WorldWideScience

Sample records for verifying seismic design

  1. Verifying seismic design of nuclear reactors by testing. Volume 2: appendix, theoretical discussions

    International Nuclear Information System (INIS)

    1979-01-01

    Theoretical discussions on seismic design testing are presented under the following appendix headings: system functions, pulse optimization program, system identification, and motion response calculations from inertance measurements of a nuclear power plant

  2. Verifying design patterns in Hoare Type Theory

    DEFF Research Database (Denmark)

    Svendsen, Kasper; Buisse, Alexandre; Birkedal, Lars

    In this technical report we document our experiments formally verifying three design patterns in Hoare Type Theory.......In this technical report we document our experiments formally verifying three design patterns in Hoare Type Theory....

  3. The importance of verifiable fire protection design

    Energy Technology Data Exchange (ETDEWEB)

    Medonos, Sava [Petrellus Ltd. (United Kingdom)]. E-mail: smm@petrellus.co.uk; Geddes, Paul [Global Solutions UK Ltd. (United Kingdom)]. E-mail: paul@globalsolutionsuk.com

    2004-07-01

    Simplistic methods based on the Hp/A ratio between the heated surface area and volume or a 2-dimensional analysis may be sufficient for the determination of fire protection coatings for simple components. For the optimization of fire protection of pressure systems and load bearing structures, however, they have proved to be inadequate, as they do not represent the response taking place. This often leads to over-protection or inadequate fire resistance. In the past 10 years there have been claims in petrochemical industry of 'methods' for fire protection 'optimization' based on a walk-down through a topside or plant, or a heat-up calculation of a few cross sections with no regard to stress. These methods are wrong. In the best case these 'methods of optimization' lead to high unnecessary costs and in the worst case in an explosion of a vessel, structural collapse, domino effects and cataclysmic fire throughout the plant. The operator or design contractor should always require a Method Statement including a proof of verification to obtain the adequate quality of fire protection. (author)

  4. Civil Works Seismic Designs

    International Nuclear Information System (INIS)

    1985-12-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. This rule defines: - the parameters characterizing the design seismic motions - the calculation methods - the mathematical schematization principles on which calculations are based - the use of the seismic response for the structure checking - the content of the documents to be presented

  5. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  6. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  7. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  8. Position paper: Seismic design criteria

    International Nuclear Information System (INIS)

    Farnworth, S.K.

    1995-01-01

    The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A

  9. Assessment of seismic design response factors of concrete wall buildings

    Science.gov (United States)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  10. An experiment designed to verify the general theory of relativity

    International Nuclear Information System (INIS)

    Surdin, Maurice

    1960-01-01

    The project for an experiment which uses the effect of gravitation on Maser-type clocks placed on the ground at two different heights and which is designed to verify the general theory of relativity. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 299-301, sitting of 11 January 1960 [fr

  11. Verifying Architectural Design Rules of the Flight Software Product Line

    Science.gov (United States)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  12. Seismic isolation design guidelines for KALIMER(Revision A)

    International Nuclear Information System (INIS)

    Yoo, B; Koo, Gyeong Hoi; Lee, J. H.

    2000-04-01

    The main purpose of this report is to develop the seismic isolation design guideline for KALIMER(Korea Advanced LIquid MEtal Reactor). The proposed design rules(revision A) are only applicable to the seismic isolation design with using the high damping laminated rubber bearings. When using other seismic isolation devices and applying to 3-dimensional isolation, the proposed guidelines shall be modified and added with proper research data. The rules described in this report are based on the research results performed up to now but needed to be upgraded and verified with more detail research works for the future

  13. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  14. Displacement Based Seismic Design Criteria

    International Nuclear Information System (INIS)

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  15. Design of a verifiable subset for HAL/S

    Science.gov (United States)

    Browne, J. C.; Good, D. I.; Tripathi, A. R.; Young, W. D.

    1979-01-01

    An attempt to evaluate the applicability of program verification techniques to the existing programming language, HAL/S is discussed. HAL/S is a general purpose high level language designed to accommodate the software needs of the NASA Space Shuttle project. A diversity of features for scientific computing, concurrent and real-time programming, and error handling are discussed. The criteria by which features were evaluated for inclusion into the verifiable subset are described. Individual features of HAL/S with respect to these criteria are examined and justification for the omission of various features from the subset is provided. Conclusions drawn from the research are presented along with recommendations made for the use of HAL/S with respect to the area of program verification.

  16. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  17. Seismic analysis of design

    International Nuclear Information System (INIS)

    Jehlicka, P.

    1980-01-01

    The determination of the dynamic response of nuclear power plants is a necessary part of safe design against earthquake, or against other additional vibrational loading. The determination of these dynamic loads caused by external excitation is a requirement in calculating the related material loading on the structures. The purpose of this lecture is to present a general survey of analytical methods to determine the response of structural and mechanical equipment to earthquake. The main problems which complicate structural-dynamic calculations will be discussed. The necessity to control input parameters and the possibility to calculate with simplified methods will be pointed out. (orig./RW)

  18. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  19. Some Proxy Signature and Designated verifier Signature Schemes over Braid Groups

    OpenAIRE

    Lal, Sunder; Verma, Vandani

    2009-01-01

    Braids groups provide an alternative to number theoretic public cryptography and can be implemented quite efficiently. The paper proposes five signature schemes: Proxy Signature, Designated Verifier, Bi-Designated Verifier, Designated Verifier Proxy Signature And Bi-Designated Verifier Proxy Signature scheme based on braid groups. We also discuss the security aspects of each of the proposed schemes.

  20. Verifying a smart design of TCAP : a synergetic experience

    NARCIS (Netherlands)

    T. Arts; I.A. van Langevelde

    1999-01-01

    textabstractAn optimisation of the SS No. 7 Transport Capabilities Procedures is verified by specifying both the original and the optimised {scriptsize sf TCAP in {scriptsize sf $mu$CRL, generating transition systems for both using the {scriptsize sf $mu$CRL tool set, and checking weak bisimulation

  1. Seismic design of reactors in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Akira [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Kuchiya, Masao; Yasuda, Naomitsu; Kitanaka, Tsutomu; Ogawa, Kazuhiko; Sakuraba, Koichi; Izawa, Naoki; Takeshita, Isao

    1997-03-01

    Basic concept and calculation method for the seismic design of the main equipment of the reactors in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) are described with actual calculation examples. The present paper is published to help the seismic design of the equipment and application of the authorization for the design and constructing of facilities. (author)

  2. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  3. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  4. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  5. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  6. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  7. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  8. Deep geological strucure of a volcano verified by seismic wave. Jishinha de mita kazan no shinbu kozo

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A. (Tohoku University, Sendai (Japan). Faculty of Science)

    1991-09-01

    Three dimensional structure of seismic wave velocity for the crest and upper mantle under the North East Japan is determined by the seismic tomography which is prepared by the natural earthquakes confirmed by the observation network for micro earthquakes, indicating that the low velocity region exists just under the corresponding volcano to the upper mantle. Further, the following contents can be verified: Any micro earthquakes which are verified by the above observation network and occur at the depth of 25-40km show the lower generation rate less than 1% and the low dominant frequency compared with the conventional inland earthquake(lower limit of depth is 15km) in the same region and occur around volcanos. The existence of the remarkable reflection surface for S wave which is found at the depth of 10-20km seems to be caused by the melting mass. The above mentioned low velocity region is estimated to correspond to the lifting region of high temperature magma, micro earthquakes of low frequency to the magma activity around that magma and the reflection surface for S wave to the part of the magma. 8 refs., 4 figs.

  9. Seismic-design questions typify nuclear obstacles

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1979-01-01

    The trade-off between safe design of nuclear power plants and cost is considered. As an example, seismic protection problems at the Beaver Valley station of Duquesne Light Co. and their resolution by Stone and Webster Engineering are discussed

  10. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  11. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  12. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  13. Seismic Design Guidelines For Port Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Bernal, Alberto; Blazquez, Rafael

    In order to mitigate hazards and losses due to earthquakes, seismic design methodologies have been developed and implemented in design practice in many regions since the early twentieth century, often in the form of codes and standards. Most of these methodologies are based on a force-balance app...

  14. Key issues in european reactor seismic design

    International Nuclear Information System (INIS)

    Cicognani, G.; Martelli, A.

    1984-01-01

    The paper focuses on the main problems which have arisen in FBR design in Europe due to seismic conditions. Its first part, derived from the final report of a CEC-Belgonucleaire study contract, clarifies how ''real'' is the seismic problem for each site. Then, the second and main part deals with the studies carried out in the european countries on the relevant subjects, typical of FBRs or related to specific needs of single FBRs: these studies, for which contributions were provided by ENEA, CEA, NNC and INTERATOM, concern mainly the numerical and experimental analysis of the core, the reactor vessel, the shut-down system and the reactor building of FBRs under construction or in advanced design phase. Attention is also paid to the studies started for future purposes, the feed-backs on the design due to seismic conditions, and the instructions for future reactors

  15. Seismic design and analysis methods

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1993-01-01

    Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)

  16. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  17. Seismic design method of free standing rack

    International Nuclear Information System (INIS)

    Taniguchi, Katsuhiko; Okuno, Daisaku; Iwasaki, Akihisa; Nekomoto, Yoshitsugu; Matsuoka, Toshihiro

    2013-01-01

    For high earthquake resistance and ease of installation, free standing racks which are not anchored to the pool floor or walls has been adopted in many countries. Under the earthquake, the response of the free standing rack is highly nonlinear and involves a complex combination of motions (sliding, rocking, twisting, and turning) and impacts between the fuel assemblies and the fuel cell walls, rack-to-rack, and the pit floor and rack pedestals. We carried out seismic experiments on the full-scale rack model in water and dry conditions to obtain the fundamental data about free standing rack (sliding, rocking and turning motions). We have developed the nonlinear dynamic analysis method to predict seismic response for the free standing rack utilizing the full-scale test result and verified the analysis evaluation method of the rack by comparison of test result. (author)

  18. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  19. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1989-01-01

    This paper describes the practical problems associated with the structural design of a group of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. Taking into account previous earthquakes, the structural design of these new buildings was performed according to an acceleration spectrum which was different from its Zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  20. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  1. Salt Repository Project input to seismic design: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Program (SRP) Input to Seismic Design (ISD) documents the assumptions, rationale, approaches, judgments, and analyses that support the development of seismic-specific data and information to be used for shaft design in accordance with the SRP Shaft Design Guide (SDG). The contents of this document are divided into four subject areas: (1) seismic assessment, (2) stratigraphy and material properties for seismic design, (3) development of seismic design parameters, and (4) host media stability. These four subject areas have been developed considering expected conditions at a proposed site in Deaf Smith County, Texas. The ISD should be used only in conjunction with seismic design of the exploratory and repository shafts. Seismic design considerations relating to surface facilities are not addressed in this document. 54 refs., 55 figs., 18 tabs

  2. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  3. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  4. Seismic verification of the Italian PEC fast reactor and effects of seismic conditions on the design

    International Nuclear Information System (INIS)

    Martelli, A.; Cecchini, F.; Masoni, P.; Maresca, G.; Castoldi, A.

    1988-01-01

    This paper deals with the aseismic design features of the Italian PEC fast reactor and the effects of seismic conditions on the reactor design. More precisely, after some notes on the main plant features, the paper reports on the design earthquakes adopted, the seismic monitoring procedures and the related actions, the design requirements, criteria and methods, and also provides a brief summary of the main research and development studies performed in support of design analysis. For the above-mentioned items, comparisons with the other fast reactors of the European Community countries are presented. Furthermore, the paper stresses the design modifications adopted to guarantee PEC seismic safety

  5. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  6. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  7. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  8. Building configuration and seismic design: The architecture of earthquake resistance

    Science.gov (United States)

    Arnold, C.; Reitherman, R.; Whitaker, D.

    1981-05-01

    The architecture of a building in relation to its ability to withstand earthquakes was determined. Aspects of round motion which are significant to building behavior are discussed. Results of a survey of configuration decisions that affect the performance of buildings with a focus on the architectural aspects of configuration design are provided. Configuration derivation, building type as it relates to seismic design, and seismic design, and seismic issues in the design process are examined. Case studies of the Veterans' Administration Hospital in Loma Linda, California, and the Imperial Hotel in Tokyo, Japan, are presented. The seismic design process is described paying special attention to the configuration issues. The need is stressed for guidelines, codes, and regulations to ensure design solutions that respect and balance the full range of architectural, engineering, and material influences on seismic hazards.

  9. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  10. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  11. An experiment designed to verify the general theory of relativity; Une experience destinee a verifier la theorie de la relativite generalisee

    Energy Technology Data Exchange (ETDEWEB)

    Surdin, Maurice [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    The project for an experiment which uses the effect of gravitation on Maser-type clocks placed on the ground at two different heights and which is designed to verify the general theory of relativity. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 299-301, sitting of 11 January 1960 [French] Projet d'une experience, utilisant l'effet de gravitation sur des horloges du type Maser placees sur la terre a deux altitudes differentes, et destinee a verifier la theorie de la relativite generalisee. Reproduction d'un article publie dans les Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 299-301, seance du 11 janvier 1960.

  12. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  13. Seismic analysis for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon, Republic of Korea (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The seismic analysis of KO HCCR TBM-set are performed. • The seismic envents like SL-1, SL-2, and SMHV are selected and evaluated with FEM code (ANSYS). • The results of the stresses and deformations are confirmed to meet the design criteria. - Abstract: Using the conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a seismic analysis is performed. According to the ITER TBM port plug (TBM PP) system load specifications, seismic events are selected as SL-1 (seismic level-1), SL-2 (seismic level-2), and SMHV (seismes maximaux historiquement vraisemblables, Maximum Histroically Probable Earthquakes). In a modal analysis a total of 50 modes are obtained. Then, a spectra response analysis for each seismic event is carried out using ANSYS based on the modal analysis results. For each event, the obtained Tresca stress is evaluated to confirm the design integrity, by comparing the resulting stress to the design criteria. The Tresca strain and displacement are also estimated for the HCCR TBM-set. From the analysis, it was concluded that the maximum stresses by the seismic events meet the design criteria, and the displacements are lower than the designed gap from the TBM PP frame. The results are provided to a load combination analysis.

  14. Seismic design criteria for nuclear powerplants

    International Nuclear Information System (INIS)

    Jennings, P.C.; Guzman, R.A.

    1975-01-01

    There are three main aspects of the problem of selection of seismic design criteria for major projects such as nuclear power plants. These are the description of the appropriate level of shaking to be considered, usually given in the form of design spectra; the allowable response of the structure, usually specified in terms of allowable stresses and deflections; and the capability of the structure to dissipate energy, commonly given in the form of fractions of critical damping. In this presentation only the first of these features is examined, with particular application to nuclear power plants. Under these restrictions, the most important parts of the problem become the determination of the amplitude of the design spectra corresponding to the safe shutdown earthquake (SSE) and the question of whether the shape of the spectra recommended by Regulatory Guide 1.60 (U. S. Atomic Energy Commission, 1973) is appropriate for the particular application. In the course of working out the details of the approach, it was found useful to reexamine a number of concepts including the use of response spectra or peak values of ground motion parameters, the shape of the design spectra, problems in attenuation and scaling, and the use of motions on the ground surface or bedrock motions. There is nothing fundamentally new in the suggested approach, although some of the features may not have been applied to the problem of selecting design spectra for nuclear power plants in the way suggested. The approach is applied only to nuclear power plants but it is not limited to this application

  15. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  16. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Adding shear walls or braced frames can decrease the potential damage caused by earthquakes.We can isolate the structures from the ground using the Seismic Base Isolation Systems that is flexible approach to decrease the potential damage. In this research we present information on the design procedure of seismic ...

  17. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  18. IDEF method for designing seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Jin Ping; Zhang Huimin; Zheng Jiangling; Sun Peng

    2004-01-01

    Seismic information system is of great importance for improving the capability of CTBT verification. A large amount of money has been appropriated for the research in this field in the U.S. and some other countries in recent years. However, designing and developing a seismic information system involves various technologies about complex system design. This paper discusses the IDEF0 method to construct function models and the IDEF1x method to make information models systemically, as well as how they are used in designing seismic information system in CTBT verification. (authors)

  19. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Energy Technology Data Exchange (ETDEWEB)

    Yuxian, Hu [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics

    1997-03-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  20. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    International Nuclear Information System (INIS)

    Hu Yuxian

    1997-01-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  1. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  2. Development of seismic design method for free standing rack and applicability to Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Takaki, Yu; Taniguchi, Katsuhiko; Kishimoto, Junichi; Iwasaki, Akihisa; Nekomoto, Yoshitsugu; Kuga, Tohru; Kameyama, Masashi

    2017-01-01

    Free standing racks which are not anchored to the pool floor nor walls have never been adopted in Japan. Under an earthquake, behaviors of free standing racks are nonlinear and involve a complex combination of motions (sliding, rocking, and twisting) and impacts between a fuel assembly and the fuel cell walls and between a pit floor and rack pedestals. To predict a seismic response of free standing racks, the seismic analysis requires careful considerations of these complex phenomena (sliding, rocking, and twisting), fluid coupling effects and frictional effects. We carried out seismic experiments on the full-scale rack model in both water and dry conditions and obtained the fundamental data about behavior of free standing racks (sliding, and rocking motions). We have developed the nonlinear dynamic analysis method to predict seismic response of free standing racks utilizing the full-scale test result and verified the analysis evaluation method of free standing rack by comparison between analysis results and experimental data. Furthermore, we applied the seismic design method to the free standing rack in the Japanese nuclear plant (Mihama nuclear power station Unit 3), and verified that the free standing rack was applicable to Japanese nuclear plant. (author)

  3. Sensitivity of seismic design parameters to input variables

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1987-01-01

    The probabilistic method introduced by Cornell (1968) has been used to a large extent for this purpose. Due to its probabilistic approach, this technique provides a sound basis for studying the influence of the dominant parameters in such a model. Although the Southern African region is not well known for its seismicity, a number of events in the recent past has focussed the attention on some seismically active areas where special attention may be needed in defining the correct design parameters. The relatively sparse historical seismic data has been used to develop a mathematical model which represents this region. This paper briefly discusses this model, and uses it as a basis for evaluating the influence of the uncertainty in each of the principal parameters, being the seismicity of the region, the attenuation of seismic waves after an event, and models that can be used to arrive at engineering design values. (orig./HP)

  4. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  5. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  6. Seismic design and evaluation criteria based on target performance goals

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  7. Verified by Visa and MasterCard SecureCode: Or, How Not to Design Authentication

    Science.gov (United States)

    Murdoch, Steven J.; Anderson, Ross

    Banks worldwide are starting to authenticate online card transactions using the '3-D Secure' protocol, which is branded as Verified by Visa and MasterCard SecureCode. This has been partly driven by the sharp increase in online fraud that followed the deployment of EMV smart cards for cardholder-present payments in Europe and elsewhere. 3-D Secure has so far escaped academic scrutiny; yet it might be a textbook example of how not to design an authentication protocol. It ignores good design principles and has significant vulnerabilities, some of which are already being exploited. Also, it provides a fascinating lesson in security economics. While other single sign-on schemes such as OpenID, InfoCard and Liberty came up with decent technology they got the economics wrong, and their schemes have not been adopted. 3-D Secure has lousy technology, but got the economics right (at least for banks and merchants); it now boasts hundreds of millions of accounts. We suggest a path towards more robust authentication that is technologically sound and where the economics would work for banks, merchants and customers - given a gentle regulatory nudge.

  8. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  9. Cost reduction through improved seismic design

    International Nuclear Information System (INIS)

    Severud, L.K.

    1984-01-01

    During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures

  10. Optimum design for pipe-support allocation against seismic loading

    International Nuclear Information System (INIS)

    Hara, Fumio; Iwasaki, Akira

    1996-01-01

    This paper deals with the optimum design methodology of a piping system subjected to a seismic design loading to reduce its dynamic response by selecting the location of pipe supports and whereby reducing the number of pipe supports to be used. The author employs the Genetic Algorithm for obtaining a reasonably optimum solution of the pipe support location, support capacity and number of supports. The design condition specified by the support location, support capacity and the number of supports to be used is encored by an integer number string for each of the support allocation candidates and they prepare many strings for expressing various kinds of pipe-support allocation state. Corresponding to each string, the authors evaluate the seismic response of the piping system to the design seismic excitation and apply the Genetic Algorithm to select the next generation candidates of support allocation to improve the seismic design performance specified by a weighted linear combination of seismic response magnitude, support capacity and the number of supports needed. Continuing this selection process, they find a reasonably optimum solution to the seismic design problem. They examine the feasibility of this optimum design method by investigating the optimum solution for 5, 7 and 10 degree-of-freedom models of piping system, and find that this method can offer one a theoretically feasible solution to the problem. They will be, thus, liberated from the severe uncertainty of damping value when the pipe support guaranties the design capacity of damping. Finally, they discuss the usefulness of the Genetic Algorithm for the seismic design problem of piping systems and some sensitive points when it will be applied to actual design problems

  11. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  12. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    International Nuclear Information System (INIS)

    1979-01-01

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program

  13. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  14. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  15. Seismic design features of the ACR Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Aziz, T.

    2003-01-01

    Through their worldwide operating records, CANDU Nuclear Power Plants (NPPs) have repeatedly demonstrated safe, reliable and competitive performance. Currently, there are fourteen CANDU 6 single unit reactors operating or under construction worldwide. Atomic Energy of Canada Limited's (AECL) Advanced CANDU Reactor - the ACR. - is the genesis of a new generation of technologically advanced reactors founded on the CANDU reactor concept. The ACR is the next step in the evolution of the CANDU product line. The ACR products (ACR-700 and ACR-1000) are based on CANDU 6 (700 MWe class) and CANDU 9 (900 MWe class) reactors, therefore continuing AECL's successful approach of offering CANDU plants that appeal to a broad segment of the power generation market. The ACR products are based on the proven CANDU technology and incorporate advanced design technologies. The ACR NPP seismic design complies with Canadian standards that were specifically developed for nuclear seismic design and also with relevant International Atomic Energy Agency (IAEA) Safety Design Standards and Guides. However, since the ACR is also being offered to several markets with many potential sites and different regulatory environments, there is a need to develop a comprehensive approach for the seismic design input parameters. These input parameters are used in the design of the standard ACR product that is suitable for many sites while also maintaining its economic competitiveness. For this purpose, the ACR standard plant is conservatively qualified for a Design Basis Earthquake (DBE) with a peak horizontal ground acceleration of 0.3g for a wide range of soil/rock foundation conditions and Ground Response Spectra (GRS). These input parameters also address some of the current technical issues such as high frequency content and near field effects. In this paper, the ACR seismic design philosophy and seismic design approach for meeting the safety design requirements are reviewed. Also the seismic design

  16. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  17. Refer to AP1000 for discussing the betterment of seismic design of internal nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbang; Zhang Renyan

    2014-01-01

    As a reference technique of AP1000, This paper discussed the betterment of seismic design of nuclear power plant in three ways. (1) Establish design criteria and guidelines for protection from seismic interaction; (2) Nuclear power plant seismic design of eliminating or weaken operation-basis earthquake; (3) Develop the seismic margin analysis (SMA) of the nuclear power plant. These three aspect are frontier technology in internal seismic design of internal nuclear power plant, and also these three technology are related intimately. (authors)

  18. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  19. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  20. Update of bridge design standards in Alabama for AASHTO LRFD seismic design requirements.

    Science.gov (United States)

    2013-11-01

    The Alabama Department of Transportation (ALDOT) has been required to update their bridge design to the LRFD Bridge Design Specifications. This transition has resulted in changes to the seismic design standards of bridges in the state. Multiple bridg...

