordable? This paper investigated the difference of steel reinforcement and concrete volume required when seismic provision is considered in reinforced concrete design of 2 storey general office building. The regular office building which designed based on BS8110 had been redesigned according to Eurocode 2 with various level of reference peak ground acceleration, agR reflecting Malaysian seismic hazard for ductility class low. Then, the all frames had been evaluated using a total of 800 nonlinear time history analyses considering single and repeated earthquakes to simulate the real earthquake event. It is observed that the level of reference peak ground acceleration, agR and behaviour factor, q strongly influence the increment of total cost. For 2 storey RC buildings built on Soil Type D with seismic consideration, the total cost of material is expected to increase around 6 to 270%, depend on seismic region. In term of seismic performance, the repeated earthquake tends to cause increasing in interstorey drift ratio around 8 to 29% higher compared to single earthquake.

  4. Performance-based seismic design of steel frames utilizing colliding bodies algorithm. (United States)

    Veladi, H


    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  5. Designing linings of mutually influencing parallel shallow circular tunnels under seismic effects of earthquake (United States)

    Sammal, A. S.; Antsiferov, S. V.; Deev, P. V.


    The paper deals with seismic design of parallel shallow tunnel linings, which is based on identifying the most unfavorable lining stress states under the effects of long longitudinal and shear seismic waves propagating through the cross section of the tunnel in different directions and combinations. For this purpose, the sum and difference of normal tangential stresses on lining internal outline caused by waves of different types are investigated on the extreme relative to the angle of incidence. The method allows analytic plotting of a curve illustrating structure stresses. The paper gives an example of design calculation.

  6. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test (United States)

    Hughes, Christopher E.


    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  7. Development of Seismic Analysis Model and Time History Analysis for KALIMER-600

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H


    This report describes a simple seismic analysis model of the KALIMER-600 sodium cooled fast reactor and its application to the seismic time history analysis. To develop the simple seismic analysis model, the detailed 3-D finite element analyses for main components, IHTS piping system, and reactor building were carried out to verify the dynamic characteristics of each part of simple seismic analysis models. By using the developed simple model, the seismic time history analyses for both cases of a seismic isolation and non-isolation design of KALIMER-600 were performed. From the comparison of the calculated floor response spectrum, it is verified that the seismically isolated KALIMER-600 reactor building shows a great performance of a seismic isolation and assures a seismic integrity.

  8. Estimation of cyclic interstory drift capacity of steel framed structures and future applications for seismic design. (United States)

    Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E; Terán-Gilmore, Amador


    Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  9. 41 CFR 102-76.30 - What seismic safety standards must Federal agencies follow in the design and construction of... (United States)


    ... § 102-76.30 What seismic safety standards must Federal agencies follow in the design and construction of... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What seismic safety standards must Federal agencies follow in the design and construction of Federal facilities? 102-76.30...

  10. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios


    The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding arbitr...

  11. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R [California Institute of Technology, 1200 E California Blvd, MC 18-34, Pasadena, CA (United States); Aso, Y; Marka, S [Columbia University, Physics Department, 1538 W 120 St, New York, NY (United States); Ottaway, D; Stochino, A [Massachusetts Institute of Technology, 185 Albany St, NW 22-295, Cambridge, MA (United States)], E-mail:


    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed.

  12. The Design of Wireless Data Acquisition and Remote Transmission Interface in Micro-seismic Signals

    Directory of Open Access Journals (Sweden)

    Huan-Huan BIAN


    Full Text Available The micro-seismic signal acquisition and transmission is an important key part in geological prospecting. This paper describes a bran-new solution of micro-seismic signal acquisition and remote transmission using Zigbee technique and wireless data transmission technique. The hardware such as front-end data acquisition interface made up by Zigbee wireless networking technique, remote data transmission solution composed of general packet radio service (or GPRS for short technique and interface between Zigbee and GPRS is designed in detail. Meanwhile the corresponding software of the system is given out. The solution solves the numerous practical problems nagged by complex and terrible environment faced using micro-seismic prospecting. The experimental results demonstrate that the method using Zigbee wireless network communication technique GPRS wireless packet switching technique is efficient, reliable and flexible.

  13. Seismic performance evaluation of existing RC buildings designed ...

    Indian Academy of Sciences (India)

    In this paper, a typical 6-storey reinforced concrete (RC) building frame is designed for four design cases as per the provisions in three revisions of IS: 1893 and IS: 456 and it is analysed using user-defined (UD) nonlinear hinge properties or default-hinge (DF) properties, given in SAP 2000 based on the FEMA-356 and ...

  14. Former Soviet Regulations for seismic design of NPPs and comparison with current international practice

    Energy Technology Data Exchange (ETDEWEB)

    Kostarev, V.; Schukin, A.; Berkovski, A. [CKTI-Vibroseism Co. Ltd. (Cape Verde)


    This paper presents a summary of current earthquake design criteria used in former Soviet Regulations for equipment and piping systems of nuclear power plants in light of those used in United States and Japan. The detailed comparative seismic analysis of PWR (WWER) Primary Coolant Loop System (PCLS) according to Former Soviet (Russian) PNAE Code and ASME BPV Code with some comments regarding to Japan Code JEAG - 4601 was undertaken for better understanding of the differences and coincidences of seismic design criteria and requirements. The selection of these three guides for the study has very simple explanation: according to ASME BVPC, JEAG and PNAE the huge majority of existing NPPs has been designed. (J.P.N.)

  15. Some considerations for establishing seismic design criteria for nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.P. [Energy Technology Engineering Center, Canoga Park, CA (United States); Chokshi, N.C. [Nuclear Regulatory Commission, Washington, DC (United States)


    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping & Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI.

  16. Modifications to risk-targeted seismic design maps for subduction and near-fault hazards (United States)

    Liel, Abbie B.; Luco, Nicolas; Raghunandan, Meera; Champion, C.; Haukaas, Terje


    ASCE 7-10 introduced new seismic design maps that define risk-targeted ground motions such that buildings designed according to these maps will have 1% chance of collapse in 50 years. These maps were developed by iterative risk calculation, wherein a generic building collapse fragility curve is convolved with the U.S. Geological Survey hazard curve until target risk criteria are met. Recent research shows that this current approach may be unconservative at locations where the tectonic environment is much different than that used to develop the generic fragility curve. This study illustrates how risk-targeted ground motions at selected sites would change if generic building fragility curve and hazard assessment were modified to account for seismic risk from subduction earthquakes and near-fault pulses. The paper also explores the difficulties in implementing these changes.

  17. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.


    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  18. Improvements of seismic design of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kohei [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Technology; Takayama, Yoshihiro


    A brief survey and overview of the current research and development in Japan was presented. Particularly, several kinds of new dampers and isolators were developed and those effectiveness were examined by caring out the large-scale vibration test and so on. The evaluation of the energy absorption of these damping devices at the earthquake appeared to be significant. In addition, it must be necessary to investigate the design margin and the failure mode and limit problem to these devices and the nuclear structures and piping supported by those. Mutual exchange of the information related to these technology and research has to be put forward and cooperative works including the international conference on those issues should be promoted. (J.P.N.)

  19. Sea change: Multi-component seismic survey designed for White Rose using ocean bottom seismometers

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.


    The first multi-component seismic survey in Canadian waters of the Scotian Shelf and the Grand Banks is being planned for the summer of 2002. A consortium of university and government scientists will join forces with industry geophysicists to carry out the survey. The specialized multi-component seismic data will be recorded on the seafloor using ocean bottom seismometers (OBSs) built by Dalhousie University. The survey will be done on a grid pattern of 21 OBSs, on a layout of 42 sq km four-component (4-C) 3-D survey at the White Rose oil and gas fields. The objective is to resolve seismic exploration problems such as problems with properly imaging and mapping the top of the main reservoir using conventional 2-D and 3-D seismic data. If successful, these multi-component data will help Husky Oil in the production and development of the White Rose Field's 230 million bbls reserves. Husky Oil's geophysicists would prefer to use a commercially proven technology in place of the Dalhousie built OBSs --- an ocean bottom cable (OBC) which is a recording cable containing 4-C geophones laid out on the seafloor by a vessel, as opposed to deploying the 4-C OBS sensors in a grid pattern on the sea floor. However, the OBS survey proposed by academia will cost about one-tenth of the cost that would be involved in mobilizing a commercial OBC seismic acquisition boat from the North Sea or from the Gulf of Mexico, the reason being that 4-C OBS ssurvey will be piggybacked on a related 4-C 2-D scientific survey being conducted next summer on the Scotian Shelf and the Grand Bank Flemish Cap area. The 4-C 2-D seismic survey will consist of 1,250 km of regional transects designed to increase knowledge of the structural origins and make-up of Canada's hydrocarbon-bearing continental shelf and margins. This program, aptly named MARIPROBE, is the continuation of the successful GSC/NSERC-funded LITHOPROBE program that saw deep crustal seismic data shot across Canada. 4 figs.

  20. Intelligent monitoring of seismic damage identification using wireless smart sensors: design and validation (United States)

    Kim, Jinho; Jang, Young-Du; Jang, Won-rak


    Structural health monitoring (SHM) has been adopted as a technique to monitor the structure performance to detect damage in aging infrastructure. The ultimate goals of implementing an SHM system are to improve infrastructure maintenance, increase public safety, and minimize the economic impact of an extreme loading event by streamlining repair and retrofit measures. With the recent advances in wireless communication technology, wireless SHM systems have emerged as a promising alternative solution for rapid, accurate and low-cost structural monitoring. This article presents an enabling, developing damage algorithm to advance the detection and diagnosis of damage to structures for SHM using networks of wireless smart sensors. Networks of wireless smart sensors are being used as a vibration based structural monitoring network that allows extraction of mode shapes from output-only vibration data from an underground structure. The mode shape information can further be used in modal methods of damage detection. These sensors are being used to experimentally verify analytical models of post-earthquake evaluation based on system identification analysis. Damage measurement system could play a significant role in monitoring/recording with a higher level of completeness the actual seismic response of structures and in non-destructive seismic damage assessment techniques based on dynamic signature analysis.

  1. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua


    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  2. Application of the US Resiliency Council Seismic Rating Procedure to Two Dual System Tall Buildings Designed by Alternative Means


    Wang, Sijin


    This study is focused on assessing the seismic resilience of two 42-story reinforced concrete dual system tall buildings designed by different methods. A systematic rating approach based on the United States Resiliency Council (USRC) Seismic Rating procedure is used as the resilience metric. The two buildings were developed as part of the Pacific Earthquake Engineering Research (PEER) Institute’s Tall Building Initiative (TBI) project. Both buildings were designed based on an assumed site loc...

  3. Verifiable postal voting


    Ryan, Peter; Benaloh, Josh; Teague, Vanessa


    This proposal aims to combine the best properties of paper-based and end-to-end verifiable remote voting systems. Ballots are delivered electronically to voters, who return their votes on paper together with some cryptographic information that allows them to verify later that their votes were correctly included and counted. We emphasise the ease of the voter's experience, which is not much harder than basic electronic delivery and postal returns. A typical voter needs only to perform a simple...

  4. Decision making with epistemic uncertainty under safety constraints: An application to seismic design (United States)

    Veneziano, D.; Agarwal, A.; Karaca, E.


    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari


    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  6. Seismic design repair and retrofit strategies for steel roof deck diaphragms (United States)

    Franquet, John-Edward

    Structural engineers will often rely on the roof diaphragm to transfer lateral seismic loads to the bracing system of single-storey structures. The implementation of capacity-based design in the NBCC 2005 has caused an increase in the diaphragm design load due to the need to use the probable capacity of the bracing system, thus resulting in thicker decks, closer connector patterns and higher construction costs. Previous studies have shown that accounting for the in-plane flexibility of the diaphragm when calculating the overall building period can result in lower seismic forces and a more cost-efficient design. However, recent studies estimating the fundamental period of single storey structures using ambient vibration testing showed that the in-situ approximation was much shorter than that obtained using analytical means. The difference lies partially in the diaphragm stiffness characteristics which have been shown to decrease under increasing excitation amplitude. Using the diaphragm as the energy-dissipating element in the seismic force resisting system has also been investigated as this would take advantage of the diaphragm's ductility and limited overstrength; thus, lower capacity based seismic forces would result. An experimental program on 21.0m by 7.31m diaphragm test specimens was carried out so as to investigate the dynamic properties of diaphragms including the stiffness, ductility and capacity. The specimens consisted of 20 and 22 gauge panels with nailed frame fasteners and screwed sidelap connections as well a welded and button-punch specimen. Repair strategies for diaphragms that have previously undergone inelastic deformations were devised in an attempt to restitute the original stiffness and strength and were then experimentally evaluated. Strength and stiffness experimental estimations are compared with those predicted with the Steel Deck Institute (SDI) method. A building design comparative study was also completed. This study looks at the

  7. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail:; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)


    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  8. Seismic Design Value Evaluation Based on Checking Records and Site Geological Conditions Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh


    Full Text Available This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude, epicentral distance, and epicenter depth and two geological conditions (i.e., shear wave velocity and standard penetration test value as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method. This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an insight into this type of nonlinear problem, and the proposed method may be applicable to other areas of interest around the world.


    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R


    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  10. The Lightweight Design of a Seismic Low-Yield-Strength Steel Shear Panel Damper

    Directory of Open Access Journals (Sweden)

    Chaofeng Zhang


    Full Text Available The lightweight design and miniaturization of metallic dampers have broad application prospects in seismic engineering. In this study, the superplastic property and the maximum energy dissipation capacity per unit mass of low-yield-strength steel (LYS are investigated via comparison with those of several common metallic damping materials by tests. Additionally, the boundary constraints of an LYS shear panel damper are studied further. Our experimental results suggest that LYS is an excellent damping material for achieving the lightweight design goal. A novel design of a lightweight damper, having excellent deformation ability and robust mechanical properties, is presented. The findings of this study are expected to be useful in understanding the lightweight design of dampers.

  11. The Lightweight Design of a Seismic Low-Yield-Strength Steel Shear Panel Damper. (United States)

    Zhang, Chaofeng; Zhu, Jiajia; Wu, Meiping; Yu, Jinhu; Zhao, Junhua


    The lightweight design and miniaturization of metallic dampers have broad application prospects in seismic engineering. In this study, the superplastic property and the maximum energy dissipation capacity per unit mass of low-yield-strength steel (LYS) are investigated via comparison with those of several common metallic damping materials by tests. Additionally, the boundary constraints of an LYS shear panel damper are studied further. Our experimental results suggest that LYS is an excellent damping material for achieving the lightweight design goal. A novel design of a lightweight damper, having excellent deformation ability and robust mechanical properties, is presented. The findings of this study are expected to be useful in understanding the lightweight design of dampers.

  12. Exploratory Shaft Seismic Design Basis Working Group report; Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, C.V. [Sandia National Labs., Albuquerque, NM (USA); King, J.L. [Science Applications International Corp., Las Vegas, NV (USA); Perkins, D.M. [Geological Survey, Denver, CO (USA); Mudd, R.W. [Fenix and Scisson, Inc., Tulsa, OK (USA); Richardson, A.M. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA); Calovini, J.C. [Holmes and Narver, Inc., Las Vegas, NV (USA); Van Eeckhout, E. [Los Alamos National Lab., NM (USA); Emerson, D.O. [Lawrence Livermore National Lab., CA (USA)


    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts` structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs.

  13. Impact of seismic design on tunnels in rock – Case histories

    Directory of Open Access Journals (Sweden)

    Carlos A. Jaramillo


    Full Text Available The tunnel industry has considered that tunnels, especially tunnels in rock, are naturally resistant to earthquake action, including faulting, shaking, deflection and ground failure. As the number of case histories of tunnels subject to earthquake action has increased, the industry has started to recognize that, although tunnels in rock have good resistance against earthquakes generating peak ground accelerations (PGA lower than 0.5 g, it is important to include the dynamic forces and displacements generated by seismic ground motions in the design process to obtain a more reliable design. These additional earthquake forces impact the final design, potentially requiring changes to the ground support and additional reinforcement of the concrete lining, as illustrated by case histories presented in this paper.

  14. Romanian Seismic Design Code: Benchmarking Analyses with Reference to International Codes and Research Needs for Future Development

    Directory of Open Access Journals (Sweden)

    Iolanda-Gabriela CRAIFALEANU


    Full Text Available The paper presents conclusions from a technical benchmarking study, performed in order to analyze the performance of the provisions concerning seismic design of reinforced concrete frame structures, as specified by the Romanian seismic code (P100-1/2006. The Romanian code is analyzed with respect to the European standard EN 1998-1:2004, including its National Annex, and with the U. S. codes IBC 2009 and ACI 318 08. The benchmarking analyses were performed by designing a standard reinforced concrete structure according to each of the considered codes and by evaluating the seismic behavior of the structural designs thus obtained. Comparative assessments are made, as well as suggestions concerning potential future research directions, aimed to the improvement of the Romanian provisions in the field.

  15. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage (United States)

    Martelli, Alessandro


    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  16. Enhancement of Seismic Performance Using Shear Link Braces in a Building Designed Only for Gravity Loads (United States)

    Maniyar, S. U.; Paul, D. K.


    The present work attempts to study the behaviour of building designed for gravity loads only under the effect of lateral seismic load. Such a building is generally deficient against lateral forces and need to be retrofitted against lateral earthquake forces. A retrofitting scheme by providing aluminium shear link with chevron braces is suggested to improve its performance. Past earthquakes have shown a great deal of damages to the deficient RC frame buildings designed without any consideration to the lateral earthquake forces. Chevron braces with the aluminium shear link can be implemented as an effective retrofit measure. A comparison of the performance of building initially designed for gravity load only with the retrofitted building using chevron braces with the aluminium shear link is presented in this paper. The behaviour of building is worked out by performing nonlinear static pushover analysis and nonlinear time history analyses. A parametric study has also been carried out to study the effect of shear link and braces on the retrofitted building. The performance of RC building designed for gravity loads only as evaluated from the nonlinear static pushover analysis lies in life safety and collapse prevention range for DBE and MCE level of earthquakes respectively. The same building when retrofitted by using chevron braces with aluminium shear link show improved performance. This device is very simple, economic, effective and can be placed in a building very easily. The dissipation of damaging energy/damage is localised in shear link which can be replaced after a major earthquake.

  17. Problems and their solutions in practical application of Eurocodes in seismic design of RC structures

    Directory of Open Access Journals (Sweden)

    Milev Jordan


    Full Text Available The main purpose of the paper is to present practical application of Eurocodes in the field of RC structures design. The selected examples represent the main problems in practical application of Eurocodes for seismic analysis and design of RC Structures in Bulgarian construction practice. The analysis is focused on some structural and economic problems as well as on some contradictions in Eurocode 8 itself. Special attention is paid to the practical solution of the following problems: recognition of torsionally flexible systems, stiffness reduction of RC elements for linear analysis dimensions and detailing of confined boundary areas of shear walls, detailing of wall structures, etc. Those problems appear during the practical design of some buildings in Bulgaria. Several proposals for solving some problems defined in the paper are presented through some practical examples. Some conclusions are made for further application of Eurocode 8 in the design and construction practice. The importance of some rules and procedures in Eurocode 8 is supported by the examples of damaged RC members during the past earthquakes. The problems of Eurocode 8 and their solutions are illustrated through the experience of Bulgarian construction practice.

  18. Design and prototype tests of a seismic attenuation system for the advanced-LIGO output mode cleaner

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A [Dipartimento di Fisica dell' Universita di Pisa, Largo Pontecorvo 2, I-56127 Pisa (Italy); DeSalvo, R [LIGO laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Galli, C [Galli and Morelli, via Cristofani 558, localita Acquacalda, I-55100 Lucca (Italy); Gennaro, G [Promec, via S Pertini 12, I-56031 Pisa (Italy); Mantovani, M [Universita di Siena, via Roma 56, I-53100 Siena (Italy); Marka, S [Department of Physics, Columbia University, 538 W 120th St, New York, NY 10027 (United States); Sannibale, V [LIGO laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Takamori, A [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Torrie, C [LIGO laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)


    Both present LIGO and advanced LIGO (Ad-LIGO) will need an output mode cleaner (OMC) to reach the desired sensitivity. We designed a suitable OMC seismically attenuated optical table fitting to the existing vacuum chambers (horizontal access module, HAM chambers). The most straightforward and cost-effective solution satisfying the Ad-LIGO seismic attenuation specifications was to implement a single passive seismic attenuation stage, derived from the 'seismic attenuation system' (SAS) concept. We built and tested prototypes of all critical components. On the basis of these tests and past experience, we expect that the passive attenuation performance of this new design, called HAM-SAS, will match all requirements for the LIGO OMC, and all Ad-LIGO optical tables. Its performance can be improved, if necessary, by implementation of a simple active attenuation loop at marginal additional cost. The design can be easily modified to equip the LIGO basic symmetric chamber (BSC) chambers and leaves space for extensive performance upgrades for future evolutions of Ad-LIGO. Design parameters and prototype test results are presented.

  19. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions (United States)

    Gitterman, Y.


    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  20. Seismicity in pipeline design; Consideraciones sismicas en el diseno de tuberias

    Energy Technology Data Exchange (ETDEWEB)

    Flores Berrones, Raul; Vassilev, Vanguel H. [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)


    The design of buried pipelines should include the effect of seismic vibrations. This review covers the basic practices recommended in Japan and the USA based on their extensive research, applications and field experiences. The factors that affect the forces acting along the soil-pipeline interface are presented first, focussing on the response of the continuous and segmented lines to the seismic wave-induced soil movement. This step-by-step procedure estimates the unit deformations in continuous pipelines and compares them with the permitted values. For segmented pipelines, both a simplified procedure and a more sophisticated finite element method are presented; the latter calculates the forces and deformations in each segment, and the expansion and contraction at each joint. [Spanish] Se hace una revision de la forma como se ha tomado en cuenta, para fines de diseno, el efecto de las vibraciones sismicas en el comportamiento de las tuberias enterradas. La revision comprende fundamentalmente la practica recomendada en Japon y en los Estados Unidos de America, ya que es en esos paises donde mayor investigacion, aplicacion y registro de campo existen sobre el tema. Se presenta primeramente los factores que influyen en las fuerzas ejercidas a lo largo de la superficie donde interactua el suelo con la tuberia; en particular, se considera la respuesta de una tuberia al movimiento del suelo causado por las ondas sismicas, tanto para el caso de las tuberias continuas como para el de las tuberias segmentadas. Se presenta un procedimiento que muestra paso a paso la manera como se estiman las deformaciones unitarias en las tuberias continuas y su comparacion con las deformaciones permisibles. Para el caso de las tuberias segmentadas, se presentan un metodo simplificado y un procedimiento mas sofisticado utilizando el metodo del elemento finito; este ultimo permite determinar, ademas de los esfuerzos y deformaciones correspondientes a cada tubo, la expansiones o contracciones

  1. Seismic Fragility Estimates of LRB Base Isolated Frames Using Performance-Based Design

    Directory of Open Access Journals (Sweden)

    Iman Mansouri


    Full Text Available With improving technology, the idea of using energy dissipater equipment has been strengthened in order to control the structures response in dynamic loads such as wind and earthquake. In this research, we dealt with seismic performance of base isolated structures with lead-rubber bearing (LRB using incremental dynamic analysis (IDA. For this purpose, 3- and 9-story buildings have been utilized in the SAC project undergoing 22 earthquake records which were far-fault. Plotting the fragility curve for various states of design time period and isolator damping of LRB, it is observed that, by increasing damping, the isolator has not been activated in small spectrum acceleration, which shows that the annual exceedance probability is increased in immediate occupancy (IO performance level and decreased in life safety (LS performance level. The results show the reduction of determined failure probability in fragility curves for two levels of performance of uninterrupted use and lateral safety. Likewise obtained results show that, with increasing design time period of isolator, the amount of failure probability is decreased rather than the isolator with smaller design time period, for both LS and IO states. And the isolator illustrates better performance.

  2. Seismic design technology for breeder reactor structures. Volume 4. Special topics in piping and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.


    This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components. (DLC)

  3. Design of an implantable seismic sensor placed on the ossicular chain. (United States)

    Sachse, M; Hortschitz, W; Stifter, M; Steiner, H; Sauter, T


    This paper presents a design guideline for matching a fully implantable middle ear microphone with the physiology of human hearing. The guideline defines the first natural frequency of a seismic sensor placed at the tip of the manubrium mallei with respect to the frequency-dependence hearing of the human ear as well as the deflection of the ossicular chain. A transducer designed in compliance with the guideline presented reduces the range of the output signal while preserving all information obtained by the ossicular chain. On top of a output signal compression, static deflections, which can mask the tiny motions of the ossicles, are reduced. For guideline verification, a microelectromechanical system (MEMS) based on silicon on insulator technology was produced and tested. This prototype is capable of resolving 0.4 pm/Hz with a custom made read-out circuit. For a bandwidth of 0.1 kHz, this deflection is comparable with the lower threshold of speech (≈ 40 phon). Copyright © 2013. Published by Elsevier Ltd.

  4. Application of a Method Based in Performance for the Seismic Analysis and Design of Reinforced Concrete Bridges Aplicación de un método basado en el desempeño para el análisis y diseño sismo resistente de puentes de concreto reforzado

    Directory of Open Access Journals (Sweden)

    A Ospina


    Full Text Available It proposes an application of a methodology that  nalyzes the ability of a structural element, based on a geometric pre-dimensioning and a reinforcementsupposed, finding from internal equilibrium curvatures to calculate displacements, ductility’s and seismic forces resistant, so that acceleration can be verified with the design spectrum of the seismic zone of the site, elasticor inelastic. This method allows simultaneous analysis and structural design and managing some important parameters for optimal seismic performance ofbridges.Se presenta la aplicación de una metodología que permite analizar la capacidad de un elemento estructural, basado en un predimensionamiento geométrico y una cuantía supuesta, deduciendo las curvaturas del equilibrio interno, para

  5. Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina

    Directory of Open Access Journals (Sweden)

    Imhof Armando Luis


    Full Text Available

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was carried out in Sierra Santa Clara, San Juan Province, Argentina in July 2009. The purpose of the geophysical survey was to determine the degree of fracturing and the rigidity of the rock mass through which it is planned to build a 290 m long road tunnel traversing the mountain almost perpendicular to the axis thereof, at around 100 m depth from the summit.

    Several difficulties arose from the operational point of view which made it almost impossible to conduct fieldwork in normal circumstances. Firstly, the topography had almost 45° slopes and 100 m research depths which would have involved having had to use explosives to generate seismic waves reaching sensors which had sufficient signal-to-noise ratio for distinguishing them. Legal restrictions regarding the use of explosives on the one hand and insufficient power when using hammer blows on the other made it necessary to design and build a gas-powered gun to achieve the minimum energy (2 kJ required for detecting seismic signals.

    Secondly, using conventional interpretation methods involving layered models was inoperable in such geological structures; seismic tomography methods were thus used which make use of the velocity gradient concept (both lateral and in-depth. This allowed mapping subsurface velocity variations in the form of velocity contour lines.

    The methodology used with the new seismic waves' source generator, as well as SRT application in this type of geological structure, demonstrated that satisfactory results could be obtained for this kind of geophysical study for geotechnical purposes.

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was

  6. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces (United States)

    Garg, Akshay; Singh, Amit


    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  7. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Sejal Purvang Dalal


    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  8. Three-dimensional seismic survey planning based on the newest data acquisition design technique; Saishin no data shutoku design ni motozuku sanjigen jishin tansa keikaku

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, M.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Theory of parameter setting for data acquisition is arranged, mainly as to the seismic generating and receiving geometry. This paper also introduces an example of survey planning for three-dimensional land seismic exploration in progress. For the design of data acquisition, fundamental parameters are firstly determined on the basis of the characteristics of reflection records at a given district, and then, the layout of survey is determined. In this study, information through modeling based on the existing interpretation of geologic structures is also utilized, to reflect them for survey specifications. Land three-dimensional seismic survey was designed. Ground surface of the surveyed area consists of rice fields and hilly regions. The target was a nose-shaped structure in the depth about 2,500 m underground. A survey area of 4km{times}5km was set. Records in the shallow layers could not obtained when near offset was not ensured. Quality control of this distribution was important for grasping the shallow structure required. In this survey, the seismic generating point could be ensured more certainly than initially expected, which resulted in the sufficient security of near offset. 2 refs., 2 figs.