  1. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    International Nuclear Information System (INIS)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  2. Evaluation of seismic criteria used in design of INEL facilities

    International Nuclear Information System (INIS)

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  3. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  4. Design and development of indigenous seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation and features and testing of the developed systems. (author)

  5. Seismic design for Monju FBR power plant

    International Nuclear Information System (INIS)

    1982-01-01

    This technical report introduces the basic concept on the aseismatic design of the FBR ''Monju'' power station, of which the construction in Tsuruga is planned by the Power Reactor and Nuclear Fuel Development Corp. The safety design of Monju has been performed according to ''The concept of evaluating the safety of fast breeder reactors'', and the thought concerning the aseismatic design also is written in it. According to it, ''The guide for the examination of aseismatic design regarding power reactor facilities'' should be referred to, and the classification according to the importance in aseismatic design must be made, taking the features in the design of liquid metal-cooled FBRs fully in consideration. In the aseismatic design of Monju performed according to these basic concept, the following two points were examined. In the aseismatic design of the equipment and piping, the difference of construction from LWRs such as low pressure, thin walled and high temperature construction is taken in consideration. The classification according to the aseismatic importance of the system and equipment is made on the basis of the features in the design of Monju. The classification according to aseismatic importance, the method of calculating earthquake power, the combination of loads and the allowable limit, and the aseismatic construction of the main facilities are reported. (Kako, I.)

  6. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  7. Seismic considerations in the design of atomic power plants

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Thakkar, S.K.

    1975-01-01

    A seismic design is one of the most important factors for the safety of nuclear power plants constructed in seismic areas. The various considerations in the design of atomic power plant structures and components to achieve high degree (near absolute) of safety during future probable earthquakes is described as follows: (a) determination of design earthquake parameters for SSE and OBE (b) fixing time history accelerograms and acceleration response spectra (c) mathematical modelling of the reactor building considering soil-structure interaction (d) deciding allowable stresses, damping factors and serviceability limits like drift, displacements and crack widths (e) tests for determining stiffness and damping characteristics of components in-situ before commissioning of plant. The main questions that arise under various items requiring further research investigations or development work are pointed out for discussion. (author)

  8. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  9. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  10. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  11. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  12. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  13. A CAREM fuel assembly prototype construction in order to verify its mechanical design using hydrodynamic testing

    International Nuclear Information System (INIS)

    Aparicio, Gaspar; Di Marco, Agustin; Falcone, Jose M.; Giorgis, Miguel A.; Mathot, Sergio R.; Migliori, Julio; Orlando, Oscar S.; Restelli, Miguel A.; Ruggirello, Gabriel; Sapia, Gustavo C.; Zinzallari, Fausto; Bianchi, Daniel R.; Volpi, Ricardo M.

    2000-01-01

    The scope of this paper is to describe the activities of several Groups from three Atomic Centers (C. A. Bariloche, C. A. Ezeiza and C. A. Constituyentes), involved in the manufacturing of a CAREM fuel assembly prototype. The Design Group (UAIN-CAB) carried out the fuel assembly engineering. Cladding components were constructed by the Special Alloys Pilot Factory (UAMCN-CAE). Engineering Group (UACN-CAC) manufactured the parts to be processed, resorting to qualified suppliers. Elastic spacers were completely designed and constructed by this Group, and fuel rods, control rods, guide tubes and spacers were also welded here. Research Reactors Fuels Group (UACN-CAC) carried out the dimensional control of the elaborated parts, while Postirradiation Testing Group (UACN-CAC) performed the assembling of the fuel element. This paper also refers to the design and development of special equipment and devices, all of them required for the prototype construction. (author)

  14. Seismic evaluation of non-seismically designed existing Magnox nuclear power plants

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1984-01-01

    The philosophy and method adopted for the seismic assessment of three existing Magnox nuclear stations in the United Kingdom are presented in this paper. The plants were not seismically designed. The particular procedures that were applied were tailored to suit the difficulties of lack of data which is somewhat inevitable for plants designed and built about 25 to 30 years ago. Special procedures included on-site testing with a portable shake table, low vibration testing using a structural dynamics analyser, and on-site inspections. The low vibration testing was most invaluable in detecting differences between 'as-built' conditions and the engineering drawings. From the point of view of economics, this was more effective than conducting full structural surveys to determine the as-built conditions. The testing results also provided confidence in the answers from numerical models. The philosophy adopted for the Magnox reactors in the seismic assessment was to determine what peak ground accelerations the sites can sustain and then evaluate the chances of exceeding the ground accelerations over the remaining lifetime of the plants. The peak ground acceleration for each site was determined on the basis of the criteria of safe shutdown and prevention of significant off-site radiological exposure

  15. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  16. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    Rangette, A.M.; Peters, K.A.

    1988-01-01

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10 -4 /year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  17. Seismic design practice for Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Chhatre, A.G.; Ingole, S.M.; Bhardwaj, S.A.

    1996-01-01

    Nuclear power plants designed in India in the last twenty years have been designed for earthquake loading using the current licensing practices. Designers and equipment suppliers have therefore been required to consider seismic loading as a major load case. In India, the nuclear power plants have been seismically qualified using state-of-the-art techniques involving both seismic analysis and testing to ensure that the power plant is capable of safely surviving an earthquake that the plant is likely to experience during their operating life. Guidelines and criteria for meeting the qualification requirements are followed as given in various AERB (Indian Atomic Energy Regulatory Board), NRC, IAEA guides, ASME codes and IEEE standards. In this paper various methods available for qualification of structures, systems, mechanical and electrical equipment are explained. The approach and guidelines used within Indian nuclear industry which are evolved from simple analytical requirements to the more elaborate current requirements involving complex analysis and testing on shake table are also summarized

  18. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  19. Seismic design of RC buildings theory and practice

    CERN Document Server

    Manohar, Sharad

    2015-01-01

    This book is intended to serve as a textbook for engineering courses on earthquake resistant design. The book covers important attributes for seismic design such as material properties, damping, ductility, stiffness and strength. The subject coverage commences with simple concepts and proceeds right up to nonlinear analysis and push-over method for checking building adequacy. The book also provides an insight into the design of base isolators highlighting their merits and demerits. Apart from the theoretical approach to design of multi-storey buildings, the book highlights the care required in practical design and construction of various building components. It covers modal analysis in depth including the important missing mass method of analysis and tension shift in shear walls and beams. These have important bearing on reinforcement detailing. Detailed design and construction features are covered for earthquake resistant design of reinforced concrete as well as confined and reinforced masonry structures. Th...

  20. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2016-01-01

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  1. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan

    2015-07-01

    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  2. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan

    2016-01-06

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  3. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation

  4. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  5. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  6. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  7. Review of public comments on proposed seismic design criteria

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Shaukat, S.K.; Chokshi, N.C.; Bagchi, G.; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC

    1989-01-01

    During the first quarter of 1988, the Nuclear Regulatory Commission (NRC) prepared a proposed Revision 2 to the NUREG-0800 Standard Review Plan (SRP) Sections 2.5.2 (Vibratory Ground Motion), 3.7.1 (Seismic Design Parameters), 3.7.2 (Seismic Systems Analysis) and 3.7.3 (Seismic Subsystem Analysis). The proposed Revision 2 to the SRP was a result of many years' work carried out by the NRC and the nuclear industry on the Unresolved Safety Issue (USI) A-40: ''Seismic Design Criteria.'' The background material related to NRC's efforts for resolving the A-40 issue is described in NUREG-1233. In June 1988, the proposed Revision 2 of the SRP was issued by NRC for public review and comments. Comments were received from Sargent and Lundy Engineers, Westinghouse Electric Corporation, Stevenson and Associates, Duke Power Company, General Electric Company and Electric Power Research Institute. In September 1988, Brookhaven National Laboratory (BNL) and its consultants (C.J. Costantino, R.P. Kennedy, J. Stevenson, M. Shinozuka and A.S. Veletsos) were requested to carry out a review of the comments received from the above six organizations. The objective of this review was to assist the NRC staff with the evaluation and resolution of the public comments. This review was initiated during October 1988 and it was completed on January 1989. As a result of this review, a set of modifications to the above mentioned sections of the SRP were recommended by BNL and its consultants. This paper summarizes the recommended modifications. 4 refs

  8. Seismic isolation systems designed with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  9. Requirements on PWR reactor design with respect to seismic effects

    International Nuclear Information System (INIS)

    Novak, J.; Pecinka, L.

    1981-01-01

    From the seismic point of view the individual parts of a nuclear power plant must be built such as to allow the shutdown of the reactor up to the safe shutdown earthquake level, the removal of after-heat and the prevention of uncontrolled release of radioactivity into the environment. To the level of operating basic earthquake the plant must be designed such as to allow the operation of the reactor for a period of 100 hours from the seismic event without exceeding the permissible annual dose to personnel and population. The possibility of a loss-of-coolant accident owing to a seismic event is reduced mainly by the integrated performance of the primary circuit, the high-strength structure, the insulation of the main components from the shift of the foundations and the use of floating structures. The pressure vessel of the WWER-1000 reactor is therefore pAaced in a shaft on a support ring and is locked by another support ring. (Z.M.)

  10. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  11. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  12. Researching design solutions for frames of buildings in case of increased seismic intensity in specific zones

    OpenAIRE

    Panasyuk Leonid; Kravchenko Galina; Trufanova Elena

    2017-01-01

    Currently, there is a trend to increase the estimated seismic hazard for construction sites. With this, the buildings erected under the previously valid norms have the lesser hazard resistance. The present article inquiries into an issue of how the design solutions affect the safety of the building change under the increased seismic intensity. This article represents the calculation of a building without regard to seismic intensity and the same was made for a rate-7 seismic intensity district...

  13. Seismic design criteria of fire protection systems for DOE facilities

    International Nuclear Information System (INIS)

    Hardy, G.; Cushing, R.; Driesen, G.

    1991-01-01

    Fire protection systems are critical to the safety of personnel and to the protection of inventory during any kind of emergency situation that involves a fire. The importance of these fire protection systems is hightened for DOE facilities which often house nuclear, chemical or scientific processes. Current research into the topic of open-quotes fires following earthquakesclose quotes has demonstrated that the risks of a fire starting as a result of a major earthquake can be significant. Thus, fire protection systems need to be designed to withstand the anticipated seismic event for the site in question

  14. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  15. Innovative design of viscoelastic dampers for seismic mitigation

    International Nuclear Information System (INIS)

    Tsai, C.S.

    1993-01-01

    In this paper, an advanced and more reliable design of viscoelastic dampers for seismic mitigation of high-rise buildings is presented. The innovative design of energy-absorbing devices has some advantages, compared to the classical design, as follows: One, the device is directly subjected to shear strains and forces due to story drifts; two, the device can support its own weight during normal operations, and maintain stable for large deformations during earthquakes; three, the device can reduce the responses of a structure to horizontal as well as vertical seismic loadings; and four, the device can also decrease the responses of the floor system of a building. In this study, a ten-story building is given as an example to express the merits obtained from the new system. Comparisons of the building equipped with classical and proposed devices of viscoelastic dampers are carefully studied. Numerical results show that the energy-absorbing capacity of the new device is superior to the classical one, especially for vertical vibrations. (orig.)

  16. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  17. Seismic design criteria and their application to major hazard plant within the United Kingdom

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1982-12-01

    The nature of seismic motions and the implications are briefly described and the development of seismic design criteria for nuclear power plants in various countries is described including possible future developments. The seismicity of the United Kingdom is briefly reviewed leading to the present position on seismic design criteria for nuclear power plants within the United Kingdom. Damage from past destructive earthquakes is reviewed and the existing codes of practice and standards are described. Finally the effect of earthquakes on major hazard plant is discussed in general terms including the seismic analysis of a typical plant item. (author)

  18. Review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Araki, Masaaki; Ohba, Toshinobu; Torii, Yoshiya [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Takeuchi, Masaki [Nuclear Safety Commission (Japan)

    2012-03-15

    JRR-3(Japan Research Reactor No.3) with the thermal power of 20MW is a light water moderated and cooled, swimming pool type research reactor. JRR-3 has been operated without major troubles. This paper presents about review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors. In addition, some topics concerning damages in JRR-3 due to the Great East Japan Earthquake are presented. (author)

  19. Seismic resistant design of a nuclear category I earth dam

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Ries, E.R.; Kissenpfennig, J.F.

    1975-01-01

    An integral part of many nuclear power plants is the ultimate heat sink (UHS); the purpose of which is to retain and deliver a supply of service water to the plant when water from the primary circulating water system is not available. The earth dam described herein is designed to retain the reservoir for the UHS of a nuclear power plant in Southern Europe. The usual pseudo-static analysis is only as good as the estimate for the seismic coefficient used to compute an equivalent horizontal static force on a potential sliding mass. In view of the earth dam considered herein, a more accurate computation of the seismic coefficients is to be made. A two-dimensional dynamic finite element analysis is made to predict the response of the earth dam to a Safe Shutdown Earthquake excitation which is in the form of a time history of accelerations appropriately deconvoluted from the surficial time history and applied at the base of the model. The material properties such as shear modulus and damping are adjusted to be compatible with the level of strain obtained. Thus, non-linear behavior of soil is considered in the analysis and a more realistic response is predicted. Acceleration and stress are determined throughout the dam and are used to compute a seismic coefficient for a pseudo-static stability analysis and the dynamic strength to stress ratios at several points in the body of the dam. The need to design the dam to resist a progressive erosion accident resulting from postulated concentrated leaks is discussed. This may be accomplished by providing a wide, well graded core protected by wide transition cores also heavily compacted

  20. Seismic design of a uranium conversion plant building

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.; Botelho, C.L.A.; Braganca, A. Jr.; C. Santos, S.H. de.

    1992-01-01

    The design of facilities with small radioactive inventory has been traditionally performed following the usual criteria for industrial buildings. In the last few years, more stringent criteria have been adopted in new nuclear facilities in order to achieve higher standards for environmental protection. In uranium conversion plants, the UF 6 (uranium hexafluoride) production step is the part of the process with the highest potential for radioactivity release to the environment because of the operations performed in the UF 6 desublimers and cylinder filling areas as well as UF 6 distillation facilities, when they are also required in the process. This paper presents the design guidelines and some details of the seismic resistance design of a UF 6 production building to be constructed in Brazil

  1. Study of seismic design bases and site conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches

  2. Study of seismic design bases and site conditions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  3. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Michael Horsfall

    Base Isolation Systems that is flexible approach to decrease the potential damage. In this ... In addition, we analyze the seismic responses of isolated structures. The seismic ..... Equation 3.7, is examined; it is realized that the inequality ...

  4. Studies on the seismic buckling design guideline of FBR main vessels. 9. Buckling evaluation under elastic-plastic seismic response

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi

    1998-01-01

    Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)

  5. Endurance time method for Seismic analysis and design of structures

    International Nuclear Information System (INIS)

    Estekanchi, H.E.; Vafai, A.; Sadeghazar, M.

    2004-01-01

    In this paper, a new method for performance based earthquake analysis and design has been introduced. In this method, the structure is subjected to accelerograms that impose increasing dynamic demand on the structure with time. Specified damage indexes are monitored up to the collapse level or other performance limit that defines the endurance limit point for the structure. Also, a method for generating standard intensifying accelerograms has been described. Three accelerograms have been generated using this method. Furthermore, the concept of Endurance Time has been described by applying these accelerograms to single and multi degree of freedom linear systems. The application of this method for analysis of complex nonlinear systems has been explained. Endurance Time method provides a uniform approach to seismic analysis and design of complex structures that can be applied in numerical and experimental investigations

  6. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  7. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  8. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  9. Seismic behavior and design of wall-EDD-frame systems

    Directory of Open Access Journals (Sweden)

    Oren eLavan

    2015-06-01

    Full Text Available Walls and frames have different deflection lines and, depending on the seismic mass they support, may often poses different natural periods. In many cases, wall-frame structures present an advantageous behavior. In these structures the walls and the frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly connected, an opportunity for an efficient passive control strategy would arise: Connecting the two systems by energy dissipation devices (EDDs to result in wall-EDD-frame systems. This, depending on the parameters of the system, is expected to lead to an efficient energy dissipation mechanism.This paper studies the seismic behavior of wall-EDD-frame systems in the context of retrofitting existing frame structures. The controlling non-dimensional parameters of such systems are first identified. This is followed by a rigorous and extensive parametric study that reveals the pros and cons of the new system versus wall-frame systems. The effect of the controlling parameters on the behavior of the new system are analyzed and discussed. Finally, tools are given for initial design of such retrofitting schemes. These enable both choosing the most appropriate retrofitting alternative and selecting initial values for its parameters.

  10. Design of the Caltrans Seismic Response Modification Device (SRMD) test facility

    International Nuclear Information System (INIS)

    Benzoni, G.; Seible, F.

    1998-01-01

    In the Seismic retrofit design of California's Toll Bridges, seismic isolation is used in several bridges to limit the seismic force input into the superstructure and to avoid costly superstructure retrofit measures which would require partial lane closures and traffic interruptions. Isolation bearings and dampers of the size required for these large span bridges have not been built or tested to date. This paper describes the design and construction of a full scale testing facility which will allow the real-time 6-DOF dynamic characterization of the seismic response modification devices designed for California's Toll Bridges. (author)

  11. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  12. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  13. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  14. Seismic design and qualification for nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    This safety guide, which supplements the IAEA Code on the Safety of Nuclear Power Plants (NPP); Design (IAEA Safety Series No.50-C-D (Rev.1)), forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes and Guides relating to land based stationary thermal neutron power plants. The present Guide was originally issued in 1979 as Safety Guide 50-SG-S2 within the series of NUSS guides for the siting of NPP, extending seismic considerations from Safety Guide 50-SG-S1 into the design and verification field. During the revision phase in 1988-1990, this emphasis on design aspects was confirmed and consequently the Guides have been reclassified as a design Guide with the corresponding identification number 50-SG-D15. The general character of the Guide has not been changed an it still relates strongly to 50-SG-S1, which gives guidance on how to determine design basis ground motion for a NPP at a given site

  15. Seismic design criteria for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Morrone, A.; Bitner, J.L.; Sigal, G.B.

    1975-01-01

    The general criteria for seismic resistant design for structures, systems and components of the Clinch River Breeder Reactor Plant (CRBRP) are presented and discussed. Site dependency of the maximum ground accelerations for the Operating Basis Earthquake and the Safe Shutdown Earthquake is described from the viewpoint of historical records and geological and seismological studies for the CRBRP site. The respective ground response spectra are derived by normalization of the latest AEC Regulatory standard shapes to these maximum ground accelerations. Modeling and analytical techniques and requirements are given. In addition, loading conditions and categories, loading combinations, earthquake direction effects and allowable damping values are defined. A discussion of the testing criteria which considers both single and multiple frequency test motions, and basic test procedures for single frequency sine beat testing is presented. (U.S.)

  16. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  17. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  18. Seismic design of nuclear power plants - where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1998-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last 10 years has resulted in a corresponding lull in the basic academic research carried out in this field. Whilst some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. However, research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (orig.)

  19. Seismic design of nuclear power plants. Where are we now?

    International Nuclear Information System (INIS)

    Roesset, J.M.

    1995-01-01

    The lack of any significant activity in the design and construction of new nuclear power plants over the last ten years has resulted in a corresponding lull in the basic academic research carried out in this field. While some work is still going on related to the evaluation of existing plants or to litigation over some of them (including some that never became operational) most of it is of a very applied nature and little basic research is being conducted at present. Yet research on earthquake engineering in general, as applied to buildings, bridges, lifelines, dams and other constructed facilities has continued. This paper attempts to look at some of the areas where there were major uncertainties in the seismic design of nuclear power plants (selection of the design earthquake and its characteristics, evaluation of soil effects and soil structure interactions, dynamic analysis and design of the structures), the progress that has been made in these areas, and the remaining issues in need of further research. (author)

  20. Upgrading accuracy of designed seismic vibration on concept of the land conditions

    International Nuclear Information System (INIS)

    Tamura, Keichi; Kaneko, Masahiro; Honda, Toshiki; Chiba, Hikaru

    1998-01-01

    In this study, some investigations on design procedure of designed seismic vibration were conducted on concept of amplification of the seismic vibration and nonlinearity of the system at the place largely changing topographic and land conditions. In this fiscal year, after collecting and arranging the topographic and land conditions at settling place of the nuclear facilities and their circumferences, some investigations on effect of the seismic vibration amplified at surface layer of grounds on behavior of nonlinear system as well as arrangement of relationship between the topographic and land conditions and seismic vibration amplifying properties at the surface layer of grounds were conducted. (G.K.)

  1. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  2. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  3. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  4. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  5. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  6. On seismic design of cable trays and their supports

    International Nuclear Information System (INIS)

    Hartmann, B.

    1978-01-01

    Codes presently in force for design of nuclear power plants require seismic qualification for all electric equipment. In the case of cable trays and their supports one usually attempts to meet the requirements of the code by stiffening a standardized design. This procedure leads to impracticall,imensions for the mountings and, above all, to the loss of the modular character. With strong earthquakes however, it may become irrational at all. This paper suggests an alternate strategy. It starts with a standardized system again, adding some units. These are on the one hand diagonal bracing elements, arbitrarily to arrange, thus gaining a more or less rigid supporting framework. And on the other hand as an essential modification, elastomer rubber pads are inserted as spring bearings. With these pads between the supporting and the adjoining structure, the assembly becomes tractable with respect to earthquake qualification. The question of material properties is also addressed. The elastomer pads have to be chosen so as to fulfil all expected functions under usual as well as extreme environmental conditions. (Author)

  7. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  8. Seismic analysis, evaluation and upgrade design for a nuclear facility exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Kabir, A.F.

    1991-01-01

    This paper reports on an exhaust stack building of a nuclear reactor facility with complex structural configuration that has been analyzed and evaluated for seismic forces. This building was built in the 1950's and had not been designed to resist seismic forces. A very rigorous analysis and evaluation program was implemented to minimize the costly retrofits required to upgrade the building to resist high seismic forces. The seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, base mat flexibility and the influence of the nearby reactor building have been considered in the seismic analyses. The rigorous analyses and evaluation enabled limited upgrades to qualify the stack building for the seismic forces

  9. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  10. Verifiably Truthful Mechanisms

    DEFF Research Database (Denmark)

    Branzei, Simina; Procaccia, Ariel D.

    2015-01-01

    the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money...

  11. Seismic analysis, evaluation and upgrade design for a DOE exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Maryak, M.E.

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: (1) a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost-effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and, (2) finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades

  12. Design and implementation of a unified certification management system based on seismic business

    Science.gov (United States)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  13. Design requirements, criteria and methods for seismic qualification of CANDU power plants

    International Nuclear Information System (INIS)

    Singh, N.; Duff, C.G.

    1979-10-01

    This report describes the requirements and criteria for the seismic design and qualification of systems and equipment in CANDU nuclear power plants. Acceptable methods and techniques for seismic qualification of CANDU nuclear power plants to mitigate the effects or the consequences of earthquakes are also described. (auth)

  14. PBMR phase 1 study: Seismic and structural design consideration - An overview of principles

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1997-01-01

    This paper briefly reviews the principles involved in the planning and design of the proposed facility to cater for seismic and structural loads. The conceptual layout is discussed, as well as the different load characteristics and scenarios. An outline is given of model used to estimate the seismic loads, whereafter the different analytical models are discussed. (author)

  15. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  16. Recommended revisions to nuclear regulatory commission seismic design criteria

    International Nuclear Information System (INIS)

    Coats, D.W.