    Directory of Open Access Journals (Sweden)

    Marek Kliment


    Full Text Available The paper deals with simulation and her forms of use in designing of production and non-production systems. Points to the possibility of using software can help in planning and subsequently in other phase of the lifecycle production and products. Article informs about some of the advantages of this type of software and his options. Sets out some theoretical knowledge of simulation and in the practical part presents some frequently used simulation software.

  10. Definition of Verifiable School IPM (United States)

    EPA is promoting use of verifiable school IPM. This is an activity that includes several elements with documentation, including pest identification, action thresholds, monitoring, effective pest control.

  11. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer


    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  12. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements (United States)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia


    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  13. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.


    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  14. Displacement based seismic design of symmetric single-storey wood-frame buildings with the aid of N2 method

    Directory of Open Access Journals (Sweden)

    Panagiotis eMergos


    Full Text Available This paper presents a new methodology for the displacement-based seismic design of symmetric single-storey wood-frame buildings. Previous displacement-based design efforts were based on the direct displacement-based design (DDBD approach, which uses a substitute linear system with an appropriate stiffness and viscous damping combination. Despite the fact that this method has shown to produce promising results for wood structures, it does not fit into the framework of the Eurocode 8 (EC8 provisions. The methodology presented herein is based on the N2 method, which is incorporated in EC8 and combines the non-linear pushover analysis with the response spectrum method. The N2 method has been mostly applied to reinforced concrete and steel structures. In order to properly implement the N2 method for the case of wood-frame buildings new behavior factor – displacement ductility relationships are proposed. These relationships were derived from inelastic time history analyses of 35 SDOF systems subjected to 80 different ground motion records. Furthermore, the validity of the N2 method is examined for the case of a timber shear wall tested on a shake table and satisfactory predictions are obtained. Last, the proposed design methodology is applied to the displacement-based seismic design of a realistic symmetric single-storey wood-frame building in order to meet the performance objectives of EC8. It is concluded that the simplicity and computational efficiency of the adopted methodology make it a valuable tool for the seismic design of this category of wood-frame buildings, while the need for extending the method to more complex wood-frame buildings is also highlighted.

  15. Seismic design of steel structures with lead-extrusion dampers as knee braces (United States)

    monir, Habib Saeed; Naser, Ali


    One of the effective methods in decreasing the seismic response of structure against dynamic loads due to earthquake is using energy dissipating systems. Lead-extrusion dampers (LED)are one of these systems that dissipate energy in to one lead sleeve because of steel rod movement. Hysteresis loops of these dampers are approximately rectangular and acts independent from velocity in frequencies that are in the seismic frequency rang. In this paper lead dampers are considered as knee brace in steel frames and are studied in an economical view. Considering that lead dampers don't clog structural panels, so this characteristic can solve brace problems from architectural view. The behavior of these dampers is compared with the other kind of dampers such as XADAS and TADAS. The results indicate that lead dampers act properly in absorbing the induced energy due to earthquake and good function in controlling seismic movements of multi-story structures

  16. Lessons learned from the ``5.12'' Wenchuan Earthquake: evaluation of earthquake performance objectives and the importance of seismic conceptual design principles (United States)

    Wang, Yayong


    Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specifi ed by the national “Code for Seismic Design of Buildings GB50011-2001,” was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., “no failure under minor earthquake level,” “repairable damage under moderate earthquake level” and “no collapse under major earthquake level” can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality.

  17. Surface-wave separation and its impact on seismic survey design

    NARCIS (Netherlands)

    Ishiyama, T.


    Surface waves in seismic data are often dominant and mask primaries in land or shallow-water environments. Separating them from the primaries is of great importance either for removing them as noise for reservoir imaging and characterization, or for considering them as signal for near-surface

  18. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.B.; Foxall, W.


    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999.

  19. End-to-end verifiability


    Ryan, Peter; Benaloh, Josh; Rivest, Ronald; Stark, Philip; Teague, Vanessa; Vora, Poorvi


    This pamphlet describes end-to-end election verifiability (E2E-V) for a nontechnical audience: election officials, public policymakers, and anyone else interested in secure, transparent, evidence - based electronic elections. This work is part of the Overseas Vote Foundation’s End-to-End Verifiable Internet Voting: Specification and Feasibility Assessment Study (E2E VIV Project), funded by the Democracy Fund.

  20. Seismic retrofit guidelines for Utah highway bridges. (United States)


    Much of Utahs population dwells in a seismically active region, and many of the bridges connecting transportation lifelines predate the rigorous seismic design standards that have been developed in the past 10-20 years. Seismic retrofitting method...

  1. Optimum seismic structural design based on random vibration and fuzzy graded damages (United States)

    Cheng, Franklin Y.; Ou, Jin-Ping


    This paper presents the fuzzy dynamical reliability and failure probability as well as the basic principles and the analytical method of loss assessment for nonlinear seismic steel structures. Also presented is the optimization formulation and a numerical example for double objectives, initial construction cost and expected failure loss, and dynamical reliability constraints. The earthquake ground motion is based on a stationary filtered non-white noise and the fuzzy damage grade is described by damage index.

  2. A study on the seismic fortification level of offshore platform in Bohai Sea of China (United States)

    Lu, Y.


    seismic design code for buildings it is proposed that the probability level for the strength level earthquake and ductility level earthquake takes respectively a return period of 200 and 1000-2500 years. By comparing with the codes developed by relevant industry institutions the rationality and safety of the seismic fortification objectives of OPs is verified. Finally, the seismic parameters in the sub-regions of Bohai Sea are calculated based on seismic risk zoning and ground motion intensity maps.

  3. Verifying the Hanging Chain Model (United States)

    Karls, Michael A.


    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  4. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.


    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  5. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras


    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  6. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation (United States)

    Gao, Shanghua; Xue, Bing


    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  7. Verified OS Interface Code Synthesis (United States)


    AFRL-AFOSR-JP-TR-2017-0015 Verified OS Interface Code Synthesis Gerwin Klein NATIONAL ICT AUSTRALIA LIMITED Final Report 02/14/2017 DISTRIBUTION A...ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015 AU 8. PERFORMING ORGANIZATION REPORT NUMBER 9...public release: distribution unlimited. 1 Introduction The central question of this project was how to ensure the correctness of Operating System (OS

  8. Extended “Mononobe-Okabe” Method for Seismic Design of Retaining Walls

    Directory of Open Access Journals (Sweden)

    Mahmoud Yazdani


    Full Text Available Mononobe-Okabe (M-O method is still employed as the first option to estimate lateral earth pressures during earthquakes by geotechnical engineers. Considering some simple assumptions and using a closed form method, M-O solves the equations of equilibrium and suggests seismic active and passive lateral earth pressures. Therefore, the results are true in its assumption range only, and in many other practical cases, M-O method is not applicable. Noncontinues backfill slopes, cohesive soils, and rising water behind the wall are some well-known examples in which the M-O theory is irrelevant. Using the fundamental framework of M-O method, this study proposes an iterative method to overcome the limits of the M-O method. Based on trial and error process, the proposed method is able to cover many of the defects which regularly occur in civil engineering when M-O has no direct answer.

  9. Unconditionally verifiable blind quantum computation (United States)

    Fitzsimons, Joseph F.; Kashefi, Elham


    Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.

  10. Verifying RoboCup Teams


    Benac Earle, Clara; Fredlund, Lars-Ake; Iglesias Martínez, José Antonio; Ledezma Espino, Agapito Ismael


    Pocreeding of: 5th International Workshop on Model Checking and Artificial Intelligence. MOCHART-2008, Patras, Greece, july, 21st, 2008. Verification of multi-agent systems is a challenging task due to their dynamic nature, and the complex interactions between agents. An example of such a system is the RoboCup Soccer Simulator, where two teams of eleven independent agents play a game of football against each other. In the present article we attempt to verify a number of properties of RoboC...

  11. Design and development of safety evaluation system of buildings on a seismic field based on the network platform (United States)

    Sun, Baitao; Zhang, Lei; Chen, Xiangzhao; Zhang, Xinghua


    This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were completed in accordance with the provisions from Post-earthquake Field Works, Part 2: Safety Assessment of Buildings, GB18208.2 -2001, and was further developed into an easy-to-use software platform. The system is aimed at allowing engineering professionals, civil engineeing technicists or earthquake-affected victims on site to assess damaged buildings through a network after earthquakes. The authors studied the function structure, process design of the safety evaluation module, and hierarchical analysis algorithm module of the system in depth, and developed the general architecture design, development technology and database design of the system. Technologies such as hierarchical architecture design and Java EE were used in the system development, and MySQL5 was adopted in the database development. The result is a complete evaluation process of information collection, safety evaluation, and output of damage and safety degrees, as well as query and statistical analysis of identified buildings. The system can play a positive role in sharing expert post-earthquake experience and promoting safety evaluation of buildings on a seismic field.

  12. Multidisciplinary co-operation in building design according to urbanistic zoning and seismic microzonation

    Directory of Open Access Journals (Sweden)

    M. Bostenaru Dan


    Full Text Available Research and practice in seismology and urban planning interfere concerning the impact of earthquakes on urban areas. The roles of sub-area wide or typological divisions of the town were investigated with the methodology of regression, regarding their contribution to urban earthquake risk management. The inductive data set comprised recovery, preparedness, mitigation and resilience planning. All timely constituted planning types are refound today as layers, as the zoning results are used by differently backgrounded actors: local authorities, civil protection, urban planners, civil engineers. In resilience planning, the urban system is complexly theoretised, then integratedly approached. The steady restructuring process of the urban organism is evident in a dynamic analysis. Although expressed materially, the 'urban-frame' is realised spiritually, space adaptation being also social. A retrospective investigation of the role of resilient individual buildings within the urban system of Bucharest, Romania, was undertaken, in order to learn systemic lessons considering the street, an educational environment. (Information in the study and decision making process stay in a reciprocal relationship, both being obliged in the (information of the public opinion. For a complete view on resilience, both zoning types, seismic and urbanistic, must be considered and through their superposition new sub-area wide divisions of the town appear, making recommendations according to the vulnerability of the building type.

  13. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset (United States)

    Raef, A.


    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  14. Design of mechanically stabilized earth wall connections and end of walls subjected to seismic loads. (United States)


    The 4th Edition of the AASHTO LRFD Bridge Design Specifications requires all states to design for a 1,000- : year return period earthquake, as opposed to earlier editions 500-year return period. In response to this : requirement, the Colorado Depa...

  15. Seismic hazard assessment: Issues and alternatives (United States)

    Wang, Z.


    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  16. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    Energy Technology Data Exchange (ETDEWEB)



    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes.

  17. The Lightweight Design of a Seismic Low-Yield-Strength Steel Shear Panel Damper

    National Research Council Canada - National Science Library

    Zhang, Chaofeng; Zhu, Jiajia; Wu, Meiping; Yu, Jinhu; Zhao, Junhua


    .... Additionally, the boundary constraints of an LYS shear panel damper are studied further. Our experimental results suggest that LYS is an excellent damping material for achieving the lightweight design goal...

  18. Seismic Effects on the Design of Geosynthetic-Reinforced Earth Retaining Structures

    National Research Council Canada - National Science Library

    Carter, Jeffrey


    For the purposes of this paper, the study will be limited to developing a design method for earth retaining structures that have been reinforced with geosynthetics and are subjected to cyclic motion...

  19. Seismic site coefficients and acceleration design response spectra based on conditions in South Carolina : final report. (United States)


    The simplified procedure in design codes for determining earthquake response spectra involves : estimating site coefficients to adjust available rock accelerations to site accelerations. Several : investigators have noted concerns with the site coeff...

  20. 7 CFR 1792.104 - Seismic acknowledgments. (United States)


    ... registered architect or engineer responsible for the building design stating that seismic provisions pursuant... include the identification and date of the model code or standard that is used in the seismic design of... design. The statement shall identify the model code or standard identified that is used in the seismic...

  1. Verifying Deadlock-Freedom of Communication Fabrics (United States)

    Gotmanov, Alexander; Chatterjee, Satrajit; Kishinevsky, Michael

    Avoiding message dependent deadlocks in communication fabrics is critical for modern microarchitectures. If discovered late in the design cycle, deadlocks lead to missed project deadlines and suboptimal design decisions. One approach to avoid this problem is to get high level of confidence on an early microarchitectural model. However, formal proofs of liveness even on abstract models are hard due to large number of queues and distributed control. In this work we address liveness verification of communication fabrics described in the form of high-level microarchitectural models which use a small set of well-defined primitives. We prove that under certain realistic restrictions, deadlock freedom can be reduced to unsatisfiability of a system of Boolean equations. Using this approach, we have automatically verified liveness of several non-trivial models (derived from industrial microarchitectures), where state-of-the-art model checkers failed and pen and paper proofs were either tedious or unknown.


    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  3. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ


    Full Text Available /s. Subsequent seismic monitoring provided the confirmation of this specification. A stope support design methodology and parameters are given. A single example of the need for better regional support was demonstrated. An abutment pillar greatly reduced.... .............................................................................. 25 3.4 The determination of an energy absorption criterion for the platinum reefs of the Bushveld Complex. ............................................................................. 26 3.5 The type of support system that would satisfy the energy...

  4. USCIS E-Verify Program Reports (United States)

    Department of Homeland Security — The report builds on the last comprehensive evaluation of the E-Verify Program and demonstrates that E-Verify produces accurate results and that accuracy rates have...

  5. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos


    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  6. Probabilistic Modeling of Seismic Risk Based Design for a Dual System Structure

    Directory of Open Access Journals (Sweden)

    Indra Djati Sidi


    Full Text Available The dual system structure concept has gained popularity in the construction of high-rise buildings over the last decades. Meanwhile, earthquake engineering design provisions for buildings have moved from the uniform hazard concept to the uniform risk concept upon recognizing the uncertainties involved in the earthquake resistance of concrete structures. In this study, a probabilistic model for the evaluation of such risk is proposed for a dual system structure consisting of shear walls or core walls and a moment frame structure as earthquake resistant structure. Uncertainties in the earthquake resistance of the dual system structure due to record-to-record variability, limited amount of data, material variability and structure modeling are included in the formulation by means of the first-order second-moment method. The statistics of resistance against earthquake forces are estimated by making use of incremental nonlinear time history analysis using 10 recorded earthquake histories. Then, adopting the total probability theorem, the reliability of the structure is evaluated through a risk integral scheme by combining the earthquake resistance of the structure with the annual probability of exceedance for a given location where the building is being constructed.

  7. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander


    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  8. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics (United States)

    Brom, Aleksander; Stan-Kłeczek, Iwona


    The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones) after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  9. Static behaviour of induced seismicity

    CERN Document Server

    Mignan, Arnaud


    The standard paradigm to describe seismicity induced by fluid injection is to apply nonlinear diffusion dynamics in a poroelastic medium. I show that the spatiotemporal behaviour and rate evolution of induced seismicity can, instead, be expressed by geometric operations on a static stress field produced by volume change at depth. I obtain laws similar in form to the ones derived from poroelasticity while requiring a lower description length. Although fluid flow is known to occur in the ground, it is not pertinent to the behaviour of induced seismicity. The proposed model is equivalent to the static stress model for tectonic foreshocks generated by the Non- Critical Precursory Accelerating Seismicity Theory. This study hence verifies the explanatory power of this theory outside of its original scope.

  10. Verifying FreeRTOS; a feasibility study


    Pronk, C.


    This paper presents a study on modeling and verifying the kernel of Real-Time Operating Systems (RTOS). The study will show advances in formally verifying such an RTOS both by refinement and by model checking approaches. This work fits in the context of Hoare’s verification challenge. Several real-time operating systems will be discussed including some commercial ones. The focus of the latter part of the paper will be on verifying FreeRTOS. The paper investigates a number of ways to verify th...

  11. Seismic design technology for breeder reactor structures. Volume 2. Special topics in soil/structure interaction analyses

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.


    This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes. (DLC)

  12. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C


    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  13. Software Model Checking for Verifying Distributed Algorithms (United States)


    2014 Carnegie Mellon University Software Model Checking for Verifying Distributed Algorithms Sagar Chaki, James Edmondson October 28, 2014...SUBTITLE Software Model Checking for Verifying Distributed Algorithms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Program Software Model Checking (CBMC, BLAST etc.) Failure Success Program in Domain Specific Language Automatic verification technique for finite

  14. Verifying FreeRTOS; a feasibility study

    NARCIS (Netherlands)

    Pronk, C.


    This paper presents a study on modeling and verifying the kernel of Real-Time Operating Systems (RTOS). The study will show advances in formally verifying such an RTOS both by refinement and by model checking approaches. This work fits in the context of Hoare’s verification challenge. Several

  15. On Verified Numerical Computations in Convex Programming


    Jansson, Christian


    This survey contains recent developments for computing verified results of convex constrained optimization problems, with emphasis on applications. Especially, we consider the computation of verified error bounds for non-smooth convex conic optimization in the framework of functional analysis, for linear programming, and for semidefinite programming. A discussion of important problem transformations to special types of convex problems and convex relaxations is included...

  16. 37 CFR 2.33 - Verified statement. (United States)


    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Verified statement. 2.33 Section 2.33 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.33 Verified statement. (a) The...

  17. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco


    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  18. Appraising the value of independent EIA follow-up verifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, Jan-Albert, E-mail: [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Retief, Francois, E-mail: [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Morrison-Saunders, Angus, E-mail: [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Environmental Assessment, School of Environmental Science, Murdoch University, Australia. (Australia)


    Independent Environmental Impact Assessment (EIA) follow-up verifiers such as monitoring agencies, checkers, supervisors and control officers are active on various construction sites across the world. There are, however, differing views on the value that these verifiers add and very limited learning in EIA has been drawn from independent verifiers. This paper aims to appraise how and to what extent independent EIA follow-up verifiers add value in major construction projects in the developing country context of South Africa. A framework for appraising the role of independent verifiers was established and four South African case studies were examined through a mixture of site visits, project document analysis, and interviews. Appraisal results were documented in the performance areas of: planning, doing, checking, acting, public participating and integration with other programs. The results indicate that independent verifiers add most value to major construction projects when involved with screening EIA requirements of new projects, allocation of financial and human resources, checking legal compliance, influencing implementation, reporting conformance results, community and stakeholder engagement, integration with self-responsibility programs such as environmental management systems (EMS), and controlling records. It was apparent that verifiers could be more creatively utilized in pre-construction preparation, providing feedback of knowledge into assessment of new projects, giving input to the planning and design phase of projects, and performance evaluation. The study confirms the benefits of proponent and regulator follow-up, specifically in having independent verifiers that disclose information, facilitate discussion among stakeholders, are adaptable and proactive, aid in the integration of EIA with other programs, and instill trust in EIA enforcement by conformance evaluation. Overall, the study provides insight on how to harness the learning opportunities

  19. Analyser Framework to Verify Software Components

    Directory of Open Access Journals (Sweden)

    Rolf Andreas Rasenack


    Full Text Available Today, it is important for software companies to build software systems in a short time-interval, to reduce costs and to have a good market position. Therefore well organized and systematic development approaches are required. Reusing software components, which are well tested, can be a good solution to develop software applications in effective manner. The reuse of software components is less expensive and less time consuming than a development from scratch. But it is dangerous to think that software components can be match together without any problems. Software components itself are well tested, of course, but even if they composed together problems occur. Most problems are based on interaction respectively communication. Avoiding such errors a framework has to be developed for analysing software components. That framework determines the compatibility of corresponding software components. The promising approach discussed here, presents a novel technique for analysing software components by applying an Abstract Syntax Language Tree (ASLT. A supportive environment will be designed that checks the compatibility of black-box software components. This article is concerned to the question how can be coupled software components verified by using an analyzer framework and determines the usage of the ASLT. Black-box Software Components and Abstract Syntax Language Tree are the basis for developing the proposed framework and are discussed here to provide the background knowledge. The practical implementation of this framework is discussed and shows the result by using a test environment.

  20. Seismic Creep (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden erupture associated with an earthquake. It is a usually slow deformation...

  1. USCIS E-Verify Self-Check (United States)

    Department of Homeland Security — E-Verify is an internet based system that contains datasets to compare information from an employee's Form I-9, Employment Eligibility Verification, to data from the...

  2. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang


    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  3. Seismic bearing (United States)

    Power, Dennis


    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  4. 41 CFR 128-1.8006 - Seismic Safety Program requirements. (United States)


    ... Component Seismic Safety Coordinator shall ensure that an individual familiar with seismic design provisions... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program... Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...


    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner


    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  6. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network (United States)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.


    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition

  7. A new seismic discriminant for earthquakes and explosions (United States)

    Woods, Bradley B.; Helmberger, Donald V.

    With the spread of nuclear weapons technology, more regions of the world need to be monitored in order to verify nuclear nonproliferation and limited test-ban treaties. Seismic monitoring is the primary means to remotely sense contained underground explosions “Bolt, 1976; Dahlman and Israelson, 1977”. Both underground explosions and earthquakes generate seismic energy, which propagates through the Earth as elastic waves. The crux of the verification problem is to differentiate between the seismic signatures of explosions and earthquakes. Such identification is most difficult in countries with seismically active areas, where bombs might be detonated to blend in with the region's natural seismicity.

  8. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  9. A seismic vibrator driven by linear synchronous motors : Developing a prototype vibrator, investigating the vibrator-ground contact and exploring robust signal design

    NARCIS (Netherlands)

    Noorlandt, R.P.


    The seismic method is an important indirect method to investigate the subsurface of the earth. By analyzing how the earth affects the propagation of mechanical waves, the structure of the earth and its seismic properties can be inferred. The seismic vibrator is the most commonly used land source in

  10. Verifying the Absence of Common Runtime Errors in Computer Programs (United States)


    the langauge designer another way to test a design, in addition to the usual ways based on experience with other languages and difficulty of...simplified verification conditions is a special skill that one must learn in order to use the verifier. In theI process of analyzing a VC, une notes...Discovery of Linear Restraints Among Variables of a Program, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages, January

  11. Drilling exploration design controlled by pore pressure prediction from 2D seismic and well data: case study of South Sumatra Basin (United States)

    Haris, A.; Mulyawan, T.; Riyanto, A.


    To have safe and economical in drilling design, an information of formation pore pressure is required. Pore pressure can be estimated from seismic data using a velocity to pore pressure transform. The objective of this paper is proposing the drilling exploration design for the case study of South Sumatra field, which is controlled by predicted pore pressure. The pore pressure is predicted by using Eaton method that used velocity from 2D seismic and was validated with well log data. The predicted pore pressure is used to design exploration drilling including casing depth and mud weight. Eaton parameter (N =1.1), shear stress (Ko= 0.6), Gardner (A = 0.198 and B = 0.268), which is used in this works, is gained from existing well data. The velocity model is derived from RMS velocity that should be converted into interval velocity. In addition, this velocity should be validated with the sonic log from existing well. The Normal Compaction Trend (NCT) from interval velocity that was combined with generated previous parameter is used for predicting pore pressure and fracturing pressure. Our experiment shows that based on pore pressure prediction, the drilling exploration design is divided into three sections. i.e. section 17-1/2”, 12-1/4” and 8-1/2” and four casing sections, i.e. Casing 20‧, K-55, 90 ppf at 160 ft, casing 13-3/8‧, K-55, 54.5 ppf at 1400 ft with mud weight 8.8 - 13.7 ppg, casing 9-5/8 ‧, K-55, 40 ppf at 4000 ft with mud weight 9.5 - 14.0 ppg and casing 7‧, L-80, 26 ppf at 5500 ft with mud weight 10.4 - 14.6 ppg.

  12. Design of a seismic energy dissipator for an interruptor type 3AS2-45; Diseno de un disipador de energia sismica para un interruptor tipo 3AS2-45

    Energy Technology Data Exchange (ETDEWEB)

    Castro Felix, Jaime


    With the aid of the theory behind seismically isolated structures and the bi-linear behavior of an isolated system of Multiple Degrees of Freedom (MDOF), the information obtained on the spectral analysis is complemented with the purpose of simulating one itself for the design of a dissipator of seismic energy. The seismicity in the world is briefly explained, (in Mexico in special for the Geothermal Field of Cerro Prieto), the types of earthquakes, etc., to give way to a documentation of the state-of-the-art in advanced seismic resistant systems and to a procedure to establish the level of seismic qualification of electrical equipment from the level of seismic performance for the Mexican Republic. [Spanish] Con la ayuda de la teoria detras de estructuras aisladas sismicamente y el comportamiento bilineal de un sistema de aislamiento de Multiples Grados de Libertad (MDOF), se complementa la informacion recabada sobre el analisis espectral con el fin de simular uno propio para el diseno de un disipador de energia sismica. Se explica brevemente la sismicidad en el mundo, en Mexico, en especial el Campo Geotermico de Cerro Prieto, los tipos de sismos, etc., para dar paso a una documentacion del estado del arte en sistemas sismorresistentes avanzados y a un procedimiento para establecer el nivel de calificacion sismica de equipos electricos a partir del Nivel de desempeno sismico para la Republica Mexicana.

  13. An IBM 370 assembly language program verifier (United States)

    Maurer, W. D.


    The paper describes a program written in SNOBOL which verifies the correctness of programs written in assembly language for the IBM 360 and 370 series of computers. The motivation for using assembly language as a source language for a program verifier was the realization that many errors in programs are caused by misunderstanding or ignorance of the characteristics of specific computers. The proof of correctness of a program written in assembly language must take these characteristics into account. The program has been compiled and is currently running at the Center for Academic and Administrative Computing of The George Washington University.

  14. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong


    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  15. Seismic Symphonies (United States)

    Strinna, Elisa; Ferrari, Graziano


    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  16. Firms Verify Online IDs Via Schools (United States)

    Davis, Michelle R.


    Companies selling services to protect children and teenagers from sexual predators on the Internet have enlisted the help of schools and teachers to verify students' personal information. Those companies are also sharing some of the information with Web sites, which can pass it along to businesses for use in targeting advertising to young…

  17. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette


    Full Text Available We investigate self-verifying nondeterministic finite automata, in the case of unary symmetric difference nondeterministic finite automata (SV-XNFA). We show that there is a family of languages Ln=2 which can always be represented non...

  18. The 1978 Yellowstone-Eastern Snake River Plain Seismic Profiling Experiment: Crustal structure of the Yellowstone Region and experiment design (United States)

    Smith, R. B.; Schilly, M. M.; Braile, L. W.; Ansorge, J.; Lehman, J. L.; Baker, M. R.; Prodehl, C.; Healy, J. H.; Mueller, S.; Greensfelder, R. W.


    In 1978 a major seismic profiling experiment was conducted in the Yellowstone-eastern Snake River Plain region of Idaho and Wyoming. Fifteen shots were recorded that provided coverage to distances of 300 km. In this paper, travel time and synthetic seismogram modeling was used to evaluate an average P wave velocity and apparent Q structure of the crust from two seismic profiles (reversed) across the Yellowstone National Park region. This area includes the well-known hydrothermal features of Yellowstone National Park (geysers, fumeroles, etc.), a large collapse caldera, and extensive silicic volcanism of Quaternary age—features attributed to shallow crustal sources of magma. The averaged crustal structure for this region as interpreted from the seismic data consists of (1) a highly variable, near-surface layer approximately 2 km thick with variable velocities of 3.0 to 4.8 km/s and a low apparent Q of 30 that is interpreted to be composed of weathered rhyolites and sedimentary infill, (2) an upper crustal layer 3 to 4 km thick with variable velocities of 4.9 to 5.5 km/s and apparent Q of 50 to 200 that is thought to represent the accumulation of the Pleistocene-Quaternary rhyolite flows, ash flow tuffs, and possible Paleozoic and Precambrian metamorphic equivalents, (3) the crystalline, upper crust that is characterized by a laterally inhomogeneous layer that varies in velocity from 4.0 to 6.1 km/s, averaging 5 km thick with a Q of 300. This layer appears to be a cooling but still hot body of granitic composition beneath the Yellowstone caldera. It is thought to be a remnant of the magma chambers that produced the Quaternary silicic volcanic rocks of the Yellowstone Plateau and may still be a major contributor to the high heat flow, (4) a laterally homogeneous intermediate crustal layer 8 to 10 km thick with a velocity of 6.5 km/s and apparent Q of 100 to 300, (5) a homogeneous 25-km-thick lower crust with a velocity of 6.7 to 6.8 km/s and an apparent Q of 300

  19. Seismic reflection and refraction methods

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    , reflection method is a very sophisticated version of the echosounding used in submarines, ships, and radar systems. Whereas, in seismic refraction method, principal portion of the wave-path is along the interface between the two layers and hence... into electrical signals, which are recorded digitally. The Ocean Bottom Seismometers 221 (OBS) are normally designed to record the earth motion under oceans and lakes from air-gun seismic sources. The air gun array is towed behind a ship usually at a...

  20. Logical empiricism and the principle of verifiability

    Directory of Open Access Journals (Sweden)

    Zečević Svetlana D.


    Full Text Available This paper represents an encounter and dialogue between philosophy of language and analytic philosophy. The main aim is to present the logical empiricism of the milieu of its creation in the Vienna -Circle. Exhibited are significant points of known members of the Vienna Circle, not only on the logical empiricism as a theory and movement, but also considers its close link with the principle of verifiability, the purpose of which we list and explain the variations of the definition of verificationism as the basis of logical empiricism. In the Vienna Circle we distinguish several streams with respect of the definition of the principles of verification, and one of them proposed formulation of this principles as a theory of meaning which also require a complete verification. The second stream is leaning to the formulation of criteria for determining the meaning and they put their focus on incomplete verification. Having both pozitions in mind we are able to make distinction between criteria of adequacy and -criteria of utilitarty of the principle of verifiability. This fact implies that it is vital to determine the necessary conditions of adequacy of the principle of verifiability, which primarily reflectes in the preservation of empiricism where the main terms used in the formulation must be clear, non-ambiguous and operational.

  1. Onshore seismic amplifications due to bathymetric features (United States)

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.


    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  2. On the effect of the 3-D regional geology on the seismic design of critical structures: the case of the Kashiwazaki-Kariwa Nuclear Power Plant (United States)

    Gatti, F.; Lopez-Caballero, F.; Clouteau, D.; Paolucci, R.


    In this study, a numerical investigation is performed on a realistic source-to-site earthquake scenario, with the aim to assess the role of complex three-dimensional (3-D) geological structures on the predicted wave-field. With this respect, the paper pointedly targets the seismic response of nuclear power plants in near-field conditions and the verification of some simplified assumptions commonly adopted for earthquake ground motion prediction and site effects analysis. To this purpose, the Kashiwazaki-Kariwa Nuclear Power Plant (Japan) is assumed as reference case-study. In 2007, the nuclear site and its surroundings were struck by the Niigata-Ken Chūetsu-Oki seismic sequence, which caused some of the peak ground motion design limits to be largely overpassed. The dense observation network deployed at the site recorded a highly incoherent and impulsive earthquake ground motion. Many studies argued that the intricate syncline-anticline geology lying underneath the nuclear facility was highly responsible of the observed seismic response. Therefore, a physics-based numerical model of the epicentral area is built-up (≈ 60 km wide) and tested for small aftershocks, so to discount the effect of extended source on the synthetic site-response. The numerical model (based on the Spectral Element Method) reproduces the source-to-site wave propagation by embracing the effects of the surface topography along with the presence of the Japan Sea (i.e. the bathymetry, the coastline and the fluid-solid interaction). Broad-band (0-5 Hz) synthetic wave-forms are obtained for two different aftershocks, located at the two opposite sides of the nuclear facility, aiming to assess the influence of the incidence angle the radiated wave field impinges the foldings beneath it. The effect of the folding presence is assessed by comparing it to a sub-horizontally layered geology, in terms of numerical outcome, and by highlighting the differences with respect to the observations. The presence

  3. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France) (United States)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.


    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near

  4. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment (United States)

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing


    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  5. Scenario based seismic hazard assessment and its application to the seismic verification of relevant buildings (United States)

    Romanelli, Fabio; Vaccari, Franco; Altin, Giorgio; Panza, Giuliano


    The procedure we developed, and applied to a few relevant cases, leads to the seismic verification of a building by: a) use of a scenario based neodeterministic approach (NDSHA) for the calculation of the seismic input, and b) control of the numerical modeling of an existing building, using free vibration measurements of the real structure. The key point of this approach is the strict collaboration, from the seismic input definition to the monitoring of the response of the building in the calculation phase, of the seismologist and the civil engineer. The vibrometry study allows the engineer to adjust the computational model in the direction suggested by the experimental result of a physical measurement. Once the model has been calibrated by vibrometric analysis, one can select in the design spectrum the proper range of periods of interest for the structure. Then, the realistic values of spectral acceleration, which include the appropriate amplification obtained through the modeling of a "scenario" input to be applied to the final model, can be selected. Generally, but not necessarily, the "scenario" spectra lead to higher accelerations than those deduced by taking the spectra from the national codes (i.e. NTC 2008, for Italy). The task of the verifier engineer is to act so that the solution of the verification is conservative and realistic. We show some examples of the application of the procedure to some relevant (e.g. schools) buildings of the Trieste Province. The adoption of the scenario input has given in most of the cases an increase of critical elements that have to be taken into account in the design of reinforcements. However, the higher cost associated with the increase of elements to reinforce is reasonable, especially considering the important reduction of the risk level.

  6. Design of an UML conceptual model and implementation of a GIS with metadata information for a seismic hazard assessment cooperative project. (United States)

    Torres, Y.; Escalante, M. P.


    This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.

  7. Ground Motion Simulations for Bursa Region (Turkey) Using Input Parameters derived from the Regional Seismic Network (United States)

    Unal, B.; Askan, A.


    Earthquakes are among the most destructive natural disasters in Turkey and it is important to assess seismicity in different regions with the use of seismic networks. Bursa is located in Marmara Region, Northwestern Turkey and to the south of the very active North Anatolian Fault Zone. With around three million inhabitants and key industrial facilities of the country, Bursa is the fourth largest city in Turkey. Since most of the focus is on North Anatolian Fault zone, despite its significant seismicity, Bursa area has not been investigated extensively until recently. For reliable seismic hazard estimations and seismic design of structures, assessment of potential ground motions in this region is essential using both recorded and simulated data. In this study, we employ stochastic finite-fault simulation with dynamic corner frequency approach to model previous events as well to assess potential earthquakes in Bursa. To ensure simulations with reliable synthetic ground motion outputs, the input parameters must be carefully derived from regional data. In this study, using strong motion data collected at 33 stations in the region, site-specific parameters such as near-surface high frequency attenuation parameter and amplifications are obtained. Similarly, source and path parameters are adopted from previous studies that as well employ regional data. Initially, major previous events in the region are verified by comparing the records with the corresponding synthetics. Then simulations of scenario events in the region are performed. We present the results in terms of spatial distribution of peak ground motion parameters and time histories at selected locations.

  8. Verifying bound entanglement of dephased Werner states (United States)

    Thomas, P.; Bohmann, M.; Vogel, W.


    The verification of quantum entanglement under the influence of realistic noise and decoherence is crucial for the development of quantum technologies. Unfortunately, a full entanglement characterization is generally not possible with most entanglement criteria such as entanglement witnesses or the partial transposition criterion. In particular, so-called bound entanglement cannot be certified via the partial transposition criterion. Here we present the full entanglement verification of dephased qubit and qutrit Werner states via entanglement quasiprobabilities. Remarkably, we are able to reveal bound entanglement for noisy mixed states in the qutrit case. This example demonstrates the strength of the entanglement quasiprobabilities for verifying the full entanglement of quantum states suffering from noise.

  9. Verified Subtyping with Traits and Mixins

    Directory of Open Access Journals (Sweden)

    Asankhaya Sharma


    Full Text Available Traits allow decomposing programs into smaller parts and mixins are a form of composition that resemble multiple inheritance. Unfortunately, in the presence of traits, programming languages like Scala give up on subtyping relation between objects. In this paper, we present a method to check subtyping between objects based on entailment in separation logic. We implement our method as a domain specific language in Scala and apply it on the Scala standard library. We have verified that 67% of mixins used in the Scala standard library do indeed conform to subtyping between the traits that are used to build them.

  10. An optimum medium designed and verified for alcohol vinegar ...

    African Journals Online (AJOL)

    In this article, a novel formula of nutrient salt for alcohol vinegar production was derived based on mass conservation theory of carbon source, nitrogen source and inorganic ions. Series of semicontinuous fermentations were successfully carried out in a Frings 10 L fermentation tank. The average acetification rate of ...

  11. Verifying disarmament: scientific, technological and political challenges

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph R [Los Alamos National Laboratory


    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  12. Seismic isolation for Advanced LIGO

    CERN Document Server

    Abbott, R; Allen, G; Cowley, S; Daw, E; Debra, D; Giaime, J; Hammond, G; Hammond, M; Hardham, C; How, J; Hua, W; Johnson, W; Lantz, B; Mason, K; Mittleman, R; Nichol, J; Richman, S; Rollins, J; Shoemaker, D; Stapfer, G; Stebbins, R


    The baseline design concept for a seismic isolation component of the proposed 'Advanced LIGO' detector upgrade has been developed with proof-of-principle experiments and computer models. It consists of a two-stage in-vacuum active isolation platform that is supported by an external hydraulic actuation stage. Construction is underway for prototype testing of a full-scale preliminary design.

  13. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education (United States)

    Pavel, Nenad; Berg, Arild


    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  14. SEISGAMA: A Free C# Based Seismic Data Processing Software Platform

    Directory of Open Access Journals (Sweden)

    Theodosius Marwan Irnaka


    Full Text Available Seismic reflection is one of the most popular methods in geophysical prospecting. Nevertheless, obtaining high resolution and accurate results requires a sophisticated processing stage. There are many open-source seismic reflection data processing software programs available; however, they often use a high-level programming language that decreases its overall performance, lacks intuitive user-interfaces, and is limited to a small set of tasks. These shortcomings reveal the need to develop new software using a programming language that is natively supported by Windows® operating systems, which uses a relatively medium-level programming language (such as C# and can be enhanced by an intuitive user interface. SEISGAMA was designed to address this need and employs a modular concept, where each processing group is combined into one module to ensure continuous and easy development and documentation. SEISGAMA can perform basic seismic reflection processes. This ability is very useful, especially for educational purposes or during a quality control process (in the acquisition stage. Those processes can be easily carried out by users via specific menus on SEISGAMA’s main user interface. SEISGAMA has been tested, and its results have been verified using available theoretical frameworks and by comparison to similar commercial software.

  15. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  16. Testing Library Specifications by Verifying Conformance Tests

    DEFF Research Database (Denmark)

    Kiniry, Joseph Roland; Zimmerman, Daniel; Hyland, Ralph


    Formal specifications of standard libraries are necessary when statically verifying software that uses those libraries. Library specifications must be both correct, accurately reflecting library behavior, and useful, describing library behavior in sufficient detail to allow static verification...... of client programs. Specication and verification researchers regularly face the question of whether the library specications we use are correct and useful, and we have collectively provided no good answers. Over the past few years we have created and refined a software engineering process, which we call...... the Formal CTD Process (FCTD), to address this problem. Although FCTD is primarily targeted toward those who write Java libraries (or specifications for existing Java libraries) using the Java Modeling Language (JML), its techniques are broadly applicable. The key to FCTD is its novel usage of library...

  17. Group-Interest-Based Verifiable CCN

    Directory of Open Access Journals (Sweden)

    DaeYoub Kim


    Full Text Available To solve various problems of the Internet, content centric networking (CCN, one of information centric networking architectures (ICN, provides both an in-network content caching scheme and a built-in content verification scheme. However, a user is still asked to generate many request messages when retrieving fragmented content through CCN. This model can seriously increase the amount of network traffic. Furthermore, when receiving content, a user is asked to verify the received content before using it. This verification process can cause a serious service delay. To improve such inefficiencies, this paper proposes a transmission process to handle request messages at one time. Also, it suggests an efficient content verification method using both hash chains and Merkel-hash tree.

  18. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY


    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  19. Infrasound Generation from the HH Seismic Hammer.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kyle Richard


    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  20. What proof do we prefer? Variants of verifiability in voting

    NARCIS (Netherlands)

    Pieters, Wolter


    In this paper, we discuss one particular feature of Internet voting, verifiability, against the background of scientific literature and experiments in the Netherlands. In order to conceptually clarify what verifiability is about, we distinguish classical verifiability from constructive veriability

  1. In situ seismic velocity changes in Southern Iceland (United States)

    Bjarnason, Ingi Th.; Menke, William; Þorbjarnardóttir, Bergþóra S.; Kjartansson, Einar; Guðmundsson, Gunnar


    Detecting in situ velocity changes in the crust of the earth before significant earthquakes (pre-seismic changes), for the purpose of predicting earthquakes, has been described as the Holy Grail of seismology, i.e. highly desirable goal but with elusive results. Pre-seismic signals of the order of 10-20%, reported in the 1960ies and 1970ies, have not been convincingly reproduced. Lower level (0.5-3.5%) coseismic and postseismic in situ changes have, however, repeatedly been reported. Due to lack of seismicity prior to significant earthquakes, adequate data are often lacking to test the hypothesis of pre-seismic signals. Using earthquake data in order to detect such signals, errors in earthquake locations and velocity models may give a false-positive temporal signals. For the detection of a low level ( 1.0%) pre-seismic change, good knowledge of seismic structure, high accuracy of earthquake locations, and a continuous high level of seismicity are important factors. The local seismic network of the Icelandic Meteorology Office, the SIL network, is in many respects ideal for studying in situ pre-seismic changes before significant earthquakes. Since the beginning of its operation in 1991, four earthquakes of magnitude 6.0 and greater have occurred in the region, which may have caused pre-seismic velocity changes in the crust. The original design of the network had a high clock accuracy (±1 ms). S-waves tend to be very clear, and successful 1D velocity model (SIL model) has been used to locate earthquakes in the area, suggesting relatively simple velocity structure in spite of active tectonic setting. Earthquakes in Southern Iceland during the period 1991 to 2000 are being analyzed. The period includes two large earthquakes in year 2000, both of them of the magnitude 6.5. The analysis involves improving earthquake locations in order to determine if in situ changes do exist in the area (down to 0.5% significance level), with the ultimate goal of locating them at

  2. Romanian Educational Seismic Network Project (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin


    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  3. 41 CFR 128-1.8005 - Seismic safety standards. (United States)


    ... Congress (SBCC) Standard Building Code (SBC). (b) The seismic design and construction of a covered building... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic safety standards... Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program § 128-1.8005...

  4. A Verified Algebra for Linked Data

    Directory of Open Access Journals (Sweden)

    Ross Horne


    Full Text Available A foundation is investigated for the application of loosely structured data on the Web. This area is often referred to as Linked Data, due to the use of URIs in data to establish links. This work focuses on emerging W3C standards which specify query languages for Linked Data. The approach is to provide an abstract syntax to capture Linked Data structures and queries, which are then internalised in a process calculus. An operational semantics for the calculus specifies how queries, data and processes interact. A labelled transition system is shown to be sound with respect to the operational semantics. Bisimulation over the labelled transition system is used to verify an algebra over queries. The derived algebra is a contribution to the application domain. For instance, the algebra may be used to rewrite a query to optimise its distribution across a cluster of servers. The framework used to provide the operational semantics is powerful enough to model related calculi for the Web.

  5. Simplified Procedures for Seismic Analysis and Design of Piers and Wharves in Marine Oil and LNG Terminals (United States)


    prestressed concrete piles connected to the deck slab with dowels. The following is a step-by-step summary of the procedure to implement these formulas to... prestressed concrete pile with dowel-connection for both design levels is 0.05ρ = . 12. Compute the dimensionless parameters: ,P ,Cy yM Mη = , and eEI...42 8.1.2 Prestressed Concrete Piles

  6. Seismic analysis of nuclear power plant structures (United States)

    Go, J. C.


    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  7. Seismic displacement of gravity retaining walls

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim


    Full Text Available Seismic displacement of gravity walls had been studied using conventional static methods for controlled displacement design. In this study plain strain numerical analysis is performed using Plaxis dynamic program where prescribed displacement is applied at the bottom boundary of the soil to simulate the applied seismic load. Constrained absorbent side boundaries are introduced to prevent any wave reflection. The studied soil is chosen dense granular sand and modeled as elasto-plastic material according to Mohr–Column criteria while the gravity wall is assumed elastic. By comparing the resulted seismic wall displacements calculated by numerical analysis for six historical ground motions with that calculated by the pseudo-static method, it is found that numerical seismic displacements are either equal to or greater than corresponding pseudo-static values. Permissible seismic wall displacement calculated by AASHTO can be used for empirical estimation of seismic displacement. It is also found that seismic wall displacement is directly proportional with the positive angle of inclination of the back surface of the wall, soil flexibility and with the earthquake maximum ground acceleration. Seismic wall sliding is dominant and rotation is negligible for rigid walls when the ratio between the wall height and the foundation width is less than 1.4, while for greater ratios the wall becomes more flexible and rotation (rocking increases till the ratio reaches 1.8 where overturning is susceptible to take place. Cumulative seismic wall rotation increases with dynamic time and tends to be constant at the end of earthquake.

  8. LANL seismic screening method for existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O. [and others


    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.

  9. Design of a Seismic Reflection Multi-Attribute Workflow for Delineating Karst Pore Systems Using Neural Networks and Statistical Dimensionality Reduction Techniques (United States)

    Ebuna, D. R.; Kluesner, J.; Cunningham, K. J.; Edwards, J. H.


    An effective method for determining the approximate spatial extent of karst pore systems is critical for hydrological modeling in such environments. When using geophysical techniques, karst features are especially challenging to constrain due to their inherent heterogeneity and complex seismic signatures. We present a method for mapping these systems using three-dimensional seismic reflection data by combining applications of machine learning and modern data science. Supervised neural networks (NN) have been successfully implemented in seismic reflection studies to produce multi-attributes (or meta-attributes) for delineating faults, chimneys, salt domes, and slumps. Using a seismic reflection dataset from southeast Florida, we develop an objective multi-attribute workflow for mapping karst in which potential interpreter bias is minimized by applying linear and non-linear data transformations for dimensionality reduction. This statistical approach yields a reduced set of input seismic attributes to the NN by eliminating irrelevant and overly correlated variables, while still preserving the vast majority of the observed data variance. By initiating the supervised NN from an eigenspace that maximizes the separation between classes, the convergence time and accuracy of the computations are improved since the NN only needs to recognize small perturbations to the provided decision boundaries. We contend that this 3D seismic reflection, data-driven method for defining the spatial bounds of karst pore systems provides great value as a standardized preliminary step for hydrological characterization and modeling in these complex geological environments.

  10. Evaluation of verifiability in HAL/S. [programming language for aerospace computers (United States)

    Young, W. D.; Tripathi, A. R.; Good, D. I.; Browne, J. C.


    The ability of HAL/S to write verifiable programs, a characteristic which is highly desirable in aerospace applications, is lacking since many of the features of HAL/S do not lend themselves to existing verification techniques. The methods of language evaluation are described along with the means in which language features are evaluated for verifiability. These methods are applied in this study to various features of HAL/S to identify specific areas in which the language fails with respect to verifiability. Some conclusions are drawn for the design of programming languages for aerospace applications and ongoing work to identify a verifiable subset of HAL/S is described.

  11. Seismic behavior of buried pipelines constructed by design criteria and construction specifications of both Korea and the US (United States)

    Jeon, S.-S.


    Lifeline damage induced by earthquake loading not only causes structure damage but also communication problems resulting from the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in the US, for example HAZUS (Hazard in US), have been established for the purpose of prevention and efficient response to earthquake hazards. Sufficient damage records obtained from earthquakes are required to establish these systems, however, in Korea, insufficient data sets of damage records are currently available. In this study, according to the design criteria and construction specifications of pipelines in Korea and the US, the behavior of both brittle and ductile pipelines embedded in dense sand overlying various in-situ soils, such as clay, sand, and gravel, were examined and compared with respect to the mechanical characteristics of pipelines under various earthquake loadings.

  12. Using Dafny, an Automatic Program Verifier

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Leino, K. Rustan M.; Carvalho Quaresma, Jose Nuno

    These lecture notes present Dafny, an automated program verication system that is based on the concept of dynamic frames and is capable of producing .NET executables. These notes overview the basic design, Dafny's history, and summarizes the environment conguration. The key language constructs, a...

  13. Verifying therapy safety interlock system with spin

    CSIR Research Space (South Africa)

    Seotsanyana, M


    Full Text Available on the successful use of model checking in the design and verification of the Safety Interlock System (SIS) at iThemba LABS. SIS is part of proton therapy control system (TCS) and its main task is to monitor and evaluate the safety conditions in the TCS as a whole...

  14. Integrated seismic monitoring in Slovakia (United States)

    Bystrický, E.; Kristeková, M.; Moczo, P.; Cipciar, A.; Fojtíková, L.; Pažák, P.; Gális, M.


    Two seismic networks are operated on the territory of the Slovak republic by two academic institutions. The Geophysical Institute of the Slovak Academy of Sciences operates the Slovak National Network of Seismic Stations (SNNSS, established in 2004) and the Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava operates the Local Seismic Network Eastern Slovakia (LSNES, established in 2007). SNNSS is focused on the regional seismicity and participates in the international data exchange on a regular basis. LSNES, designed to be compatible and complementary with the existing SNNSS infrastructure, is focused on the seismicity of the eastern Slovakia source zone. The two networks share database and archive. Thus the expenses and workload of the joint data center operation are split between the two institutions. The cooperation enhances the overall reliability of the data center while does not interfere with the original scopes of the two networks. Relational database with thin client based on the standard web browser is implemented. Maintenance requirements of clients are reduced to minimum and it is easier to manage the system integrity. The database manages parametric data, macroseismic data, waveform data, inventory data, and geographic data. The database is not only a central part of the data processing of the two institutions; it also forms a core of the warning system. The warning system functionality requires development of the modules which are additional to the standard seismic database functionality. The modules for editing, publishing and automatic processing of macroseismic questionnaires were implemented for the purpose of the warning system, and the database integrates macroseismic data with other seismic data.

  15. Automatic seismic event tracking using a dynamic time warping algorithm (United States)

    Jin, Song; Chen, ShuangQuan; Wei, Jianxin; Li, Xiang-Yang


    For seismic data interpretation, horizon picking based on seismic events in stacked or migrated seismic sections is essential for obtaining information on subsurface structures. This conventional work is time-consuming via manual implementation. In this paper, we develop an automatic seismic event tracking method of horizon interpretation using the dynamic time warping (DTW) algorithm. The proposed method consists of two steps: calculating local time shifts between adjacent traces through a pilot trace and then event tracking. In the method, the DTW algorithm is applied to calculate time shifts between two adjacent traces, and an improved multitrace DTW strategy is proposed to improve the robustness. One synthetic seismic trace is used to demonstrate the DTW algorithm, and a synthetic seismic section is used to verify the feasibility of the proposed method handling contaminated seismic data with noise. Finally, we apply the method to a 3D physical model dataset. The result indicates that the proposed method is quantitatively feasible for seismic event automatic tracking and is reasonably stable for noisy seismic section flattening, which also has the potential to extract seismic horizon slices effectively.

  16. Developing and verifying design and operational criteria for the active sludge process involving staggered feed with the elimination of nitrogen; Desarrollo y verificacion de criterios de diseno y oporacion para el proceso de fangos activos de alimentacion escalonada con eliminacion de nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Larrea, L.; Larrea, A.; Ayesa, E.; Rodrigo, J. C.


    This study focused on the staggered feed process with three denitrification-nitrification reactor phases. In the first place, criteria for the optimum selection of design parameters were developed using simulations based on mathematical models of the process and efficient operational strategies were suggested. The results of the simulation were then verified by means of tests in a pilot plant. In regard to the design parameters, the simulation studies showed that the optimum in-flow to the three anoxic reactors lies within the range 40-40-20% to 33-33-34%, depending on the characteristics of the waste water and the requirements of the effluent. These latter two conditions and, therefore, the distribution of the inflow, determine the volumes of the aerobic and anoxic reactors. The operating strategy proposed consists in reducing the concentration of dissolved oxygen in the first two aerobic reactors and using optional areas in the last D-N stage of the process. The experimental results obtained confirmed the validity of the design and operational criteria that had been developed. Finally, it was found that if IWA model no. 1 is appropriately calibrated, it has a great capacity for predicting the behaviour of the staggered feed process. (Author) 12 refs.

  17. Seismic behaviour of geotechnical structures

    Directory of Open Access Journals (Sweden)

    F. Vinale


    Full Text Available This paper deals with some fundamental considerations regarding the behaviour of geotechnical structures under seismic loading. First a complete definition of the earthquake disaster risk is provided, followed by the importance of performing site-specific hazard analysis. Then some suggestions are provided in regard to adequate assessment of soil parameters, a crucial point to properly analyze the seismic behaviour of geotechnical structures. The core of the paper is centered on a critical review of the analysis methods available for studying geotechnical structures under seismic loadings. All of the available methods can be classified into three main classes, including the pseudo-static, pseudo-dynamic and dynamic approaches, each of which is reviewed for applicability. A more advanced analysis procedure, suitable for a so-called performance-based design approach, is also described in the paper. Finally, the seismic behaviour of the El Infiernillo Dam was investigated. It was shown that coupled elastoplastic dynamic analyses disclose some of the important features of dam behaviour under seismic loading, confirmed by comparing analytical computation and experimental measurements on the dam body during and after a past earthquake.

  18. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei


    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  19. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope. (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei


    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  20. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    Full Text Available Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  1. Broadband seismology and small regional seismic networks (United States)

    Herrmann, Robert B.


    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  2. A Verifiable Language for Cryptographic Protocols

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde

    We develop a formal language for specifying cryptographic protocols in a structured and clear manner, which allows verification of many interesting properties; in particular confidentiality and integrity. The study sheds new light on the problem of creating intuitive and human readable languages,......, and finally systematically transforming it into a more intuitive specification language, maintaining this tractability.......We develop a formal language for specifying cryptographic protocols in a structured and clear manner, which allows verification of many interesting properties; in particular confidentiality and integrity. The study sheds new light on the problem of creating intuitive and human readable languages......, that are analysable with respect to interesting properties. Furthermore it motivates and is an example of, a novel, more general methodology of language design by first verbosely describing the semantics in a mathematical language, e.g. a logic, then restricting the properties of interest to be computable...

  3. USCIS E-Verify Customer Satisfaction Survey, January 2013 (United States)

    Department of Homeland Security — This report focuses on the customer satisfaction of companies currently enrolled in the E-Verify program. Satisfaction with E-Verify remains high and follows up a...

  4. Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications

    National Research Council Canada - National Science Library

    Jiajun Sun; Ningzhong Liu


    .... In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model...

  5. Regional Seismic Methods of Identifying Explosions (United States)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Hauk, T. F.