    1981-01-01

    Task Action Plan (TAP) A-40 was developed by consolidating specific technical assistance studies initiated to identify and quantify the conservatism inherent in the seismic design sequence of current NRC criteria. Task 10 of TAP A-40 provided a technical review of the results of the other nine engineering and seismological tasks in TAP A-40 and recommended changes to the existing NRC criteria based on this review. We used the team approach to accomplish the objectives of Task 10 in an efficient manner and to provide the best technical product possible within the limited time available. The team consisted of a core group of Lawrence Livermore National Laboratory personnel and selected consultants. The recommendations summarized in this paper were not based solely on the results of the tasks in TAP A-40 but went far beyond that data base to encompass all available and appropriate literature. Some recommendations are based on the expertise of core members and consultants that stem from unpublished data, research, and experience. Copies of the pertinent sections of the Standard Review Plan (SRP) and Regulatory Guides as well as the reports developed under TAP A-40 were provided to the participants. These reports, other available engineering literature, and the experience of the consultants and core group provided technical basis for the recommendations. (orig./HP)

  17. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  18. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  19. Optimization Criteria In Design Of Seismic Isolated Building

    International Nuclear Information System (INIS)

    Clemente, Paolo; Buffarini, Giacomo

    2008-01-01

    Use of new anti-seismic techniques is certainly suitable for buildings of strategic importance and, in general, in the case of very high risk. For ordinary buildings, instead, the cost of base isolation system should be balanced by an equivalent saving in the structure. The comparison criteria have been first defined, then a large numerical investigation has been carried out to analyze the effectiveness and the economic suitability of seismic isolation in concrete buildings

  20. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  1. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  2. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  3. Design approach of seismic interface for cryoline with Tokamak building for ITER

    International Nuclear Information System (INIS)

    Badgujar, S.; Sarkar, B.; Vaghela, H.; Shah, N.; Naik, H.B.

    2012-01-01

    ITER Tokamak building is designed with seismic isolation pads to protect the Tokamak components from seismic events. Two main cryolines, designated as cryolines between buildings (Mg and CP), runs from interconnection box in cryoplant building to the Tokamak building. The lines outside Tokamak building are supported by seismically non-isolated supports. The cryoline design at the interface between seismically isolated and non-isolated support systems needs to be studied to fulfill the functional requirements. One of the options for interface, universal expansion joint has been modeled in CATIA with actual thickness of each ply and inter-ply distance, analyzed in ANSYS using contact definition, as a part of the preliminary study. The bellows have been checked by design calculation as per EJMA standard for the specified movements. The paper will present approach for conceptual design of interface, problem definition and boundary conditions, methodology for analysis and preliminary results of stress pattern for expansion joints. (author)

  4. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  5. Outline of the seismic design guideline of an FBR - a tentative draft

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Ohtsubo, Hideomi; Nakamura, Hideharu; Matsuura, Shinichi; Hagiwara, Yutaka; Yuhara, Tetsuo; Hirayama, Hiroshi; Kokubo, Kunio; Ooka, Yuji.

    1993-01-01

    Central Research Institute of Electric Power Industry (Japan) is carrying out the Demonstration Test and Research Program of Buckling of FBR (FY 1987-FY 1993). The first half of the research program was finished after establishing a seismic buckling design guideline (a tentative draft). The purpose of this paper is to describe the dynamic buckling characteristics of FBR main vessels and the outline of the rationalized buckling design guideline for seismic loadings. (orig.)

  6. Seismic design criteria for the system 80+ advanced light water reactor

    International Nuclear Information System (INIS)

    Manrique, M.A.; Dermitzakis, S.N.; Gerdes, L.D.; Kennedy, R.P.; Idriss, I.M.; Cassidy, J.R.

    1991-01-01

    This paper presents the development of seismic design criteria in support of design certification by the Nuclear Regulatory Commission (NRC) of the ABB-Combustion Engineering's System 80+ Standard Design. The design certification effort is sponsored by the US Department of Energy (DOE). The development of the design criteria included: (a) development of the seismic control motion, (b) development of generic soil profiles for anticipated sites, (c) generation of in-structure response spectra and design loads for structures and equipment through soil-structure interaction (SSI) analyses, and (d) acceptance criteria for future construction sites

  7. Design and development of spine phantom to verify dosimetric accuracy of stereotactic body radiation therapy using 3D prnter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seu Ran; Lee, Min Young; Kim, Min Joo; Park, So Hyun; Song Ji Hye; Suh, Tae Suk [Dept. of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sohn, Jason W. [Dept. of Radiation Oncology, College of Medicine, Case Western Reserve University, Cleveland (United States)

    2015-10-15

    The purpose of this study is to verify dosimetric accuracy of delivered dose in spine SBRT as highly precise radiotherapy depending on cancer position using dedicated spine phantom based on 3D printer. Radiation therapy oncology group (RTOG) 0631 suggest different planning method in spine stereotactic body radiation therapy (SBRT) according to location of cancer owing to its distinct shape. The developed phantom especially using DLP method can be utilized as spine SBRT dosimetry research. Our study was able to confirm that the phantom was indeed similar with HU value of human spine as well as its shape.

  8. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  9. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    with given yield displacement and capacity curve shape. For the 8-story case study building, deformation checking is the governing limit state. A conventional code-based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS-based approach was employed......The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...... to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high-seismicity and high-importance midrise building, a stiffer system with higher...

  10. Consideration on the relation between dynamic seismic motion and static seismic coefficient for the earthquake proof design of slope around nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kitahara, Yoshihiro; Hirata, Kazuta

    1986-01-01

    When the large cutting slopes are constructed closed to around nuclear power plants, it is important to evaluate the stability of the slopes during the strong earthquake. In the evaluation, it may be useful to clarify relationship between the static seismic coefficient and dynamic seismic force corresponded to the basic seismic motion which is specified for designing the nuclear power facilities. To investigate this relation some numerical analyses are conducted in this paper. As the results, it is found that dynamic forces considering the amplified responses of the slopes subjected to the basic seismic motion with a peak acceleration of 500 gals at the toe of the slopes, are approximately equal to static seismic force which generates in the slopes when the seismic coefficients of k = 0.3 is applied. (author)

  11. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  12. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  13. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  14. Investigation on seismic characteristic in Muria Peninsula to asses the NPP seismic design

    International Nuclear Information System (INIS)

    Kusnowo, A.

    1997-01-01

    A feasibility study on first nuclear power plant was conducted during 4,5 years started on 22 November 1991. This study consists of two parts. First, the non site study, Second part is the site and environmental study. The scope of non site studies are economic financing, technical and safety aspect as well as fuel cycle and waste management aspect. The site and environmental studied consist of site conditions and qualification, seismological, environmental condition as well as social economic and cultural impact. In the first step of site study (step 1), the result come up to the three candidates named Ujung Lemahabang, Ujung Watu and Ujung Grenggengan. Further study on geology, topography, oceanography, geophysics, hydrology, seismology, vulcanology, man induced event, etc was done on those three candidates (named as step 2). The results come up with Ujung Lemahabang as the best candidates. It is important to know basic, characteristic of seismicity of nuclear power plant sitting region for seismic hazard assessment this was done as step 3. This paper describe the results of step 3. (J.P.N.)

  15. Investigation on seismic characteristic in Muria Peninsula to asses the NPP seismic design

    Energy Technology Data Exchange (ETDEWEB)

    Kusnowo, A [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-03-01

    A feasibility study on first nuclear power plant was conducted during 4,5 years started on 22 November 1991. This study consists of two parts. First, the non site study, Second part is the site and environmental study. The scope of non site studies are economic financing, technical and safety aspect as well as fuel cycle and waste management aspect. The site and environmental studied consist of site conditions and qualification, seismological, environmental condition as well as social economic and cultural impact. In the first step of site study (step 1), the result come up to the three candidates named Ujung Lemahabang, Ujung Watu and Ujung Grenggengan. Further study on geology, topography, oceanography, geophysics, hydrology, seismology, vulcanology, man induced event, etc was done on those three candidates (named as step 2). The results come up with Ujung Lemahabang as the best candidates. It is important to know basic, characteristic of seismicity of nuclear power plant sitting region for seismic hazard assessment this was done as step 3. This paper describe the results of step 3. (J.P.N.)

  16. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    OpenAIRE

    MOHD IRWAN ADIYANTO; TAKSIAH A. MAJID

    2014-01-01

    Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if s...

  17. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    Directory of Open Access Journals (Sweden)

    MOHD IRWAN ADIYANTO

    2014-02-01

    Full Text Available Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if seismic design has to be implemented in Malaysian construction industry. If the cost is increasing, how much the increment and is it affordable? This paper investigated the difference of steel reinforcement and concrete volume required when seismic provision is considered in reinforced concrete design of 2 storey general office building. The regular office building which designed based on BS8110 had been redesigned according to Eurocode 2 with various level of reference peak ground acceleration, agR reflecting Malaysian seismic hazard for ductility class low. Then, the all frames had been evaluated using a total of 800 nonlinear time history analyses considering single and repeated earthquakes to simulate the real earthquake event. It is observed that the level of reference peak ground acceleration, agR and behaviour factor, q strongly influence the increment of total cost. For 2 storey RC buildings built on Soil Type D with seismic consideration, the total cost of material is expected to increase around 6 to 270%, depend on seismic region. In term of seismic performance, the repeated earthquake tends to cause increasing in interstorey drift ratio around 8 to 29% higher compared to single earthquake.

  18. Considerations for developing seismic design criteria for nuclear waste storage repositories

    International Nuclear Information System (INIS)

    Owen, G.N.; Yanev, P.I.; Scholl, R.E.

    1980-04-01

    The function of seismic design criteria is to reduce the potential for hazards that may arise during various stages of the repository life. During the operational phase, the major concern is with the possible effects of earthquakes on surface facilities, underground facilities, and equipment. During the decommissioned phase, the major concern is with the potential effects of earthquakes on the geologic formation, which may result in a reduction in isolation capacity. Existing standards and guides or criteria used for the static and seismic design of licensed nuclear facilities were reviewed and evaluated for their applicability to repository design. This report is directed mainly toward the development of seismic design criteria for the underground structures of repositories. An initial step in the development of seismic design criteria for the underground structures of repositories is the development of performance criteria, or minimum standards of acceptable behavior. A number of possible damage modes are identified for the operating phase of the repository; however, no damage modes are foreseen that would perturb the long-term function of the repository, except for the possibility of increased permeability within the rock mass. Subsequent steps in formulating acceptable seismic design criteria for the underground structures involve the quantification of the design process. The report discusses the necessity of specifying the form of ground motion that would be needed for seismic analysis and the procedures that may be used for making ground motion predictions. Further discussions outline what is needed for analysis, including rock properties, failure criteria, modeling techniques, seismic hardening criteria for the host rock mass, and probabilistic considerations

  19. Seismic design assessment by experimental methods. Notes from the workshop. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The workshop intended to provide training on the application of experimental techniques (mainly laboratory testing) as support to the seismic design of structures, equipment and components for nuclear power plants. The focus was on the activities planned by Nuclear Power Institute of China (NPIC) in the near future, and most of the lectures provided by the attendees, dealing with these national activities, were the basis for the discussion with the IAEA experts. Special modules were identified for the workshop, dealing with: Numerical models: detailing and comparison techniques; On site testing of structures and equipment; Special problems: Leak before Break (LBB), thermal effects, combination of seismic with other loads; General seismic behavior and design criteria for fuel assembly and core structures; Seismic qualification methodologies for reactor core, mechanical components, I and C and piping; Balancing analysis and test in seismic qualification; Design of mock-up: selection of seismic input, detailing, scaling and similitudes, selection of sensors and their location; Test planning and conduct, basic documents and specifications; Quality assurance and technical procedures in laboratory testing; Data processing techniques and interface with the numerical models. The material used for presentations by the lecturers and by the national attendees is collected in this volume together with some background literature provided by the experts with up to date references and procedures. A special chapter is added to these proceedings with the content of the discussion, for future reference and as a complement to the lectures content, more oriented to the specific, immediate needs of the attendees.

  20. Seismic design assessment by experimental methods. Notes from the workshop. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The workshop intended to provide training on the application of experimental techniques (mainly laboratory testing) as support to the seismic design of structures, equipment and components for nuclear power plants. The focus was on the activities planned by Nuclear Power Institute of China (NPIC) in the near future, and most of the lectures provided by the attendees, dealing with these national activities, were the basis for the discussion with the IAEA experts. Special modules were identified for the workshop, dealing with: Numerical models: detailing and comparison techniques; On site testing of structures and equipment; Special problems: Leak before Break (LBB), thermal effects, combination of seismic with other loads; General seismic behavior and design criteria for fuel assembly and core structures; Seismic qualification methodologies for reactor core, mechanical components, I and C and piping; Balancing analysis and test in seismic qualification; Design of mock-up: selection of seismic input, detailing, scaling and similitudes, selection of sensors and their location; Test planning and conduct, basic documents and specifications; Quality assurance and technical procedures in laboratory testing; Data processing techniques and interface with the numerical models. The material used for presentations by the lecturers and by the national attendees is collected in this volume together with some background literature provided by the experts with up to date references and procedures. A special chapter is added to these proceedings with the content of the discussion, for future reference and as a complement to the lectures content, more oriented to the specific, immediate needs of the attendees

  1. Development of Cold-Formed Steel Seismic Design Recommendations

    Science.gov (United States)

    2015-08-01

    top beam attached to the hydraulic ram. This tube is far more flexible in bending than the beam/floor slab in the field, and therefore will not... torsional and out-of-plane response should not be significant, and the rocking response can be accounted for in refined Drain 2DX analysis when...209 11.9.3 Vertical distribution of lateral seismic forces ........................................................ 210 11.9.4 Torsion

  2. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In

    2014-01-01

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings

  3. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings.

  4. Original seismic design data and application of SMA and GIP methodologies. V. 1

    International Nuclear Information System (INIS)

    Masopust, R.

    1995-01-01

    The major focus of the IAEA sponsored Benchmark study for seismic analysis of WWER type NPPs is to develop the procedures which should be recommended to assess and enhance the seismic capacity of existing NPPs. The main issues are; identification of the most critical systems, structures and components necessary for safe shutdown; evaluation of as built conditions by collecting the data as originally used codes and standards, design drawings and construction specifications; realistic assessment of seismic response of plant building structures, distribution systems and passive equipment; functional qualification of active mechanical and electrical components through the use seismic experience or test-based data. The main aim of this report is to present the contribution to the task 'Safe shutdown system identification and classification'; to report on the task 'Standards, Criteria - Comparative study'; to present some special considerations coherent to these tasks

  5. The 1995 forum on appropriate criteria and methods for seismic design of nuclear piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1996-01-01

    A record of the 1995 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the earthquake experience data base and whether the data base demonstrates that seismic inertia loads will not cause failure in ductile piping systems. This was a follow-up to the 1994 Forum when the use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. Two possible topics for the next forum were identified--inspection after an earthquake and design for safe-shutdown earthquake only

  6. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  7. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    Science.gov (United States)

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  8. The Canarian Seismic Monitoring Network: design, development and first result

    Science.gov (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  9. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  10. Seismic design and evaluation criteria for DOE facilities (DOE-STD-1020-XX)

    International Nuclear Information System (INIS)

    Short, S.A.; Kennedy, R.P.; Murray, R.C.

    1993-01-01

    Seismic design and evaluation criteria for DOE facilities are provided in DOE-STD-1020-XX. The criteria include selection of design/evaluation seismic input from probabilistic seismic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. Conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior and by a seismic load factor. These criteria are based on the performance or risk goals specified in DOE 5480.28. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of desired behavior and of the probability of not achieving that behavior. Following the seismic design/evaluation criteria of DOE-STD-1020-XX is sufficient to demonstrate that the probabilistic performance or risk goals are achieved. The criteria are simple procedures but with a sound, rigorous basis for the achievement of goals

  11. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  12. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  13. Designing in seismic areas in the third millennium: modern technologies

    International Nuclear Information System (INIS)

    Martelli, Alessandro

    2015-01-01

    The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located

  14. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  15. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  16. Seismic design principles for the German fast breeder reactor SNR 2

    International Nuclear Information System (INIS)

    Busch, K.A.; Peters, K.A.; Rosenhauer, W.

    1987-01-01

    The safety issue of an adequate and optimized external event protection is of course that unnecessary hardware precautions might promote internal disturbances or hamper their control. It has up to now not satisfactorily been realized that the only serious context for seismic impacts on a fast reactor is their attributed potential of overriding core disruptive accident prevention, see e.g. GRS 1982. General and exaggerated antiseismic design features not focussed upon this point may as well turn out to be non-negligible initators in the absence of seismic vibrations. Unexpected snubber difficulties requiring additional reactor scrams and decay heat removal phases may be named as a simple example. The presented seismic design principles reflect the progress made in the concerned fields of analysis and do serve on the other hand as guidelines for research and development efforts under work. (orig./GL)

  17. The 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1995-01-01

    A record of the 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the design-by-rule method for seismic design of piping. Issues such as acceptance criteria, ductility considerations, demonstration of margin, training, verification and costs were discussed. The use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. The majority of the participants felt there are not significant advantages to developing a design-by-rule approach for new plant design. One major disadvantage was considered by many to be training. Extensive training will be required to properly implement a design-by-rule approach. Verification of designs was considered by the majority to be equally important for design-by-rule as for design-by-analysis. If a design-by-rule method is going to be effective, the method will have to be based on ductility considerations (UBC approach). A significant issue will be justification of seismic margins with liberal rules. The UBC approach is being questioned by some because of the recent structural cracking problems in the Northridge earthquake

  18. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, components for which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation

  19. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D [Stevenson and Associates, Cleveland, OH (United States)

    1995-07-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, componentsfor which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation.

  20. Multi Canister Overpack (MCO) Handling Machine Trolley Seismic Uplift Constraint Design Loads

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The MCO Handling Machine (MHM) trolley moves along the top of the MHM bridge girders on east-west oriented rails. To prevent trolley wheel uplift during a seismic event, passive uplift constraints are provided as shown in Figure 1-1. North-south trolley wheel movement is prevented by flanges on the trolley wheels. When the MHM is positioned over a Multi-Canister Overpack (MCO) storage tube, east-west seismic restraints are activated to prevent trolley movement during MCO handling. The active seismic constraints consist of a plunger, which is inserted into slots positioned along the tracks as shown in Figure 1-1. When the MHM trolley is moving between storage tube positions, the active seismic restraints are not engaged. The MHM has been designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis (Reference 3) reported seismic uplift restraint loading and EDERER performed corresponding structural calculations. The ALSTHOM and EDERER calculations were performed with the east-west seismic restraints activated and the uplift restraints experiencing only vertical loading. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the east-west trolley restraints are not engaged. For this case, the associated trolley movements would result in east-west lateral loads on the uplift constraints due to friction, as shown in Figure 1-2. During preliminary evaluations, questions were raised as to whether the EDERER calculations considered the latest ALSTHOM seismic analysis loads (See NCR No. 00-SNFP-0008, Reference 5). Further evaluation led to the conclusion that the EDERER calculations used appropriate vertical loading, but the uplift restraints would need to be re-analyzed and modified to account for lateral loading. The disposition of NCR 00-SNFP-0008 will track the redesign and modification effort. The purpose of this calculation is to establish bounding seismic

  1. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  2. Numerical Investigation of Progressive Collapse Resistance for Seismically Designed RC Buildings

    OpenAIRE

    Marchiş, Adrian G.; Ioani, Adrian M.

    2014-01-01

    In this paper the progressive collapse behavior of a reinforced concrete framed building located in different seismic areas from Romania is investigated. The six-storey structure is designed for low (ag = 0.08 g), moderate (ag = 0.16 g) and high (ag = 0.24 g) seismic zone. Based on the GSA (2003) criteria, a nonlinear static analysis is conducted first in order to estimate the progressive collapse resistance of the models. It was shown that all the structures will collapse when subjected to i...

  3. Consideration on the applicability of the design seismic coefficient of a large cutting slope under the strong earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sawada, Yoshihiro; Satou, Kiyotaka

    1989-01-01

    In this study, the characteristic of equivalent seismic coefficient and the applicability of the design seismic coefficient of a large cutting rock slope around Nuclear Power Plant were examined by analytical parameter survey. As the results, the equivalent seismic coefficient by dynamic analysis become great with increase of transverse elastic wave velocity and the case of long period motion. That is, as the wave length of rock mass become longer, the equivalent seismic coefficient become great parabolically. Moreover, there is a inverse proportion relation between the ratio (dynamic safety factor/static safety factor) and wave length. In addition, the graph to forecast the dynamic sliding safety factor under the input seismic motion of the max. Acceleration 500 gal from the result of static simple method was proposed and the applicable range of design seismic coefficient of rock slope was indicated. (author)

  4. The Design of Wireless Data Acquisition and Remote Transmission Interface in Micro-seismic Signals

    Directory of Open Access Journals (Sweden)

    Huan-Huan BIAN

    2014-02-01

    Full Text Available The micro-seismic signal acquisition and transmission is an important key part in geological prospecting. This paper describes a bran-new solution of micro-seismic signal acquisition and remote transmission using Zigbee technique and wireless data transmission technique. The hardware such as front-end data acquisition interface made up by Zigbee wireless networking technique, remote data transmission solution composed of general packet radio service (or GPRS for short technique and interface between Zigbee and GPRS is designed in detail. Meanwhile the corresponding software of the system is given out. The solution solves the numerous practical problems nagged by complex and terrible environment faced using micro-seismic prospecting. The experimental results demonstrate that the method using Zigbee wireless network communication technique GPRS wireless packet switching technique is efficient, reliable and flexible.

  5. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  6. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    International Nuclear Information System (INIS)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R; Aso, Y; Marka, S; Ottaway, D; Stochino, A

    2008-01-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

  7. Seismic safety review mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP. Sofia, Bulgaria, 19-23 October 1992

    International Nuclear Information System (INIS)

    Ma, D.; Prato, C.; Godoy, A.

    1992-10-01

    A seismic Safety Review Mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP was performed in Sofia from 19-23 October 1992. The objectives of the mission were to assist the Bulgarian authorities in: the evaluation of the floor response spectra of the main buildings of units 1-4 at Kozloduy NPP, calculated for the new defined seismic parameters at site (Review Level Earthquake - RLE); the evaluation of the remedial and strengthening measures proposed for the seismic upgrading of the pump house and diesel generator buildings to the new defined RLE. This mission completed the scope of previous IAEA mission - BUL/9/012-18b - (see Report 3262) performed from 3-7 August 1992, with regard to tasks which were not evaluated at that time because they had not been finished. 2 tabs

  8. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  9. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  10. Philosophy for seismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Teramae, Tetsuo

    1981-01-01

    In Japan, earthquakes occur frequently, therefore the basic philosophy in the aseismatic design of nuclear facilities is to design so as not to cause the accident which gives to the public in the surroundings and the employes radiation injuries in the case of large earthquakes. The ''Guideline for the aseismatic design techniques for nuclear power stations'' was drawn up in 1970 as the result of studies by related government offices and organizations. The guideline for determining the earthquakes used for design was published later, and the allowable stress for equipments and pipings has been adopted in accordance with ASME Code, Section 3. The buildings and structures, equipments and pipings in nuclear facilities are classified into three classes according to their importance in aseismatic design. The power of design earthquakes is determined corresponding to the degree of importance. The determination of the standard earthquake waves is explained. The proprieth of aseismatic design is evaluated on the basis of the basic concept of the combination of loads and the allowable limit. The static analysis in accordance with the Building Standards Act is applied to the B and C classes, while the dynamic analysis is required for the A class. The aseismatic analysis of buildings and structures, equipments and pipings is outlined. Many problems to be solved still remain though the concept of aseismatic design has been clarified. (Kako, I.)

  11. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  12. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Richardson, A.M.; Blejwas, T.E.

    1992-01-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues

  13. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    International Nuclear Information System (INIS)

    Ghare, A.B.; Chhatre, A.G.; Vyas, A.K.; Bhambra, H.S.