    A lesson from the 2006, 2009 and 2013 DPRK declared nuclear explosion Ms:mb observations is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, we need to put our empirical methods on a firmer physical footing. Here we review the two of the main identification methods: 1) P/S ratios and 2) Moment Tensor techniques, which can be applied at the regional distance (200-1600 km) to very small events, improving nuclear explosion monitoring and confidence in verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes (e.g. Walter et al., 1995). However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. Calculated intermediate period (10-100s) waveforms from regional 1-D models can match data and provide moment tensor results that separate explosions from earthquakes and cavity collapses (e.g. Ford et al. 2009). However it has long been observed that some nuclear tests produce large Love waves and reversed Rayleigh waves that complicate moment tensor modeling. Again the physical basis for the generation of these effects from explosions remains incompletely understood. We are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics


    Directory of Open Access Journals (Sweden)



    The funding by the United States Nuclear Regulatory Commission of a research project to the Lawrence Berkeley National Laboratory and MCEER/University at Buffalo facilitated the writing of a soon-to-be-published NUREG on seismic isolation. Funding of MCEER by the National Science Foundation led to research products that provide the technical basis for a new section in ASCE Standard 4 on the seismic isolation of safety-related nuclear facilities. The performance expectations identified in the NUREG and ASCE 4 for seismic isolation systems, and superstructures and substructures are described in the paper. Robust numerical models capable of capturing isolator behaviors under extreme loadings, which have been verified and validated following ASME protocols, and implemented in the open source code OpenSees, are introduced.

  7. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H


    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  8. Robotization in Seismic Acquisition

    NARCIS (Netherlands)

    Blacquière, G.; Berkhout, A.J.


    The amount of sources and detectors in the seismic method follows "Moore’s Law of seismic data acquisition", i.e., it increases approximately by a factor of 10 every 10 years. Therefore automation is unavoidable, leading to robotization of seismic data acquisition. Recently, we introduced a new

  9. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)


    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  10. Study of modern seismic zoning maps' accuracy (case for Eastern Uzbekistan

    Directory of Open Access Journals (Sweden)

    T.U. Artikov


    Full Text Available Influence of uncertainty factors of input parameters on results of the estimation of seismic hazard has been researched. It is found that the largest deviations, from seismic hazard maps designed on the basis of average values of distribution of seismic mode and seismic load parameters, may arise due to the imprecise depth of earthquake sources (H, uncertain estimations of seismic potential (Мmax and slope of recurrence curve (γ. The contribution of such uncertainty factors, like imprecise definition of seismic activity А10, incorrect choice of prevailing type of a motion in the source, using regional laws of attenuation of seismic load intensity in distance instead of local once are substantially small. For Eastern Uzbekistan, it was designed the seismic hazard map with the highest value which takes into account every possible factors of uncertainty in parameters of seismic mode and seismic load.

  11. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser


    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  12. 28 CFR 802.13 - Verifying your identity. (United States)


    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Verifying your identity. 802.13 Section... COLUMBIA DISCLOSURE OF RECORDS Privacy Act § 802.13 Verifying your identity. (a) Requests for your own records. When you make a request for access to records about yourself, you must verify your identity. You...

  13. Micromachined silicon seismic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.


    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  14. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur


    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  15. Seismic signal and noise on Europa (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven


    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  16. Salvo: Seismic imaging software for complex geologies

    Energy Technology Data Exchange (ETDEWEB)



    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  17. Review of the seismic risk in the design of civil engineering of nuclear installations excepted the long term storage of radioactive wastes; Prise en compte du risque sismique a la conception des ouvrages de genie civil d'installations nucleaires de base a l'exception des stockages a long terme des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)



    This guide aims to define, for the nuclear installations excepted the long term storage of radioactive wastes, from site data, the design specifications of earthquake resistant civil engineering and the possible methods for: the determination of the seismic response of the buildings, taking into account the interactions with the materials and the evaluation of the associated strains to size the installation; the determination of seismic displacements to be considered to size the materials. (A.L.B.)

  18. Site-specific seismic ground motion analyses for transportation infrastructure in the New Madrid seismic zone. (United States)


    Generic, code-based design procedures cannot account for the anticipated short-period attenuation and long-period amplification of earthquake ground motions in the deep, soft sediments of the Mississippi Embayment within the New Madrid Seismic Zone (...

  19. Development of Seismic Isolation Systems Using Periodic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiqun [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Menq, Farn-Yuh [Univ. of Texas, Austin, TX (United States); Stokoe, II, Kenneth H. [Univ. of Texas, Austin, TX (United States); Perkins, Judy [Prairie View A & M University, Prairie View, TX (United States); Tang, Yu [Argonne National Lab. (ANL), Argonne, IL (United States)


    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the

  20. Seismic verification of the converter stations for New Zealand's upgraded DC hybrid link; Equipment design optimized for local conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coad, N. (Trans Power New Zeland Ltd., Wellington (New Zealand)); Berggren, S. (ABB Corporate Research, Vaesteraas (Sweden)); Enblom, R. (ABB Corporate Research, Vaesteraas (Sweden))


    The two electrical transmission and distribution systems of the principal islands of New Zealand have been connected by a 600-MW high-voltage direct current (HVDC) link since 1965. A major project has recently doubled the capacity of the link and allowed low-cost South Island hydropower to be transmitted to the major load centers in the North Island. The link owner required seismic verification for the key electrical equipment. (orig.)

  1. Design of a myo-seismic transducer for non-invasive transcutaneous vectorial recording of locally fast muscle-fibre micro-contractions. (United States)

    Journée, H L; de Jonge, A B


    Mechanical recording usually concerns the analysis of movements in bio-mechanical research projects. Mechanical recording of locally fast muscle-fibre micro-contractions, however, is a little-developed and rarely-applied myographic technique. In the last decade, acoustic or myophonic measurements came increasingly into the picture when they were also applied to research on general muscle activity, such as in muscle fatigue studies. In this paper, a new micro-seismic recording technique is introduced. The technique registers extremely local activity in the velocity and force vector of skin movement as a function in time. The recording method is sensitive to micro excursions caused by muscle fibres under the skin. The resolution in time is at least 100 us, which is demonstrated in an experiment where a mechanical contraction is provoked by electrical stimulation of the median nerve. This indicates a seismic variant, refered to as seismic-myography (SMG), of surface EMG's, and offers complementary features. The most important features are: 1. Insensitivity to low frequent, large movement artefacts. 2. Sensitivity to fast mechanical micro-excursions and velocities. 3. Fast and precise discrimination of local mechanical events. 4. Vectorial reconstruction of superficial mechanic activity which can be used for the identification and functional behaviour of subcutaneous muscle fibres and, in addition, for the localisation of motor endplate zones. 5. The method is easy to use.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner


    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  3. Seismic hazard map of the western hemisphere (United States)

    Shedlock, K.M.; Tanner, J.G.


    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  4. Identity-Based Verifiably Encrypted Signatures without Random Oracles (United States)

    Zhang, Lei; Wu, Qianhong; Qin, Bo

    Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.

  5. Seismic Imaging and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory


    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  6. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki


    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  7. Structural analyses and integrated design of the MITICA Injector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucco, G., E-mail: [Department ICEA, Università degli Studi di Padova (Italy); Muraro, D.; Salomoni, V.; Majorana, C. [Department ICEA, Università degli Studi di Padova (Italy); Marcuzzi, D.; Rigato, W.; Sonato, P.; Zaccaria, P.; Toigo, V. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Inoue, T.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki-ken 311-0193 (Japan)


    Highlights: ► Seismic design has been carried out on PRIMA building. ► Three-dimensional FE models have been developed the vessel and TL device. ► Three bellows stiffness have been considered to evaluate maximum TL displacements. -- Abstract: In the framework of the activities foreseen for PRIMA (Padova Research on Injector Megavolt Accelerated) the MITICA neutral beam injector plays the role of main experiment, aiming to build, operate, test and optimize a full power and full scale prototype of the ITER Heating Neutral Beam Injector [1–3]. The entire MITICA system will be housed in special buildings, suitably designed to provide all the necessary supports, interfaces and shielding walls for nuclear radiation safety. Therefore an integrated design of the MITICA system and relevant buildings shall be developed and verified carefully, considering all the different configurations, operational modes and load combinations. This paper presents the numerical models and the results of MITICA assembly integrated analyses. The model takes into account properly constraints to ground and surrounding buildings, to study and verify the static and seismic response of the whole assembly. The load cases are defined and the numerical analyses described. Load definition and analyses have been performed considering the requirements of both the ASME [4] and the National Standard NTC2008 [5] for the seismic verification of structures subject to design response spectra. The obtained results are finally shown in detail and discussed, also comparing some different design options for design optimization.

  8. Seismic Catalogue and Seismic Network in Haiti (United States)

    Belizaire, D.; Benito, B.; Carreño, E.; Meneses, C.; Huerfano, V.; Polanco, E.; McCormack, D.


    The destructive earthquake occurred on January 10, 2010 in Haiti, highlighted the lack of preparedness of the country to address seismic phenomena. At the moment of the earthquake, there was no seismic network operating in the country, and only a partial control of the past seismicity was possible, due to the absence of a national catalogue. After the 2010 earthquake, some advances began towards the installation of a national network and the elaboration of a seismic catalogue providing the necessary input for seismic Hazard Studies. This paper presents the state of the works carried out covering both aspects. First, a seismic catalogue has been built, compiling data of historical and instrumental events occurred in the Hispaniola Island and surroundings, in the frame of the SISMO-HAITI project, supported by the Technical University of Madrid (UPM) and Developed in cooperation with the Observatoire National de l'Environnement et de la Vulnérabilité of Haiti (ONEV). Data from different agencies all over the world were gathered, being relevant the role of the Dominican Republic and Puerto Rico seismological services which provides local data of their national networks. Almost 30000 events recorded in the area from 1551 till 2011 were compiled in a first catalogue, among them 7700 events with Mw ranges between 4.0 and 8.3. Since different magnitude scale were given by the different agencies (Ms, mb, MD, ML), this first catalogue was affected by important heterogeneity in the size parameter. Then it was homogenized to moment magnitude Mw using the empirical equations developed by Bonzoni et al (2011) for the eastern Caribbean. At present, this is the most exhaustive catalogue of the country, although it is difficult to assess its degree of completeness. Regarding the seismic network, 3 stations were installed just after the 2010 earthquake by the Canadian Government. The data were sent by telemetry thought the Canadian System CARINA. In 2012, the Spanish IGN together

  9. Combined seismic plus live-load analysis of highway bridges. (United States)


    "The combination of seismic and vehicle live loadings on bridges is an important design consideration. There are well-established design : provisions for how the individual loadings affect bridge response: structural components that carry vertical li...

  10. An economical educational seismic system (United States)

    Lehman, J. D.


    There is a considerable interest in seismology from the nonprofessional or amateur standpoint. The operation of a seismic system can be satisfying and educational, especially when you have built and operated the system yourself. A long-period indoor-type sensor and recording system that works extremely well has been developed in the James Madison University Physics Deparment. The system can be built quite economically, and any educational institution that cannot commit themselves to a professional installation need not be without first-hand seismic information. The system design approach has been selected by college students working a project or senior thesis, several elementary and secondary science teachers, as well as the more ambitious tinkerer or hobbyist at home 

  11. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System (United States)



    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  12. Imaging Seismic Reflections

    NARCIS (Netherlands)

    op 't Root, T.J.P.M.; Op 't Root, Timotheus Johannes Petrus Maria


    The goal of reflection seismic imaging is making images of the Earth subsurface using surface measurements of reflected seismic waves. Besides the position and orientation of subsurface reflecting interfaces it is a challenge to recover the size or amplitude of the discontinuities. We investigate

  13. Seismic Risk Perception compared with seismic Risk Factors (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura


    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  14. vVote: Verifiable Electronic Voting in Practice


    Burton, C; Culnane, C; Schneider, S.


    This paper reports on the experience of deploying the vVote verifiable voting system in the November 2014 State election in Victoria, Australia. It describes the system that was deployed, discusses its end-to-end verifiability, and reports on the voters’ and poll workers’ experience with the system. Blind voters were able to cast a fully secret ballot in a verifiable way, as were voters in remote locations. The feedback finds the system to be acceptably usable with an electronic interface, th...

  15. Seismic Stability Time-Frequency Analysis Method of Reinforced Retaining Wall

    Directory of Open Access Journals (Sweden)

    Yang Changwei


    Full Text Available The first-order differential equation of the seismic active earth pressure is established by horizontal slices analysis method, based on the elastic wave theory, with the summarized dynamic analysis model of the reinforced retaining wall and the plane of fracture assumed as linear type. And then this paper proposes a time-frequency analysis method for the internal antiseismic stability analysis on the retaining wall. The reasonability of this method is verified by the results from other methods, for example, rule. The internal frictional angle of filling earth, the seismic intensity, and the frequency of the input earthquake wave have a predominant effect on the needed total tensile force of the lacing wires, which shows that (1 the needed total tensile force of the lacing wires goes up with the increase of the PGA and the internal frictional angle; (2 the needed total tensile force of the expandability lacing wires is bigger than that of the nonexpandability lacing wires; (3 the needed total tensile force of lacing wires is saddle distributed and the force achieves maximum value when the frequency of input wave equals the natural frequency of reinforced retaining wall. Besides, if the reinforced retaining wall is designed in compliance with the rules, the emergency capacity of reinforced retaining wall is reduced. At last, this paper not only takes into account the effect of three factors of the seismic wave (PGA, frequency, and duration on the internal antiseismic stability analysis of reinforced retaining wall but also provides some valuable references for the time-frequency seismic design of other retaining structures.

  16. Seismic isolation of two dimensional periodic foundations

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Mo, Y. L., E-mail: [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  17. A study on seismicity and seismic hazard for Karnataka State

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 2. A study on seismicity and seismic hazard for Karnataka State. T G Sitharam Naveen ... This paper presents a detailed study on the seismic pattern of the state of Karnataka and also quantifies the seismic hazard for the entire state. In the present work, ...

  18. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the ...


    Directory of Open Access Journals (Sweden)

    A. D. Abakarov


    Full Text Available Abstract. Ensuring of urban areas seismic safety is a task which do not require delay. But it cannot be solved by separate parts. It is essential that all components of the seismic hazard must be grouped together in one problem based on the system approach. In the present paper is presented not only the main flowchart of systems approach to ensuring the territory seismic safety but also the flowcharts of components of each main unit. They cover the whole package of measures for a full assessment of territory seismic hazard, seismic risk and its reduction.The proposed methodology can be carried out for design and implementation of regional territory seismic safety programs. 

  20. Atmospheric-Seismic Effect of Chelyabinsk Meteoroid (United States)

    Chernogor, L. F.


    Purpose: The parameters of the shock-wave source in the atmosphere and seismic oscillations that this source caused are investigated Design/methodology/approach: The atmospheric and seismic processes caused by the passage and explosion of Chelyabinsk meteoroid on February 15, 2013 have been modelled. The model results are compared with the observation results obtained at several seismic stations. Findings: The shock-wave impact duration is shown to be equal to approximately 97 s, and the time delays of the shockwave at the sites of destruction relative to its generation time at altitudes of 23÷53 km are shown to be equal to 77÷295 s in the distance range interval of 23÷84 km. The length of the area destructed by the shock with the access pressure of no less than 0.7 kPa is determined to be equal to 125÷130 km, and its width to 16÷60 km at various parts of the meteoroid path. The regression relation between the duration of the seismic signal and the length of the seismic wave path has been determined. The characteristic scale time of seismic source impact is equal to approximately 40 s. In the 20÷50 -s period range of seismic oscillations, the dependence of the group speed on period is established. The attenuation depth of seismic waves is estimated to be approximately 10÷20 Mm in the frequency range of 0.25÷3.0 Hz, and the Earth’s crust speed to 5.7÷7.0 μm/s. Conclusions: The model and estimation results are in good agreement with the observations.

  1. NOS CO-OPS Water Level Data, Verified, Hourly (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), hourly, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS)....

  2. NOS CO-OPS Water Level Data, Verified, 6-Minute (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS)....

  3. NOS CO-OPS Water Level Data, Verified, High Low (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), daily, high low water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services...

  4. Learn About SmartWay Verified Aerodynamic Devices (United States)

    Installing EPA-verified aerodynamic technologies on your trailer can help fleet and truck owners save fuel. Options include gap reducers, skirts, or tails and can be installed individually or in combination.


    Directory of Open Access Journals (Sweden)

    Donny T. Dangkua


    Full Text Available Note from the Editor The Indonesian archipelago is one of the most active tectonic zones in the world. Therefore to design an important (and dangerous structure such as a nuclear power plan knowledge of the seismicity of the site is very important. This could be achieved by doing a site-specific seismic hazard analysis. A site-specific seismic hazard analysis is required in the design state in order to determine the recommended seismic design criteria of the structure. A complete and thorough explanation of the methodology to do a site-specific seismic hazard analysis is presented in this Technical Note Abstract in Bahasa Indonesia :

  6. A Tutorial on Using Dafny to Construct Verified Software

    Directory of Open Access Journals (Sweden)

    Paqui Lucio


    Full Text Available This paper is a tutorial for newcomers to the field of automated verification tools, though we assume the reader to be relatively familiar with Hoare-style verification. In this paper, besides introducing the most basic features of the language and verifier Dafny, we place special emphasis on how to use Dafny as an assistant in the development of verified programs. Our main aim is to encourage the software engineering community to make the move towards using formal verification tools.

  7. TrustGuard: A Containment Architecture with Verified Output (United States)


    support structures . Finally, the link consumes a geomean 5.0% of the energy of the untrusted processor. 84 Chapter 7 The Simplicity of the Sentry Chapter 2...TRUSTGUARD: A CONTAINMENT ARCHITECTURE WITH VERIFIED OUTPUT SOUMYADEEP GHOSH A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN...depends on claims made by each party supplying the system’s components. This dissertation presents the Containment Architecture with Verified Output

  8. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Benjamin A. Baker; Joseph Grimm


    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several

  9. Evaluation and assessment of nuclear power plant seismic methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.


    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology.

  10. Identification of seismic precursors before large earthquakes: Decelerating and accelerating seismic patterns (United States)

    Papadimitriou, Panayotis


    A useful way of understanding both seismotectonic processes and earthquake prediction research is to conceive seismic patterns as a function of space and time. The present work investigates seismic precursors before the occurrence of an earthquake. It does so by means of a methodology designed to study spatiotemporal characteristics of seismicity in a selected area. This methodology is based on two phenomena: the decelerating moment release (DMR) and the accelerating moment release (AMR), as they occur within a period ranging from several months to a few years before the oncoming event. The combination of these two seismic sequences leads to the proposed decelerating-accelerating moment release (DAMR) earthquake sequence, which appears as the last stage of loading in the earthquake cycle. This seismic activity appears as a foreshock sequence and can be supported by the stress accumulation model (SAM). The DAMR earthquake sequence constitutes a double seismic precursor identified in space and time before the occurrence of an earthquake and can be used to improve seismic hazard assessment research. In this study, the developed methodology is applied to the data of the 1989 Loma Prieta (California), the 1995 Kobe (Japan), and the 2003 Lefkada (Greece) earthquakes. The last part of this study focuses on the application of the methodology to the Ionian Sea (western Greece) and forecasts two earthquakes in that area.

  11. Evaluation of the seismic hazard for 20 cities in Romania using Monte Carlo based simulations (United States)

    Pavel, Florin; Vacareanu, Radu


    This work focuses on the evaluation of the seismic hazard for Romania using earthquake catalogues generated by a Monte Carlo approach. The seismicity of Romania can be attributed to the Vrancea intermediate-depth seismic source and to 13 other crustal seismic sources. The recurrence times of large magnitude seismic events (both crustal and subcrustal), as well as the moment release rates are computed using simulated earthquake catalogues. The results show that the largest contribution to the overall moment release for the crustal seismic sources is from the seismic regions in Bulgaria, while the seismic regions in Romania contribute less than 5% of the overall moment release. In addition, the computations show that the moment release rate for the Vrancea subcrustal seismic source is about ten times larger than that of all the crustal seismic sources. Finally, the Monte Carlo approach is used to evaluate the seismic hazard for 20 cities in Romania with populations larger than 100,000 inhabitants. The results show some differences between the seismic hazard values obtained through Monte-Carlo simulation and those in the Romanian seismic design code P100-1/2013, notably for cities situated in the western part of Romania that are influenced by local crustal seismic sources.


    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos


    Seismic distress of solid waste landfills may result from any of the two consequences of a seismic event: (a) the transient ground deformation related to seismic wave propagation, (b) the permanent ground deformation caused by abrupt fault dislocation. Design provisions for solid waste landfills...

  13. Possibility of the use of data of infrasonic monitoring for identification of the nature of seismic events


    Lyashchuk, A.; Andrushchenko, Yu.; Gordienko, Yu.; Karyagin, E.; Kornienko, I.


    The paper considers the possibility of the use of infrasound measurements conducted in Ukraine to verify the recorded seismic events and the use of infrasound data as one of the criteria for their identification. Registration of seismic and infrasonic signals was carried out via a network of geophysical Main center of special monitoring. To register infrasound small-aperture infrasound arrays were used, allowing directional monitoring of events. The data of 909 parameters of seismic events fr...

  14. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti


    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  15. Study on the Confidence and Reliability of the Mean Seismic Probability Risk Model


    Wang, Xiao-Lei; Lu, Da-Gang


    The mean seismic probability risk model has widely been used in seismic design and safety evaluation of critical infrastructures. In this paper, the confidence levels analysis and error equations derivation of the mean seismic probability risk model are conducted. It has been found that the confidence levels and error values of the mean seismic probability risk model are changed for different sites and that the confidence levels are low and the error values are large for most sites. Meanwhile...

  16. Seismic-Reliability-Based Optimal Layout of a Water Distribution Network


    Do Guen Yoo; Donghwi Jung; Doosun Kang; Joong Hoon Kim


    We proposed an economic, cost-constrained optimal design of a water distribution system (WDS) that maximizes seismic reliability while satisfying pressure constraints. The model quantifies the seismic reliability of a WDS through a series of procedures: stochastic earthquake generation, seismic intensity attenuation, determination of the pipe failure status (normal, leakage, and breakage), pipe failure modeling in hydraulic simulation, and negative pressure treatment. The network’s seismic re...

  17. Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications (United States)

    Sun, Jiajun; Liu, Ningzhong


    Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration. PMID:28869574

  18. Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications

    Directory of Open Access Journals (Sweden)

    Jiajun Sun


    Full Text Available Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration.

  19. Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications. (United States)

    Sun, Jiajun; Liu, Ningzhong


    Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration.

  20. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  1. Seismic Creep, USA Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  2. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross


    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  3. Evolution of optically nondestructive and data-non-intrusive credit card verifiers (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana


    Since the deployment of the credit card, the number of credit card fraud cases has grown rapidly with a huge amount of loss in millions of US dollars. Instead of asking more information from the credit card's holder or taking risk through payment approval, a nondestructive and data-non-intrusive credit card verifier is highly desirable before transaction begins. In this paper, we review optical techniques that have been proposed and invented in order to make the genuine credit card more distinguishable than the counterfeit credit card. Several optical approaches for the implementation of credit card verifiers are also included. In particular, we highlight our invention on a hyperspectral-imaging based portable credit card verifier structure that offers a very low false error rate of 0.79%. Other key features include low cost, simplicity in design and implementation, no moving part, no need of an additional decoding key, and adaptive learning.

  4. Reassessment of Seismic Design and Noise Simulation using Finite Element Calculation of the Condensate Storage Tank of Cofrentes NPP according to standard API-650 11th Ed; Reevaluacion del diseno Sismico mediante Simulacion de Fluidos y Calculo por Elementos Finitos del Deposito del Almacenamiento de Condensado de Central Nuclear de Cofrentes conforme a la norma API-650 11th Ed

    Energy Technology Data Exchange (ETDEWEB)

    Sarti Fernandez, F.; Gavilan Moreno, C.; Paez Ortega, E.


    There have been several dynamic simulations in which I analyzed: fluid-structure interaction effect of the wave, studying stress, vibration modes and possible effects of structural instability. After this process to make the changes in the tank to comply with the new rules and updated seismic conditions were designed. were performed.

  5. Revised seismic and geologic siting regulations for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.J.; Chokshi, N.C. [Office of Nuclear Regulatory Research, Washington, DC (United States)


    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  6. Seismic margin analysis technique for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choi, In Kil


    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed.

  7. Verifying continuous-variable entanglement in finite spaces (United States)

    Sperling, J.; Vogel, W.


    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite-dimensional subspaces. Entanglement can be fully characterized as a finite-dimensional property, even though in general the truncation of the Hilbert space may cause fake nonclassicality. A generalization for multipartite quantum states is also given.

  8. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian


    subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  9. 20 CFR 401.45 - Verifying your identity. (United States)


    ... records such as medical records. (3) Electronic requests. If you make a request by computer or other... personally identifiable information over open networks such as the Internet, we use encryption in all of our... verifying your own identity, by providing a copy of the minor's birth certificate, a court order, or other...

  10. Firming up the Foundations: Reflections on Verifying the 248 ...

    African Journals Online (AJOL)

    Firming up the Foundations: Reflections on Verifying the 248 Quotations in a Historical Dict ionary, with Reference to "A Dictionary of South African English on ... In addition to this, the article looks at the necessarily systematic nature of quotation handling and the main types of considerations determining methodology (for ...

  11. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; W. H. West


    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  12. Calling Out Cheaters : Covert Security with Public VerifiabilitySecurity

    DEFF Research Database (Denmark)

    Asharov, Gilad; Orlandi, Claudio


    We introduce the notion of covert security with public verifiability, building on the covert security model introduced by Aumann and Lindell (TCC 2007). Protocols that satisfy covert security guarantee that the honest parties involved in the protocol will notice any cheating attempt with some...

  13. Seismic Hazard Characterization at the DOE Savannah River Site (SRS): Status report

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.B.


    The purpose of the Seismic Hazard Characterization project for the Savannah River Site (SRS-SHC) is to develop estimates of the seismic hazard for several locations within the SRS. Given the differences in the geology and geotechnical characteristics at each location, the estimates of the seismic hazard are to allow for the specific local conditions at each site. Characterization of seismic hazard is a critical factor for the design of new facilities as well as for the review and potential retrofit of existing facilities at SRS. The scope of the SRS seismic hazard characterization reported in this document is limited to the Probabilistic Seismic Hazard Analysis (PSHA). The goal of the project is to provide seismic hazard estimates based on a state-of-the-art method which is consistent with developments and findings of several ongoing studies which are deemed to bring improvements in the state of the seismic hazard analyses.

  14. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer


    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  15. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  16. Seismic random noise attenuation using modified wavelet thresholding

    Directory of Open Access Journals (Sweden)

    Qi-sheng Zhang


    Full Text Available In seismic exploration, random noise deteriorates the quality of acquired data. This study analyzed existing denoising methods used in seismic exploration from the perspective of random noise. Wavelet thresholding offers a new approach to reducing random noise in simulation results, synthetic data, and real data. A modified wavelet threshold function was developed by considering the merits and demerits of conventional soft and hard thresholding schemes. A MATLAB (matrix laboratory simulation model was used to compare the signal-to-noise ratios (SNRs and mean square errors (MSEs of the soft, hard, and modified threshold functions. The results demonstrated that the modified threshold function can avoid the pseudo-Gibbs phenomenon and produce a higher SNR than the soft and hard threshold functions. A seismic convolution model was built using seismic wavelets to verify the effectiveness of different denoising methods. The model was used to demonstrate that the modified thresholding scheme can effectively reduce random noise in seismic data and retain the desired signal. The application of the proposed tool to a real raw seismogram recorded during a land seismic exploration experiment located in north China clearly demonstrated its efficiency for random noise attenuation.

  17. Seismic Performance of Self-Consolidating Concrete Bridge Columns (United States)


    The high amount of confining lateral steel required by seismic design provisions for rectangular bridge columns can cause steel congestion. The high amount of confining steel may hinder the placement of conventional concrete (CC). Self-consolidating ...

  18. LOFT 3C cable tray and ladder seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, W.R.


    The LOFT 3C cable tray and ladder were analyzed for LOCE and Safe Shutdown Earthquake (SSE) seismic loads by using equivalent static loads. Design changes were recommended to alleviate overstress conditions.

  19. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.


    Energy Technology Data Exchange (ETDEWEB)



    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  1. The challenging requirements of the ITER anti seismic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Syed, M.B., E-mail: [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, L. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Curtido, M.; Slee, B. [Fusion for Energy, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Diaz, S. [Nuvia Travaux Speciaux, 92 Cours Vitton, 69006 Lyon (France)


    ITER is being designed and constructed with a high level of safety as an essential requirement. In order to meet the safety and performance objectives of ITER and the French regulatory requirements, the Tokamak Complex has been isolated from the potential seismic hazard by anti-seismic bearings. The dynamic characteristics of the anti-seismic bearings were chosen so that the Tokamak Complex will have a fundamental horizontal frequency of 0.55 Hz. The design, manufacturing and qualification of ASBs have been carried out by NUVIA Travaux Speciaux with specific ITER requirements that are much more stringent than the applicable European and French Norms and directives.

  2. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Keith M.; Stoker, Gerald C.


    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements.

  3. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)


    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  4. The assessment of seismic hazard for Gori, (Georgia) and preliminary studies of seismic microzonation (United States)

    Gogoladze, Z.; Moscatelli, M.; Giallini, S.; Avalle, A.; Gventsadze, A.; Kvavadze, N.; Tsereteli, N.


    Seismic risk is a crucial issue for South Caucasus, which is the main gateway between Asia and Europe. The goal of this work is to propose new methods and criteria for defining an overall approach aimed at assessing and mitigating seismic risk in Georgia. In this reguard seismic microzonation represents a highly useful tool for seismic risk assessmentin land management, for design of buildings or structures and for emergency planning.Seismic microzonation assessment of local seismic hazard,which is a component of seismicity resulting from specific local characteristics which cause local amplification and soil instability, through identification of zones with seismically homogeneous behavior. This paper presents the results of preliminary study of seismic microzonation of Gori, Georgia. Gori is and is located in the Shida Kartli region and on both sides of Liachvi and Mtkvari rivers, with area of about 135 km2around the Gori fortress. Gori is located in Achara-Trialeti fold-thrust belt, that is tectonically unstable. Half of all earthquakes in Gori area with magnitude M≥3.5 have happened along this fault zone and on basis of damage caused by previous earthquakes, this territory show the highest level of risk (the maximum value of direct losses) in central part of the town. The seismic microzonation map of level 1 for Gori was carried out using: 1) Already available data (i.e., topographic map and boreholes data), 2) Results of new geological surveys and 3) Geophysical measurements (i.e., MASW and noise measurements processed with HVSR technique). Our preliminary results highlight the presence of both stable zones susceptible to local amplifications and unstable zones susceptible to geological instability. Our results are directed to establish set of actions aimed at risk mitigation before initial onset of emergency, and to management of the emergency once the seismic event has occurred. The products obtained, will contain the basic elements of an integrated system

  5. Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. (United States)

    Hayashi, Masahito; Morimae, Tomoyuki


    We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.

  6. Verifying Service Choreography Model Based on Description Logic

    Directory of Open Access Journals (Sweden)

    Minggang Yu


    Full Text Available Web Services Choreography Description Language lacks a formal system to accurately express the semantics of service behaviors and verify the correctness of a service choreography model. The paper presents a new approach of choreography model verification based on Description Logic. A metamodel of service choreography is built to provide a conceptual framework to capture the formal syntax and semantics of service choreography. Based on the framework, a set of rules and constraints are defined in Description Logic for choreography model verification. To automate model verification, the UML-based service choreography model will be transformed, by the given algorithms, into the DL-based ontology, and thus the model properties can be verified by reasoning through the ontology with the help of a popular DL reasoner. A case study is given to demonstrate applicability of the method. Furthermore, the work will be compared with other related researches.

  7. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Jacobson; D. E. Shropshire; W. B. West


    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  8. Seismic surveys test on Innerhytta Pingo, Adventdalen, Svalbard Islands (United States)

    Boaga, Jacopo; Rossi, Giuliana; Petronio, Lorenzo; Accaino, Flavio; Romeo, Roberto; Wheeler, Walter


    We present the preliminary results of an experimental full-wave seismic survey test conducted on the Innnerhytta a Pingo, located in the Adventdalen, Svalbard Islands, Norway. Several seismic surveys were adopted in order to study a Pingo inner structure, from classical reflection/refraction arrays to seismic tomography and surface waves analysis. The aim of the project IMPERVIA, funded by Italian PNRA, was the evaluation of the permafrost characteristics beneath this open-system Pingo by the use of seismic investigation, evaluating the best practice in terms of logistic deployment. The survey was done in April-May 2014: we collected 3 seismic lines with different spacing between receivers (from 2.5m to 5m), for a total length of more than 1 km. We collected data with different vertical geophones (with natural frequency of 4.5 Hz and 14 Hz) as well as with a seismic snow-streamer. We tested different seismic sources (hammer, seismic gun, fire crackers and heavy weight drop), and we verified accurately geophone coupling in order to evaluate the different responses. In such peculiar conditions we noted as fire-crackers allow the best signal to noise ratio for refraction/reflection surveys. To ensure the best geophones coupling with the frozen soil, we dug snow pits, to remove the snow-cover effect. On the other hand, for the surface wave methods, the very high velocity of the permafrost strongly limits the generation of long wavelengths both with these explosive sources as with the common sledgehammer. The only source capable of generating low frequencies was a heavy drop weight system, which allows to analyze surface wave dispersion below 10 Hz. Preliminary data analysis results evidence marked velocity inversions and strong velocity contrasts in depth. The combined use of surface and body waves highlights the presence of a heterogeneous soil deposit level beneath a thick layer of permafrost. This is the level that hosts the water circulation from depth controlling

  9. Controllable seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian


    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  10. Controllable seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian


    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  11. How to Verify and Manage the Translational Plagiarism?


    Viroj Wiwanitkit


    The use of Google translator as a tool for determining translational plagiarism is a big challenge. As noted, plagiarism of the original papers written in Macedonian and translated into other languages can be verified after computerised translation in other languages. Attempts to screen the translational plagiarism should be supported. The use of Google Translate tool might be helpful. Special focus should be on any non-English reference that might be the source of plagiarised material and no...

  12. Real-Time Projection to Verify Plan Success During Execution (United States)

    Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.


    The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.

  13. AnnaBot: A Static Verifier for Java Annotation Usage


    Ian Darwin


    This paper describes AnnaBot, one of the first tools to verify correct use of Annotation-based metadata in the Java programming language. These Annotations are a standard Java 5 mechanism used to attach metadata to types, methods, or fields without using an external configuration file. A binary representation of the Annotation becomes part of the compiled “.class” file, for inspection by another component or library at runtime. Java Annotations were introduced into the Java language in ...

  14. Notes toward a verifiable vector algebraic basis for colorimetric modeling


    Oulton, David P.


    The presented notes aim toward improved models of the scalar visual response to flat-field stimuli, and are prompted by unease over the complexity of existing colour difference models. Some of the basic assumptions of colorimetry are examined in detail, and analytical methods whereby these assumptions can be investigated experimentally are presented. A key finding is that the standard CIE colorimetric model is verifiably correct as a predictor of point colour identity and metameric visual equ...

  15. The Italian National Seismic Network (United States)

    Michelini, Alberto


    The Italian National Seismic Network is composed by about 400 stations, mainly broadband, installed in the Country and in the surrounding regions. About 110 stations feature also collocated strong motion instruments. The Centro Nazionale Terremoti, (National Earthquake Center), CNT, has installed and operates most of these stations, although a considerable number of stations contributing to the INGV surveillance has been installed and is maintained by other INGV sections (Napoli, Catania, Bologna, Milano) or even other Italian or European Institutions. The important technological upgrades carried out in the last years has allowed for significant improvements of the seismic monitoring of Italy and of the Euro-Mediterranean Countries. The adopted data transmission systems include satellite, wireless connections and wired lines. The Seedlink protocol has been adopted for data transmission. INGV is a primary node of EIDA (European Integrated Data Archive) for archiving and distributing, continuous, quality checked data. The data acquisition system was designed to accomplish, in near-real-time, automatic earthquake detection and hypocenter and magnitude determination (moment tensors, shake maps, etc.). Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment. Overall, the Italian earthquake surveillance service provides, in quasi real-time, hypocenter parameters which are then revised routinely by the analysts of the Bollettino Sismico Nazionale. The results are published on the web page and are publicly available to both the scientific community and the the general public. This presentation will describe the various activities and resulting products of the Centro Nazionale Terremoti. spanning from data acquisition to archiving, distribution and specialised products.

  16. Adjustment of minimum seismic shear coefficient considering site effects for long-period structures (United States)

    Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo


    Minimum seismic base shear is a key factor employed in the seismic design of long-period structures, which is specified in some of the major national seismic building codes viz. ASCE7-10, NZS1170.5 and GB50011-2010. In current Chinese seismic design code GB50011-2010, however, effects of soil types on the minimum seismic shear coefficient are not considered, which causes problems for long-period structures sited in hard or rock soil to meet the minimum base shear requirement. This paper aims to modify the current minimum seismic shear coefficient by taking into account site effects. For this purpose, effective peak acceleration (EPA) is used as a representation for the ordinate value of the design response spectrum at the plateau. A large amount of earthquake records, for which EPAs are calculated, are examined through the statistical analysis by considering soil conditions as well as the seismic fortification intensities. The study indicates that soil types have a significant effect on the spectral ordinates at the plateau as well as the minimum seismic shear coefficient. Modified factors related to the current minimum seismic shear coefficient are preliminarily suggested for each site class. It is shown that the modified seismic shear coefficients are more effective to the determination of minimum seismic base shear of long-period structures.


    African Journals Online (AJOL)


    less known by many, is inertial SSI, which often has the beneficial effect of reducing design spectral values or base shear in the seismic design of a large class of building structures. It is observed that the effects of both site amplification and SSI increase. 0. 1. 2. 3. 0. 1. 2. 3. 4. S e/. A g. T (s). Found. Damp. 15%. Site Class A ...

  18. Verifiable fault tolerance in measurement-based quantum computation (United States)

    Fujii, Keisuke; Hayashi, Masahito


    Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.

  19. Drawing a Seismic Source Zone Model Using Cumulative Seismic Moment Release and Moment Tensors in the Italian Peninsula (United States)

    Salimbeni, S.; Pondrelli, S.; D'Amico, V.; Meletti, C.; Rovida, A.


    In the frame of the elaboration of a new seismic hazard model of Italy, the identification of the areas with homogeneous tectonic regime is needed as one of the objective elements for designing the seismic source zones.A collection of all seismic moment tensors available for Italy for earthquakes with magnitude greater than or equal to 4.0 since 1960 was gathered. It contains data from different catalogs or datasets, mainly populated by moment tensors computed through inversion of seismic waves (e.g. CMT, RCMT, GFZ and ETHZ MT and so on). However, for great earthquakes of the past, i.e. the 1962 Irpinia or the 1968 Belice earthquakes (both max Mw > 6.0) we used data obtained with other methods, but always considered the best available information for that time.All these data helped to find the predominant fault mechanism, considered the typical tectonic style for a region or, using regular grids, for all seismic areas of the Italian peninsula and regions around. To identify the most seismic regions, we used data from historical and recent instrumental seismicity (CPTI15, and INGV bulletins, combined on a regular grid, obtaining seismic moment release maps. Overlapping cumulative moment tensors to seismic moment release maps, we identified regions clearly characterized by different tectonics. In particular, the extension is the principal type of deformation along most of the Apennines, somewhere interrupted by strike-slip mechanism. Compressive deformation appears in the eastern Alps, in the outer part of the northernmost sector of the Apennines, in several parts of the Adriatic Sea and in the off shore of Northern Sicily. We considered this tectonic style mapping to help with drawing seismic area sources for the new seismic hazard model of Italy.

  20. Summary of seismic assessment of underground and buried nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)


    A preliminary assessment is presented of the earthquake engineering implications of siting nuclear power facilities underground, as requested by The Aerospace Corporation. The study is a review of the major aspects of the seismic design problem for underground structures. Seismic design criteria suitable as input to conceptual design and cost studies are presented.

  1. Seismic Hazard analysis of Adjaria Region in Georgia (United States)

    Jorjiashvili, Nato; Elashvili, Mikheil


    The most commonly used approach to determining seismic-design loads for engineering projects is probabilistic seismic-hazard analysis (PSHA). The primary output from a PSHA is a hazard curve showing the variation of a selected ground-motion parameter, such as peak ground acceleration (PGA) or spectral acceleration (SA), against the annual frequency of exceedance (or its reciprocal, return period). The design value is the ground-motion level that corresponds to a preselected design return period. For many engineering projects, such as standard buildings and typical bridges, the seismic loading is taken from the appropriate seismic-design code, the basis of which is usually a PSHA. For more important engineering projects— where the consequences of failure are more serious, such as dams and chemical plants—it is more usual to obtain the seismic-design loads from a site-specific PSHA, in general, using much longer return periods than those governing code based design. Calculation of Probabilistic Seismic Hazard was performed using Software CRISIS2007 by Ordaz, M., Aguilar, A., and Arboleda, J., Instituto de Ingeniería, UNAM, Mexico. CRISIS implements a classical probabilistic seismic hazard methodology where seismic sources can be modelled as points, lines and areas. In the case of area sources, the software offers an integration procedure that takes advantage of a triangulation algorithm used for seismic source discretization. This solution improves calculation efficiency while maintaining a reliable description of source geometry and seismicity. Additionally, supplementary filters (e.g. fix a sitesource distance that excludes from calculation sources at great distance) allow the program to balance precision and efficiency during hazard calculation. Earthquake temporal occurrence is assumed to follow a Poisson process, and the code facilitates two types of MFDs: a truncated exponential Gutenberg-Richter [1944] magnitude distribution and a characteristic magnitude

  2. New Equivalent Linear Impact Model for Simulation of Seismic Isolated Structure Pounding against Moat Wall

    Directory of Open Access Journals (Sweden)

    Yang Liu


    Full Text Available Base-isolated buildings subjected to extreme earthquakes or near-fault pulse-like earthquakes can exceed their design gap distance and impact against the surrounding moat wall. Based on equating energy dissipation and maximum collision compression deformation of isolated structure with the Hertz-damp model and Kevin-Voigt model in the process of collision, an equivalent linear impact model (ELIM is proposed to better predict impact response of seismic isolated structure. The formula of the equivalent linear stiffness of ELIM is theoretically derived. The effectiveness of ELIM is verified by comparing the results of numerical analyses with the results of pounding experiments. Four near-fault earthquakes are selected to validate rationality and accuracy of the proposed model using numerical analysis. The results indicate that the proposed linear model can nearly capture impact behavior of isolated structure in simulating the pounding-involved structural response.

  3. Development of a wireless seismic array for volcano monitoring (United States)

    Moure, David; Toma, Daniel; Lázaro, Antoni Manuel; Del Río, Joaquín; Carreras, Normandino; José Blanco, María


    Volcano monitoring is mainly based on three sciences: seismology, geodesy and geochemistry. Seismic arrays are used to locate the seismic source, based on analysis of signals recorded by each seismometer. The most important advantages of arrays over classical seismic networks are: painless deployment, no major infrastructures needed, able to provide an approximate location of a signal that is not feasible by a seismic network. In this paper the design of a low-power wireless array is presented. All sensors transmit acquired data to a central node which is capable to calculate the possible location of the seismic source in real-time. The reliability of those locations depends, among other parameters (number of sensors and geometrical distribution), on precision of time synchronization between the nodes. To achieve the necessary precision, the wireless seismic array implements a time synchronization protocol based on the IEEE1588 protocol, which ensures clock synchronization between nodes better than a microsecond, therefore, signal correlation between sensors is achieved correlating the signals from all the sensors. The ultimate challenge would be that the central node receives data from all the seismometers locating the seismic source, only transmitting the result, which dramatically reduces data traffic. Often, active volcano areas are located far from inhabited areas and data transmission options are limited. In situ calculation is crucial in order to reduce data volume transmission generated by the seismic array.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.


    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  5. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines (United States)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.


    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  6. Seismic analysis of liquid storage container in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhengming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail:; He Shuyan [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu Ming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)


    Seismic analysis of liquid storage containers is always difficult in the seismic design of nuclear reactor equipment. The main reason is that the liquid will generate significant seismic loads under earthquake. These dynamic liquid loads usually form the main source of the stresses in the container. For this kind of structure-fluid coupling problem, some simplified theoretical methods were usually used previously. But this cannot satisfy the requirements of engineering design. The Finite Element Method, which is now full developed and very useful for the structural analysis, is still not mature for the structure-fluid coupling problem. This paper introduces a method suitable for engineering mechanical analysis. Combining theoretical analysis of the dynamic liquid loads and finite element analysis of the structure together, this method can give practical solutions in the seismic design of liquid storage containers.

  7. Soil Profiles and Seismic Loading

    Directory of Open Access Journals (Sweden)

    Janotka, V.


    Full Text Available The contribution estimates different geotechnical profiles of site condition change and their influences on the computed seismic response spectra and time histories final values and forms applying on the seismic structures loading. The mentioned problems methodics attitude solution is based on the computed seismic motion parameters.

  8. Seismic response analysis for utility boiler and its support frames; Aseismatic design for support frames of No. 3 boiler of Hekinan thermal power station, Chubu Electric Power Co. , Inc. Karyoku hatsudenyo daiyoryo boiler plant no jishin oto kaiseki; Chubu denryoku kabushiki kaisha Hekinan karyoku hatsudensho dai 3go boiler shiji tekkotsu no taishin sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kenji; Yamano, Hiroshi; Kajiwara, Yukihiro; Kashiwazaki, Akihiro (Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, (Japan))


    An example of aseismatic design for the support frame of the 700 MW boiler of Hekinan Thermal Power Station, Chubu Electric Power Co., Inc. is described, concentrating on the result of seismic response analysis. Practical elastic {center dot} elastic-plastic dynamic analyses was confirmed through proper modeling of a complicated boiler supporting frame structure. At the beginning of the design, it was found that rigidity of a specified layer was lower than that of other layer, and a large value of seismic response was shown. However, by correction of that, a well-balanced frame structure in each layer was realized. It was found that response shearing force of the boiler supporting frame by the building-soil foundation coupled analysis, was smaller than that by the analysis of fixed foundation model, because of the interaction to soil foundation. It was confirmed that the support frame had good seismic response characteristics even in a large earthquake (level-2, 50 kine), due to the non-linear effect of the boiler stoppers which absorb the seismic energy. 4 refs., 10 figs., 2 tabs.

  9. Seismic-Proof Buildings in Developing Countries

    Directory of Open Access Journals (Sweden)

    Vittoria Laghi


    Full Text Available The use of “ductile seismic frames,” whose proper seismic behavior largely depends upon construction details and specific design rules, may do not always lead to effective seismic resistant structures, as dramatically denounced by the famous Chinese artist Ai Weiwei in his artwork Straight. The artwork (96 t of undulating metal bars that were salvaged from schools destroyed by the 2008 Sichuan, China earthquake, where over 5,000 students were killed is a clear denounce against the corruption yielding to shoddy construction methods. The issue of safe constructions against natural hazards appears even more important in developing countries where, in most cases, building structures are realized by non-expert workers, or even by simple “people from the street,” who does not have any technical knowledge on construction techniques and seismic engineering. In this paper, a brief history from the first frame structures to the more efficient wall-based structures is provided within Earthquake Engineering perspectives. The superior structural properties of box-type wall structures with respect to conventional frame structures envisage a change of paradigm from actual “ductility-based” Earthquake Engineering (centered on frame structures toward 100% safe buildings through a “strength-based” design exploiting the use of box-type wall-based structures.

  10. High performance seismic sensor requirements for military and security applications (United States)

    Pakhomov, A.; Pisano, D.; Sicignano, A.; Goldburt, T.


    General Sensing Systems (GSS) has been developing seismic sensors for different security and military applications for the past several years. Research and development in this area does not have a single-value purpose as security and military applications are of a broad variety. Many of the requirements for seismic sensors are well known. Herein we describe additional requirements for seismic sensors that are not at the center of common attention and associated with high performance seismic sensors. We find that the hard issues related to "remote" deployment/installation methods can be solved, given the seismic sensor does not have the usual single-axis sensitivity, but sensitivity to arbitrary oriented impact/vibrations. Our results show that such a sensor can be designed, in particular based on electret materials. We report that traditional frequency response curve linearity is not always the appropriate goal. Such issues as useful signal frequency band and an interference immunity should be directly taken into account. In addition, the mechanical oscillator of the seismic sensor should have a very broad dynamic range about 120dB, or an adjustable sensitivity for use in various tactical applications. We find that increasing sensitivity is not so much needed as is reducing of the seismic sensor sensitivity threshold. The lower sensitivity threshold in higher target detection range can be obtained in low noise environmental conditions. We will also show that the attempt to design and manufacture a universal seismic sensor for every possible application seems unreasonable. In every respect it makes sense to design a seismic sensor set, which can fit and satisfy all plurality of the applications and multi objective requirements.

  11. Pre-seismic, co-seismic and post-seismic displacements associated ...

    Indian Academy of Sciences (India)

    Pre-seismic, co-seismic and post-seismic displacements associated with the Bhuj 2001 earthquake derived from recent and historic geodetic data. Sridevi Jade M Mukul I A Parvez M B Ananda P D Kumar V K Gaur R Bendick R Bilham F Blume K Wallace I A Abbasi M Asif Khan S Ulhadi. Volume 112 Issue 3 September ...

  12. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail:, E-mail:, E-mail:; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail:, E-mail:, E-mail: [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail:, E-mail:, E-mail: [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)


    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  13. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.|info:eu-repo/dai/nl/304829323; Niemeijer, Andre R.|info:eu-repo/dai/nl/370832132


    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where

  14. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition (United States)

    Silva Ribeiro, A.; Campos Costa, A.; Candeias, P.; Sousa, J. Alves e.; Lages Martins, L.; Freitas Martins, A. C.; Ferreira, A. C.


    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table.

  15. Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Yu-Kai Wang


    Full Text Available Taiwan is located on the Pacific seismic belt, and the soil conditions of Taiwan’s offshore wind farms are softer than those in Europe. To ensure safety and stability of the offshore wind turbine supporting structures, it is important to assess the offshore wind farms seismic forces reasonably. In this paper, the relevant seismic and geological data are obtained for Chang-Bin offshore wind farm in Taiwan Strait, the probabilistic seismic hazard analysis (PSHA is carried out, and the first uniform hazard response spectrum for Chang-Bin offshore wind farm is achieved. Compared with existing design response spectrum in the local regulation, this site-specific seismic hazard analysis has influence on the seismic force considered in the design of supporting structures and therefore affects the cost of the supporting structures. The results show that a site-specific seismic hazard analysis is required for high seismic area. The paper highlights the importance of seismic hazard analysis to assess the offshore wind farms seismic forces. The follow-up recommendations and research directions are given for Taiwan’s offshore wind turbine supporting structures under seismic force considerations.

  16. Lucid dreaming verified by volitional communication during REM sleep. (United States)

    La Berge, S P; Nagel, L E; Dement, W C; Zarcone, V P


    The occurrence of lucid dreaming (dreaming while being conscious that one is dreaming) has been verified for 5 selected subjects who signaled that they knew they were dreaming while continuing to dream during unequivocal REM sleep. The signals consisted of particular dream actions having observable concomitants and were performed in accordance with pre-sleep agreement. The ability of proficient lucid dreamers to signal in this manner makes possible a new approach to dream research--such subjects, while lucid, could carry out diverse dream experiments marking the exact time of particular dream events, allowing derivation of of precise psychophysiological correlations and methodical testing of hypotheses.

  17. Countering Ballot Stuffing and Incorporating Eligibility Verifiability in Helios


    Srinivasan, S.; Culnane, C; Heather, J; Schneider, SA; Z. Xia


    Helios is a web-based end-to-end verifiable electronic voting system which has been said to be suitable for low-coercion environments. Although many Internet voting schemes have been proposed in the literature, Helios stands out for its real world relevance. It has been used in a number of elections in university campuses around the world and it has also been used recently by the IACR to elect its board members. It was noted that a dishonest server in Helios can stuff ballots and this seems t...

  18. Verifying Galileo's discoveries: telescope-making at the Collegio Romano (United States)

    Reeves, Eileen; van Helden, Albert

    The Jesuits of the Collegio Romano in Rome, especially the mathematicians Clavius and Grienberger, were very interested in Galilei's discoveries. After they had failed to recognize with telescopes of own construction the celestial phenomena, they expressed serious doubts. But from November 1610 onward, after they had built a better telescope and had obtained from Venice another one in addition, and could verify Galilei's observations, they completely accepted them. Clavius, who stuck to the Ptolemaic system till his death in 1612, even pointed out these facts in his last edition of Sacrobosco's Sphaera. He as well as his conpatres, however, avoided any conclusions with respect to the planetary system.

  19. The Guided System Development Framework: Modeling and Verifying Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming


    . The Guided System Development framework contributes to more secure communication systems by aiding the development of such systems. The framework features a simple modelling language, step-wise refinement from models to implementation, interfaces to security verification tools, and code generation from...... the verified specification. The refinement process carries thus security properties from the model to the implementation. Our approach also supports verification of systems previously developed and deployed. Internally, the reasoning in our framework is based on the Beliefs and Knowledge tool, a verification...

  20. High Voltage Seismic Generator (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin


    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  1. Passive Seismic Imaging (United States)

    Artman, B. W.


    Traditionally, passive seismology connotes the use of earthquake signals from continuously recording receivers. Small time windows around the arrivals of earthquakes are then analyzed in myriad fashion. I will distinguish from this body of work, the notion of passive seismic imaging, which requires no knowledge of the time or characteristics of a source event. Instead, by using the ambient noise in the subsurface with all orders of scattering and thus randomized directionality, passive seismic imaging can produce results analogous to conventional controlled source experiments. Mathematical proof of the concept of passive seismic imaging has been presented in the literature from several foundations. The results reduce to the simple concept of cross-correlating many long recordings within a simultaneously deployed array. This generates panels with the kinematics of a shot-gather from a standard reflection seismic acquisition effort. Results from synthetic data sets show the validity of the method for point diffractor, and layered earth models. Noting the similarity of form of the standard approach to produce shot-gathers with the imaging condition of shot-profile migration, I then show that migrating the raw passive seismic data without the correlation step produces the the correct image. The synthetic data from above is used to demonstrate the technique. By comparison, this image is of better quality, and demands less compute time, than migrating the data having been cross-correlated first. Finally, both techniques are used to process a 2x2 meter, 72-channel array recorded on the beach sand of Monterey Bay, California. Approximately one meter below the sand, a six inch diameter plastic pipe was buried to serve as a target.

  2. Seismic analysis of large pools

    Energy Technology Data Exchange (ETDEWEB)

    Dong, R.G.; Tokarz, F.J.