    1996-01-01

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs

  14. Design of fuelling machine bridge and carriage to meet seismic qualification requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ghare, A B; Chhatre, A G; Vyas, A K; Bhambra, H S [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    During each refuelling operation, the boundary of Primary heat transport system is extended up to Fuelling Machines. A breach in the pressure boundary of Fuelling Machine in this condition would cause a loss of coolant accident. Fuelling Machines are also used for transit storage of spent fuel bundles till discharged to fuel transfer system. Therefore, a fuelling machine, including its support structures, is required to be seismically qualified for both on-reactor ( coupled ) mode and off-reactor (uncoupled) mode. The fuelling machine carriage used in the first generation of Indian PHWRs is a mobile equipment on wheels moving over fixed rails. As this configuration was found unsuitable for withstanding strong seismic disturbances, a bridge type design with fixed columns was evolved for the next generation of reactors. Initially, the seismic analysis of the fuelling machine bridge and carriage was done using static structural analysis and values of natural frequencies for various structures were computed. The structures were suitably modified based on the results of this analysis. Subsequently, a detailed dynamic seismic analysis using finite element model has been completed for both coupled and uncoupled conditions. The qualification of the structure has been carried out as per ASME section 111 Division 1, sub section NF. Details of the significant design features, static and dynamic analysis, results and conclusions are given in the presentation. (author). 4 refs., 4 tabs., 7 figs.

  15. Former Soviet Regulations for seismic design of NPPs and comparison with current international practice

    International Nuclear Information System (INIS)

    Kostarev, V.; Schukin, A.; Berkovski, A.

    1997-01-01

    This paper presents a summary of current earthquake design criteria used in former Soviet Regulations for equipment and piping systems of nuclear power plants in light of those used in United States and Japan. The detailed comparative seismic analysis of PWR (WWER) Primary Coolant Loop System (PCLS) according to Former Soviet (Russian) PNAE Code and ASME BPV Code with some comments regarding to Japan Code JEAG - 4601 was undertaken for better understanding of the differences and coincidences of seismic design criteria and requirements. The selection of these three guides for the study has very simple explanation: according to ASME BVPC, JEAG and PNAE the huge majority of existing NPPs has been designed. (J.P.N.)

  16. Former Soviet Regulations for seismic design of NPPs and comparison with current international practice

    Energy Technology Data Exchange (ETDEWEB)

    Kostarev, V; Schukin, A; Berkovski, A [CKTI-Vibroseism Co. Ltd. (Cape Verde)

    1997-03-01

    This paper presents a summary of current earthquake design criteria used in former Soviet Regulations for equipment and piping systems of nuclear power plants in light of those used in United States and Japan. The detailed comparative seismic analysis of PWR (WWER) Primary Coolant Loop System (PCLS) according to Former Soviet (Russian) PNAE Code and ASME BPV Code with some comments regarding to Japan Code JEAG - 4601 was undertaken for better understanding of the differences and coincidences of seismic design criteria and requirements. The selection of these three guides for the study has very simple explanation: according to ASME BVPC, JEAG and PNAE the huge majority of existing NPPs has been designed. (J.P.N.)

  17. Towards safe and economic seismic design of cooling towers of extreme height

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Meskouris, K.

    1979-01-01

    Nuclear power plants are being increasingly equipped with natural draught cooling towers of heights greater than 160 m. In many arid zones, where high natural draught cooling towers with dry cooling systems are being projected, wind loads are relativelly small while site seismicity is relatively high. Thus the ability of the tower to withstand earthquake induced forces governs its design. On the other hand, most reinforced concrete cooling towers of extreme height built so far were designed to withstand high wind loads and moderate earthquake loads. The effects of special structural measures for obtaining an economic design, such as the introduction of ring stiffened shells, have been studied mainly for those towers. In view of the previous aspects it is the purpose of this paper to analyze the effects of various structural measures and other parameters on the seismic response of such high cooling towers. (orig.)

  18. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  19. Design of components of reinforced concrete stressed by seismic loads

    International Nuclear Information System (INIS)

    Sitka, R.

    1980-01-01

    The example of the type of frame investigated shows that the ductility of the system assumed for standard dimensioning of such a frame lies between two and four. According to the system and the loading different requirements may result for the cross-section, that will have to be observed in design. Derived from these requirements rules are given for the design of frames stiffening in horizontal direction that will guarantee a minimum level of ductility. These rules concern the design of joint and node regions, utilization of the compressive force of the concrete as well as guidance and graduation of the reinforcement according to stud and bolt. By means of some examples of damaged components the effects of violating these rules are made clear. (orig./DG) [de

  20. Eccentric bracing of steel frames in seismic design

    International Nuclear Information System (INIS)

    Popov, E.P.; Manheim, D.

    1981-01-01

    The general concepts of designing eccentrically braced steel frames are discussed. A number of possible bracing configurations are pointed out which are suitable for this type of framing. The necessity for considering the collapse mechanism for the selected frame is brought out, and the need for considering the ductility demands for the critical elements is indicated. The need for web stiffness along the critical beam elements (links), and the necessity for lateral bracing at the potential plastic hinges is emphasized. Properly designed eccentrically braced frames provide good drift control for moderate earthquakes, and good ductility for extreme earthquakes. Experience gained in practice attests to the practicality and economy of this kind of framing. The major disadvantage of properly designed eccentrically braced frames lies in the fact that high local distortions may occur during a severe earthquake requiring repair. However, such severe distortions should attenuate rapidly from the damaged areas. (orig./HP)

  1. Externally Verifiable Oblivious RAM

    Directory of Open Access Journals (Sweden)

    Gancher Joshua

    2017-04-01

    Full Text Available We present the idea of externally verifiable oblivious RAM (ORAM. Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM [15] and Ring ORAM [9] protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier.

  2. Verifier Theory and Unverifiability

    OpenAIRE

    Yampolskiy, Roman V.

    2016-01-01

    Despite significant developments in Proof Theory, surprisingly little attention has been devoted to the concept of proof verifier. In particular, the mathematical community may be interested in studying different types of proof verifiers (people, programs, oracles, communities, superintelligences) as mathematical objects. Such an effort could reveal their properties, their powers and limitations (particularly in human mathematicians), minimum and maximum complexity, as well as self-verificati...

  3. Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings

    Science.gov (United States)

    Haldar, Putul; Singh, Yogendra; Paul, D. K.

    2012-03-01

    Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.

  4. Some considerations for establishing seismic design criteria for nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping ampersand Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI

  5. Seismic design of steel moment resisting frames-European versus American practice

    International Nuclear Information System (INIS)

    Naqash, M.T.; Matteis, G.D.; Luca, A.D.

    2012-01-01

    This paper provides an overview on the design philosophy of moment resisting frames (MRF) according to the seismic provisions of Eurocode 8 and American Institute of Steel Construction (AISC). A synopsis of the main recommendations of the two codes is briefly described. Then in order to examine the structural efficiency of the design principles of MRF according to the aforementioned codes, a case study is developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 storeys residential building are considered. In the case of EC8, Ductility Class Medium (DCM) with behaviour factor of 4 and Ductility Class High (DCH) with behaviour factor of 6.5 for 6-storey frames are used, while only DCH is employed in the design of 12 and 3 storey frames. When dealing with AISC/American Society of Civil Engineers (ASCE) code, special moment resisting frame (SMF) with response modification factor of 8 is employed in the design. The outcomes from the design are illustrated in terms of frame performance, section profiles, strength-demand to capacity ratios, drift-demand to capacity ratios and structural weight, thus allowing the understanding of pros and cons of the design criteria and the capacity design rules of the two codes. The main purpose of the current paper is to compare the seismic design rules of the two codes with a parametric analysis developed by a case study in order to let the technician knows about the importance and influence of some important parameters which are given in the capacity design rules of the two codes. This study will be a benchmark for further analysis on the two codes for seismic design of steel structures. (author)

  6. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  7. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  8. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  9. Sloped Connections and Connections with Fillet Welded Continuity Plates for Seismic Design of Special Moment Frames

    OpenAIRE

    Mashayekh, Adel

    2017-01-01

    Steel Special Moment Frames (SMF) are one of the most popular lateral force-resisting systems for multistory building construction in high seismic regions due to their architectural versatility. With a significant amount of research that was conducted after the 1994 Northridge, California earthquake, AISC has published design guidelines (AISC 341 and AISC 358) to avoid brittle fracture of beam-to-column welded moment connections that occurred in more than 100 steel buildings. This dissertat...

  10. Improvements of seismic design of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Takayama, Yoshihiro.

    1997-01-01

    A brief survey and overview of the current research and development in Japan was presented. Particularly, several kinds of new dampers and isolators were developed and those effectiveness were examined by caring out the large-scale vibration test and so on. The evaluation of the energy absorption of these damping devices at the earthquake appeared to be significant. In addition, it must be necessary to investigate the design margin and the failure mode and limit problem to these devices and the nuclear structures and piping supported by those. Mutual exchange of the information related to these technology and research has to be put forward and cooperative works including the international conference on those issues should be promoted. (J.P.N.)

  11. Improvements of seismic design of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kohei [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Technology; Takayama, Yoshihiro

    1997-03-01

    A brief survey and overview of the current research and development in Japan was presented. Particularly, several kinds of new dampers and isolators were developed and those effectiveness were examined by caring out the large-scale vibration test and so on. The evaluation of the energy absorption of these damping devices at the earthquake appeared to be significant. In addition, it must be necessary to investigate the design margin and the failure mode and limit problem to these devices and the nuclear structures and piping supported by those. Mutual exchange of the information related to these technology and research has to be put forward and cooperative works including the international conference on those issues should be promoted. (J.P.N.)

  12. Study of seismic design bases for nuclear power plants in the US

    International Nuclear Information System (INIS)

    Kintzer, F.C.; Yanev, P.I.; Gotschall, H.L.

    1983-01-01

    This paper presents the results of an investigation of topics pertinent to establishing design basis seismic events and soil conditions for deployment of the High Temperature Gas-Cooled Reactor - Steam Cycle/Cogeneration (HTGR-SC/C) System. Generalized design ground accelerations and soil shear wave velocities are presented by regions of the continental United States. Design basis accelerations and soil conditions for existing nuclear power plants are summarized. Finally, analytical approaches to assess soil-structure interaction, including the effects of embedment, are reviewed

  13. Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates

    OpenAIRE

    Zirakian, Tadeh

    2013-01-01

    Steel plate shear walls (SPSWs) have been frequently used as the primary or part of the primary lateral force-resisting system in design of low-, medium-, and high-rise buildings. Their application has been based on two different design philosophies as well as detailing strategies. Stiffened and/or stocky-web SPSWs with improved buckling stability and high seismic performance have been mostly used in Japan, which is one of the pioneering countries in design and application of these systems. U...

  14. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  15. Seismic design criteria used for electrical raceway systems in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Summers, P.B.; Manrique, M.A.; Nelson, T.A.

    1991-01-01

    This paper summarizes some of the seismic design approaches, relevant technical issues and criteria used over the years for design of electrical raceway systems at commercial nuclear power plant facilities. The approaches used for design and endorsed by the NRC can be seen to be quite varied. In recent years, considerably more rigor has been required for raceway design, as well as for the level of design basis documentation produced. However, there has also been a willingness by the NRC to accept rational approaches based on testing, analytical results or experience data, provided proper justification is given. Such rational approaches can simplify the significant task of analysis, design and construction of miles of raceways and thousands of raceway supports. Summarizing past practice and identifying relevant technical issues are an important first step in formalizing up-to-date criteria for new raceway designs

  16. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  17. Design considerations associated with the response of seismic isolators and real scale energy absorbers

    International Nuclear Information System (INIS)

    Benzoni, Gianmario

    2015-01-01

    Few observations obtained from extensive experimental programs for the characterization of anti-seismic devices are proposed hereafter. Specifically, few current code requirements, originally intended for the acquisition of fundamental characteristics of performance, proved difficult to be implemented and of questionable significance for the design phase of a seismic isolation application. In particular, for commonly used devices as elastomeric and friction-based isolators, the experimentally validated variation of performance parameters is often not addressed in existing codes and typically neglected in structural models, based on extreme simplification of the device behaviour. The goal of this paper is to suggest an update to specific codes but particularly to solicit the designer’s awareness against oversimplification in the modelling phase of the device performance [it

  18. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    Science.gov (United States)

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  19. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  20. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  1. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  2. Seismic Retrofit of Reinforced Concrete Frame Buildings with Hysteretic Bracing Systems: Design Procedure and Behaviour Factor

    Directory of Open Access Journals (Sweden)

    Antonio Di Cesare

    2017-01-01

    Full Text Available This paper presents a design procedure to evaluate the mechanical characteristics of hysteretic Energy Dissipation Bracing (EDB systems for seismic retrofitting of existing reinforced concrete framed buildings. The proposed procedure, aiming at controlling the maximum interstorey drifts, imposes a maximum top displacement as function of the seismic demand and, if needed, regularizes the stiffness and strength of the building along its elevation. In order to explain the application of the proposed procedure and its capacity to involve most of the devices in the energy dissipation with similar level of ductility demand, a simple benchmark structure has been studied and nonlinear dynamic analyses have been performed. A further goal of this work is to propose a simplified approach for designing dissipating systems based on linear analysis with the application of a suitable behaviour factor, in order to achieve a widespread adoption of the passive control techniques. At this goal, the increasing of the structural performances due to the addition of an EDB system designed with the above-mentioned procedure has been estimated considering one thousand case studies designed with different combinations of the main design parameters. An analytical formulation of the behaviour factor for braced buildings has been proposed.

  3. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail: alessandro.bertolini@desy.de; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-01-15

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  4. Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities

    International Nuclear Information System (INIS)

    Lin, Chi-Wen; Antaki, G.; Bandyopadhyay, K.; Bush, S.H.; Costantino, C.; Kennedy, R.

    1995-01-01

    This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic-foundation analysis principle and the inertial response calculation method, respectively, for piping directly in contact with the soil or contained in a jacket. A standard analysis procedure is described along with the discussion of factors deemed to be significant for the design of the underground piping. The following key considerations are addressed: the design feature and safety requirements for the inner (core) pipe and the outer pipe; the effect of soil strain and wave passage; assimilation of the necessary seismic and soil data; inertial response calculation for the inner pipe; determination of support anchor movement loads; combination of design loads; and code comparison. Specifications and justifications of the key parameters used, stress components to be calculated and the allowable stress and strain limits for code evaluation are presented

  5. Seismic PSA implementation standards by AESJ and the utilization of the advanced safety examination guideline for seismic design for nuclear power plant

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Hibino, Kenta

    2008-01-01

    The Advanced Safety Examination Guideline for Seismic Design for Nuclear Power Plant (the advanced safety examination guideline) was worked out on September 19, 2006. In this paper, a summary of the method of probability theory in the advanced safety examination guideline and the Seismic PSA Implementation Standards is stated. On utilization of the probability theory for the advanced safety examination guideline, the uncertainty resulting from the process of the decision of the basic design earthquake ground motion (Ss) is stated to be considered using the proper method. The references of the extra probability for evaluation of earthquake hazard and combination of the working load and the earthquake load are stated. Definition, evaluation method and effort to lower the 'residual risks', and relation between the residual risks and the extra probability of Ss are described. A summary of the earthquake-resistant design for nuclear power facilities is explained by the old guideline. (S.Y.)

  6. Disaggregated seismic hazard and the elastic input energy spectrum: An approach to design earthquake selection

    Science.gov (United States)

    Chapman, Martin Colby

    1998-12-01

    The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression

  7. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION (U)

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R

    2005-12-14

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  8. Generation of artificial earthquake time histories for seismic design at Hanford, Washington

    International Nuclear Information System (INIS)

    Salmon, M.W.; Kuilanoff, G.

    1991-01-01

    The purpose of the development of artificial time-histories is to provide the designer with ground motion estimates which will meet the requirements of the design guidelines at the Hanford site. In particular, the artificial time histories presented in this paper were prepared to assist designers of the Hanford Waste Vitrification Plant (HWVP) with time histories that envelop the requirements for both a large magnitude earthquake (MI > 6.0) and a small magnitude, near-field earthquake (MI < 5. 0). A background of the requirements for both the large magnitude and small magnitude events is presented in this paper. The work done in generating time histories which produce response spectra matching those of the design seismic events is also presented. Finally, some preliminary results from studies performed using the small-magnitude near-filed earthquake time-history are presented

  9. Recommended revisions to Nuclear Regulatory Commission seismic design criteria. Technical report

    International Nuclear Information System (INIS)

    Coats, D.W.

    1980-05-01

    This report recommends changes in the Nuclear Regulatory Commission's (NRC's) criteria now used in the seismic design of nuclear power plants. Areas covered include ground motion, soil-structure interaction, structures, and equipment and components. Members of the Engineering Mechanics Section of the Nuclear Test Engineering Division at Lawrence Livermore Laboratory (LLL) generally agreed upon the recommendations, which are based on (1) reports developed under the NRC's Task Action Plan A-40, (2) other available engineering literature, and (3) recommendations of nationally recognized experts retained by LLL specifically for this task

  10. Design and realization of real-time processing system for seismic exploration

    International Nuclear Information System (INIS)

    Zhang Sifeng; Cao Ping; Song Kezhu; Yao Lin

    2010-01-01

    For solving real-time seismic data processing problems, a high-speed, large-capacity and real-time data processing system is designed based on FPGA and ARM. With the advantages of multi-processor, DRPS has the characteristics of high-speed data receiving, large-capacity data storage, protocol analysis, data splicing, data converting from time sequence into channel sequence, no dead time data ping-pong storage, etc. And with the embedded Linux operating system, DRPS has the characteristics of flexibility and reliability. (authors)

  11. Evaluation of seismic design by students made after Fukushima Dai-ichi accident

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro

    2012-01-01

    The sense of anxiety for safety of nuclear power plants among people in Japan has not disappeared after Fukushima Dai-ichi accident because of a typical country with frequent earthquakes. The provision of information for seismic design in nuclear power plants prepared for easier comprehension is always required in any kind of study meetings for the social acceptance of nuclear power plants. In the present paper, the effect of the provision of information made an attempt for students in Hokkaido University is reported. (author)

  12. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  13. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    Science.gov (United States)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic

  14. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  15. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  16. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  17. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  18. Verifying versus falsifying banknotes

    Science.gov (United States)

    van Renesse, Rudolf L.

    1998-04-01

    A series of counterfeit Dutch, German, English, and U.S. banknotes was examined with respect to the various modi operandi to imitate paper based, printed and post-printed security features. These features provide positive evidence (verifiability) as well as negative evidence (falsifiability). It appears that the positive evidence provided in most cases is insufficiently convincing: banknote inspection mainly rests on negative evidence. The act of falsifying (to prove to be false), however, is an inefficacious procedure. Ergonomic verificatory security features are demanded. This demand is increasingly met by security features based on nano- technology. The potential of nano-security has a twofold base: (1) the unique optical effects displayed allow simple, fast and unambiguous inspection, and (2) the nano-technology they are based on, makes successful counterfeit or simulation extremely improbable.

  19. Status for seismic design requirements of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takahashi, H.

    1977-01-01

    The fundamental purpose for the aseismic design of the nuclear power plants is to protect the inhabitants near the plant from radiation accidents during and after earthquake vibrations. In order to achieve the above purpose, the following considerations have been made. All buidlings, structures, system and components are classified into three Classes A, B and C according to their degree of importance for plant safety, and are designed to meet the requirements specified for each class, respectively. Magnitude and epicenter of the design basis earthquake are determined based upon seismological and geological investigations and observation of ground motion in the site, and the maximum ground acceleration which could be expected can be calculated empirically. With respect to time history waves, more than three are selected referring to dynamic characteristic of base rock in the site, observed ground motion records in the site or other strong motion seismographs.The figures of horizontal seismic coefficients to be used in determining design forces on Class A buildings and structures are 3 Co (where Co. is as defined in the Japan Building Standard Law). On the other hand the horizontal design force should not be less than those determined as the results of the dynamic analyses based on DEGM (Design Earthquake Ground Motion). The figures of horizontal seismic coefficient and forces for Class A system and components are usually determined based on the dynamic analyses for DEGM. The buildings and structures treated as an elastic column system with masses, and the bottom mass is supported by elastic springs representing the soil-foundation interaction characteristics. DEGM is used as the input disturbance in the dynamic response analysis, and the model analysis or time history method is worked out. System and components are modeled as elastic bars with lumped masses of 3 dimensional degree of freedom, and the response analysis is carried out using floor respone spectra

  20. Energy-Based Design Criterion of Dissipative Bracing Systems for the Seismic Retrofit of Frame Structures

    Directory of Open Access Journals (Sweden)

    Gloria Terenzi

    2018-02-01

    Full Text Available Direct sizing criteria represent useful tools in the design of dissipative bracing systems for the advanced seismic protection of existing frame structures, especially when incorporated dampers feature a markedly non-linear behaviour. An energy-based procedure is proposed herein to this aim, focusing attention on systems including fluid viscous devices. The procedure starts by assuming prefixed reduction factors of the most critical response parameters in current conditions, which are evaluated by means of a conventional elastic finite element analysis. Simple formulas relating the reduction factors to the equivalent viscous damping ratio of the dampers, ξeq, are proposed. These formulas allow calculating the ξeq values that guarantee the achievement of the target factors. Finally, the energy dissipation capacity of the devices is deduced from ξeq, finalizing their sizing process. A detailed description of the procedure is presented in the article, by distinguishing the cases where the prevailing structural deficiencies are represented by poor strength of the constituting members, from the cases having excessive horizontal displacements. A demonstrative application to the retrofit design of a reinforced concrete gym building is then offered to explicate the steps of the sizing criterion in practice, as well as to evaluate the enhancement of the seismic response capacities generated by the installation of the dissipative system.

  1. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  2. AP1000R design robustness against extreme external events - Seismic, flooding, and aircraft crash

    International Nuclear Information System (INIS)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-01-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000 R nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is

  3. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  4. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  5. Original earthquake design basis in light of recent seismic hazard studies

    International Nuclear Information System (INIS)

    Petrovski, D.

    1993-01-01

    For the purpose of conceiving the framework within which efforts have been made in the eastern countries to construct earthquake resistant nuclear power plants, a review of the development and application of the seismic zoning map of USSR is given. The normative values of seismic intensity and acceleration are discussed from the aspect of recent probabilistic seismic hazard studies. To that effect, presented briefly in this paper is the methodology of probabilistic seismic hazard analysis. (author)

  6. SISPRO: research and development on the seismic effects attenuation with depth for the seismic design of a long term nuclear waste disposal in the subsurface domain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Bossu, R.; Le Piver, F.; Desveaux, F.; Seys, C.; Bouchez, J

    2001-07-01

    In the framework of the 1991/12/30 french law on the management of the nuclear industry waste, the French Atomic Energy Commission (C.E.A.) studies potential benefits against seismic risk of the subsurface domain for the design of an interim storage installation. Indeed, few damage has been observed on subsurface structures during large earthquakes which implied major destructive effects on surface buildings, as during the 1995 Kobe earthquake. However, knowledge on seismic design for subsurface facilities is mainly based on empirical know- how, without satisfactory scientific background which could allow characterization of any given site seismic wave attenuation with depth. The SISPRO program intends to fulfill this lack with two complementary research axis: data acquisition and analysis at several depths and in/on mountain topographies on one hand, accurate numerical modeling on the other hand. The latter will be useful for the establishment of a methodology able to predict seismic waves amplitude, depending on the geotechnical site characteristics and depth. Data analysis which has already been made, such as attenuation laws with several sites data and depth as a parameter, will be depicted. Numerical modeling is based on a 3-D finite differences method able to carry computation of synthetics in any kind of geology. A specific research program is devoted to the case when a topography is present. Numerical results show an attenuation which is smaller than the observed one. This implies that the introduction of a strong gradient in the surface layers properties is probably necessary. Perspectives of the SISPRO program until 2006 will be presented, such as strong motion modeling and how to take into account soil-structure interaction. (author)

  7. SISPRO: research and development on the seismic effects attenuation with depth for the seismic design of a long term nuclear waste disposal in the subsurface domain

    International Nuclear Information System (INIS)

    Rodriguez, D.; Bossu, R.; Le Piver, F.; Desveaux, F.; Seys, C.; Bouchez, J.