    Large pools for storing spent, nuclear fuel elements are being proposed to augment present storage capacity. To preserve the ability to isolate portions of these pools, a modularization requirement appears desirable. The purpose of this project was to investigate the effects of modularization on earthquake resistance and to assess the adequacy of current design methods for seismic loads. After determining probable representative pool geometries, three rectangular pool configurations, all 240 x 16 ft and 40 ft deep, were examined. One was unmodularized; two were modularized into 80 x 40 ft cells in one case and 80 x 80 ft cells in the other. Both embedded and above-ground installations for a hard site and embedded installations for an intermediate hard site were studied. It was found that modularization was unfavorable in terms of reducing the total structural load attributable to dynamic effects, principally because one or more cells could be left unfilled. The walls of unfilled cells would be subjected to significantly higher loads than the walls of a filled, unmodularized pool. Generally, embedded installations were preferable to above-ground installations, and the hard site was superior to the intermediate hard site. It was determined that Housner's theory was adequate for calculating hydrodynamic effects on spent fuel storage pools. Current design methods for seismic loads were found to be satisfactory when results from these methods were compared with those from LUSH analyses. As a design method for dynamic soil pressure, we found the Mononobe-Okabe theory, coupled with correction factors as suggested by Seed, to be acceptable. The factors we recommend for spent fuel storage pools are tabulated.

  3. Experimental seismic test of fluid coupled co-axial cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M. L.; Brown, S. J.; Lestingi, J. F.


    The dynamic response of fluid coupled coaxial cylindrical shells is of interest to the nuclear industry with respect to the seismic design of the reactor vessel and thermal liner. The experiments described present a series of tests which investigate the effect of the annular clearance between the cylinders (gap) on natural frequency, damping, and seismic response of both the inner and outer cylinders. The seismic input is a time history base load to the flexible fluid filled coaxial cylinders. The outer cylinder is elastically supported at both ends while the inner cylinder is supported only at the base (lower) end.

  4. Seismic Barrier Protection of Critical Infrastructure (United States)

    Haupt, R.; Liberman, V.; Rothschild, M.


    Each year, on average a major magnitude-8 earthquake strikes somewhere in the world. In addition, 10,000 earthquake related deaths occur annually, where collapsing buildings claim by far most lives. Moreover, in recent events, industry activity of oil extraction and wastewater reinjection are suspect to cause earthquake swarms that threaten high-value oil pipeline networks, U.S. oil storage reserves, and civilian homes. Earthquake engineering building structural designs and materials have evolved over many years to minimize the destructive effects of seismic surface waves. However, even under the best engineering practices, significant damage and numbers of fatalities can still occur. In this effort, we present a concept and approach to redirect and attenuate the ground motion amplitudes of earthquake surface waves by implementing an engineered subsurface seismic barrier. The barrier is comprised of a borehole array complex that impedes and diverts destructive surface waves (typically 2-10 km wavelengths). Computational 2D and 3D seismic wave propagation models developed at MIT Lincoln Laboratory suggest that the borehole array arrangement is critical to the redirection and self-interference reduction of broadband hazardous seismic waves in the vicinity of the structure to protect. For validity, the computational models are compared with data obtained from large bench-scale physical models that contain scaled borehole arrays and trenches. Small contact shakers generate elastic waves in solid media, while contact tri-axial accelerometer arrays measure the resultant wave fields. Field tests are presently being conducted to examine the seismic power reduction across a subsurface borehole array generated by controlled, far-field seismic sources. The sources include a weight drop and oriented seismic vibrational sources that generate low frequency surface and body waves. The pre-borehole condition at the site is measured first with a tri-axial geophone arrangement. The

  5. Results of the investigation on validity of Japanese seismic design guidelines of nuclear facilities, based on the 1995 Hyogoken-Nanbu Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Makoto [Keio Univ., Fujisawa, Kanagawa (Japan). Fac. of Environment and Information Engineering


    This paper describes the reviewed results and main discussions on some items thought to be problems in the `Examination Guide for Aseismatic Design of the Nuclear Power Reactor Facilities` of Japan, based on knowledge from the 1995 Hyogoken-Nanbu Earthquake, and the conclusion that validity of the Guideline was confirmed. (J.P.N.)

  6. Network Optimization for Induced Seismicity Monitoring in Urban Areas (United States)

    Kraft, T.; Husen, S.; Wiemer, S.


    With the global challenge to satisfy an increasing demand for energy, geological energy technologies receive growing attention and have been initiated in or close to urban areas in the past several years. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental

  7. Verifiable Rational Secret Sharing Scheme in Mobile Networks

    Directory of Open Access Journals (Sweden)

    En Zhang


    Full Text Available With the development of mobile network, lots of people now have access to mobile phones and the mobile networks give users ubiquitous connectivity. However, smart phones and tablets are poor in computational resources such as memory size, processor speed, and disk capacity. So far, all existing rational secret sharing schemes cannot be suitable for mobile networks. In this paper, we propose a verifiable rational secret sharing scheme in mobile networks. The scheme provides a noninteractively verifiable proof for the correctness of participants’ share and handshake protocol is not necessary; there is no need for certificate generation, propagation, and storage in the scheme, which is more suitable for devices with limited size and processing power; in the scheme, every participant uses her encryption on number of each round as the secret share and the dealer does not have to distribute any secret share; every participant cannot gain more by deviating the protocol, so rational participant has an incentive to abide by the protocol; finally, every participant can obtain the secret fairly (means that either everyone receives the secret, or else no one does in mobile networks. The scheme is coalition-resilient and the security of our scheme relies on a computational assumption.

  8. Applications of vertical steel pipe dampers for seismic response reduction of steel moment frames

    Directory of Open Access Journals (Sweden)

    Utomo Junaedi


    Full Text Available A newly developed vertical steel pipe damper is introduced to improve the seismic performance of steel moment frames. The damper exhibits large lateral stiffness and excellent capability to dissipate energy due to earthquakes. It provides a reliable, compact, inexpensive, and replaceable damper. Improved performance of the structure is verified analitically using a four-story steel moment frame equipped with steel pipe dampers. Vertical steel pipe dampers are placed between any two points where large relative motion exists during earthquake excitation. A nonlinear dynamic analysis of the structure using PERFORM-3D software demonstrated the significant benefit of equipping the structure with steel pipe dampers. All structural components, except the steel pipe dampers, remain elastic during earthquake excitation. Structures properly designed with vertical steel pipe dampers will only require minimum post-earthquake inspection and limited damage. Some practical issues associated with the application of vertical steel pipe dampers to building structure for seismic response reduction are presented in this paper.

  9. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu


    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  10. RSEIS and RFOC: Seismic Analysis in R (United States)

    Lees, J. M.


    Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.

  11. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing. (United States)

    Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang


    With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.

  12. Monitoring temporal seismic velocity fluctuations in the interiors of volcanoes on Saba and St. Eustatius using ambient seismic noise analysis (United States)

    Sleeman, Reinoud; Vossen, Caron


    The volcanoes on Saba (Mt. Scenery) and St. Eustatius (The Quill) in the Caribbean Netherlands are stratovolcanoes with moderate to high volcanic hazard. Neither volcano has had a recent eruption (1640 AD Saba, 400 AD St. Eustatius) but their structure and composition resemble other dormant and active volcanoes of the Lesser Antilles. Both The Quill and Mt. Scenery show clear evidence of past pyroclastic flow activity. The time interval between eruptions of Lesser Antilles volcanoes is estimated between tens and several thousands of years. Since 2006 the Royal Netherlands Meteorological Institute (KNMI) is building up a seismic broadband network on both volcanoes, comprising one seismometer per island in 2006 and four since 2015, to monitor in real time the (a) seismic activity and (b) temporal seismic velocity fluctuations in the interiors of the volcanoes by the application of passive interferometry on the continuous seismic recordings. We present recent results of measurements of these temporal changes within the volcanoes on Saba and St. Eustatius based on cross-station correlations and cross-component correlations (using MSNoise), using up to 10 years of data. We also conducted synthetic experiments to investigate the sensitivity of the technique to verify our results. The objective is to apply this technique to real-time data recorded at the volcanoes and to build a system to provide the earliest possible warning of significant seismic velocity changes to decision makers. Saba counts about 1900 inhabitants, St. Eustatius about 3800.

  13. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N.G.; Landberg, L.; Rathmann, O.; Nielsen, M.N. [Risoe National Lab., Roskilde (Denmark); Nielsen, P. [Energy and Environmental Data, Aalberg (Denmark)


    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  14. Leveraging Parallel Data Processing Frameworks with Verified Lifting

    Directory of Open Access Journals (Sweden)

    Maaz Bin Safeer Ahmad


    Full Text Available Many parallel data frameworks have been proposed in recent years that let sequential programs access parallel processing. To capitalize on the benefits of such frameworks, existing code must often be rewritten to the domain-specific languages that each framework supports. This rewriting–tedious and error-prone–also requires developers to choose the framework that best optimizes performance given a specific workload. This paper describes Casper, a novel compiler that automatically retargets sequential Java code for execution on Hadoop, a parallel data processing framework that implements the MapReduce paradigm. Given a sequential code fragment, Casper uses verified lifting to infer a high-level summary expressed in our program specification language that is then compiled for execution on Hadoop. We demonstrate that Casper automatically translates Java benchmarks into Hadoop. The translated results execute on average 3.3x faster than the sequential implementations and scale better, as well, to larger datasets.

  15. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome

    DEFF Research Database (Denmark)

    Husu, E; Hove, Hd; Farholt, Stense


    Husu E, Hove HD, Farholt S, Bille M, Tranebjaerg L, Vogel I, Kreiborg S. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome. CHARGE (coloboma of the eye, heart defects, choanal atresia, retarded growth and development, genital hypoplasia and ear anomalies and/or hearing loss......) syndrome is a rare genetic, multiple-malformation syndrome. About 80% of patients with a clinical diagnose, have a mutation or a deletion in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7). Genotype-phenotype correlation is only partly known. In this nationwide study, phenotypic...... problems (12/15) were other frequent cranial nerve dysfunctions. Three-dimensional reconstructions of MRI scans showed temporal bone abnormalities in >85%. CHARGE syndrome present a broad phenotypic spectrum, although some clinical features are more frequently occurring than others. Here, we suggest...


    Directory of Open Access Journals (Sweden)

    Michaela Blaško


    Full Text Available The convergence means the process of balancing disparities in chosen indicators of homogeneous economic groups. β-convergence and is based on the assumption, where less developed economy grows faster than advanced ones, so GDP per capita has higher speed in less developed economy. In this article is verified β convergence based on dependency between the growth of real GDP per capita and the initial level of real GDP per capita (in PPP and by modifications of this relationship by using of Least Squares Method for 9 countries of South East Asia in different samples since 2000 till 2015. For completely explanation of dependency and calculation of consistent, minimal estimator are used dummies and created a structural parameter, which eliminate shocks and possible disparities between chosen countries. Based on reached results was proved convergence just in sample since 2004 till 2008 between chosen nine countries of South East Countries of Asia.

  17. How to Verify and Manage the Translational Plagiarism? (United States)

    Wiwanitkit, Viroj


    The use of Google translator as a tool for determining translational plagiarism is a big challenge. As noted, plagiarism of the original papers written in Macedonian and translated into other languages can be verified after computerised translation in other languages. Attempts to screen the translational plagiarism should be supported. The use of Google Translate tool might be helpful. Special focus should be on any non-English reference that might be the source of plagiarised material and non-English article that might translate from an original English article, which cannot be detected by simple plagiarism screening tool. It is a hard job for any journal to detect the complex translational plagiarism but the harder job might be how to effectively manage the case. PMID:27703588

  18. Developing an Approach for Analyzing and Verifying System Communication (United States)

    Stratton, William C.; Lindvall, Mikael; Ackermann, Chris; Sibol, Deane E.; Godfrey, Sally


    This slide presentation reviews a project for developing an approach for analyzing and verifying the inter system communications. The motivation for the study was that software systems in the aerospace domain are inherently complex, and operate under tight constraints for resources, so that systems of systems must communicate with each other to fulfill the tasks. The systems of systems requires reliable communications. The technical approach was to develop a system, DynSAVE, that detects communication problems among the systems. The project enhanced the proven Software Architecture Visualization and Evaluation (SAVE) tool to create Dynamic SAVE (DynSAVE). The approach monitors and records low level network traffic, converting low level traffic into meaningful messages, and displays the messages in a way the issues can be detected.

  19. How to Verify and Manage the Translational Plagiarism?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit


    Full Text Available The use of Google translator as a tool for determining translational plagiarism is a big challenge. As noted, plagiarism of the original papers written in Macedonian and translated into other languages can be verified after computerised translation in other languages. Attempts to screen the translational plagiarism should be supported. The use of Google Translate tool might be helpful. Special focus should be on any non-English reference that might be the source of plagiarised material and non-English article that might translate from an original English article, which cannot be detected by simple plagiarism screening tool. It is a hard job for any journal to detect the complex translational plagiarism but the harder job might be how to effectively manage the case.

  20. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis


    .e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems......Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, the physical process evolves continuously with respect to time, and the discrete controller monitors and controls the physical process in a correct way such that the whole system satisfies the given safety requirements. The safety of hybrid systems depends heavily on the control from the controllers. However...

  1. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    NARCIS (Netherlands)

    Habets, C.J.W.; Peters, D.J.; de Gijt, J.G.; Metrikine, A.; Jonkman, S.N.


    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to

  2. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data (United States)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group


    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  3. Gasgeochemical indicators seismic activity (United States)

    Obzhirov, Anatoly


    Laboratory of Gasgeochemistry of POI FEB RAS is studying gas distribution in lithosphere, hydrosphere and atmosphere from 1977 years. Method consist is sampling from its in expedition, take gas from samples of sediment, water and atmosphere to use method degassing and analysis gas in chromatograph, to measure CH4, C2-C4, O2, N2, H2, He and some time Rn. Gas is using like indicators to search oil-gas deposits, gas hydrate, mapping zones faults, to determine seismic activity, to calculate green house gas (CH4, CO2). The next geological, geophysics and hydro-acoustics characteristics assist which help to explain to form methane bubbles fluxes and gas hydrate in the Okhotsk Sea. The methane fluxes are mostly located in the zones faults and it increase in period seismic activity.

  4. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi


    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  5. Using Safety Margins for a German Seismic PRA

    Directory of Open Access Journals (Sweden)

    Ralf Obenland


    Full Text Available The German regulatory guide demands the performance of a probabilistic risk assessment (PRA including external events. In 2005, a new methodology guideline (Methodenband based on the current state of science and technology was released to provide the analyst with a set of suitable tools and methodologies for the analysis of all PRA events. In the case of earthquake, a multilevel verification procedure is suggested. The verification procedure which has to be used depends on the seismic risk at the site of the plant. For sites in areas with low seismic activity no analysis or only a reduced analysis is proposed. This paper describes the evaluation of safety margins of buildings, structures, components and systems for plants at sites with high seismic risk, corresponding to the German methodology guideline. The seismic PRA results in an estimation of core damage frequencies caused by earthquakes. Additionally, the described approach can also be adapted for the usage in a reduced analysis for sites with lower earthquake risks. Westinghouse has wide experience in performing seismic PRA for both BWR as well as PWR plants. Westinghouse uses the documented set of seismic design analyses dating from construction phase and from later updates, if done, as a basis for a seismic PRA, which means that usually no costly new structural mechanics calculations have to be performed.

  6. Results from the latest SN-4 multi-parametric benthic observatory experiment (MARsite EU project) in the Gulf of Izmit, Turkey: oceanographic, chemical and seismic monitoring (United States)

    Embriaco, Davide; Marinaro, Giuditta; Frugoni, Francesco; Giovanetti, Gabriele; Monna, Stephen; Etiope, Giuseppe; Gasperini, Luca; Çağatay, Namık; Favali, Paolo


    An autonomous and long-term multiparametric benthic observatory (SN-4) was designed to study gas seepage and seismic energy release along the submerged segment of the North Anatolian Fault (NAF). Episodic gas seepage occurs at the seafloor in the Gulf of Izmit (Sea of Marmara, NW Turkey) along this submerged segment of the NAF, which ruptured during the 1999 Mw7.4 Izmit earthquake. The SN-4 observatory already operated in the Gulf of Izmit at the western end of the 1999 Izmit earthquake rupture for about one-year at 166 m water depth during the 2009-2010 experiment (EGU2014-13412-1, EGU General Assembly 2014). SN-4 was re-deployed in the same site for a new long term mission (September 2013 - April 2014) in the framework of MARsite (New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, ) EC project, which aims at evaluating seismic risk and managing of long-term monitoring activities in the Marmara Sea. A main scientific objective of the SN-4 experiment is to investigate the possible correlations between seafloor methane seepage and release of seismic energy. We used the same site of the 2009-2010 campaign to verify both the occurrence of previously observed phenomena and the reliability of results obtained in the previous experiment (Embriaco et al., 2014, doi:10.1093/gji/ggt436). In particular, we are interested in the detection of gas release at the seafloor, in the role played by oceanographic phenomena in this detection, and in the association of gas and seismic energy release. The scientific payload included, among other instruments, a three-component broad-band seismometer, and gas and oceanographic sensors. We present a technical description of the observatory, including the data acquisition and control system, results from the preliminary analysis of this new multidisciplinary data set, and a comparison with the previous experiment.

  7. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara


    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  8. A proposal for seismic evaluation index of mid-rise existing RC buildings in Afghanistan (United States)

    Naqi, Ahmad; Saito, Taiki


    Mid-rise RC buildings gradually rise in Kabul and entire Afghanistan since 2001 due to rapid increase of population. To protect the safety of resident, Afghan Structure Code was issued in 2012. But the building constructed before 2012 failed to conform the code requirements. In Japan, new sets of rules and law for seismic design of buildings had been issued in 1981 and severe earthquake damage was disclosed for the buildings designed before 1981. Hence, the Standard for Seismic Evaluation of RC Building published in 1977 has been widely used in Japan to evaluate the seismic capacity of existing buildings designed before 1981. Currently similar problem existed in Afghanistan, therefore, this research examined the seismic capacity of six RC buildings which were built before 2012 in Kabul by applying the seismic screening procedure presented by Japanese standard. Among three screening procedures with different capability, the less detailed screening procedure, the first level of screening, is applied. The study founds an average seismic index (IS-average=0.21) of target buildings. Then, the results were compared with those of more accurate seismic evaluation procedures of Capacity Spectrum Method (CSM) and Time History Analysis (THA). The results for CSM and THA show poor seismic performance of target buildings not able to satisfy the safety design limit (1/100) of the maximum story drift. The target buildings are then improved by installing RC shear walls. The seismic indices of these retrofitted buildings were recalculated and the maximum story drifts were analyzed by CSM and THA. The seismic indices and CSM and THA results are compared and found that building with seismic index larger than (IS-average =0.4) are able to satisfy the safety design limit. Finally, to screen and minimize the earthquake damage over the existing buildings, the judgement seismic index (IS-Judgment=0.5) for the first level of screening is proposed.

  9. Seismic survey considerations in glaciology


    Hofstede, Coen


    Seismic surveying of glaciers give both englacial and subglacial physical information and is as such an important tool in glaciology. In comparison with the collection of radar data, mainly performed from airborne platforms, seismic data acquisition is a time consuming process practiced in small survey areas and used less frequent. Over the last six years, AWI developed an effective strategy to collect seismic data on glaciers, ice sheets and ice shelves, at a high production rate with a smal...

  10. Perseids permanent seismic downhole system

    Energy Technology Data Exchange (ETDEWEB)



    PERSEIDS{sup TM} describes a permanent seismic downhole system. In that system, geo-phones are either cemented or mounted on tubing and coupled to the casing through a bow-string. Perseids{sup TM} is ideal for both passive and active seismic monitoring, to visualize bypass areas, gas cap and aquifer expansion. It can be combined with {mu}SICS{sup TM} software to record, process and interpret micro-seismic activity.

  11. A PC based seismic data transcription system

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sang Yong; Chung, Bu Heung; Jang, Seong Hyung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    Old seismic data recorded on magnetic tapes is often difficult to read because of the tape sticking problem known as the `sticky syndrome`. It has to be transcribed to other suitable media using dedicated multiple systems during the whole project years. The first system requirement is the capability of reading gapless magnetic tape, which is peculiar to the old seismic data tapes. The second requirement would be the availability of storage devices with compact and huge capacity. The system must be cheap enough compared to the total cost of the data being transcribed. We introduce a PC based seismic data transcribing system. The system is equipped with an tape drive which can handle 800, 1600, 3200, and 6250 BPI densities. Well known storage devices such as 8mm Exabyte, 4mm DDS-2, and the SCSI CD recorder, are selected for the output devices. These output media should provide more durability, compactness, and portability than the original. Linux is chosen for the operating system. Unfortunately, the Linux, like other Unix systems, is subject to the limit in maximum i/o block size. The maximum block size of the SCSI tape driver is fixed to 32 KB, which is far less than the requirements in SEG-A, B, and C seismic tapes. A kernel patch is written to extend such a limit up to 2048 KB. Input and output programs are written to handle the tape data in variable block mode. A unique disk file format is designed to preserve the IBG(inter-block gap) within the disk copy. A utility program is also provided to manipulate the disk copy and to convert to SU(Seismic Unix) compatible SEG-Y file. Of the total two months of the transcription period, we spend most of the time in reading the sticky magnetic tapes. The seismic tapes had to be `baked` to dry out the moisture before reading. It took nine days to burn the all 85 diskettes. Writing two sets of 8mm Exabytes took only one day. It is considered that 8mm Exabyte can be the optimum output media for the main seismic data storage

  12. Mitigating Induced Seismicity Through Active Pressure Management in Numerical Simulations (United States)

    Kroll, K.; Richards-Dinger, K. B.; White, J. A.


    The recent upturn of seismicity rates in the Central and Eastern United States and Canada has been attributed to industrial operations such as waste-water disposal, hydraulic fracturing, and subsurface carbon storage. We couple the 3D, physics-based earthquake simulator, RSQSim, to a reservoir model to investigate the space-time characteristics of earthquakes induced by pore-fluid pressure increases and/or poroelastic stresses during injection. RSQSim employs rate-state friction, which gives rise to spatiotemporal earthquake clustering. The simulator generates long catalogs of seismicity based on stress changes due to fault interaction and external stress perturbations with great computational efficiency, allowing for multiple simulations to systematically explore the parameters that control induced seismicity. These simulations provide physics-based statistical data that may contribute to the formalization of optimal injection operations designed to minimize risk of seismicity at a given industrial site. Industrial operators may modify injection rates as an active seismicity mitigation tool to either reduce the total number of earthquakes or attempt to reduce the likelihood of future large events. To explore the efficacy of this approach, we use RSQSim to explore how sequences of induced earthquakes respond to changes in injection schedule. We simulate induced seismicity on a single optimally oriented fault with fractally distributed initial shear stresses and compare results from models with/without along-strike fault permeability and poroelastic stress changes. We investigate the seismic response to several injection schedules that lie between two end-member scenarios, 1) constant injection at low rates, and 2) periodic injection at high rates. We evaluate the cumulative number of events, total seismic moment release, and the spatio-temporal characteristics of seismicity including the time/location of the next large event after adjusting injection rates

  13. The Algerian Seismic Network: Performance from data quality analysis (United States)

    Yelles, Abdelkarim; Allili, Toufik; Alili, Azouaou


    Seismic monitoring in Algeria has seen a great change after the Boumerdes earthquake of May 21st, 2003. Indeed the installation of a New Digital seismic network (ADSN) upgrade drastically the previous analog telemetry network. During the last four years, the number of stations in operation has greatly increased to 66 stations with 15 Broad Band, 02 Very Broad band, 47 Short period and 21 accelerometers connected in real time using various mode of transmission ( VSAT, ADSL, GSM, ...) and managed by Antelope software. The spatial distribution of these stations covers most of northern Algeria from east to west. Since the operation of the network, significant number of local, regional and tele-seismic events was located by the automatic processing, revised and archived in databases. This new set of data is characterized by the accuracy of the automatic location of local seismicity and the ability to determine its focal mechanisms. Periodically, data recorded including earthquakes, calibration pulse and cultural noise are checked using PSD (Power Spectral Density) analysis to determine the noise level. ADSN Broadband stations data quality is controlled in quasi real time using the "PQLX" software by computing PDFs and PSDs of the recordings. Some other tools and programs allow the monitoring and the maintenance of the entire electronic system for example to check the power state of the system, the mass position of the sensors and the environment conditions (Temperature, Humidity, Air Pressure) inside the vaults. The new design of the network allows management of many aspects of real time seismology: seismic monitoring, rapid determination of earthquake, message alert, moment tensor estimation, seismic source determination, shakemaps calculation, etc. The international standards permit to contribute in regional seismic monitoring and the Mediterranean warning system. The next two years with the acquisition of new seismic equipment to reach 50 new BB stations led to

  14. Flat lens for seismic waves

    CERN Document Server

    Brule, Stephane; Guenneau, Sebastien


    A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.

  15. Seismic hazard estimation of northern Iran using smoothed seismicity (United States)

    Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Cramer, Chris H.


    This article presents a seismic hazard assessment for northern Iran, where a smoothed seismicity approach has been used in combination with an updated seismic catalog and a ground motion prediction equation recently found to yield good fit with data. We evaluate the hazard over a geographical area including the seismic zones of Azerbaijan, the Alborz Mountain Range, and Kopeh-Dagh, as well as parts of other neighboring seismic zones that fall within our region of interest. In the chosen approach, seismic events are not assigned to specific faults but assumed to be potential seismogenic sources distributed within regular grid cells. After performing the corresponding magnitude conversions, we decluster both historical and instrumental seismicity catalogs to obtain earthquake rates based on the number of events within each cell, and smooth the results to account for the uncertainty in the spatial distribution of future earthquakes. Seismicity parameters are computed for each seismic zone separately, and for the entire region of interest as a single uniform seismotectonic region. In the analysis, we consider uncertainties in the ground motion prediction equation, the seismicity parameters, and combine the resulting models using a logic tree. The results are presented in terms of expected peak ground acceleration (PGA) maps and hazard curves at selected locations, considering exceedance probabilities of 2 and 10% in 50 years for rock site conditions. According to our results, the highest levels of hazard are observed west of the North Tabriz and east of the North Alborz faults, where expected PGA values are between about 0.5 and 1 g for 10 and 2% probability of exceedance in 50 years, respectively. We analyze our results in light of similar estimates available in the literature and offer our perspective on the differences observed. We find our results to be helpful in understanding seismic hazard for northern Iran, but recognize that additional efforts are necessary to

  16. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    Energy Technology Data Exchange (ETDEWEB)



    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

  17. Reliability of Mechanical Structures with Considering Seismic Loading

    Directory of Open Access Journals (Sweden)

    Drahomír RYCHECKÝ


    Full Text Available The paper deals with summarization of methods used in seismic response evaluation of mechanical structures. The seismic evaluation of structures is inseparable condition in the design of hazardous facilities such as nuclear power plants. Based on demanded results, different methods can be used. For instance, when the anchorage of the structure is determinative, the equivalent static method (ESM can be advantageously used. To evaluate complex seismic response of a large mechanical structure the ESM is un-sufficient and e.g. for steady-state response of the structure the response spectrum method (RSM can be employed [3]. The RSM combines the response based on known mode shapes. Applying direct time-history (accelerogram is also possibility but time consuming. The paper contains definition of seismic safety factor for determining safety reserve of structures. All methods are applied on a sample example. Obtained results of each method are compared and discussed.

  18. Site characterization of the national seismic network of Italy (United States)

    Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo


    The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.

  19. Numerical test on polystyrene tunnel seismic-isolation material

    Directory of Open Access Journals (Sweden)

    He Jianping


    Full Text Available Stress-strain mechanical properties of polystyrene foam plastic material were tested under different loading conditions. An empirical constitutive model for describing metal materials was proposed for the polystyrene plastic foam. The static and dynamic tests results show that the ductility and watertightness of the polystyrene plastic foam are significantly improved. At the same time, in order to check its seismic-isolation property, the high-performance foam concrete as filling materials of Galongla tunnel in Tibet was simulated by FEM. The simulated results show that the polystyrene plastic foam can remarkably decrease the stress and the plastic zone in final lining, so it can effectively reduce the seismic damage of the tunnel. Considering the seismic-isolation property and low price of polystyrene plastic foam, it is a good reference for the anti-seismic design of tunnels in high intensity zones.

  20. The influence of backfill on seismicity

    CSIR Research Space (South Africa)

    Hemp, DA


    Full Text Available , that the seismicity has been reduced in areas where backfill had been placed. A factor complicating the evaluation of backfill on seismicity is the effect of geological structures on seismicity....

  1. Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

    Directory of Open Access Journals (Sweden)

    S. Bahram Beheshti Aval


    Full Text Available Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

  2. VDVR: verifiable visualization of projection-based data. (United States)

    Zheng, Ziyi; Xu, Wei; Mueller, Klaus


    Practical volume visualization pipelines are never without compromises and errors. A delicate and often-studied component is the interpolation of off-grid samples, where aliasing can lead to misleading artifacts and blurring, potentially hiding fine details of critical importance. The verifiable visualization framework we describe aims to account for these errors directly in the volume generation stage, and we specifically target volumetric data obtained via computed tomography (CT) reconstruction. In this case the raw data are the X-ray projections obtained from the scanner and the volume data generation process is the CT algorithm. Our framework informs the CT reconstruction process of the specific filter intended for interpolation in the subsequent visualization process, and this in turn ensures an accurate interpolation there at a set tolerance. Here, we focus on fast trilinear interpolation in conjunction with an octree-type mixed resolution volume representation without T-junctions. Efficient rendering is achieved by a space-efficient and locality-optimized representation, which can straightforwardly exploit fast fixed-function pipelines on GPUs.

  3. A credit card verifier structure using diffraction and spectroscopy concepts (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana


    We propose and experimentally demonstrate an angle-multiplexing based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we choose to shine one at a time a number of broadband lightsources, each at different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam is diffracted and separated in space. In this way, the number of pixels of each color plane is investigated. Then we apply a feed forward back propagation neural network configuration to separate the counterfeit credit card from the real one. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, a 3-layer neural network, and a notebook computer can identify all 69 counterfeit credit cards from eight real credit cards.

  4. Verifying the Simulation Hypothesis via Infinite Nested Universe Simulacrum Loops (United States)

    Sharma, Vikrant


    The simulation hypothesis proposes that local reality exists as a simulacrum within a hypothetical computer's dimension. More specifically, Bostrom's trilemma proposes that the number of simulations an advanced 'posthuman' civilization could produce makes the proposition very likely. In this paper a hypothetical method to verify the simulation hypothesis is discussed using infinite regression applied to a new type of infinite loop. Assign dimension n to any computer in our present reality, where dimension signifies the hierarchical level in nested simulations our reality exists in. A computer simulating known reality would be dimension (n-1), and likewise a computer simulating an artificial reality, such as a video game, would be dimension (n +1). In this method, among others, four key assumptions are made about the nature of the original computer dimension n. Summations show that regressing such a reality infinitely will create convergence, implying that the verification of whether local reality is a grand simulation is feasible to detect with adequate compute capability. The action of reaching said convergence point halts the simulation of local reality. Sensitivities to the four assumptions and implications are discussed.

  5. Seismic Assessment of Structures in Regions of Low to Moderate Seismicity

    Directory of Open Access Journals (Sweden)

    Wilson J.


    Full Text Available Assessment of structures according to conventional seismic design procedure has been based on trading off strength and ductility (or displacement to provide sufficient energy dissipation capacity to structures. Consequently, structures in regions of high seismicity are designed to undergo large displacements whilst maintaining their lateral strengths in an earthquake. Energy demand from a small to medium earthquake could subside with increasing effective natural periods. Significantly, the amount of drift imposed on the structures could be restrained to an upper limit irrespective of the degradation in strength or stiffness of the lateral load resisting elements. Based on the displacement-controlled behaviour, structures can be deemed seismically safe despite having undergone significant degradation in strength and stiffness, provided that the structures can sustain the maximum drift demand from an earthquake without collapsing. This paper proposes a simple procedure for the assessment of structures in regions of low to moderate seismicity. The proposed procedure will result in significant savings in time and costs particularly when a large number of structures are to be assessed for their potential vulnerability in an earthquake.

  6. Verifying and Validating Proposed Models for FSW Process Optimization (United States)

    Schneider, Judith


    This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms

  7. Performance-based design factors for pile foundations. (United States)


    The seismic design of pile foundations is currently performed in a relatively simple, deterministic manner. This : report describes the development of a performance-based framework to create seismic designs of pile group : foundations that consider a...

  8. Structural seismic upgrading of NPPs in Czech and Slovak republics

    Energy Technology Data Exchange (ETDEWEB)

    David, M. [DAVID Consulting, Engineering and Design Office, Prague (Czech Republic)


    Several Nuclear Power Plants of the VVER type has been constructed during the past years in former Czechoslovak Republic. Some of them has been already put in operation and some of them are under construction. Nuclear Power Plants V1(2 units of VVER 440/230), V2(2 units of VVER 440/213) in Slovak and NPP Dukovany (4 units of VVER 440/213) in Czech republic are in operation. NPP Mochovce (4 units of VVER 440/213) in Slovak and NPP Temelin (4 units reduced now to 2 units VVER 1000) have been already almost completed, but still under construction. All above cited NPPs have not been either explicitly designed against earthquake or the design against earthquake or its input data must be upgraded to be compatible with present requirements. The upgrading of seismic input as well the seismic upgrading of all structures and technological equipments for so many NPPs has involved a lot of comprehensive work in Czech as well as in Slovak republics. The upgrading cannot be completed in a short time and as a rule the seismic upgrading has been usually performed in several steps, beginning with the most important arrangements against seismic hazard. The basic principles and requirements for seismic upgrading has been defined in accordance with the international and particularly with the IAEA recommendations. About the requirements for seismic upgrading of NPPs in Czech and Slovak republics will be reported in other contribution. This contribution is dealing with the problems of seismic upgrading of NNPs civil engineering structures. The aim of this contribution is to point out some specific problems connected firstly with very complicated concept of Versa structures and secondly with the difficult task to increase the structural capacity to the required seismic level. (J.P.N.)

  9. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang


    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  10. A future for drifting seismic networks (United States)

    Simons, F. J.; Nolet, G.; Babcock, J.


    One-dimensional, radial Earth models are sufficiently well constrained to accurately locate earthquakes and calculate the paths followed by seismic rays. The differences between observations and theoretical predictions of seismograms in such Earth models can be used to reconstruct the three-dimensional wave speed distribution in the regions sampled by the seismic waves, by the technique of seismic tomography. Caused by thermal, compositional, and textural variations, wave speed anomalies remain the premier data source to fully understand the structure and evolution of our planet, from the scale of mantle convection and the mechanisms of heat transfer from core to surface to the international between the deep Earth and surface processes such as plate motion and crustal deformation. Unequal geographical data coverage continues to fundamentally limit the quality of tomographic reconstructions of seismic wave speeds in the interior of the Earth. Only at great cost can geophysicists overcome the difficulties of placing seismographs on the two thirds of the Earth's surface that is covered by oceans. The lack of spatial data coverage strongly hampers the determination of the structure of the Earth in the uncovered regions: all 3-D Earth models are marked by blank spots in areas, distributed throughout the Earth, where little or no information can be obtained. As a possible solution to gaining equal geographic data coverage, we have developed MERMAID, a prototype mobile receiver that could provide an easy, cost-effective way to collect seismic data in the ocean. It is a modification of the robotic floating instruments designed and used by oceanographers. Like them, MERMAID spends its life at depth but is capable of surfacing using a pump and bladder. We have equipped it with a hydrophone to record water pressure variations induced by compressional (P) waves. Untethered and passively drifting, such a floating seismometer will surface upon detection of a "useful" seismic

  11. Mine-induced seismicity at East-Rand proprietary mines

    CSIR Research Space (South Africa)

    Milev, AM


    Full Text Available Mining results in seismic activity of varying intensity, from small micro seismic events to larger seismic events, often associated with significant seismic induced damages. This work deals with the understanding of the present seismicity...

  12. Scenarios for exercising technical approaches to verified nuclear reductions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, James [Los Alamos National Laboratory


    Presidents Obama and Medvedev in April 2009 committed to a continuing process of step-by-step nuclear arms reductions beyond the new START treaty that was signed April 8, 2010 and to the eventual goal of a world free of nuclear weapons. In addition, the US Nuclear Posture review released April 6, 2010 commits the US to initiate a comprehensive national research and development program to support continued progress toward a world free of nuclear weapons, including expanded work on verification technologies and the development of transparency measures. It is impossible to predict the specific directions that US-RU nuclear arms reductions will take over the 5-10 years. Additional bilateral treaties could be reached requiring effective verification as indicated by statements made by the Obama administration. There could also be transparency agreements or other initiatives (unilateral, bilateral or multilateral) that require monitoring with a standard of verification lower than formal arms control, but still needing to establish confidence to domestic, bilateral and multilateral audiences that declared actions are implemented. The US Nuclear Posture Review and other statements give some indication of the kinds of actions and declarations that may need to be confirmed in a bilateral or multilateral setting. Several new elements of the nuclear arsenals could be directly limited. For example, it is likely that both strategic and nonstrategic nuclear warheads (deployed and in storage), warhead components, and aggregate stocks of such items could be accountable under a future treaty or transparency agreement. In addition, new initiatives or agreements may require the verified dismantlement of a certain number of nuclear warheads over a specified time period. Eventually procedures for confirming the elimination of nuclear warheads, components and fissile materials from military stocks will need to be established. This paper is intended to provide useful background information

  13. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava


    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  14. Automatic Seismic Signal Processing (United States)


    81-04 4 February 1982 AUTOMATIC SEISMIC SIGNAL PROCESSING FINAL TECHNICAL REPORT i j Contract F08606-80.C-0021" PREPARED BY ILKKA NOPONEN, ROBERT SAX...PERFORMING ORG. REPORT NUMBER SAS-FR-81-04 7. AUTHOR(e) a. CONTRACT OR GRANT NUMBER(e) F08606- 80-C-0021 ILKKA NOPONEN, ROBERT SAX AND F 6 C0 STEVEN...observed, as also Swindell and Snell (1977), that the distribu- tion of x was slightly skewed, we used the median of x instead of aver- age of x for U(x

  15. Seismic risk perception test (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro


    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  16. Seismic hazard from induced seismicity: effect of time-dependent hazard variables (United States)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.


    of the peak-ground motion parameters (e.g., magnitude, geometrical spreading and anelastic attenuation). Moreover, we consider both the inter-event and intra-event components of the standard deviation. For comparison, we use the same dataset analyzed by Convertito et al. (2012), and for successive time windows we perform the regression analysis to infer the time-dependent coefficients of the GMPE. After having tested the statistical significance of the new coefficients and having verified a reduction in the total standard deviation, we introduce the new model in the hazard integral. Hazard maps and site-specific analyses in terms of a uniform hazard spectrum are used to compare the new results with those obtained in our previous study to investigate which coefficients and which components of the total standard deviation do really matter for refining seismic hazard estimates for induced seismicity. Convertito et al. (2012). From Induced Seismicity to Direct Time-Dependent Seismic Hazard, BSSA 102(6), doi:10.1785/0120120036.

  17. Seismic Performance of Multi-Span RC Railway Bridges

    DEFF Research Database (Denmark)

    Georgakis, Christos; Barrau, Xavier


    Presently, there is no clear method for determining the optimal railway bridge design for a particular ground type and expected seismic intensity. Four main types of RC bridge dominate the current multi-span railway bridge design trends – the Simply Supported Beam, Continuous Box-Girder (CBG), CB...

  18. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  19. 10 CFR Appendix B to Part 52 - Design Certification Rule for the System 80+ Design (United States)


    ...) There is a substantial increase in the probability of an ex-vessel severe accident such that a.../AISC-690. (3) Motor-operated valves. (4) Equipment seismic qualification methods. (5) Piping design... and controls environmental qualification. (10) Seismic design criteria for non-seismic Category I...

  20. Seismic hazard maps of Italy

    Directory of Open Access Journals (Sweden)

    A. Rebez


    Full Text Available The Italian "Gruppo Nazionale per la Difesa dai Terremoti" has conducted a project in recent years for assessing seismic hazard in the national territory to be used as a basis for the revision of the current seismic zonation. In this project the data on the major earthquakes were reassessed and a new earthquake data file prepared. Definition of a seismotectonic model for the whole territory, based on a structural-kinematic analysis of Italy and the surrounding regions, led to the definition of 80 seismogenic zones, for which the geological and seismic characteristics were determined. Horizontal PGA and macroseismic intensity were used as seismicity parameters in the application of the Cornell probabilistic approach. The main aspects of the seismic hazard assessment are here described and the results obtained are presented and discussed. The maps prepared show the various aspects of seismic hazard which need to be considered for a global view of the problem. In particular, those with a 475-year return period, in agreement with the specifications of the new seismic Eurocode EC8, can be considered basic products for a revision of the present national seismic zonation.

  1. Seismic attenuation imaging with causality

    NARCIS (Netherlands)

    Hak, B.; Mulder, W.A.


    Seismic data enable imaging of the Earth, not only of velocity and density but also of attenuation contrasts. Unfortunately, the Born approximation of the constant-density visco-acoustic wave equation, which can serve as a forward modelling operator related to seismic migration, exhibits an

  2. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    encompassing Bangalore Mahanagara. Palike (BMP) has been chosen as the study area. Seismic hazard analysis and microzonation of. Bangalore are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. Second part deals with site ...

  3. Seismic imaging with incoherent wavefields

    NARCIS (Netherlands)

    Berkhout, A.J.; Verschuur, D.J.; Blacquière, G.


    In blended seismic acquisition incoherent source arrays are used to generate the seismic response. The blended shot records can be directly fed into a shot record migration scheme with a more advanced imaging condition. Blended shot records can also be simulated in the processing phase. In the

  4. Seismic isolation of nuclear power plants using elastomeric bearings (United States)

    Kumar, Manish

    Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no

  5. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias


    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  6. Development of the Multi-Level Seismic Receiver (MLSR)

    Energy Technology Data Exchange (ETDEWEB)

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.


    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  7. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  8. Evaluation of Seismic Behaviors of Partially Deteriorated Reinforced Concrete Circular Columns Retrofitted with CFRP

    Directory of Open Access Journals (Sweden)

    Dongxu Hou


    Full Text Available Deficiency of the concrete strength in some regions of reinforced concrete (RC columns in practice may weaken the seismic behaviors of columns. Its effects on RC columns should be well understood. This paper aims to investigate the influences of deteriorated segment on the seismic behaviors of partially deteriorated RC columns and attempts to recover the seismic behaviors of partially deteriorated columns with Carbon Fiber Reinforced Polymer (CFRP composites. A finite element analysis was carried out to simulate the seismic behaviors of CFRP-confined partially deteriorated RC columns. The numerical results were verified by the laboratory tests of six specimens. Based on the finite element results, the failure location of partially deteriorated columns in an earthquake was predicted, and the effectiveness of CFRP retrofitted on partially deteriorated columns was evaluated.

  9. Comparative morphological analysis of the diurnal rhythms in geomagnetic and seismic activity (United States)

    Desherevskii, A. V.; Sidorin, A. Ya.


    To verify the hypothesis of the possible influence of geomagnetic variations on seismicity, the structures of the diurnal rhythms of seismicity in Garm research area, Tajikistan, and geomagnetic activity are investigated in detail using the regional index of geomagnetic activity at the Tashkent Astronomical Observatory. We compare (1) the average shape of the diurnal variations and its seasonal changes; (2) temporal changes in special coefficients of the amplitude variations and the diurnal variation stability. It is revealed that the dynamics of the mentioned parameters differ considerably between the geomagnetic and seismic activities. We conclude that the results obtained on the basis of the used data and processing techniques do not confirm the hypothesis of possible influence of weak geomagnetic variations on background seismicity in the Garm region, Tajikistan.

  10. Seismic event classification system (United States)

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William


    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  11. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick


    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  12. Specifying and verifying requirements of real-time systems

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Rischel, Hans; Hansen, Kirsten Mark


    , a real-time interval logic, where predicates define durations of states. Requirements define safety and functionality constraints on the system or a component. A top-level design is given by a control law: a predicate that defines an automation controlling the transition between phases of operation. Each...

  13. Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, A.; Koploy, M.


    In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing.

  14. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.


    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  15. The Seismic Design of Waterfront Retaining Structures (United States)


    34Analysis of the Lower San Fernando Dam Failure Under Earthquake," Dam Engineering, Vol. II, Issue 4, pp. 307-322. 256 APPENDIX A: COMPUTATION OF THE DYNAMIC...CODE 441, PORTSMOUTH, Nil; CODE 903, LONG BEACH, CA; MARE IS, CODE 106.3, VALLEJO , CA; MARE IS, CODE 401, VALLEJO , CA; MARE IS, CODE 421, VALILEJO, CA...MARE IS, CODE 440, VALLEJO , CA; MARE IS, CODE 457, VAIIEJIO, CA; MARE IS, PWO, VALLEJO , CA; TECH LIB, PORTSMOUTH, NIl NAVSTA / CODE N4214, MAYPORT, FT

  16. The Seismic Design of Waterfront Retaining Structures (United States)


    h*ho Hf a. Surcharge 81’ ’ S2- I • 040. K A[ Vih . V,., H - H, ) • • - V,,.H,] , b. Effective horizontal earth pressure - B= 0 degrees Figure...distance between the anchor and the sheet pile. Tuo anchored bulkheads were in place in the harbor of San Antnnio, Chile , during the very large earthquake...Engineering, Santiago, Chile . Provost, J. 1981 (Jan). "DYNAFLOW - A Nonlinear Transient Finite Element Analysis Program, Report No. 81-SM-l, Princeton

  17. Use of experience data for seismic evaluations at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.C. [Lawrence Livermore National Lab., CA (United States); Kimball, J.K.; Guzy, D.J.; Hill, J.R. [USDOE, Washington, DC (United States)


    Seismic evaluations of essential systems and components at Department of Energy (DOE) facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application of nuclear power plants and DOE facilities, and the program underway for the seismic verification task ahead for DOE.

  18. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)


    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  19. Seismic investigations for high resolution exploration ahead and around boreholes (United States)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias


    interference the signals of each vibrator must be independently controlled in amplitude and phase. This allows a systematic exploration of areas around the borehole and also in direction ahead of the borehole. Measurements of the developed borehole devices with this seismic method show that structures like nearby galleries of the mine or zones of cracks can be explored depending on the issued direction. Imaging with a three-component Fresnel-Volume-Migration shows clearly the effect of the radiation pattern to the distribution of the seismic wave energy. The migration of the reflected wave field reveals an amplification of the reflected amplitudes at the galleries corresponding to the radiation pattern of the seismic borehole sources. A second borehole device was developed for usage in boreholes up to 2 km depth. After completion first measurements are planned to verify the exploration method for a directional investigation in boreholes. The measurements will take place in different geologies of hard and soft rocks and also depths. This project is funded by the German Federal Environment Ministry.

  20. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems (United States)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.


    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become

  1. Seismic Hazard Assessment for the Tianshui Urban Area, Gansu Province, China

    Directory of Open Access Journals (Sweden)

    Zhenming Wang


    Full Text Available A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity, and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX for seismic design of critical facility in Tianshui.

  2. IDMS: A System to Verify Component Interface Completeness and Compatibility for Product Integration (United States)

    Areeprayolkij, Wantana; Limpiyakorn, Yachai; Gansawat, Duangrat

    The growing approach of Component-Based software Development has had a great impact on today system architectural design. However, the design of subsystems that lacks interoperability and reusability can cause problems during product integration. At worst, this may result in project failure. In literature, it is suggested that the verification of interface descriptions and management of interface changes are factors essential to the success of product integration process. This paper thus presents an automation approach to facilitate reviewing component interfaces for completeness and compatibility. The Interface Descriptions Management System (IDMS) has been implemented to ease and fasten the interface review activities using UML component diagrams as input. The method of verifying interface compatibility is accomplished by traversing the component dependency graph called Component Compatibility Graph (CCG). CCG is the visualization of which each node represents a component, and each edge represents communications between associated components. Three case studies were studied to subjectively evaluate the correctness and usefulness of IDMS.

  3. Seismic Performance Evaluation of Multistory Reinforced Concrete Moment Resisting Frame Structure with Shear Walls

    Directory of Open Access Journals (Sweden)

    Junwon Seo


    Full Text Available This paper is intended to evaluate the seismic performance of a twelve-story reinforced concrete moment-resisting frame structure with shear walls using 3D finite element models according to such seismic design regulations as Federal Emergency Management Agency (FEMA guideline and seismic building codes including Los Angeles Tall Building Structural Design Council (LATBSDC code. The structure is located in Seismic Zone 4, considered the highest-seismic-risk classification established by the U.S. Geological Survey. 3D finite element model was created in commercially available finite element software. As part of the seismic performance evaluation, two standard approaches for the structure seismic analysis were used; response spectrum analysis and nonlinear time-history analysis. Both approaches were used to compute inter-story drift ratios of the structure. Seismic fragility curves for each floor of the structure were generated using the ratios from the time history analysis with the FEMA guideline so as to evaluate their seismic vulnerability. The ratios from both approaches were compared to FEMA and LATBSDC limits. The findings revealed that the floor-level fragility mostly decreased for all the FEMA performance levels with an increase in height and the ratios from both approaches mostly satisfied the codified limits.

  4. Historical cities and earthquakes: Florence during the last nine centuries and evaluations of seismic hazard

    Directory of Open Access Journals (Sweden)

    G. Ferrari


    Full Text Available The authors' aim in the following study is to contribute to the assessment of the seismic hazard of historical cities. From this preliminary analysis the general characteristics of the seismicity affecting Florence and the evaluation of its seismic hazard may be deduced. Florence is a <> city of world tourism, and its extraordinary artistic value and its ability to be utilized constitute a great economic resource. From this perspective, the authors have tackled some aspects of its urban features (demography and main building types, successive phases in the growth of the city, etc., aimed at the pooling of information as a basis for further, more specific analyses of seismic risk. The study is based on a review of 131 seismic events of potential interest for the site of Florence from the 12th century. In the case of each of these earthquakes, it was possible to verify the real seismic effects sustained, and thus to assess the seismic intensity on the site. This also enabled the limits in the application of the standard attenuation laws of to be checked. Of all the earthquakes analyzed. those which caused the greatest effects on the urban area have also been identified: namely, the earthquake of 28 September 1453. and those of 18 May and 6 June 1895, both with Io=VIII MCS. From their overall analysis the authors have further extrapolated the necessary data to statistically evaluate the probabilities of any future earthquake occurring, according to intensity classes.

  5. The data quality analyzer: a quality control program for seismic data (United States)

    Ringler, Adam; Hagerty, M.T.; Holland, James F.; Gonzales, A.; Gee, Lind S.; Edwards, J.D.; Wilson, David; Baker, Adam


    The U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL) has several initiatives underway to enhance and track the quality of data produced from ASL seismic stations and to improve communication about data problems to the user community. The Data Quality Analyzer (DQA) is one such development and is designed to characterize seismic station data quality in a quantitative and automated manner.

  6. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants (United States)


    ... 10 Energy 2 2010-01-01 2010-01-01 false Seismic and Geologic Siting Criteria for Nuclear Power.... 100, App. A Appendix A to Part 100—Seismic and Geologic Siting Criteria for Nuclear Power Plants i. purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power...

  7. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.


    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  8. Integrated approach to 3-D seismic acquisition geometry analysis : Emphasizing the influence of the inhomogeneous subsurface

    NARCIS (Netherlands)

    van Veldhuizen, E.J.


    The seismic reflection method for imaging of the earth's interior is an essential part of the exploration and exploitation of hydrocarbon resources. A seismic survey should be designed such that the acquired data leads to a sufficiently accurate subsurface image. The survey geometry analysis method

  9. Probabilistic Seismic Hazard Assessment for Northeast India Region (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.


    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  10. Nonlinear seismic analysis of continuous RC bridge

    Directory of Open Access Journals (Sweden)

    Čokić Miloš M.


    Full Text Available Nonlinear static analysis, known as a pushover method (NSPA is oftenly used to study the behaviour of a bridge structure under the seismic action. It is shown that the Equivalent Linearization Method - ELM, recommended in FEMA 440, is appropriate for the response analysis of the bridge columns, with different geometric characteristics, quantity and distribution of steel reinforcement. The subject of analysis is a bridge structure with a carriageway plate - a continuous beam with three spans, with the 24 + 40 + 24 m range. Main girder is made of prestressed concrete and it has a box cross section of a constant height. It is important to study the behaviour, not only in the transverse, but also in the longitudinal direction of the bridge axis, when analysing the bridge columns exposed to horizontal seismic actions. The columns were designed according to EN1992, parts 1 and 2. Seismic action analysis is conducted according to EN 1998: 2004 standard. Response spectrum type 1, for the ground type B, was applied and the analysis also includes 20% of traffic load. The analysis includes the values of columns displacement and ductility. To describe the behaviour of elements under the earthquake action in both - longitudinal and transverse direction, pushover curves were formed.

  11. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi


    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  12. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk


    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  13. Updated Colombian Seismic Hazard Map (United States)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.


    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  14. Seismic Survey Challenges and Solutions in Industrial And Urban Environments (United States)

    Coueslan, M. L.; El-Kaseeh, G.; Totten, S.


    Carbon storage projects are often located in close proximity to anthropogenic sources of CO2. This means that the storage site location may be near industrial power plants, mining activity, or urban centers. Proximity to these environments can present unique challenges for the seismic survey design, acquisition, and processing teams in terms of acquiring surface seismic data that meets the site characterization objectives for a CO2 storage site. Seismic surveys in urban and industrial environments may have acquisition footprints that are severely constrained by surrounding infrastructure. The acquisition crew and survey design team must work closely together in real-time to add in-fill source and receiver locations to surveys in order to ensure that high fold coverage is maintained over the survey. High levels of seismic noise may be generated by the industrial plants themselves. Local and industrial traffic, as well as electrical noise may also be a cause for concern. Near surface conditions, such as water saturated soils, unconsolidated mine tailings, and mining cavities, may accelerate attenuation of the seismic signal and become sources of noise in the survey and further impact data quality. When dealing with such conditions, the acquisition and survey design teams must stay in constant communication to optimize survey parameters to account for noise issues. In some cases, the raw data can be so contaminated with noise that no coherent signal can be seen in the data. However, the use of high density-single sensors is one of the most effective options to deal with noisy acquisition environments as this method allows the recorded noise to be sampled without aliasing so that that it can be removed from the data without impacting the seismic signal. Removing noise and optimizing the final images obtained from the data is the job of the survey design and data processing teams. A final consideration when acquiring seismic surveys in urban areas is the visibility of

  15. Verifying Embedded Systems using Component-based Runtime Observers

    DEFF Research Database (Denmark)

    Guan, Wei; Marian, Nicolae; Angelov, Christo K.

    Formal verification methods, such as exhaustive model checking, are often infeasible because of high computational complexity. Runtime observers (monitors) provide an alternative, light-weight verification method, which offers a non-exhaustive yet feasible approach to monitoring system behavior...... specified properties via simulation. The presented method has been experimentally validated in an industrial case study---a control system for a safety-critical medical ventilator unit....... against formally specified properties. This paper presents a component-based design method for runtime observers, which are configured from instances of prefabricated reusable components---Predicate Evaluator (PE) and Temporal Evaluator (TE). The PE computes atomic propositions for the TE; the latter...

  16. Development of a hydraulic borehole seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.P.


    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  17. Artificial seismic acceleration (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.