    2001-01-01

    In the framework of the 1991/12/30 french law on the management of the nuclear industry waste, the French Atomic Energy Commission (C.E.A.) studies potential benefits against seismic risk of the subsurface domain for the design of an interim storage installation. Indeed, few damage has been observed on subsurface structures during large earthquakes which implied major destructive effects on surface buildings, as during the 1995 Kobe earthquake. However, knowledge on seismic design for subsurface facilities is mainly based on empirical know- how, without satisfactory scientific background which could allow characterization of any given site seismic wave attenuation with depth. The SISPRO program intends to fulfill this lack with two complementary research axis: data acquisition and analysis at several depths and in/on mountain topographies on one hand, accurate numerical modeling on the other hand. The latter will be useful for the establishment of a methodology able to predict seismic waves amplitude, depending on the geotechnical site characteristics and depth. Data analysis which has already been made, such as attenuation laws with several sites data and depth as a parameter, will be depicted. Numerical modeling is based on a 3-D finite differences method able to carry computation of synthetics in any kind of geology. A specific research program is devoted to the case when a topography is present. Numerical results show an attenuation which is smaller than the observed one. This implies that the introduction of a strong gradient in the surface layers properties is probably necessary. Perspectives of the SISPRO program until 2006 will be presented, such as strong motion modeling and how to take into account soil-structure interaction. (author)

  8. Seismic analysis and design of steel beam - thick slab floor systems

    International Nuclear Information System (INIS)

    Reed, P.W.

    1981-01-01

    This paper presents a method for seismic analysis and design of floor systems composed of thick reinforced concrete slabs supported by steel beams. The response spectrum modal analysis is used to determine the dynamic response of an orthotropic finite element model. An approximate approach to find the fundamental frequency is explained, allowing an actual acceleration to be determined. The fundamental mode is found to be a major portion of the overall response, whereas the secondary modes are shown to result in a very small portion of the overall response. Dynamic multipliers for the fundamental mode and significant secondary modes are given for several typical floor layouts. These would be used to find equivalent static stress resultants which are used to design the floor. (orig.)

  9. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  10. Verified scientific findings

    International Nuclear Information System (INIS)

    Bullinger, M.G.

    1982-01-01

    In this essay, the author attempts to enlighten the reader as to the meaning of the term ''verified scientific findings'' in section 13, sub-section 1, sentence 2 of the new Chemicals Control Law. The examples given here are the generally accepted regulations in regards to technology (that is sections 7a and 18b of the WHG (law on water economy), section 3, sub-section 1 of the machine- and engine protection laws) and to the status of technology (section 3, sub-section 6 of the BImSchG (Fed. law on prevention of air-borne pollution)), and to the status of science (section 5, sub-section 2 of the AMG (drug legislation). The ''status of science and technology'' as defined in sections 4 ff of the Atomic Energy Law (AtomG) and in sections 3, 4, 12, 2) of the First Radiation Protection Ordinance (1.StrlSch. VO), is also being discussed. The author defines the in his opinion ''dynamic term'' as the generally recognized result of scientific research, and the respective possibilities of practical utilization of technology. (orig.) [de

  11. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    Science.gov (United States)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains

  12. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage

    Science.gov (United States)

    Martelli, Alessandro

    2011-01-01

    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  13. Seismic analysis during development stage of CANDU Model 2 fueling machine design

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Mansfield, R.A.

    1989-01-01

    The CANDU Model 3 is a new small reactor presently being designed. This reactor is 450 MWe, and as with current operating CANDU's, is based on a heavy water moderated and cooled system using on-power fuelling for the once-through natural uranium fuel cycle. The CANDU 3 Standard plant is designed to be adaptable to a range of world-wide site conditions, i.e. for a peak ground acceleration of 0.3 g and a wide range of soft, medium and hard foundation medium properties. Consequently, a conservatism in the design of structure and equipment is accounted by using enveloped floor response spectra generated by the soil-structure interaction analysis. Seismic qualification of the fuelling machine (F/M) and its support structure are an essential design requirement for maintaining the integrity of the reactor coolant heat transport system (HTS) pressure boundary and the service ports penetrating the containment structure during on-power fueling. This paper deals with the initial conceptual phase of design where the details of the design are in fundamental outline form only and basic mass distribution plus layout geometry is defined

  14. Recent Seismicity in Texas and Research Design and Progress of the TexNet-CISR Collaboration

    Science.gov (United States)

    Hennings, P.; Savvaidis, A.; Rathje, E.; Olson, J. E.; DeShon, H. R.; Datta-Gupta, A.; Eichhubl, P.; Nicot, J. P.; Kahlor, L. A.

    2017-12-01

    The recent increase in the rate of seismicity in Texas has prompted the establishment of an interdisciplinary, interinstitutional collaboration led by the Texas Bureau of Economic Geology which includes the TexNet Seismic Monitoring and Research project as funded by The State of Texas (roughly 2/3rds of our funding) and the industry-funded Center for Integrated Seismicity Research (CISR) (1/3 of funding). TexNet is monitoring and cataloging seismicity across Texas using a new backbone seismic network, investigating site-specific earthquake sequences by deploying temporary seismic monitoring stations, and conducting reservoir modeling studies. CISR expands TexNet research into the interdisciplinary realm to more thoroughly study the factors that contribute to seismicity, characterize the associated hazard and risk, develop strategies for mitigation and management, and develop methods of effective communication for all stakeholders. The TexNet-CISR research portfolio has 6 themes: seismicity monitoring, seismology, geologic and hydrologic description, geomechanics and reservoir modeling, seismic hazard and risk assessment, and seismic risk social science. Twenty+ specific research projects span and connect these themes. We will provide a synopsis of research progress including recent seismicity trends in Texas; Fort Worth Basin integrated studies including geological modeling and fault characterization, fluid injection data syntheses, and reservoir and geomechanical modeling; regional ground shaking characterization and mapping, infrastructure vulnerability assessment; and social science topics of public perception and information seeking behavior.

  15. Displacement-Based Seismic Design Procedure for Framed Buildings with Dissipative Braces Part II: Numerical Results

    International Nuclear Information System (INIS)

    Mazza, Fabio; Vulcano, Alfonso

    2008-01-01

    For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses

  16. Specific issues and proposals in aseismic design technologies (seismic isolation technologies)

    International Nuclear Information System (INIS)

    Fujita, Satoshi

    2000-01-01

    It is examined among engineers to control vibration of buildings and constructions formed by earthquake, and at present various vibration control techniques are in actual use. A vibration isolating structure passing through earthquake, and vibration controlling due to wind are its typical ones, which have been recently and rapidly supplied to actual use through a chance that laminated rubber was researched and developed for a vibration isolation supporting materials capable of supplying to actual use about 15 years ago. However, the active addition mass type vibration controller is not adequate to large earthquake countermeasure from points of addition mass size, drive variation, and limit of control power. For a vibration controller suitable for this aim an energy absorber (damper) of a type set between layers of constructions at present is the most predominant, of which various types are earnestly under research and development. Here were explained on earthquake and its energy, seismic resistant design, vibration isolation structure, and so forth. (G.K.)

  17. On the Computation of H/V and its Application to Microzonation and Seismic Design

    Science.gov (United States)

    Perton, M.; Martínez, J. A.; Lermo, J. F.; Sanchez-Sesma, F. J.

    2014-12-01

    The H/V ratio is the square root of the ratio of horizontal to vertical energies of ground motion. It has been observed that the frequency of the main peak is well suited for the characterization of site effects and had been widely used for micro-zonation and seismic structural design. Historically that ratio was made from the average of individual H/V ratios obtained from noise autocorrelations. Nevertheless, it has been recently pointed out that the H/V ratio should be calculated differently as the ratio of the average of H over the average of V. This calculation is based on the relation between the directional energies (the imaginary part of Green's function) and the noise autocorrelations. In general, the average of ratios is different from the ratio of averages. Although the frequency of the main response was correctly obtained, the associated amplification factor has generally been badly predicted, having little matching with the amplification observed during strong earthquakes. The unexpected decay behavior of such ratios at high frequency and the lack of stability and reproducibility of the H/V ratios are other problems that face the method. These problems are addressed here from the point of view of normalization of noise correlations. In fact, several normalization techniques have already been proposed in order to correctly retrieve the Green's function. Some of them are well suited for the retrieval of the surface wave contribution, while others are more appropriate for bulk wave incidence. Since the H/V ratio may be used for various purposes like surface wave tomography, micro-zonation or seismic design, different normalizations are discussed in functions of the objectives. The H/V obtained from local historical earthquakes on top or far away from the subduction zone are also discussed. ACKNOWLEDGEMENT This research has been partially supported by DGAPA-UNAM under Project IN104712 and the AXA Research Fund.

  18. Tool for generation of seismic floor response spectra for secondary system design

    International Nuclear Information System (INIS)

    Cardoso, Tarcisio F.; Almeida, Andreia A. Diniz de

    2009-01-01

    The spectral analysis is still a valuable method to the seismic structure design, especially when one focalizes the topics of secondary systems in large industrial installations, as nuclear power plants. Two aspects of this situation add their arguments to recommend the use of this kind of analysis: the random character of the excitation and the multiplicity and the variability of the secondary systems. The first aspect can be managed if one assumes the site seismicity represented by a power spectrum density function of the ground acceleration, and then, by the systematic resolution of a first passage problem, to develop a uniformly probable response spectrum. The second one suggests also a probabilistic approach to the response spectrum in order to be representative all over the extensive group of systems with different characteristics, which can be enrolled in a plant. The present paper proposes a computational tool to achieve in-structure floor response spectra for secondary system design, which includes a probabilistic approach and considers coupling effects between primary and inelastic secondary systems. The analysis is performed in the frequency domain, with SASSI2000 system. A set of auxiliary programs are developed to consider three-dimensional models and their responses to a generic base excitation, acting in 3 orthogonal directions. The ground excitation is transferred to a secondary system SDOF model conveniently attached to the primary system. Then, a uniformly probable coupled response spectrum is obtained using a first passage analysis. In this work, the ExeSASSI program is created to manage SASSI2000 several modules and a set of auxiliary programs created to perform the probabilistic analyses. (author)

  19. Problems and their solutions in practical application of Eurocodes in seismic design of RC structures

    Directory of Open Access Journals (Sweden)

    Milev Jordan

    2016-01-01

    Full Text Available The main purpose of the paper is to present practical application of Eurocodes in the field of RC structures design. The selected examples represent the main problems in practical application of Eurocodes for seismic analysis and design of RC Structures in Bulgarian construction practice. The analysis is focused on some structural and economic problems as well as on some contradictions in Eurocode 8 itself. Special attention is paid to the practical solution of the following problems: recognition of torsionally flexible systems, stiffness reduction of RC elements for linear analysis dimensions and detailing of confined boundary areas of shear walls, detailing of wall structures, etc. Those problems appear during the practical design of some buildings in Bulgaria. Several proposals for solving some problems defined in the paper are presented through some practical examples. Some conclusions are made for further application of Eurocode 8 in the design and construction practice. The importance of some rules and procedures in Eurocode 8 is supported by the examples of damaged RC members during the past earthquakes. The problems of Eurocode 8 and their solutions are illustrated through the experience of Bulgarian construction practice.

  20. Design and implementation experience of seismic upgrades at Kozloduy and Paks NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Borov, V; Trichkov, V; Alexandrov, A; Jordanov, M [EQE-Bulgaria, Sofia (Bulgaria)

    1995-07-01

    Series of upgrades have been designed and implemented by EQE-Bulgaria at Kozloduy NPP and as a subcontractor of EQE-International - at Paks NPP. Wide variety of facilities have been upgraded, including Electrical Equipment, Control and Instrumentation Equipment, Technological Equipment, Brick Walls and Building Structures. Different design approaches and concepts have been applied in compliance with the specific technological and structural conditions. The effect of the excitation intensity as well as the presence of specific floor response spectra over the upgrading concept and cost is discussed. Specific problems of supporting heavy technological equipment are noted. A practical approach for seismic upgrading of Brick Walls, as well as a tendency for unification of the engineering design is shown. The first completely upgraded Building Structure at Kozloduy NPP is the structure of the Electrical Control Building to the Diesel Generator of the River-bank Pump Station. Specific problems of the implementation of the final upgrading design of the Diesel Generator Building are outlined. (author)

  1. Design and implementation experience of seismic upgrades at Kozloduy and Paks NPPs

    International Nuclear Information System (INIS)

    Borov, V.; Trichkov, V.; Alexandrov, A.; Jordanov, M.

    1995-01-01

    Series of upgrades have been designed and implemented by EQE-Bulgaria at Kozloduy NPP and as a subcontractor of EQE-International - at Paks NPP. Wide variety of facilities have been upgraded, including Electrical Equipment, Control and Instrumentation Equipment, Technological Equipment, Brick Walls and Building Structures. Different design approaches and concepts have been applied in compliance with the specific technological and structural conditions. The effect of the excitation intensity as well as the presence of specific floor response spectra over the upgrading concept and cost is discussed. Specific problems of supporting heavy technological equipment are noted. A practical approach for seismic upgrading of Brick Walls, as well as a tendency for unification of the engineering design is shown. The first completely upgraded Building Structure at Kozloduy NPP is the structure of the Electrical Control Building to the Diesel Generator of the River-bank Pump Station. Specific problems of the implementation of the final upgrading design of the Diesel Generator Building are outlined. (author)

  2. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    Science.gov (United States)

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  3. Design and implement of system for browsing remote seismic waveform based on B/S schema

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Wang Zhihai; Sun Peng; Jin Ping; Yan Feng

    2006-01-01

    Browsing remote seismic waveform based on B/S schema is of significance in modern seismic research and data service, and the technology should be improved urgently. This paper describes the basic plan, architecture and implement of system for browsing remote seismic waveform based on B/S schema. The problem to access, browse and edit the waveform data on serve from client only using browser has been solved. On this basis, the system has been established and been in use. (authors)

  4. Seismic response analysis and upgrading design of pump houses of Kozloduy NPP units 5 and 6

    International Nuclear Information System (INIS)

    Jordanov, M.; Marinov, M.; Krutzik, N.

    2001-01-01

    The main objective of the presented project was to perform a feasibility study for seismic/structural evaluation of the safety related structures at Kozloduy NPP Units 5 and 6 for the new site seismicity and determine if they satisfy current international safety standards. The evaluation of the Pump House 3 (PH3) building is addressed in this paper, which was carried out by applying appropriate modeling techniques combined with failure mode and seismic margin analyses. The scope of the work defined was to present the required enhancement of the seismic capacity of the Pump House structures.(author)

  5. GA-based optimum design of a shape memory alloy device for seismic response mitigation

    International Nuclear Information System (INIS)

    Ozbulut, O E; Roschke, P N; Lin, P Y; Loh, C H

    2010-01-01

    Damping systems discussed in this work are optimized so that a three-story steel frame structure and its shape memory alloy (SMA) bracing system minimize response metrics due to a custom-tailored earthquake excitation. Multiple-objective numerical optimization that simultaneously minimizes displacements and accelerations of the structure is carried out with a genetic algorithm (GA) in order to optimize SMA bracing elements within the structure. After design of an optimal SMA damping system is complete, full-scale experimental shake table tests are conducted on a large-scale steel frame that is equipped with the optimal SMA devices. A fuzzy inference system is developed from data collected during the testing to simulate the dynamic material response of the SMA bracing subcomponents. Finally, nonlinear analyses of a three-story braced frame are carried out to evaluate the performance of comparable SMA and commonly used steel braces under dynamic loading conditions and to assess the effectiveness of GA-optimized SMA bracing design as compared to alternative designs of SMA braces. It is shown that peak displacement of a structure can be reduced without causing significant acceleration response amplification through a judicious selection of physical characteristics of the SMA devices. Also, SMA devices provide a recentering mechanism for the structure to return to its original position after a seismic event

  6. Model design for Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission (NRC), the Central Research Institute of Electric Power Industry (CRIEPI), the Tokyo Electric Power Company (TEPCO), the Commissariat A L'Energie Atomique (CEA), Electricite de France (EdF) and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  7. Seismic evaluation and upgrading design of overhead roads between reactor buildings of WWER-1000 MW type NPP

    International Nuclear Information System (INIS)

    Jordanov, M.J.; Stoyanov, G.S.; Geshanov, I.H.; Kirilov, K.P.; Schuetz, W.

    2003-01-01

    This paper presents results obtained during the study of overhead roads between Reactor Building (RB) of WWER-1000 MW NPP and possible measures for their seismic upgrade. The main objective of this project is to evaluate the behavior of overhead roads under site-specific seismic loading and to determine whether this structure satisfies current international safety regulations, followed by development of upgrading concepts. Overhead roads are pre-cast RC structure, which can be divided to separate substructures. They comprise of pedestrian gallery and pipeline box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated for Review Level Earthquake (RLE) as seismic category II structures. As seismic input motion is RLE, free field response spectra anchored to 0.2 g PGA are used with 0.5 scaling factor. Soil-Structure Interaction effects are taken into account through equivalent soil springs with frequency adjusted stiffness. In order to meet the objective of the project a technical design specification is developed for conformance with International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The separate steps comprising the overall fulfillment of project's major objectives may be summarized as follows: study of all available data for initial design and as built conditions, creation of 3-D detailed finite element models for as-built structure, determination of dynamic characteristics, evaluation of adequacy of initial design under new seismic loading (calculation of D/C ratios for structural members and connections, evaluation of embedment lengths for embedded parts and rebars, deformation evaluation, stability checks), development of upgrading concepts for enhancement, verification of capability of upgraded structure

  8. Observations on some current issues pertaining to nuclear power plant seismic design

    International Nuclear Information System (INIS)

    Hall, W.J.

    1982-01-01

    In this paper the author addresses some of those areas in which it is believed major research and development should be undertaken in the years immediately ahead if significant advances in earthquake engineering especially applicable to nuclear power plant design are to be achieved. From the standpoint of excitation (loading) the paper dwells extensively on concepts of so-called effective acceleration, with some comments also given on response spectra and modifications thereto. In the areas of resistance of structures attention is devoted to the topics of damping, ductility (energy absorption), and associated margins of strength to resist overloading. The need for developing comprehensive field measurement programs of ground and structural response throughout the world is cited. Future progress in earthquake engineering hinges in large part on developing a confirmatory basis for the technology, partly through continuing developments of analysis techniques and corresponding laboratory testing, but most importantly field observations in actual earthquakes which can be interpreted rationally to lend verification and support to the theoretical and design bases. Finally, the important topic of equipment seismic resistance is singled out for attention. (orig.)

  9. Redundancy Factors for the Seismic Design of Ductile Reinforced Concrete Chevron Braced Frames

    Directory of Open Access Journals (Sweden)

    Eber Alberto Godínez-Domínguez

    Full Text Available Abstract In this paper the authors summarize the results of a study devoted to assess, using nonlinear static analyses, the impact of increasing the structural redundancy in ductile moment-resisting reinforced concrete concentric braced frames structures (RC-MRCBFs. Among the studied variables were the number of stories and the number of bays. Results obtained were compared with the currently proposed values in the Manual of Civil Structures (MOC-08, a model code of Mexico. The studied frames have 4, 8, 12 and 16-story with a story height h=3.5 m. and a fixed length L=12 m., where 1, 2, 3 or 4 bays have to be located. RC-MRCBFs were assumed to be located in soft soil conditions in Mexico City and were designed using a capacity design methodology adapted to general requirements of the seismic, reinforced concrete and steel guidelines of Mexican Codes. From the results obtained in this study it is possible to conclude that a different effect is observed in overstrength redundancy factors respect to ductility redundancy factors due to an increase of the bay number considered. Also, the structural redundancy factors obtained for this particular structural system varies respect to the currently proposed in MOC-08.

  10. Preclosure Seismic Design Methodology for a Geologic Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    K. Coppersmith

    2004-01-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) intends to use for preclosure seismic design of structures, systems, and components (SSCs) that are important to safety (ITS) in the geologic repository operations area. 10 Code of Federal Regulations (CFR) Part 63 [DIRS 156605], states that for a license to be issued for operation of a high-level radioactive waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public (Section 63.41[c] [DIRS 156605]). Section 63.21(c)(5) [DIRS 156605] requires that a preclosure safety analysis (PCSA) be performed to ensure that the preclosure performance objectives (Section 63.111 [DIRS 156605]) have been met. The PCSA is a systematic examination of the site, the design, and the potential hazards (Section 63.102[f] [DIRS 156605]), including a comprehensive identification of potential event sequences. Potential naturally-occurring hazards include those event sequences that are initiated by earthquake ground motions or fault displacements due to earthquakes

  11. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    Descleve, P.; Barrau, P.

    1988-01-01

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  12. Site study plan for EDBH [Engineering Design Boreholes] seismic surveys, Deaf Smith County site, Texas: Revision 1

    International Nuclear Information System (INIS)

    Hume, H.

    1987-12-01

    This site study plan describes seismic reflection surveys to run north-south and east-west across the Deaf Smith County site, and intersecting near the Engineering Design Boreholes (EDBH). Both conventional and shallow high-resolution surveys will be run. The field program has been designed to acquire subsurface geologic and stratigraphic data to address information/data needs resulting from Federal and State regulations and Repository program requirements. The data acquired by the conventional surveys will be common-depth- point, seismic reflection data optimized for reflection events that indicate geologic structure near the repository horizon. The data will also resolve the basement structure and shallow reflection events up to about the top of the evaporite sequence. Field acquisition includes a testing phase to check/select parameters and a production phase. The field data will be subjected immediately to conventional data processing and interpretation to determine if there are any anamolous structural for stratigraphic conditions that could affect the choice of the EDBH sites. After the EDBH's have been drilled and logged, including vertical seismic profiling, the data will be reprocessed and reinterpreted for detailed structural and stratigraphic information to guide shaft development. The shallow high-resulition seismic reflection lines will be run along the same alignments, but the lines will be shorter and limited to immediate vicinity of the EDBH sites. These lines are planned to detect faults or thick channel sands that may be present at the EDBH sites. 23 refs. , 7 figs., 5 tabs

  13. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  14. Comparison of ex-USSR norms and current international practice in design of seismic resistant nuclear power plants

    International Nuclear Information System (INIS)

    Hauptenbuchner, B.; David, M.