    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  18. The SISIFO project: Seismic Safety at High Schools (United States)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco


    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK ( proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults ( was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO ( is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the

  19. PSPVDC: An Adaptation of the PSP that Incorporates Verified Design by Contract (United States)


    005 | iv CMU/SEI-2013-TR-005 | v List of Tables Table 1: Process Script 4 Table 2: Planning Script 5 Table 3: Development Script 7 Table 4...lower case in variable declarations. • Use upper case for types and clases . • Use upper case in invocations of a method so declared or of a JML library

  20. A seismic probability map

    Directory of Open Access Journals (Sweden)



    Full Text Available The material included in former two papers (SB and EF
    which summs 3307 shocks corresponding to 2360 years, up to I960, was
    reduced to a 50 years period by means the weight obtained for each epoch.
    The weitliing factor is the ratio 50 and the amount of years for every epoch.
    The frequency has been referred over basis VII of the international
    seismic scale of intensity, for all cases in which the earthquakes are equal or
    greater than VI and up to IX. The sum of products: frequency and parameters
    previously exposed, is the probable frequency expected for the 50
    years period.
    On each active small square, we have made the corresponding computation
    and so we have drawn the Map No 1, in percentage. The epicenters with
    intensity since X to XI are plotted in the Map No 2, in order to present a
    complementary information.
    A table shows the return periods obtained for all data (VII to XI,
    and after checking them with other computed from the first up to last shock,
    a list includes the probable approximate return periods estimated for the area.
    The solution, we suggest, is an appropriated form to express the seismic
    contingent phenomenon and it improves the conventional maps showing
    the equal intensity curves corresponding to the maximal values of given side.

  1. ASDF: An Adaptable Seismic Data Format with Full Provenance (United States)

    Smith, J. A.; Krischer, L.; Tromp, J.; Lefebvre, M. P.


    In order for seismologists to maximize their knowledge of how the Earth works, they must extract the maximum amount of useful information from all recorded seismic data available for their research. This requires assimilating large sets of waveform data, keeping track of vast amounts of metadata, using validated standards for quality control, and automating the workflow in a careful and efficient manner. In addition, there is a growing gap between CPU/GPU speeds and disk access speeds that leads to an I/O bottleneck in seismic workflows. This is made even worse by existing seismic data formats that were not designed for performance and are limited to a few fixed headers for storing metadata.The Adaptable Seismic Data Format (ASDF) is a new data format for seismology that solves the problems with existing seismic data formats and integrates full provenance into the definition. ASDF is a self-describing format that features parallel I/O using the parallel HDF5 library. This makes it a great choice for use on HPC clusters. The format integrates the standards QuakeML for seismic sources and StationXML for receivers. ASDF is suitable for storing earthquake data sets, where all waveforms for a single earthquake are stored in a one file, ambient noise cross-correlations, and adjoint sources. The format comes with a user-friendly Python reader and writer that gives seismologists access to a full set of Python tools for seismology. There is also a faster C/Fortran library for integrating ASDF into performance-focused numerical wave solvers, such as SPECFEM3D_GLOBE. Finally, a GUI tool designed for visually exploring the format exists that provides a flexible interface for both research and educational applications. ASDF is a new seismic data format that offers seismologists high-performance parallel processing, organized and validated contents, and full provenance tracking for automated seismological workflows.

  2. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)


    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  3. Expected Seismicity and the Seismic Noise Environment of Europa (United States)

    Panning, Mark P.; Stähler, Simon C.; Huang, Hsin-Hua; Vance, Steven D.; Kedar, Sharon; Tsai, Victor C.; Pike, William T.; Lorenz, Ralph D.


    Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europa's ice shell by assuming each model follows a Gutenberg-Richter relationship with varying parameters. A range of cumulative seismic moment release between 1016 and 1018 Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earth's moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self-consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self-noise floor of high-frequency geophones but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by ˜50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.

  4. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk


    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  5. Constant force actuator for gravitational wave detector's seismic attenuation systems (SAS)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chenyang E-mail:; Tariq, Hareem; DeSalvo, Riccardo E-mail:; Iida, Yukiyoshi; Marka, Szabolcs; Nishi, Yuhiko; Sannibale, Virginio; Takamori, Akiteru


    We have designed, tested and implemented a UHV-compatible, low-noise, non-contacting force actuator for DC positioning and inertial damping of the rigid body resonances of the Seismic Attenuation System (SAS) designed for the TAMA Gravitational Wave Interferometer. The actuator fully satisfies the stringent zero-force-gradient requirements that are necessary to prevent re-injecting seismic noise into the SAS chain. The actuator's closed magnetic field design makes for particularly low power requirements, and low susceptibility to external perturbations. The actuator retains enough strength to absorb seismic perturbations even during small earthquakes.

  6. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin


    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data ( The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  7. Intelligent seismic risk mitigation system on structure building (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.


    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  8. Seismic Structure of Southeast Asia from Full Waveform Seismic Ambient Noise Tomography (United States)

    Cummins, P. R.; Saygin, E.; Fichtner, A.; Masturyono, M.


    We image the lower crust and upper-mantle structure of Southeast Asia with a 3D full waveform adjoint inversion scheme by directly inverting Green's functions retrieved from interstation seismic noise correlations. Synthetic Green's functions are computed at a period range between 10 and 40 s to simulate the wave propagation in the region. Misfits between observed and synthetic waveforms are reduced by iteratively updating model parameters using sensitivity kernels with a conjugate-gradient optimization method. The final model is verified via comparing the simulated waveforms with the recorded earthquakes in the region. The balanced coverage of rays in the region enabled us to image complex structure. The Australian plate is characterized with higher velocities for most of the crust, where most of Indonesia, and its surroundings show complex structure with low velocities. The transition from the oceanic part of the Australian Plate to the continental crust adjacent to the Banda Arc is clearly imaged.

  9. Seismic Assessment of an RC Building Using Pushover Analysis

    Directory of Open Access Journals (Sweden)

    R. A. Hakim


    Full Text Available Current research works and observations indicated that parts of the Kingdom of Saudi Arabia have low to moderate seismic regions. Major parts of buildings were designed only for gravity load and were poorly detailed to accommodate lateral loads. This study aims to investigate building performance on resisting expected seismic loadings. Two 3D frames were investigated using pushover analysis according to ATC-40. One was designed according to a design practice that considers only the gravity load and the other frame was designed according to the Saudi Building Code (SBC-301. Results showed that the building designed considering only the gravity load was found inadequate. On the other hand, the building designed according to SBC-301 satisfies the Immediate Occupancy (IO acceptance criteria according to ATC-40.

  10. Worldwide Marine Seismic Reflection Profiles (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a large volume of both Analog and Digital seismic reflection data. Currently only a limited number of lines are available online. Digital data include...

  11. Model base SRAF insertion check with OPC verify tools (United States)

    Hung, Chi-Yuan; Deng, Zexi; Gao, Gensheng; Zhang, Liguo; Liu, Qingwei


    With the critical dimension of IC design decreases dramatically, to meet the yield target of the manufacture process, resolution enhancement technologies become extremely important nowadays. For 90nm technology node and below, sub rule assistant feature (SRAF) are usually employed to enhance the robustness of the micro lithography process. SRAF is really a powerful methodology to push the process limit for given equipment conditions. However, there is also a drawback of the SRAF. It is very hard to check the reasonability of the SRAF location, especially when SRAF is applied on full chips. This work is trying to demonstrate a model-based approach to do full-chip check of the SRAF insertion rule. First, we try to capture the lithography process information through real empirical wafer data. Then we try to check every SRAFs location and to find any hot spot that has the risk of being printed out on the wafer. Based on this approach, we can then not only apply full chip check to reduce the printability of SRAF. Furthermore, combined with DRC tools, we can find SRAFs that are inserted unreasonably and then apply modification on them.

  12. Models of protein-ligand crystal structures: trust, but verify (United States)

    Deller, Marc C.; Rupp, Bernhard


    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  13. Monitoring and verifying changes of organic carbon in soil (United States)

    Post, W.M.; Izaurralde, R. C.; Mann, L. K.; Bliss, Norman B.


    Changes in soil and vegetation management can impact strongly on the rates of carbon (C) accumulation and loss in soil, even over short periods of time. Detecting the effects of such changes in accumulation and loss rates on the amount of C stored in soil presents many challenges. Consideration of the temporal and spatial heterogeneity of soil properties, general environmental conditions, and management history is essential when designing methods for monitoring and projecting changes in soil C stocks. Several approaches and tools will be required to develop reliable estimates of changes in soil C at scales ranging from the individual experimental plot to whole regional and national inventories. In this paper we present an overview of soil properties and processes that must be considered. We classify the methods for determining soil C changes as direct or indirect. Direct methods include field and laboratory measurements of total C, various physical and chemical fractions, and C isotopes. A promising direct method is eddy covariance measurement of CO2 fluxes. Indirect methods include simple and stratified accounting, use of environmental and topographic relationships, and modeling approaches. We present a conceptual plan for monitoring soil C changes at regional scales that can be readily implemented. Finally, we anticipate significant improvements in soil C monitoring with the advent of instruments capable of direct and precise measurements in the field as well as methods for interpreting and extrapolating spatial and temporal information.

  14. Initial-fit approach versus verified prescription: comparing self-perceived hearing aid benefit. (United States)

    Abrams, Harvey B; Chisolm, Theresa H; McManus, Megan; McArdle, Rachel


    Despite evidence suggesting inaccuracy in the default fittings provided by hearing aid manufacturers, the use of probe-microphone measures for the verification of fitting accuracy is routinely used by fewer than half of practicing audiologists. The present study examined whether self-perception of hearing aid benefit, as measured through the Abbreviated Profile of Hearing Aid Benefit (APHAB; Cox and Alexander, 1995), differed as a function of hearing aid fitting method, specifically, manufacturer's initial-fit approach versus a verified prescription. The prescriptive fit began at NAL-NL1 targets, with adjustments based on participant request. Each of the two fittings included probe-microphone measurement. A counterbalanced, cross-over, repeated-measures, single-blinded design was utilized to address the research objectives. Twenty-two experienced hearing aid users from the general Bay Pines VA Healthcare System audiology clinic population were randomized into one of two intervention groups. At the first visit, half of the participants were fit with new hearing aids via the manufacturer's initial fit while the second half were fit to a verified prescription using probe-microphone measurement. After a wear period of 4-6 wk, the participants' hearing aids were refit via the alternate method and worn for an additional 4-6 wk. Participants were blinded to the method of fitting by utilizing probe-microphone measures with both approaches. The APHAB was administered at baseline and at the end of each intervention trial. At the end of the second trial period, the participants were asked to identify which hearing aid fitting was "preferred." The APHAB data were subjected to a general linear model repeated-measures analysis of variance. For the three APHAB communication subscales (i.e., Ease of Communication, Reverberation, and Background Noise) mean scores obtained with the verified prescription were higher than those obtained with the initial-fit approach, indicating

  15. The Seismic Attenuation System (SAS) for the Advanced LIGO gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stochino, Alberto [LIGO Laboratory, California Institute of Technology, MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); LIGO Laboratory, Massachusetts Institute of Technology, NW 22, 175 Albany Street, Cambridge, MA 02139 (United States); Dipartimento di Fisica, Universita di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)], E-mail:; Abbot, Benjamin [LIGO Laboratory, Massachusetts Institute of Technology, NW 22, 175 Albany Street, Cambridge, MA 02139 (United States); Aso, Yoichi [Columbia University in the City of New York, 1009 Pupin Laboratory, New York, 10027 NY (United States); Barton, Mark; Bertolini, Alessandro [LIGO Laboratory, California Institute of Technology, MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Boschi, Valerio [LIGO Laboratory, California Institute of Technology, MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Dipartimento di Fisica, Universita di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Coyne, Dennis; DeSalvo, Riccardo [LIGO Laboratory, California Institute of Technology, MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Galli, Carlo [Galli and Morelli s.r.l. Via Cristofani 558-loc. Acquacalda 55100 Lucca (Italy); Huang Yumei [Department of Astronomy, Beijing Normal University, 100875 Beijing (China); Ivanov, Alex [LIGO Lab., California Institute of Technology, MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Marka, Szabolcs [Columbia Univ. in the City of New York, 1009 Pupin Lab., New York, 10027 NY (United States); Ottaway, David [LIGO Lab., Massachusetts Inst. of Tech., NW 22, 175 Albany Street, Cambridge, MA 02139 (United States); Sannibale, Virginio [LIGO Lab., California Inst. of Tech., MS 18-34, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Vanni, Chiara [Galli and Morelli s.r.l. Via Cristofani 558-loc. Acquacalda 55100 Lucca (Italy)] (and others)


    New seismic pre-isolation systems will have to be included in the forthcoming gravitational wave interferometers of Advanced LIGO as part of the strategy to increase the sensitivity in the entire frequency range. In this perspective the LIGO Seismic Attenuation System (SAS) Group designed a new kind of seismic attenuation platforms for the Horizontal Access Module (HAM) and Basic Symmetric Chamber (BSC) vacuum chambers of the interferometers. HAM-SAS, a specific prototype for the HAM chambers, was constructed and installed in a test-bench laboratory. At the end of the commissioning time the prototype achieved many of the Advanced LIGO requirements about seismic isolation, stability and reliability. The lab experience also enabled us to finalize the design and indicated SAS as a solution worth considering for the seismic isolation of the advanced detectors.

  16. Identifying potentially induced seismicity and assessing statistical significance in Oklahoma and California

    CERN Document Server

    McClure, Mark; Chiu, Kitkwan; Ranganath, Rajesh


    In this study, we develop a statistical method for identifying induced seismicity from large datasets and apply the method to decades of wastewater disposal and seismicity data in California and Oklahoma. The method is robust against a variety of potential pitfalls. The study regions are divided into gridblocks. We use a longitudinal study design, seeking associations between seismicity and wastewater injection along time-series within each gridblock. The longitudinal design helps control for non-random application of wastewater injection. We define a statistical model that is flexible enough to describe the seismicity observations, which have temporal correlation and high kurtosis. In each gridblock, we find the maximum likelihood estimate for a model parameter that relates induced seismicity hazard to total volume of wastewater injected each year. To assess significance, we compute likelihood ratio test statistics in each gridblock and each state, California and Oklahoma. Resampling is used to empirically d...

  17. Regional Seismic Event Identification and Improved Locations With Small Arrays

    National Research Council Canada - National Science Library

    Baker, Glenn


    We isolated the effect of structure immediately beneath seismic stations on seismic waveforms by determining the inference of velocity discontinuities beneath a single broadband 3-component seismic...

  18. The Norwegian Seismic Array (NORSAR) (United States)


    computed subcritical reflection travel times do not agree with the secondar’ arrivals between 70 km and 110 km. Now, applying the reflectivity method to...however, the relatively early PMp subcritical arrivals (Fig. VI.6.1) must be accounted for. These suggest a thinner crust as compared to the laterally...J. Orcutt and T.H. Jordan , 1982: The Marine Seismic System: signals and noise. DARPA Symposium on seismic detection, analysis, discrimination and

  19. Visualization of volumetric seismic data (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk


    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  20. First level seismic microzonation map of Chennai city – a GIS approach

    Directory of Open Access Journals (Sweden)

    G. P. Ganapathy


    Full Text Available Chennai city is the fourth largest metropolis in India, is the focus of economic, social and cultural development and it is the capital of the State of Tamil Nadu. The city has a multi-dimensional growth in development of its infrastructures and population. The area of Chennai has experienced moderate earthquakes in the historical past. Also the Bureau of Indian Standard upgraded the seismic status of Chennai from Low Seismic Hazard (Zone II to Moderate Seismic Hazard (Zone III–(BIS: 1893 (2001. In this connection, a first level seismic microzonation map of Chennai city has been produced with a GIS platform using the themes, viz, Peak Ground Acceleration (PGA, Shear wave velocity at 3 m, Geology, Ground water fluctuation and bed rock depth. The near potential seismic sources were identified from the remote-sensing study and seismo-tectonic details from published literatures. The peak ground acceleration for these seismic sources were estimated based on the attenuation relationship and the maximum PGA for Chennai is 0.176 g. The groundwater fluctuation of the city varies from 0–4 m below ground level. The depth to bedrock configuration shows trough and ridges in the bedrock topography all over the city. The seismic microzonation analysis involved grid datasets (the discrete datasets from different themes were converted to grids to compute the final seismic hazard grid through integration and weightage analysis of the source themes. The Chennai city has been classified into three broad zones, viz, High, Moderate and Low Seismic Hazard. The High seismic Hazard concentrated in a few places in the western central part of the city. The moderate hazard areas are oriented in NW-SE direction in the Western part. The southern and eastern part will have low seismic hazard. The result of the study may be used as first-hand information in selecting the appropriate earthquake resistant features in designing the forthcoming new buildings against seismic

  1. Seismicity of the Jalisco Block (United States)

    Nunez-Cornu, F. J.; Rutz, M.; Camarena-Garcia, M.; Trejo-Gomez, E.; Reyes-Davila, G.; Suarez-Plascencia, C.


    In April 2002 began to transmit the stations of the first phase of Jalisco Telemetric Network located at the northwest of Jalisco Block and at the area of Volcan de Fuego (Colima Volcano), in June were deployed four additional MarsLite portable stations in the Bahia de Banderas area, and by the end of August one more portable station at Ceboruco Volcano. The data of these stations jointly with the data from RESCO (Colima Telemetric Network) give us the minimum seismic stations coverage to initiate in a systematic and permanent way the study of the seismicity in this very complex tectonic region. A preliminary analysis of seismicity based on the events registered by the networks using a shutter algorithm, confirms several important features proposed by microseismicity studies carried out between 1996 and 1998. A high level of seismicity inside and below of Rivera plate is observed, this fact suggest a very complex stress pattern acting on this plate. Shallow seismicity at south and east of Bahia de Banderas also suggest a complex stress pattern in this region of the Jalisco Block, events at more than 30 km depth are located under the mouth of the bay and in face of it, a feature denominated Banderas Boundary mark the change of the seismic regime at north of this latitude (20.75°N), however some shallow events were located at the region of Nayarit.

  2. 75 FR 876 - Agency Information Collection Activities: E-Verify Data Collection Survey, New Information... (United States)


    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: E-Verify Data... Collection Under Review: E-Verify Data ] Collection Survey, Control No. OMB-55. The Department of Homeland... Collection: New information collection. (2) Title of the Form/Collection: E-Verify Data Collection. (3...

  3. 31 CFR 363.14 - How will you verify my identity? (United States)


    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How will you verify my identity? 363... you verify my identity? (a) Individual. When you establish an account, we may use a verification service to verify your identity using information you provide about yourself on the online application. At...

  4. Time dependent seismic hazard (United States)

    Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.


    Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold

  5. [The capacities of current test systems to verify early HIV infection]. (United States)

    Baranova, E N; Sharipova, I N; Denisova, N M; Susekina, M E; Puzyrev, V F; Sarkisian, K A; Vorob'eva, M S; Burkov, A N; Ulanova, T I


    The purpose of the present investigation was to comparatively evaluate the performance characteristics of the test systems designed to verify the positive results of screening survey for HIV infection, such as the solid-phase immunoassay DS-EIA-HIV-AB/AG-SPECTR (Diagnosticheskiye Sistemy (Diagnostic Systems) Research-and-Production Association, Nizhni Novgorod) and tests based on immune blotting (IB). The investigation examined 15 seroconversion panels produced by ZeptoMetrix (USA) and BBI (USA). The use of the DS-EIA-HIV-AB/AG-SPECTR test system determined 88 of the 167 seroconversion panels as HIV positive. The IB-based tests revealed only 45 of the 167 samples as positive. Consequently, the application of the DS-EIA-HIV-AB/AG-SPECTR test system is more effective than the IB-based tests in early HIV infection.

  6. How to verify lightning protection efficiency for electrical systems? Testing procedures and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [DEHN and SOEHNE, Neumarkt (Germany)], Emails:,


    There are increasing numbers of applications, installing Surge Protective Devices (SPDs), through which partial lightning currents flow, and highly sensitive, electronic devices to be protected closely next to each other due to the design of electric distribution systems and switchgear installations which is getting more and more compact. In these cases, the protective function of the SPDs has to be co-ordinated with the individual immunity of the equipment against energetic, conductive impulse voltages and impulse currents. In order to verify the immunity against partial lightning currents of the complete system laboratory tests on a system level are a suitable approach. The proposed test schemes for complete systems have been successfully performed on various applications. Examples will be presented. (author)

  7. Effect of glucocorticosteroid injections in tennis elbow verified on colour Doppler ultrasonography: evidence of inflammation

    DEFF Research Database (Denmark)

    Torp-Pedersen, T.E.; Torp-Pedersen, S.T.; Qvistgaard, E.


    -guided corticosteroid injection in patients with LE. DESIGN: Case-only, blinded intervention study. SETTING: Secondary care at a government hospital. PATIENTS: 62 patients with LE verified by colour Doppler US. INTERVENTION: One US-guided corticosteroid injection was given into the CEO. MAIN OUTCOME MEASURES: Patients...... were evaluated at baseline before the injection and at 2 weeks of follow-up. Outcome measures were changes in pain score and US parameters (resistive index (RI) and the amount of colour within the CEO). Prognosticators for outcome were: use of computer mouse, symptom duration, elbow strain, RI, colour...... injection has a marked short-term effect on pain and Doppler parameters. The reduction in hyperaemia mediated by an anti-inflammatory drug can be interpreted as evidence of an inflammatory component in LE Udgivelsesdato: 2008/12...

  8. Seismic investigations in downtown Copenhagen, Denmark (United States)

    Martinez, K.; Mendoza, J. A.; Olsen, H.


    Near surface geophysics are gaining widespread use in major infrastructure projects with respect to geotechnical and engineering applications. The development of data acquisition, processing tools and interpretation methods have optimized survey production, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of geophysical methods under urban environments continues to face challenges due to multiple noise sources and obstacles inherent to cities. A seismic investigation was conducted in Copenhagen aiming to produce information needed for hydrological, geotechnical and groundwater modeling assessments related to the planned Cityringen underground metro project. The particular objectives were a) map variations in subsurface Quaternary and limestone properties b) to map for near surface structural features. The geological setting in the Copenhagen region is characterized by several interlaced layers of glacial till and meltwater sand deposits. These layers, which are found unevenly distributed throughout the city and present in varying thicknesses, overlie limestone of different generations. There are common occurrences of incised valley structures containing localized instances of weathered or fractured limestone. The surveys consisted of combined seismic reflection and refraction profiles accounting for approximately 13 km along sections of the projected metro line. The data acquisition was carried out using standard 192 channels arrays, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing. In order to improve the resolution of the data, 29 Walkaway-Vertical Seismic Profiles were performed at selected wells along the surface seismic lines. The refraction data was processed with travel-time tomography and the reflection data underwent standard interpretation. The refraction data inversion was performed twofold; a surface refraction alone and combined with the VSP data. Three

  9. Measurements of Superattenuator seismic isolation by Virgo interferometer

    NARCIS (Netherlands)

    Acernese, F.; Bulten, H.J.; Rabeling, D.S.; van den Brand, J.F.J.; Bauer, Th. S.; Beker, M.G.; Li, T.G.F.; van der Putten, S.


    Each mirror of the interferometric gravitational wave antenna Virgo is attached to a Superattenuator, a chain of mechanical filters designed to suppress seismic vibrations, starting from a few Hz. The filter chain attenuation has been measured by exciting its suspension point with sinuisodal forces


    Bycroft, G.N.; Mork, P.N.


    An analytical solution to the response of a long trapezoidal-section dam on a foundation consisting of an elastic half-space and subjected to simulated earthquake motion is developed. An optimum seismic design is achieved when the cross section of the dam is triangular. The effect of soil structure interaction is to lower the strain occurring in the dam.

  11. Seismic strengthening of RC structures with exterior shear walls

    Indian Academy of Sciences (India)

    research efforts in this field have shifted their focus to new methods that could overcome this difficulty. The precast panel infill ... the sides of the buildings to be unobstructed for installation of new shear walls. The literature review presents ..... Seismic design of bridge piers. Research report 84-2, Christchurch (New Zealand),.

  12. Estimation of seismic spectral acceleration in Peninsular India

    Indian Academy of Sciences (India)

    of India has been a reminder that engineers have to use seismological approaches to estimate region specific design ground motion, instead of relying on rules of thumb and ad hoc seismic zones. How- ever, analytical source mechanism models are not simple enough to be directly applicable in engineer- ing problems.

  13. The NARS array : a seismic experiment in Western Europe

    NARCIS (Netherlands)

    Dost, B


    Due to the rapid development of portable, digital seismographs it has recently become possible in global seismology to install and operate a large scale temporary array of seismic stations. This thesis describes the design and operation of the first experiment of this kind: the Network of Autonomous

  14. The NARS array : a seismic experiment in Western Europe

    NARCIS (Netherlands)

    Dost, B.


    Due to the rapid development of portable, digital seismographs it has recently become possible in global seismology to install and operate a large scale temporary array of seismic stations. This thesis describes the design and operation of the first experiment of this kind: the Network of

  15. Advance model for seismic base isolation Systems of building ...

    African Journals Online (AJOL)

    Advanced technologies for structural design and construction have the potential for major impact on the bridge and buildings. One of these technologies is base isolation Systems. Numerous of buildings collapses that have occurred in recent earthquakes has exposed the vulnerabilities in existing buildings. Seismic ...

  16. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  17. Using H/V spectral ratios to constrain 1-D subsurface models for seismic hazard assessment (United States)

    Shapira, A.; Zaslavsky, Y.


    In recent years, considerable research has been focused on establishing reliable methods to predict earthquake ground motions for seismic hazard assessment. The seismic motions are significantly affected by the soil layers at the site and by the impedance ratio between surficial and underlying deposits. These yield frequency selective amplification effects that are important parameters in the process of earthquake resistance design of buildings and in the process of preparing earthquake damage scenarios. Numerical methods for estimating site effects require modeling of the subsurface, primarily shear-wave velocities of the sedimentary layers and underlying rock and thickness of each layer. In many cases, it is difficult to construct such models by only using conventional geophysical methods and borehole information, especially with regard to the deeper sediments. We have encountered such difficulties at several sites for bridge design in Israel, located along or near the seismically active Dead Sea transform. There, and in many other places we found it very useful to constrain the subsurface models by considering site response functions evaluated by using the H/V spectral ratio techniques. A number of bridge construction sites where instrumented with three-component seismometers. We evaluated the empirical site response function from H/V spectral rations of weak motions from local and regional earthquakes and measurements of ambient noise. The average spectral ratio estimated for soil sites showed amplification factor up to 5 in the frequency range of 0.4 to 0.8 Hz. Regional geology data, S-wave refraction surveys in different areas for similar geological units and borehole information were used to construct 1D subsurface model for each site from which an analytical site response function is calculated. The uncertainty associated with the proposed subsurface model models yield a too high variability between the analytical site response functions. Hence, we found it

  18. Using Visualization of Seismic Waves in Teaching Earth Science Informed by Cognitive Science Research (United States)

    Engelmann, C. A.; Waite, G. P.; Huntoon, J. E.; Hungwe, K.


    Seismologists have found visualization of scientific data to be useful in analysis and therefore expect that using visualizations as a pedagogical tool will increase student understanding of seismic waves. This project examines how seismic wave visualization activities should be designed to best take advantage of how students think and learn science as determined by research in cognitive science. Student activities using visualization and auditization of seismic waves as they propagate through the earth and activities using real-time seismometry, the Quake Catcher Network sensors, have been designed or modified for use in 7-12 Earth System Science classrooms, taking into account how students learn science. The activities will incorporate three visualizations introduced at the 2011 On the Cutting Edge workshop, Visualizing Seismic Waves for Teaching and Research: the USArray Visualizations developed by Dr. Charles Ammon, Penn State University; the Quake Catcher Network sensors in conjunction with IRIS's Exploring Seismic Data with Accelerometers; and The Sound of Seismic, John N. Louie's auditization of seismic waves. As part of the Michigan Teacher Excellence Program, a NSF funded Math Science Partnership between Michigan Tech University and Michigan public schools, these activities are being implemented and tested to determine in what ways and to what extent these visualizations impact student learning and understanding of seismic waves.

  19. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren


    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  20. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun XIONG


    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.