    1995-01-01

    Seismic hazard has been estimated according to ex-USSR norms in the original designs of WWER type Nuclear Power Plants (NPP) in former Soviet Union as well as in all former east European countries. For some steps of the design the national standards has been also taken into account. The original ex-USSR norms and instructions has been several times changed and improved during the time. This contribution is dealing with the development of ex-USSR norms and regulations with the aim to recognise some most important differentiations in comparison with corresponding western or international ones from point of view of civil structures. The understanding of relations of these documents is very important for seismic qualification and upgrading of WWER-type, NPPs. The main Soviet/Russian Standards and Regulations related to the seismic design and qualification of NPP structures as SNiP II-A.12-69, VSN 15-78, SNiP II-7-81, PiNAE G-7-002-86, NTD SEV etc. have been taken into consideration and compared with western or international standards as IAEA 50-SG-S1, IAEA 50-SG-D15, KTA 2201.1-6, ASCE 4-86 etc. The numerical examples of structural seismic qualification has been elaborated according to different standards for better understanding and in order to determine the degree of safety referring to corresponding standards. The authors has tried also to take into account the way of application of ex-USSR norms. The comparison of different norms and regulations has been analysed and corresponding conclusions and recommendations have been derived. These conclusions and recommendations can be helpful by the seismic qualification and upgrading of WWER-type NPPs. (author)

  15. Drop Test Results of CRDM under Seismic Loads

    International Nuclear Information System (INIS)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung

    2016-01-01

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively

  16. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  17. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  18. Application of a Method Based in Performance for the Seismic Analysis and Design of Reinforced Concrete Bridges Aplicación de un método basado en el desempeño para el análisis y diseño sismo resistente de puentes de concreto reforzado

    Directory of Open Access Journals (Sweden)

    A Ospina

    2013-03-01

    Full Text Available It proposes an application of a methodology that  nalyzes the ability of a structural element, based on a geometric pre-dimensioning and a reinforcementsupposed, finding from internal equilibrium curvatures to calculate displacements, ductility’s and seismic forces resistant, so that acceleration can be verified with the design spectrum of the seismic zone of the site, elasticor inelastic. This method allows simultaneous analysis and structural design and managing some important parameters for optimal seismic performance ofbridges.Se presenta la aplicación de una metodología que permite analizar la capacidad de un elemento estructural, basado en un predimensionamiento geométrico y una cuantía supuesta, deduciendo las curvaturas del equilibrio interno, para

  19. Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina Application of seismic refraction tomography for tunnel design in Santa Clara Mountain, San Juan, Argentina

    Directory of Open Access Journals (Sweden)

    Imhof Armando Luis

    2011-12-01

    Full Text Available

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was carried out in Sierra Santa Clara, San Juan Province, Argentina in July 2009. The purpose of the geophysical survey was to determine the degree of fracturing and the rigidity of the rock mass through which it is planned to build a 290 m long road tunnel traversing the mountain almost perpendicular to the axis thereof, at around 100 m depth from the summit.

    Several difficulties arose from the operational point of view which made it almost impossible to conduct fieldwork in normal circumstances. Firstly, the topography had almost 45° slopes and 100 m research depths which would have involved having had to use explosives to generate seismic waves reaching sensors which had sufficient signal-to-noise ratio for distinguishing them. Legal restrictions regarding the use of explosives on the one hand and insufficient power when using hammer blows on the other made it necessary to design and build a gas-powered gun to achieve the minimum energy (2 kJ required for detecting seismic signals.

    Secondly, using conventional interpretation methods involving layered models was inoperable in such geological structures; seismic tomography methods were thus used which make use of the velocity gradient concept (both lateral and in-depth. This allowed mapping subsurface velocity variations in the form of velocity contour lines.

    The methodology used with the new seismic waves' source generator, as well as SRT application in this type of geological structure, demonstrated that satisfactory results could be obtained for this kind of geophysical study for geotechnical purposes.

    A geophysical survey involving seismic refraction tomography (SRT for mapping 'P' waves was

  20. SIMULATION AS AN APPROPRIATE WAY OF VERIFYING THE EFFICIENCY OF PRODUCTION VARIANTS IN THE DESIGN OF PRODUCTION AND NON-PRODUCTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Marek Kliment

    2014-12-01

    Full Text Available The paper deals with simulation and her forms of use in designing of production and non-production systems. Points to the possibility of using software can help in planning and subsequently in other phase of the lifecycle production and products. Article informs about some of the advantages of this type of software and his options. Sets out some theoretical knowledge of simulation and in the practical part presents some frequently used simulation software.

  1. INVESTIGATION OF SEISMIC PERFORMANCE AND DESIGN OF TYPICAL CURVED AND SKEWED BRIDGES IN COLORADO

    Science.gov (United States)

    2018-01-15

    This report summarizes the analytical studies on the seismic performance of typical Colorado concrete bridges, particularly those with curved and skewed configurations. A set of bridge models with different geometric configurations derived from a pro...

  2. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  3. Design and commissioning of the Seismicity Network of Darkhovein Nuclear Power Plant (IR360)

    International Nuclear Information System (INIS)

    Aram, M. R.

    2012-01-01

    The study of micro seismicity and monitoring the micro seismic for the purpose of surveying the existing faults treatments and recognition of blind faults and other active tectonic structures in various phases of constructing the important structures, specially nuclear power plants, is unavoidable. According to IAEA safety guides and US-NRC regulatory guides, suitable instrumentation must be provided so that the seismic response of nuclear power plant features importantly from the safety point of view. According to R.G. 1.165 seismic monitoring by a network of seismic stations in the site area should be established as soon as possible after the site selection. Also, it is necessary to shutdown the nuclear power plant if vibratory ground motion exceeds the operating basis earthquake. The current research demonstrates the field works and studies for locating the local seismograph network in Darkhovein nuclear power plant. After the official studies and the primary visit of the old seismograph stations it was found that the mentioned network doesn't cover completely the geological structures around the power plant. Therefore, new locations have been introduced through the field investigation and computational methods of optimization. In positioning the new stations, places with the least amount of noise and the best coverage for seismic sources were selected. The modeling with considering an imaginative station at the selected places shows that the thresholds of the complete records of earthquakes around Darkhovein site is under the magnitude 1 (about 0.8).

  4. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  5. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Sejal Purvang Dalal

    2015-12-01

    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  6. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade...

  7. Experiments on the fluid dynamics and thermodynamics of rod bundles to verify and support the design of SNR-300 fuel elements - status and open problems

    International Nuclear Information System (INIS)

    Moeller, R.; Weinberg, D.; Trippe, G.; Tschoeke, H.

    1978-01-01

    The reliable design of reactor core elements calls for precise knowledge of the 3D-temperature fields of the different components; this primarily applies to the fuel element cladding tubes, these being the first safety barrier. This paper describes and discusses where and how the 3D-temperature fields so far determined exclusively with the help of global thermohydraulic computer codes (SUBCHANNEL-Codes) have to be determined more accurately by local investigations. The basis of these investigations is the measurement of local velocities and temperatures in 19-rod bundle models of the SNR-300 fuel element performed at the Kernforschungszentrum Karlsruhe (KfK). Some important results of the extensive experimental investigations are reported and compared with global and local recalculations. Open problems are pointed out. The influence of the uncertainties in the thermohydraulic design with respect to the strength analysis are discussed. The most significant results and conclusions are: (1) The peripheral bundle region is the critical zone, which has to be investigated with priority. Here the maximal azimuthal temperature differences of the claddings are ten times higher than those in the central bundle region. (2) The present deviations between thermal experiments and global as well as local calculations are much too high. Within the parameters investigated a careful code adaptation to the experiments is of high priority. (3) The knowledge gaps concerning liquid metal heat transfer in irregular geometries have to be closed. (4) The hot-channel analysis has to be checked with respect to the latest more detailed knowledge of thermohydraulics. (author)

  8. Three-dimensional seismic survey planning based on the newest data acquisition design technique; Saishin no data shutoku design ni motozuku sanjigen jishin tansa keikaku

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, M; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Theory of parameter setting for data acquisition is arranged, mainly as to the seismic generating and receiving geometry. This paper also introduces an example of survey planning for three-dimensional land seismic exploration in progress. For the design of data acquisition, fundamental parameters are firstly determined on the basis of the characteristics of reflection records at a given district, and then, the layout of survey is determined. In this study, information through modeling based on the existing interpretation of geologic structures is also utilized, to reflect them for survey specifications. Land three-dimensional seismic survey was designed. Ground surface of the surveyed area consists of rice fields and hilly regions. The target was a nose-shaped structure in the depth about 2,500 m underground. A survey area of 4km{times}5km was set. Records in the shallow layers could not obtained when near offset was not ensured. Quality control of this distribution was important for grasping the shallow structure required. In this survey, the seismic generating point could be ensured more certainly than initially expected, which resulted in the sufficient security of near offset. 2 refs., 2 figs.

  9. Auto-identification fiberoptical seal verifier

    International Nuclear Information System (INIS)

    Yamamoto, Yoichi; Mukaiyama, Takehiro

    1998-08-01

    An auto COBRA seal verifier was developed by Japan Atomic Energy Research Institute (JAERI) to provide more efficient and simpler inspection measures for IAEA safeguards. The verifier is designed to provide means of a simple, quantitative and objective judgment on in-situ verification for the COBRA seal. The equipment is a portable unit with hand-held weight and size. It can be operated by battery or AC power. The verifier reads a COBRA seal signature by using a built-in CCD camera and carries out the signature comparison procedure automatically on digital basis. The result of signature comparison is given as a YES/NO answer. The production model of the verifier was completed in July 1996. The development was carried out in collaboration with Mitsubishi Heavy Industries, Ltd. This report describes the design and functions of the COBRA seal verifier and the results of environmental and functional tests. The development of the COBRA seal verifier was carried out in the framework of Japan Support Programme for Agency Safeguards (JASPAS) as a project, JD-4 since 1981. (author)

  10. Structural analysis of the CAREM-25 nuclear power plant subjected to the design basis accident and seismic loads

    International Nuclear Information System (INIS)

    Ambrosini, Daniel; Codina, Ramón H.; Curadelli, Oscar; Martínez, Carlos A.

    2017-01-01

    Highlights: • Structural analysis of CAREM-25 NPP is presented. • Full 3D numerical model was developed. • Transient thermal and static structural analyses were performed. • Modeling guidelines for numerical structural analysis of NPP are recommended. • Envelope condition of DBA dominates the structural behavior. - Abstract: In this paper, a numerical study about the structural response of the Argentine nuclear power plant CAREM-25 subjected to the design basis accident (DBA) and seismic loads is presented. Taking into account the hardware capabilities available, a full 3D finite element model was adopted. A significant part of the building was modeled using more than 2 M solid elements. In order to take into account the foundation flexibility, linear springs were used. The springs and the model were calibrated against a greater model used to study the soil-structure interaction. The structure was subjected to the DBA and seismic loads as combinations defined by ASME international code. First, a transient thermal analysis was performed with the conditions defined by DBA and evaluating the time history of the temperature of the model, each 1 h until 36 h. The final results of this stage were considered as initial conditions of a static structural analysis including the pressure defined by DBA. Finally, an equivalent static analysis was performed to analyze the seismic response considering the design basis spectra for the site. The different loads were combined and the abnormal/extreme environmental combination was the most unfavorable for the structure, defining the design.

  11. Advances in experimental seismic engineering

    International Nuclear Information System (INIS)

    Muthumani, K.; Gopalakrishnan, N.; Sathish Kumar, K.; Iyer, Nagesh R.

    2011-01-01

    Seismic testing plays a key role in better understanding physical phenomena, validating and improving analysis and design methods, and qualifying sensitive equipment. There are several different experimental techniques that can be used to test the response of structures to verify their seismic performance. These include (i) Quasi-static testing (ii) Shake table testing, (iii) Effective force testing (iv) Pseudodynamic testing and (v) Real-time dynamic hybrid testing. The sophisticated shaking table facilities and modern data acquisition and processing methods using high speed computers have made it possible to improve the accuracy and reliability of the experimental data, and to increase the number of gauge points, thus yielding a more detailed picture of the structural behavior. Lifeline structures like nuclear power plants and thermal power

  12. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  13. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  14. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  15. Verified OS Interface Code Synthesis

    Science.gov (United States)

    2016-12-01

    results into the larger proof framework of the seL4 microkernel to be directly usable in practice. Beyond the stated project goals, the solution...CakeML, can now also be used in the Isabelle/HOL system that was used for the verified seL4 microkernel. This combination increases proof productivity...were used for the verified ML compiler CakeML, can now also be used in the Isabelle/HOL system that was used for the verified seL4 microkernel. This

  16. Status of personnel identity verifiers

    International Nuclear Information System (INIS)

    Maxwell, R.L.

    1985-01-01

    Identity verification devices based on the interrogation of six different human biometric features or actions now exist and in general have been in development for about ten years. The capability of these devices to meet the cost and operational requirements of speed, accuracy, ease of use and reliability has generally increased although the verifier industry is still immature. Sandia Laboratories makes a continuing effort to stay abreast of identity verifier developments and to assess the capabilities and improvements of each device. Operating environment and procedures more typical of field use can often reveal performance results substantially different from laboratory tests. An evaluation of several recently available verifiers is herein reported

  17. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements

    Science.gov (United States)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia

    2017-04-01

    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  18. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  19. Cyclic behavior of non-seismically designed interior reinforced concrete beam-column connections

    Directory of Open Access Journals (Sweden)

    Amorn Pimanmas

    2008-05-01

    Full Text Available This paper presents a test of non-seismically detailed reinforced concrete beam-column connections under reversedcyclic load. The tested specimens represented those of the actual mid-rise reinforced concrete frame buildings, designedaccording to the non-seismic provisions of the ACI building code. The evaluation of 10 existing reinforced concrete frameswas conducted to identify key structural and geometrical indices. It was found that there existed correlation VS structuraland geometrical characteristics and the column tributary area. Hence, the column tributary area was chosen as a parameterfor classifying the specimens. The test results showed that specimens representing small and medium column tributary areafailed by brittle joint shear, while specimen representing large column tributary area failed by ductile flexure, even thoughno ductile seismic details were provided.

  20. Displacement based seismic design of symmetric single-storey wood-frame buildings with the aid of N2 method

    Directory of Open Access Journals (Sweden)

    Panagiotis eMergos

    2015-07-01

    Full Text Available This paper presents a new methodology for the displacement-based seismic design of symmetric single-storey wood-frame buildings. Previous displacement-based design efforts were based on the direct displacement-based design (DDBD approach, which uses a substitute linear system with an appropriate stiffness and viscous damping combination. Despite the fact that this method has shown to produce promising results for wood structures, it does not fit into the framework of the Eurocode 8 (EC8 provisions. The methodology presented herein is based on the N2 method, which is incorporated in EC8 and combines the non-linear pushover analysis with the response spectrum method. The N2 method has been mostly applied to reinforced concrete and steel structures. In order to properly implement the N2 method for the case of wood-frame buildings new behavior factor – displacement ductility relationships are proposed. These relationships were derived from inelastic time history analyses of 35 SDOF systems subjected to 80 different ground motion records. Furthermore, the validity of the N2 method is examined for the case of a timber shear wall tested on a shake table and satisfactory predictions are obtained. Last, the proposed design methodology is applied to the displacement-based seismic design of a realistic symmetric single-storey wood-frame building in order to meet the performance objectives of EC8. It is concluded that the simplicity and computational efficiency of the adopted methodology make it a valuable tool for the seismic design of this category of wood-frame buildings, while the need for extending the method to more complex wood-frame buildings is also highlighted.

  1. Original seismic and similar severe external loading design basis for WWER type nuclear power plants in Czech and Slovak Republics and actual issues of their upgrading

    International Nuclear Information System (INIS)

    Masopust, R.

    1993-01-01

    The WWER type NPPs located in Czech and Slovak republics have many seismic vulnerabilities similar to those recognized in many of the US NPPs prior to late seventies. They are mostly caused by underestimation of these problems in the design phases, sometimes due to inadequate performance and poor quality of works and some incompatibilities between the original Russian design and current international design bases and safety requirements. It is believed that the structures and equipment of these NPPs can be seismically upgraded at a moderate cost. It is also believed that the IAEA Benchmark study for seismic analysis and testing of WWER NPPs will develop recommendations to effective seismic upgrading of the existing plants

  2. Measures taken in the member countries of the European Communities for anti-seismic design compared to actual US practice

    International Nuclear Information System (INIS)

    Vinck, W.; Maurer, H.A.

    1977-01-01

    Most countries of the European Communities base their anti-seismic design parameters on specific US earthquake characteristics. There are, however, important discrepancies in the basic data reported on the two continents as well as in their design application. This was one of the topics under discussion within an European working group on methodologies, criteria and standards in nuclear safety. Unlike US practice, in some European countries the maximum earthquake that can be envisaged (corresponding to the Safe Shutdown Earthquake-SEE-in US practice) is defined by adding a margin of safety to the maximum probable earthquake (corresponding to the Operating Basis Earthquake-OBE-in US for which statistical data exist). - Differences exist also in the design parameters to be taken into account in the different European countries especially in the evaluation of the maximum acceleration and on the relationship of the acceleration vs. earthquake intensity. For design purposes, in US as well as in European countries, the assumption is made that seismic waves basically approximate a sustained simple harmonic motion. Under this assumption the Neumann correlation which gives the relationship between the modified Mercalli intensity, the wave period and the ground acceleration is applied. While in the US a whole spectrum of wave periods (from 0.33 to 6.0 sec) -in function of the type of foundation (soil, bed-rock) and the distance of the epicenter- are considered, the European countries base their investigations on shorter wave periods (approximately 0.3 sec). - Mention is made of the existing differences in the relationship of horizontal to vertical acceleration levels. These differences in the evaluation of the earthquake characteristics influence the design to protect the power plants against seismic effects especially as far as stress and strain limits for structures and components within the elastic range and in the excess of yield are concerned

  3. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  4. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    International Nuclear Information System (INIS)

    Savy, J.B.; Foxall, W.

    2000-01-01

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999

  5. An under-designed RC frame: Seismic assessment through displacement based approach and possible refurbishment with FRP strips and RC jacketing

    Science.gov (United States)

    Valente, Marco; Milani, Gabriele

    2017-07-01

    Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.

  6. Southern California Seismic Network: New Design and Implementation of Redundant and Reliable Real-time Data Acquisition Systems

    Science.gov (United States)

    Saleh, T.; Rico, H.; Solanki, K.; Hauksson, E.; Friberg, P.

    2005-12-01

    The Southern California Seismic Network (SCSN) handles more than 2500 high-data rate channels from more than 380 seismic stations distributed across southern California. These data are imported real-time from dataloggers, earthworm hubs, and partner networks. The SCSN also exports data to eight different partner networks. Both the imported and exported data are critical for emergency response and scientific research. Previous data acquisition systems were complex and difficult to operate, because they grew in an ad hoc fashion to meet the increasing needs for distributing real-time waveform data. To maximize reliability and redundancy, we apply best practices methods from computer science for implementing the software and hardware configurations for import, export, and acquisition of real-time seismic data. Our approach makes use of failover software designs, methods for dividing labor diligently amongst the network nodes, and state of the art networking redundancy technologies. To facilitate maintenance and daily operations we seek to provide some separation between major functions such as data import, export, acquisition, archiving, real-time processing, and alarming. As an example, we make waveform import and export functions independent by operating them on separate servers. Similarly, two independent servers provide waveform export, allowing data recipients to implement their own redundancy. The data import is handled differently by using one primary server and a live backup server. These data import servers, run fail-over software that allows automatic role switching in case of failure from primary to shadow. Similar to the classic earthworm design, all the acquired waveform data are broadcast onto a private network, which allows multiple machines to acquire and process the data. As we separate data import and export away from acquisition, we are also working on new approaches to separate real-time processing and rapid reliable archiving of real-time data

  7. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  8. Review of the seismic risk in the design of civil engineering of nuclear installations excepted the long term storage of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    This guide aims to define, for the nuclear installations excepted the long term storage of radioactive wastes, from site data, the design specifications of earthquake resistant civil engineering and the possible methods for: the determination of the seismic response of the buildings, taking into account the interactions with the materials and the evaluation of the associated strains to size the installation; the determination of seismic displacements to be considered to size the materials. (A.L.B.)

  9. Proceedings of a specialist meeting on the anti-seismic design of nuclear installations

    International Nuclear Information System (INIS)

    1976-01-01

    This meeting is composed of 26 papers, grouped into 6 sessions. Session I: Introduction (reports on previous meetings related to seismic issues and mechanical structures for nuclear power plants). Session II: seismology. Session III: soil-foundation interaction. Session IV: structures and equipment; Session V: experimental techniques and instrumentation of power plants. Session VI: Synthesis and regulations. Each session is followed by a general discussion. The meeting is concluded with the chairman's report

  10. Large test rigs verify Clinch River control rod reliability

    International Nuclear Information System (INIS)

    Michael, H.D.; Smith, G.G.

    1983-01-01

    The purpose of the Clinch River control test programme was to use multiple full-scale prototypic control rod systems for verifying the system's ability to perform reliably during simulated reactor power control and emergency shutdown operations. Two major facilities, the Shutdown Control Rod and Maintenance (Scram) facility and the Dynamic and Seismic Test (Dast) facility, were constructed. The test programme of each facility is described. (UK)

  11. Site-specific issues related to structural/seismic design of an underground independent spent fuel storage installation (ISFSI)

    International Nuclear Information System (INIS)

    Tripathi, B.P.

    2005-01-01

    Utilities owning and operating commercial nuclear power plants (NPP) in USA may choose to build an underground Independent Spent Fuel Storage Installation (ISFSI) to store the spent nuclear fuels. The regulatory requirements and other guidance are based on 10 CFR Part 72, Regulatory Guide RG 3.73, Standard Review Plans NUREG-1536 and NUREG-1567, and Interim staff Guidance (ISG) documents as applicable. Structures, Systems, and Components (SSCs) classified as important to safety are designed to withstand the effects of site-specific environmental conditions and natural phenomena such as earthquake, tornado, flood, etc. An underground ISFSI for storage of spent nuclear fuel, presents some unique analysis and design challenges. This paper will briefly address some of these challenges and discuss site-specific loads, including seismic for the ISFSI design. (authors)

  12. Report on the ANSTO application for a licence to construct a Replacement Research Reactor, addressing seismic analysis and seismic design accident analysis, spent fuel and radioactive wastes

    International Nuclear Information System (INIS)

    2002-02-01

    The Report of the Nuclear Safety Committee (NSC) covers specific terms of reference as requested by the Chief Executive Officer of ARPANSA. The primary issue for the Working Group(WG) consideration was whether ANSTO had demonstrated: (i) that the overall approach to seismic analysis and its implementation in the design is both conservative and consistent with the international best practice; (ii) whether the full accident analysis in the Probabilistic Safety Assesment Report (PSAR) satisfies the radiation dose/frequency criteria specified in ARPANSA's regulatory assessment principle 28 and the assumptions used in the Reference Accident for the siting assessment have been accounted for in the PSAR; and (iii) the adequacy of the strategies for managing the spent fuel as proposed to be used in the Replacement Research Reactor and other radioactive waste (including emissions, taking into account the ALARA criterion) arising from the operation of the proposed replacement reactor and radioisotope production. The report includes a series of questions that were asked of the Applicant in the course of working group deliberations, to illustrate the breadth of inquiries that were made. The Committee noted that replies to some questions remain outstanding at the date of this document. The NSC makes a number of recommendations that appear in each section of the document, which has been compiled in three parts representing the work of each group. The NSC notes some lack of clarity in what was needed to be considered at this approval stage of the project, as against information that would be required at a later stage. While not in the original work plan, recent events of September 11, 2001 also necessitated some exploration of issues relating to construction security. Copyright (2002) Commonwealth of Australia

  13. A Practical Voter-Verifiable Election Scheme.

    OpenAIRE

    Chaum, D; Ryan, PYA; Schneider, SA

    2005-01-01

    We present an election scheme designed to allow voters to verify that their vote is accurately included in the count. The scheme provides a high degree of transparency whilst ensuring the secrecy of votes. Assurance is derived from close auditing of all the steps of the vote recording and counting process with minimal dependence on the system components. Thus, assurance arises from verification of the election rather than having to place trust in the correct behaviour of components of the vot...

  14. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Mori, Kentaro, E-mail: kentaro_mori@mhi.co.jp [Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2015-12-15

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  15. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    International Nuclear Information System (INIS)

    Booth, Peter N.; Varma, Amit H.; Sener, Kadir C.; Mori, Kentaro

    2015-01-01

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  16. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.

    Science.gov (United States)

    Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea

    2018-04-27

    We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.

  17. Unconditionally verifiable blind quantum computation

    Science.gov (United States)

    Fitzsimons, Joseph F.; Kashefi, Elham

    2017-07-01

    Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.

  18. A Seismic Isolation Application Using Rubber Bearings; Hangar Project in Turkey

    International Nuclear Information System (INIS)

    Sesigur, Haluk; Cili, Feridun

    2008-01-01

    Seismic isolation is an effective design strategy to mitigate the seismic hazard wherein the structure and its contents are protected from the damaging effects of an earthquake. This paper presents the Hangar Project in Sabiha Goekcen Airport which is located in Istanbul, Turkey. Seismic isolation system where the isolation layer arranged at the top of the columns is selected. The seismic hazard analysis, superstructure design, isolator design and testing were based on the Uniform Building Code (1997) and met all requirements of the Turkish Earthquake Code (2007). The substructure which has the steel vertical trusses on facades and RC H shaped columns in the middle axis of the building was designed with an R factor limited to 2.0 in accordance with Turkish Earthquake Code. In order to verify the effectiveness of the isolation system, nonlinear static and dynamic analyses are performed. The analysis revealed that isolated building has lower base shear (approximately 1/4) against the non-isolated structure

  19. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document

  20. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  1. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  2. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  3. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  4. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2002-03-01

    Full Text Available Final Project Report Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design. A.v.Z Brink, M.K.C. Roberts, S.M Spottiswoode Research Agency: CSIR: Division of Mining... on the VCR. An industry workshop on local support requirements in areas of higher seismic risk resulted in the specification of support requirements. A maximum design parameter for yielding support in terms of the ground motion velocity is 1 m...

  5. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Cho, Sung Gook; Joe, Yang Hee

    2005-01-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities

  6. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)]. E-mail: sgcho@incheon.ac.kr; Joe, Yang Hee [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)

    2005-08-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.

  7. Seismic qualification of equipment in operating nuclear power plants: Unresolved Safety Issue A-46

    International Nuclear Information System (INIS)

    Chang, T.Y.

    1987-02-01

    The margin of safety provided in existing nuclear power plant equipment to resist seismically induced loads and perform their intended safety functions may vary considerably, because of significant changes in design criteria and methods for the seismic qualification of equipment over the years. Therefore, the seismic qualification of equipment in operating plants must be reassessed to determine whether requalification is necessary. The objective of technical studies performed under the Task Action Plan A-46 was to establish an explicit set of guidelines and acceptance criteria to judge the adequacy of equipment under seismic loading at all operating plants, in lieu of requiring qualification to the current criteria that are applied to new plants. This report summarizes the work accomplished on USI A-46. In addition, the collection and review of seismic experience data and existing seismic test data are presented. Staff assessment of work accomplished under USI A-46 leads to the conclusion that the use of seismic experience data provides the most reasonable alternative to current qualification criteria. Consideration of seismic qualification by use of experience data was a specific task in USI A-46. Several other A-46 tasks serve to support the use of an experienced data base. The principal technical finding of USI A-46 is that seismic experience data, supplemented by existing seismic test data, applied in accordance with the guidelines developed, can be used to verify the seismic adequacy of mechanical and electrical equipment in operating nuclear plants. Explicit seismic qualification should be required only if seismic experience data or existing test data on similar components cannot be shown to apply

  8. Regulatory Guide 1.122: Development of floor design response spectra for seismic design of floor-supported equipment or components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    ''Reactor Site Criteria,'' requires, in part, that safety-related structures, systems, and components remain functional in the event of a Safe Shutdown Earthquake (SSE). It specifies the use of a suitable dynamic analysis as one method of ensuring that the structures, systems, and components can withstand the seismic loads. Similarly, paragraph (a)(2) of Section VI of the same appendix requires, in part, that the structures, systems, and components necessary for continued operation without undue risk to the health and safety of the public remain functional in the event of an Operating Basis Earthquake (OBE). Again, the use of suitable dynamic analysis is specified as one method of ensuring that the structures, systems, and components can withstand the seismic loads. This guide describes methods acceptable to the NRC staff for developing two horizontal and one vertical floor design response spectra at various floors or other equipment-support locations of interest from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are needed for the dynamic analysis of the systems or equipment supported at various locations of the supporting structure

  9. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  10. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  11. Soil-structure interaction analysis of large scale seismic test model at Hualien in Taiwan

    International Nuclear Information System (INIS)

    Jang, J. B.; Ser, Y. P.; Lee, J. L.

    2001-01-01

    The issue of SSI in seismic analysis and design of NPPs is getting important, as it may be inevitable to build NPPs at sites with soft foundation due to ever-increasing difficulty in acquiring new construction sites for NPPs. And, the improvement of seismic analysis technique including soil-structure interaction analysis essential to achieve reasonable seismic design for structures and equipments, etc. of NPPs. Therefore, among the existing SSI analysis programs, the most prevalent SASSI is verified through the comparison numerical analysis results with recorded response results of Hualien project in this study. As a result, SASSI accurately estimated the recorded response results for the fundamental frequency and peak acceleration of structure and was proved to be reliable and useful for the seismic analysis and design of NPPs

  12. Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings

    Science.gov (United States)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2018-04-01

    Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.

  13. Recommendations for resolution of public comments on USI [Unresolved Safety Issues] A-40, ''Seismic Design Criteria''

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.

    1989-06-01

    In June 1988 the Nuclear Regulatory Commission (NRC) issued for public comment the proposed Revision 2 of the Standard Review Plan (SRP) Sections 2.5.2, 3.7.1, 3.7.2. and 3.7.3. Comments were received from six organizations. Brookhaven National Laboratory (BNL) was requested by NRC to provide expert consultation in the seismic and soil-structure interaction areas for the review and resolution of these comments. For this purpose, a panel of consultants was established to assist BNL with the review and evaluation of the public comments. This review was carried out during the period of October 1988 through January 1989. Many of the suggestions given in the public comments were found to be significant and a number of modifications to appropriate SRP sections are recommended. Other public comments were found to have no impact on the proposed Revision 2 of the SRP. Major changes are recommended to the SRP sections dealing with (a) Power Spectral Density (PSD) and ground motion requirements and (b) soil-structure interaction requirements. This report contains specific recommendations to NRC for resolution of the public comments made on the proposed Revision 2 of the SRP

  14. Development of seismic design method for piping system supported by elastoplastic damper. 3. Vibration test of three-dimensional piping model and its response analysis

    International Nuclear Information System (INIS)

    Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.

    1995-01-01

    Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)

  15. Characterization and performance evaluation of a vertical seismic isolator using link and crank mechanism

    International Nuclear Information System (INIS)

    Tsujiuchi, N; Ito, A; Sekiya, Y; Nan, C; Yasuda, M

    2016-01-01

    In recent years, various seismic isolators have been developed to prevent earthquake damage to valuable art and other rare objects. Many seismic isolators only defend against horizontal motions, which are the usual cause of falling objects. However, the development of a seismic isolator designed for vertical vibration is necessary since such great vertical vibration earthquakes as the 2004 Niigata Prefecture Chuetsu Earthquake have occurred, and their increased height characteristics are undesirable. In this study, we developed a vertical seismic isolator that can be installed at a lower height and can support loads using a horizontal spring without requiring a vertical spring. It has a mechanism that combines links and cranks. The dynamic model was proposed and the frequency characteristics were simulated when the sine waves were the input. Shaking tests were also performed. The experimental value of the natural frequency was 0.57 Hz, and the theoretical values of the frequency characteristics were close to the experimental values. In addition, we verified this vertical seismic isolator's performance through shaking tests and simulation for typical seismic waves in Japan. We verified the seismic isolation's performance from the experimental result because the average reduction rate of the acceleration was 0.21. (paper)

  16. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  17. Review of revised Japanese seismic guidelines for Nuclear Power Plant design

    International Nuclear Information System (INIS)

    Kato, M.

    1987-01-01

    Development of aseismic design for nuclear power plants in Japan has evolved roughly in three stages. The first phase, which continued by 1978, was a period progressive development when design for each siteplant has referred to designs of predecessor plants and have added the latest knowledge and experience in that time. The second phase from issuance of 'Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities' (1978, revised in 1981), or 1978 to 1986, was a period when the application of customary conservative design method was continued, while standardization of the aseismic design technology have been proceded. It is in this phase when new knowledge was accumulated by aseismic proof studies. The third phase represents a transient period to rational design when the conservative aseismic design technology has been reviewed due to the new knowledge and revision of the above JEAG guideline has progressed for incorporation in design, and ont the other hand by-laws of the Ministry of International Trade and Industry are being provided. In this report a review is given of aseismic design and its guideline after the second phase onward and an overview of the revised JEAG - Recent Aseismic Design Method - and the by-laws including rationalization of aseismic design technology

  18. Seismic design spectra for nuclear power plants, state-of-the-art

    International Nuclear Information System (INIS)

    Michalopoulos, A.P.; Shukla, D.K.

    1976-01-01

    The State-of-the-Art of nuclear power plant design involves the use of design response spectra together with a modal analysis of a mathematical idealization of the actual structure. The design response spectra give the maximum response to ground shaking for a family of single degree-of-freedom viscously damped oscillators. These spectra are usually described as an accelerogram giving ground acceleration as a function of time. The definition of a 'standard' design response spectra is reviewed and illustrated by data relevant to 'hard' or rock sites. Finally, the paper recommends a set of design response spectra applicable to rock sites

  19. Seismic behaviour of gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-08-01

    On invitation of the French Government the Specialists' Meeting on the Seismic Behaviour of Gas-Cooled Reactor Components was held at Gif-sur-Yvette, 14-16 November 1989. This was the second Specialists' Meeting on the general subject of gas-cooled reactor seismic design. There were 27 participants from France, the Federal Republic of Germany, Israel, Japan, Spain, Switzerland, the United Kingdom, the Soviet Union, the United States, the CEC and IAEA took the opportunity to present and discuss a total of 16 papers reflecting the state of the art of gained experiences in the field of their seismic qualification approach, seismic analysis methods and of the capabilities of various facilities used to qualify components and verify analytical methods. Since the first meeting, the sophistication and expanded capabilities of both the seismic analytical methods and the test facilities are apparent. The two main methods for seismic analysis, the impedance method and the finite element method, have been computer-programmed in several countries with the capability of each of the codes dependent on the computer capability. The correlations between calculation and tests are dependent on input assumptions such as boundary conditions, soil parameters and various interactions between the soil, the buildings and the contained equipment. The ability to adjust these parameters and match experimental results with calculations was displayed in several of the papers. The expanded capability of some of the new test facilities was graphically displayed by the description of the SAMSON vibration test facility at Juelich, FRG, capable of dynamically testing specimens weighing up to 25 tonnes, and the TAMARIS facility at the CEA laboratories in Gif-sur-Yvette where the largest table is capable of testing specimens weighing up to 100 tonnes. The proceedings of this meeting contain all 16 presented papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Measures taken in the member countries of the European Communities for anti-seismic design compared to actual US practice

    International Nuclear Information System (INIS)

    Vinck, W.; Maurer, H.A.

    1977-01-01

    Most countries of the European Communities base their anti-seismic design parameters on specific US earthquake characteristics. There are, however, important discrepancies in the basic data reported on the two continents as well as in their design application. This was one of the topics under discussion within an European working group on methodologies, criteria and standards in nuclear safety. The contribution is based on an inventory of the applied national practices, the existing specifications, regulations, and guidelines applied in the design, the manufacture, and the safety assessment of structures, systems, and components to withstand potential earthquake consequences in the countries of the European Communities. In a comparison of these national specifications and guidelines the common points of agreement are identified and the divergences discussed with reference to the US practice. Special attention is given to the divergencies for definition and determination of the reference eathquakes. In European countries the definitions of the reference earthquakes are largely analogous to definitions in the US Federal Regulations but expressed in a different way. For European countries, threshold values are proposed to guarantee safety for nuclear power plants. (Auth.)

  1. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  2. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    International Nuclear Information System (INIS)

    1995-01-01

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ''Earthquake Evaluation Guidance Document.'' The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment

  3. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  4. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  5. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network

    International Nuclear Information System (INIS)

    Cao, Ping; Song, Ke-zhu; Yang, Jun-feng; Ruan, Fu-ming

    2011-01-01

    Nowadays, seismic exploration data acquisition (DAQ) systems have been developed into remote forms with a large-scale coverage area. In this kind of application, some features must be mentioned. Firstly, there are many sensors which are placed remotely. Secondly, the total data throughput is high. Thirdly, optical fibres are not suitable everywhere because of cost control, harsh running environments, etc. Fourthly, the ability of expansibility and upgrading is a must for this kind of application. It is a challenge to design this kind of remote DAQ (rDAQ). Data transmission, clock synchronization, data storage, etc must be considered carefully. A fourth-hierarchy model of rDAQ is proposed. In this model, rDAQ is divided into four different function levels. From this model, a simple and clear architecture based on a distributed storage area network is proposed. rDAQs with this architecture have advantages of flexible configuration, expansibility and stability. This architecture can be applied to design and realize from simple single cable systems to large-scale exploration DAQs

  6. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    International Nuclear Information System (INIS)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes

  7. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  8. Alternative Shear Panel Configurations for Light Wood Construction. Development, Seismic Performance, and Design Guidance

    Science.gov (United States)

    Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo

    2002-04-01

    Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.

  9. Development of floor design response spectra for seismic design of floor-supported equipment or components, Revision 1, February 1978

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This guide presents an acceptable method for developing two horizontal and one vertical floor design response spectra at various floor or other equipment-support locations from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are used in the dynamic analysis of systems or equipment supported at various locations of the supporting structure. Consulation has been provided by the Advisory Committee on Reactor Safeguards

  10. USCIS E-Verify Program Reports

    Data.gov (United States)

    Department of Homeland Security — The report builds on the last comprehensive evaluation of the E-Verify Program and demonstrates that E-Verify produces accurate results and that accuracy rates have...

  11. Feasibility studies on design of steel containment for AHWR subjected to normal and seismic loads

    International Nuclear Information System (INIS)

    Verma, Rajeev; Reddy, G.R.; Vaze, K.K.; Kumar, Ajay

    2011-01-01

    Reactor Containments in nuclear power plants are the final leak tight harriers preventing release of radioactive material during the accident to the environment. It should provide containment against fission product release, passive containment cooling and should be economical. In the world various configurations have been adopted depending on the accident pressures, temperatures, leak rate requirements and radius of exclusion zones. economy, speed of construction etc. Some of the containments arc of Reinforced Cement Concrete (RCC), Prestressed Cement Concrete (PCC), RCC with the liner, PCC with the liner and Steel. The design concepts and the choice of containment depend on the country practices. The main objective of this paper is to design, analyze and characterize the effectiveness of steel containment for AHWR and compare it with other type of containments. The paper discusses the literature regarding various types of existing containments in the world. In depth study of design practice for cylinder and various types of heads have been discussed. Also discusses the finite element modeling of the containment, analysis for normal and accidental loads and the design qualification as per the ASME and IS-800 codes. In the conclusion the advantage of steel containment is highlighted with the small discussion on the newer trends of construction. (author)

  12. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  13. Recent advances and design options of the aseismic bearing pad concept for reduction of seismic loading

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Musacchio, J.M.; Rizzo, P.C.

    1985-01-01

    The intent of this paper is to: briefly review the developed concepts from a mechanics standpoint; summarize the results of recent testing and applications; discuss the complexities and subtleties of differences between concepts, and highlight the effectiveness of each within selected frequency ranges. On this basis, the paper will provide a forum for application of each concept within the nuclear design community. The potential licensing implications of incorporating the ABP concept into nuclear plant design are be discussed in light of actual experience extrapolated to several dominant regulatory processes; namely the French, German, Japanese, Canadian and American. The intent is to identify potential licensing issues, spur additional research and development in these areas, and continue to bring the concept to the attention of the nuclear community to facilitate acceptance and application. (orig./HP)

  14. Probabilistic Modeling of Seismic Risk Based Design for a Dual System Structure

    OpenAIRE

    Sidi, Indra Djati

    2017-01-01

    The dual system structure concept has gained popularity in the construction of high-rise buildings over the last decades. Meanwhile, earthquake engineering design provisions for buildings have moved from the uniform hazard concept to the uniform risk concept upon recognizing the uncertainties involved in the earthquake resistance of concrete structures. In this study, a probabilistic model for the evaluation of such risk is proposed for a dual system structure consisting of shear walls or cor...

  15. Tentative provisions for seismic design of base isolated buildings in France

    International Nuclear Information System (INIS)

    Gantenbein, F.; Bisch, P.

    1991-01-01

    This paper presents Chapter 22 of the AFPS (French Earthquake Engineering Association) Recommendations, devoted to aseismic bearing pads. This chapter gives general rules applicable to any kind of pads, and specific rules for hooped elastomer pads. It contains specifications for general or detailed arrangements when aseismic bearing pads are used, calculation procedures (in particular, a simplified method), and a technical validation procedure for new designs of pads

  16. Tentative provisions for seismic design of base isolated buildings in France

    International Nuclear Information System (INIS)

    Betbeder-Matibet, J.; Bisch, P.; Gantenbein, F.

    1992-01-01

    This paper presents Chapter 22 of the AFPS (French Earthquake Engineering Association) Recommendations, devoted to aseismic bearing pads. This chapter gives general rules applicable to any kind of pads, and specific rules for hooped elastomer pads. It contains specifications for general or detailed arrangements when aseismic bearing pads are used, calculation procedures (in particular, a simplified method), and a technical validation procedure for new designs of pads. (author)

  17. The arrangement of the seismic design method of the underground facility

    International Nuclear Information System (INIS)

    Tanai, Kenji; Horita, Masakuni; Dewa, Katsuyuki; Gouke, Mitsuo

    2002-03-01

    Earthquake resistance for the underground structure is higher than the ground structure. Therefore, the case of examining the earthquake resistance of underground structure was little. However, it carries out the research on the aseismic designing method of underground structure, since the tunnel was struck by Hyogo-ken Nanbu Earthquake, and it has obtained a much knowledge. However, an object of the most study was behavior at earthquake of the comparatively shallow underground structure in the alluvial plain board, and it not carry out the examination on behavior at earthquake of underground structure in the deep rock mass. In the meantime, underground disposal facility of the high level radioactive waste constructs in the deep underground, and it carries out the operation in these tunnels. In addition, it has made almost the general process of including from the construction start to the backfilling to be about 60 years (Japan Nuclear Fuel Cycle Development Institute, 1999). During these periods, it is necessary to also consider the earthquake resistance as underground structure from the viewpoint of the safety of facilities. Then, it extracted future problem as one of the improvement of the basis information for the decision of the safety standard and guideline of the country on earthquake-resistant design of the underground disposal facility, while it carried out investigation and arrangement of earthquake-resistant design cases, guidelines and analysis method on existing underground structure, etc. And, the research items for the earthquake resistance assessment of underground structure as case study of the underground research laboratory. (author)

  18. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  19. A structural design and analysis of a piping system including seismic load

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    The structural design/analysis of a piping system at a nuclear fuel facility is used to investigate some aspects of current design procedures. Specifically the effect of using various stress measures including ASME Boiler ampersand Pressure Vessel (B ampersand PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maximum for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis with the modal responses combined by using the absolute summation (ABS), by using the square root of the squares (SRSS), and by using the 10 percent method (10PC). It is shown that for a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to an RSM analysis based on ABS. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 3 figs., 3 tabs

  20. Seismic analysis and design of spent subassembly storage bay (SSSB) pool

    International Nuclear Information System (INIS)

    Abdul Gani, H.I.; Ramanjaneyulu, K.V.S.; Pillai, C.S.; Chetal, S.C.

    2003-01-01

    Fuel bundles, after their specified stay in reactor core, are replaced by fresh fuel for sustaining power generation at rated levels. The irradiated fuel subassembly, removed fresh from core, known as spent fuel sub assembly, is radioactive and decay heat generating. It needs to be cooled before it becomes amenable for handling, either for reprocessing or for immobilisation. For this purpose, it is immersed in a pool of water, retained in a concrete structure referred as Spent Subassembly Storage Bay (SSSB) pool. The height of water column above fuel bundles is arrived from shielding considerations. SSSB pool is one of the nuclear safety related structures and warrants rigorous analysis and design. The SSSB pool, in case of PFBR 500 MW(e) is located in fuel building. It is a stainless steel lined. water retaining rectangular R.C.C. open tank of size 7.5 X 29.0 m, with a height of 11.0 m. This structure is analysed for two levels of site specific earthquakes taking in to account liquid structure interactions as per ASCE-4, 1998. The design of walls and bottom slab is carried out satisfying the AERB code for nuclear safety related structures. Analysis and design of SSSB pool of PFBR is presented in the following paper. (author)

  1. A rational and economical seismic design of beam columns in steel frames

    International Nuclear Information System (INIS)

    Gupta, A.K.; Fang, S.-J.; Chu, S.-L.

    1977-01-01

    In the present study, a new rational procedure is used in which simultaneous variation in various response quantities is predicted. For designing the beam column section according to the AISC Manual of Steel Construction, one has to know the values of the axial force, the moment about x and y axes at the two ends, and the maximum moments about x, y axes near the center of the beam column, which altogether constitutes seven response quantities of interest for each beam column element. Normally, seven equivalent modes will be required to represent the response. However, by designing the two end sections and the intermediate section independently one can consider three equivalent modes for each section, thus simplifying the problem a great deal. An existing computer program is used for the implementation of the proposed method. Results for typical example problems have been presented. It is shown that savings up to 42% in the steel cross-sectional area can be obtained depending upon combination of various forces and moments. The propposed method is 'exact' within the existing assumptions of the SRSS (square root of the sum of the squares) or the double sum method

  2. Estimation of dynamic loading on a design of the NPP caused by seismic influences

    International Nuclear Information System (INIS)

    Proskuryakov, Konstantin

    2011-01-01

    Methods and algorithms of calculations of quality factor of a stream of the coolant are developed. Quantitative estimations of a range of frequency of vibration - acoustical resonance between the coolant flowing through the reactor core and fuel assembly vibration in the NPP with WWER-1000 are provided. The design procedure of quality factor of a stream of the coolant and a band - width in advanced light water reactor is developed. The experimental substantiation of sharp increase of intensity of vibrations at occurrence of vibration - acoustical resonance is received. The reasons of abnormal growth of level of vibrations are identified at stationary modes of cold - ops, hot - ops of the equipment of reactor installations with WWER-1000. It is showed that for prevention of vibration - acoustical resonance of the coolant and fuel assembly it is necessary and sufficient to deduce own frequency of fuel assembly vibrations from band - width limits. The technique of designing of cartograms of a reactor core with indication of quantity and location of fuel assemblies with high level of vibration is worked out. (author)

  3. DRY TRANSFER FACILITY SEISMIC ANALYSIS

    International Nuclear Information System (INIS)

    EARNEST, S.; KO, H.; DOCKERY, W.; PERNISI, R.

    2004-01-01

    The purpose of this calculation is to perform a dynamic and static analysis on the Dry Transfer Facility, and to determine the response spectra seismic forces for the design basis ground motions. The resulting seismic forces and accelerations will be used in a subsequent calculation to complete preliminary design of the concrete shear walls, diaphragms, and basemat

  4. A structural design of the multi-ringed seismic support for PCPV

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Ujiie, Koji.

    1979-01-01

    This report describes the multi-ringed cylindrical support newly developed as the supporting structure for a Prestressed Concrete Pressure Vessel. This support is composed of several thin cylinders of concentric circles, which are made of reinforced concrete or steel reinforced concrete. The characteristics of the support is such that it can allow two contradictory conditions to occur. That is, it can follow smoothly the radial displacement of PCPV induced by inner pressure, inner heat and etc. At the same time, it has enough rigidity to bear the earthquake forces from PCPV and to transmit them to the ground with certainty. The shape, characteristics and structural design of the support are described hereunder. (author)

  5. Force-displacement response of unreinforced masonry walls for seismic design

    International Nuclear Information System (INIS)

    Petry, S.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology EPFL contributes to the improvement of the design and assessment methods for unreinforced masonry (URM) wall structures built with modern hollow core clay bricks. First, an experimental campaign on the lateral nonlinear in-plane response of URM walls is presented; secondly, an existing dataset on URM walls is extended and reanalysed. A newly developed mechanical model which describes the full force-displacement response of URM walls is described. Two series of URM walls tested under lateral in-plane loading are presented. Throughout the quasi-cyclic tests of all URM walls, the deformations were recorded using a digital photogrammetric measurement system which tracked the displacement field of the walls. Based on these findings, a new mechanical model is proposed which describes the nonlinear force-displacement response of flexural dominated URM walls up to near collapse

  6. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  7. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  8. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  9. A Framework for Seismic Design of Items in Safety-Critical Facilities for Implementing a Risk-Informed Defense-in-Depth-Based Concept

    Directory of Open Access Journals (Sweden)

    Tatsuya Itoi

    2017-05-01

    Full Text Available Recently, especially after the 2011 off the Pacific coast of Tohoku earthquake and the Fukushima Daiichi nuclear power plant accident, the need for treating residual risks and cliff-edge effects in safety-critical facilities has been widely recognized as an extremely important issue. In this article, the sophistication of seismic designs in safety-critical facilities is discussed from the viewpoint of mitigating the consequences of accidents, such as the avoidance of cliff-edge effects. For this purpose, the implementation of a risk-informed defense-in-depth-based framework is proposed in this study. A basic framework that utilizes diversity in the dynamic characteristics of items and also provides additional seismic margin to items important for safety when needed is proposed to prevent common cause failure and to avoid cliff-edge effects as far as practicable. The proposed method is demonstrated to be effective using an example calculation.

  10. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    International Nuclear Information System (INIS)

    Campbell, R.D.; Hardy, G.S.; Ravindra, M.K.; Johnson, J.J.; Hoy, A.J.

    1995-01-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  11. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R D; Hardy, G S; Ravindra, M K [EQE International, Irvine, CA (United States); Johnson, J J [EQE International, San Francisco, CA (United States); Hoy, A J [EQE International Ltd., Birchwood, Warrington (United Kingdom)

    1995-07-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  12. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  13. Design of turbine foundations in seismic zones. Earthquake protection strategies; Planung von Turbinenfundamenten in Erdbebengebieten. Strategien zum Erdbebenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Ashish Kumar [GERB Vibration Control Systems, Noida (India); Nawrotzki, Peter [GERB Schwingungsisolierungen GmbH und Co. KG, Berlin (Germany); Siepe, Daniel [GERB Engineering GmbH, Essen (Germany)

    2011-04-15

    This contribution reveals basic principles of elastic support systems and applications on power plant equipment and buildings in medium and high seismic areas. Spring-damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine substructure into the machine building can additionally reduce the relative displacement between both the structures as well as the stress levels in all structural members. (orig.)

  14. Verifying FreeRTOS; a feasibility study

    NARCIS (Netherlands)

    Pronk, C.

    2010-01-01

    This paper presents a study on modeling and verifying the kernel of Real-Time Operating Systems (RTOS). The study will show advances in formally verifying such an RTOS both by refinement and by model checking approaches. This work fits in the context of Hoare’s verification challenge. Several

  15. Appraising the value of independent EIA follow-up verifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, Jan-Albert, E-mail: janalbert.wessels@nwu.ac.za [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Retief, Francois, E-mail: francois.retief@nwu.ac.za [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Morrison-Saunders, Angus, E-mail: A.Morrison-Saunders@murdoch.edu.au [School of Geo and Spatial Sciences, Department of Geography and Environmental Management, North-West University, C/O Hoffman and Borcherd Street, Potchefstroom, 2520 (South Africa); Environmental Assessment, School of Environmental Science, Murdoch University, Australia. (Australia)

    2015-01-15

    Independent Environmental Impact Assessment (EIA) follow-up verifiers such as monitoring agencies, checkers, supervisors and control officers are active on various construction sites across the world. There are, however, differing views on the value that these verifiers add and very limited learning in EIA has been drawn from independent verifiers. This paper aims to appraise how and to what extent independent EIA follow-up verifiers add value in major construction projects in the developing country context of South Africa. A framework for appraising the role of independent verifiers was established and four South African case studies were examined through a mixture of site visits, project document analysis, and interviews. Appraisal results were documented in the performance areas of: planning, doing, checking, acting, public participating and integration with other programs. The results indicate that independent verifiers add most value to major construction projects when involved with screening EIA requirements of new projects, allocation of financial and human resources, checking legal compliance, influencing implementation, reporting conformance results, community and stakeholder engagement, integration with self-responsibility programs such as environmental management systems (EMS), and controlling records. It was apparent that verifiers could be more creatively utilized in pre-construction preparation, providing feedback of knowledge into assessment of new projects, giving input to the planning and design phase of projects, and performance evaluation. The study confirms the benefits of proponent and regulator follow-up, specifically in having independent verifiers that disclose information, facilitate discussion among stakeholders, are adaptable and proactive, aid in the integration of EIA with other programs, and instill trust in EIA enforcement by conformance evaluation. Overall, the study provides insight on how to harness the learning opportunities

  16. Appraising the value of independent EIA follow-up verifiers

    International Nuclear Information System (INIS)

    Wessels, Jan-Albert; Retief, Francois; Morrison-Saunders, Angus

    2015-01-01

    Independent Environmental Impact Assessment (EIA) follow-up verifiers such as monitoring agencies, checkers, supervisors and control officers are active on various construction sites across the world. There are, however, differing views on the value that these verifiers add and very limited learning in EIA has been drawn from independent verifiers. This paper aims to appraise how and to what extent independent EIA follow-up verifiers add value in major construction projects in the developing country context of South Africa. A framework for appraising the role of independent verifiers was established and four South African case studies were examined through a mixture of site visits, project document analysis, and interviews. Appraisal results were documented in the performance areas of: planning, doing, checking, acting, public participating and integration with other programs. The results indicate that independent verifiers add most value to major construction projects when involved with screening EIA requirements of new projects, allocation of financial and human resources, checking legal compliance, influencing implementation, reporting conformance results, community and stakeholder engagement, integration with self-responsibility programs such as environmental management systems (EMS), and controlling records. It was apparent that verifiers could be more creatively utilized in pre-construction preparation, providing feedback of knowledge into assessment of new projects, giving input to the planning and design phase of projects, and performance evaluation. The study confirms the benefits of proponent and regulator follow-up, specifically in having independent verifiers that disclose information, facilitate discussion among stakeholders, are adaptable and proactive, aid in the integration of EIA with other programs, and instill trust in EIA enforcement by conformance evaluation. Overall, the study provides insight on how to harness the learning opportunities

  17. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  18. Analyser Framework to Verify Software Components

    Directory of Open Access Journals (Sweden)

    Rolf Andreas Rasenack

    2009-01-01

    Full Text Available Today, it is important for software companies to build software systems in a short time-interval, to reduce costs and to have a good market position. Therefore well organized and systematic development approaches are required. Reusing software components, which are well tested, can be a good solution to develop software applications in effective manner. The reuse of software components is less expensive and less time consuming than a development from scratch. But it is dangerous to think that software components can be match together without any problems. Software components itself are well tested, of course, but even if they composed together problems occur. Most problems are based on interaction respectively communication. Avoiding such errors a framework has to be developed for analysing software components. That framework determines the compatibility of corresponding software components. The promising approach discussed here, presents a novel technique for analysing software components by applying an Abstract Syntax Language Tree (ASLT. A supportive environment will be designed that checks the compatibility of black-box software components. This article is concerned to the question how can be coupled software components verified by using an analyzer framework and determines the usage of the ASLT. Black-box Software Components and Abstract Syntax Language Tree are the basis for developing the proposed framework and are discussed here to provide the background knowledge. The practical implementation of this framework is discussed and shows the result by using a test environment.

  19. Seismic design technology for breeder reactor structures. Volume 2. Special topics in soil/structure interaction analyses

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes

  20. The IAEA International Seismic Safety Centre and IAEA safety standards for site evaluation and design of NPPs

    International Nuclear Information System (INIS)

    Godoy, A.; Sollogoub, P; )

    2009-01-01

    This presentation covers the following topics: 'Lessons learned' from the occurrence of strong natural events, (tsunamis, earthquakes, hurricanes, etc.) The International Seismic Safety Centre as a global focal point for the nuclear engineering community in those fields. A need for international cooperation, openness and transparency – Sharing of experience

  1. The status of personnel identity verifiers

    International Nuclear Information System (INIS)

    Maxwell, R.L.

    1985-01-01

    Identity verification devices based on the interrogation of six different human biometric features or actions now exist and in general have been in development for about ten years. The capability of these devices to meet the cost and operational requirements of speed, accuracy, ease of use and reliability has generally increased although the verifier industry is still immature. Sandia Laboratories makes a continuing effort to stay abreast of identity verifier developments and to assess the capabilities and improvements of each device. Operating environment and procedures more typical of field use can often reveal performance results substantially different from laboratory tests. An evaluation of several recently available verifiers is herein reported

  2. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    Science.gov (United States)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic

  3. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  4. A linear motor as seismic horizontal vibrator

    NARCIS (Netherlands)

    Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.

    2006-01-01

    In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an

  5. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  6. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  7. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  8. USCIS E-Verify Self-Check

    Data.gov (United States)

    Department of Homeland Security — E-Verify is an internet based system that contains datasets to compare information from an employee's Form I-9, Employment Eligibility Verification, to data from the...

  9. Consideration of vertical seismic response spectrum in nuclear safety review

    International Nuclear Information System (INIS)

    Sun Zaozhan; Huang Bingchen

    2011-01-01

    The basic requirements for civil nuclear installation are introduced in the article. Starting from the basic concept of seismic response spectrum, the authors analyze the site seismic response spectrum and the design seismic response spectrum that desire much consideration. By distinguishing the absolute seismic response spectrum and relative seismic response spectrum, the authors analyze the difference and relationship between the vertical seismic response spectrum and horizontal seismic response spectrum. The authors also bring forward some suggestions for determining the site vertical seismic response spectrum by considering the fact in our country. (authors)

  10. Evaluation of seismic margins for an in-plant piping system

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  11. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  12. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  13. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  14. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  15. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  16. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  17. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  18. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  19. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  20. An IBM 370 assembly language program verifier

    Science.gov (United States)

    Maurer, W. D.

    1977-01-01

    The paper describes a program written in SNOBOL which verifies the correctness of programs written in assembly language for the IBM 360 and 370 series of computers. The motivation for using assembly language as a source language for a program verifier was the realization that many errors in programs are caused by misunderstanding or ignorance of the characteristics of specific computers. The proof of correctness of a program written in assembly language must take these characteristics into account. The program has been compiled and is currently running at the Center for Academic and Administrative Computing of The George Washington University.

  1. Verifying a nuclear weapon`s response to radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F.; Barrett, W.H.

    1998-05-01

    The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

  2. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki [Abiko Research Laboratory, Central Research Institute of Electric Power Industry (Japan); Aoyagi, Sakae [Central Research Institute of Electric Power Industry (Japan)

    1992-07-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted.

  3. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    International Nuclear Information System (INIS)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki; Aoyagi, Sakae

    1992-01-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted

  4. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  5. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  6. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network

    Science.gov (United States)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.

    2004-12-01

    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition

  7. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  8. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design

    International Nuclear Information System (INIS)

    Ile, N.

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  9. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  10. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  11. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  12. Analysis of EAST tokamak cryostat anti-seismic performance

    International Nuclear Information System (INIS)

    Chen Wei; Kong Xiaoling; Liu Sumei; Ni Xiaojun; Wang Zhongwei

    2014-01-01

    A 3-D finite element model for EAST tokamak cryostat is established by using ANSYS. On the basis of the modal analysis, the seismic response of the EAST tokamak cryostat structure is calculated according to an input of the design seismic response spectrum referring to code for seismic design of nuclear power plants. Calculation results show that EAST cryostat displacement and stress response is small under the action of earthquake. According to the standards, EAST tokamak cryostat structure under the action of design seismic can meet the requirements of anti-seismic design intensity, and ensure the anti-seismic safety of equipment. (authors)

  13. Classroom Experiment to Verify the Lorentz Force

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 3. Classroom Experiment to Verify the Lorentz Force. Somnath Basu Anindita Bose Sumit Kumar Sinha Pankaj Vishe S Chatterjee. Classroom Volume 8 Issue 3 March 2003 pp 81-86 ...

  14. On alternative approach for verifiable secret sharing

    OpenAIRE

    Kulesza, Kamil; Kotulski, Zbigniew; Pieprzyk, Joseph

    2002-01-01

    Secret sharing allows split/distributed control over the secret (e.g. master key). Verifiable secret sharing (VSS) is the secret sharing extended by verification capacity. Usually verification comes at the price. We propose "free lunch", the approach that allows to overcome this inconvenience.

  15. Verified compilation of Concurrent Managed Languages

    Science.gov (United States)

    2017-11-01

    Communications Division Information Directorate This report is published in the interest of scientific and technical information exchange, and its...271, 2007. [85] Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report UCAM-CL-TR- 726, University of Cambridge, Computer...VERIFIED COMPILATION OF CONCURRENT MANAGED LANGUAGES PURDUE UNIVERSITY NOVEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE

  16. A Verifiable Secret Shuffle of Homomorphic Encryptions

    DEFF Research Database (Denmark)

    Groth, Jens

    2003-01-01

    We show how to prove in honest verifier zero-knowledge the correctness of a shuffle of homomorphic encryptions (or homomorphic commitments.) A shuffle consists in a rearrangement of the input ciphertexts and a reencryption of them so that the permutation is not revealed....

  17. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  18. Array processing for seismic surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries.

  19. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  20. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  1. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  2. Seismic analysis of the Aguirre Nuclear Reactor

    International Nuclear Information System (INIS)

    Sepulveda Soza, Cristian

    1999-01-01

    This thesis aims to verify the seismic design of the Aguirre Nuclear Reactor using the finite elements method and comparing the results with the original analysis. The study focused on the dynamic interaction of soil and structures, using the ANSYS program for the analysis, which was implemented for a work station under a UNIX platform belonging to the Chilean Nuclear Energy Commission. The modeling of the structures was carried out following International Atomic Energy recommendations, those of the makers of the Swanson Analysis Systems program and the prior study by S y S Ingenieros Consultores. Two-dimensional models were developed with axial and symmetry and three-dimensional models with symmetric and asymmetric plans, where the retaining building, the pond block and the soil down to the basal rock were included. The seismic stresses were defined according to the Chilean Standard NCh433.of96, using the spectrum of design accelerations for type II soils for the structural models and type IV for the soil-structure interaction models.The results of interest for this study are: the compression and cutting tensions, the unitary cut distortions and the displacements, which are shown graphically and are compared between the different models and with the original analysis. A sensitivity analysis was prepared for the models with axial symmetry considering soil reaction coefficient values of 20, 10, 5, 2, 1 and 0.5 kp/cm 3 ; and four screens with maximum sizes of 100, 50, 25 and 12.5 cm. The behavior of the stressed materials was studied as well as the result of the seismic stress (CS)

  3. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  4. Design of a seismic energy dissipator for an interruptor type 3AS2-45; Diseno de un disipador de energia sismica para un interruptor tipo 3AS2-45

    Energy Technology Data Exchange (ETDEWEB)

    Castro Felix, Jaime

    2004-02-15

    With the aid of the theory behind seismically isolated structures and the bi-linear behavior of an isolated system of Multiple Degrees of Freedom (MDOF), the information obtained on the spectral analysis is complemented with the purpose of simulating one itself for the design of a dissipator of seismic energy. The seismicity in the world is briefly explained, (in Mexico in special for the Geothermal Field of Cerro Prieto), the types of earthquakes, etc., to give way to a documentation of the state-of-the-art in advanced seismic resistant systems and to a procedure to establish the level of seismic qualification of electrical equipment from the level of seismic performance for the Mexican Republic. [Spanish] Con la ayuda de la teoria detras de estructuras aisladas sismicamente y el comportamiento bilineal de un sistema de aislamiento de Multiples Grados de Libertad (MDOF), se complementa la informacion recabada sobre el analisis espectral con el fin de simular uno propio para el diseno de un disipador de energia sismica. Se explica brevemente la sismicidad en el mundo, en Mexico, en especial el Campo Geotermico de Cerro Prieto, los tipos de sismos, etc., para dar paso a una documentacion del estado del arte en sistemas sismorresistentes avanzados y a un procedimiento para establecer el nivel de calificacion sismica de equipos electricos a partir del Nivel de desempeno sismico para la Republica Mexicana.

  5. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  6. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  7. Site-specific Seismic Hazard Assessment to Establish Elastic Design Properties for Oman Museum-Across Ages, Manah, Sultante of Oman

    Science.gov (United States)

    El Hussain, I. W.

    2017-12-01

    The current study provides a site specific deterministic seismic hazard assessment (DSHA) at the selected site for establishing the Oman Museum-Across Ages at Manah area, as a part of a comprehensive geotechnical and seismological plan to design the facilities accordingly. The DSHA first defines the seismic sources that might influence the site and assesses the maximum possible earthquake magnitude for each of them. By assuming each of these maximum earthquakes to occur at a location placing them at the closest distances to the site, the ground motion is predicted utilizing empirical ground motion prediction equations. The local site effects are performed by determining the fundamental frequency of the soft soil using HVSR technique and by estimating amplification spectra using the soil characteristics (mainly shear-wave velocity). Shear-wave velocity has been evaluated using the MASW technique. The maximum amplification value of 2.1 at spectral period 0.06 sec is observed at the ground surface, while the largest amplification value at the top of the conglomerate layer (at 5m depth) is 1.6 for a spectral period of 0.04 Sec. The maximum median 5% damped peak ground acceleration is found to be 0.263g at a spectral period of 0.1 sec. Keywords: DSHA; Site Effects; HVSR; MASW; PGA; Spectral Period

  8. Adapting standards to the site. Example of Seismic Base Isolation

    International Nuclear Information System (INIS)

    Viallet, Emmanuel

    2014-01-01

    Emmanuel Viallet, Civil Design Manager at EDF engineering center SEPTEN, concluded the morning's lectures with a presentation on how to adapt a standard design to site characteristics. He presented the example of the seismic isolation of the Cruas NPP for which the standard 900 MW design was indeed built on 'anti-seismic pads' to withstand local seismic load

  9. A performance evaluation of personnel identity verifiers

    International Nuclear Information System (INIS)

    Maxwell, R.L.; Wright, L.J.

    1987-01-01

    Personnel identity verification devices, which are based on the examination and assessment of a body feature or a unique repeatable personal action, are steadily improving. These biometric devices are becoming more practical with respect to accuracy, speed, user compatibility, reliability and cost, but more development is necessary to satisfy the varied and sometimes ill-defined future requirements of the security industry. In an attempt to maintain an awareness of the availability and the capabilities of identity verifiers for the DOE security community, Sandia Laboratories continues to comparatively evaluate the capabilities and improvements of developing devices. An evaluation of several recently available verifiers is discussed in this paper. Operating environments and procedures more typical of physical access control use can reveal performance substantially different from the basic laboratory tests

  10. Optimised resource construction for verifiable quantum computation

    International Nuclear Information System (INIS)

    Kashefi, Elham; Wallden, Petros

    2017-01-01

    Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph. (paper)

  11. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  12. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  13. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  14. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  15. Seismic Response Analysis and Test of 1/8 Scale Model for a Spent Fuel Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Park, C. G.; Koo, G. H.; Seo, G. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeom, S. H. [Chungnam Univ., Daejeon (Korea, Republic of); Choi, B. I.; Cho, Y. D. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2005-07-15

    The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 El-centro and Kobe earthquakes. This report firstly focuses on the data generation by seismic response tests of a free standing storage cask model to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. The variations in seismic load magnitude and cask/bed interface friction are considered in tests. The test results show that the model gives an overturning response for an extreme condition only. A FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis is El-centro earthquake, and the friction coefficients are obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for a mechanical contact formulation. The analysis methods was verified with the rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests. Based on the established analysis method for 1/8 scale model, the seismic response analyses of a full scale model are performed for design and beyond design seismic loads.

  16. TrustGuard: A Containment Architecture with Verified Output

    Science.gov (United States)

    2017-01-01

    that the TrustGuard system has minimal performance decline, despite restrictions such as high communication latency and limited available bandwidth...design are the availability of high bandwidth and low delays between the host and the monitoring chip. 3-D integration provides an alternate way of...TRUSTGUARD: A CONTAINMENT ARCHITECTURE WITH VERIFIED OUTPUT SOUMYADEEP GHOSH A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN

  17. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  18. Relays undergo seismic tests

    International Nuclear Information System (INIS)

    Burton, J.C.

    1977-01-01

    Utilities are required by the Nuclear Regulatory Commission to document that seismic vibration will not adversely affect critical electrical equipment. Seismic testing should be designed to determine the malfunction level (fragility testing). Input possibilities include a continuous sine, a decaying sine, a sine beat, random vibrations, and combinations of random vibrations and sine beat. The sine beat most accurately simulates a seismic event. Test frequencies have a broad range in order to accommodate a variety of relay types and cabinet mounting. Simulation of motion along three axes offers several options, but is best achieved by three in-phase single-axis vibration machines that are less likely to induce testing fatigue failure. Consensus on what constitutes relay failure favors a maximum two microsecond discontinuity. Performance tests should be conducted for at least two of the following: (1) nonoperating modes, (2) operating modes, or (3) the transition above the two modes, with the monitoring mode documented for all three. Results should specify a capability curve of maximum safe seismic acceleration and a graph plotting acceleration with sine-beat frequency

  19. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  20. Verified Subtyping with Traits and Mixins

    Directory of Open Access Journals (Sweden)

    Asankhaya Sharma

    2014-07-01

    Full Text Available Traits allow decomposing programs into smaller parts and mixins are a form of composition that resemble multiple inheritance. Unfortunately, in the presence of traits, programming languages like Scala give up on subtyping relation between objects. In this paper, we present a method to check subtyping between objects based on entailment in separation logic. We implement our method as a domain specific language in Scala and apply it on the Scala standard library. We have verified that 67% of mixins used in the Scala standard library do indeed conform to subtyping between the traits that are used to build them.

  1. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette

    2016-07-01

    Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...

  2. Seismic analysis - what goal

    International Nuclear Information System (INIS)

    Tagart, S.W.

    1978-01-01

    The seismic analysis of nuclear components is characterized today by extensive engineering computer calculations in order to satisfy both the component standard codes such as ASME III as well as federal regulations and guides. The current nuclear siesmic design procedure has envolved in a fragmented fashion and continues to change its elements as improved technology leads to changing standards and guides. The dominant trend is a monotonic increase in the overall conservation with time causing a similar trend in costs of nuclear power plants. Ironically the improvements in the state of art are feeding a process which is eroding the very incentives that attracted us to nuclear power in the first place. This paper examines the cause of this process and suggests that what is needed is a realistic goal which appropriately addresses the overall uncertainty of the seismic design process. (Auth.)

  3. Full scale testing for investigation of wind turbine seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, I.; Veletzos, M.; Elgamal, A. [California Univ., San Diego, CA (United States). Dept. of Structural Engineering

    2008-07-01

    In 2007, much of the growth in wind energy development was concentrated in North America and Asia, two regions which periodically experience strong earthquakes that may impact the final turbine design. As such, rational prediction of seismic hazards must be considered in order to maintain and enhance the ability of wind power to compete economically with other energy sources. In response to this challenge, researchers at the University of California, San Diego (UCSD) have experimentally investigated wind turbines to gain an understanding of expected earthquake forces. This paper described the experimental setup for a full scale shake table test of a 65 kW wind turbine. The turbine was excited perpendicular to the axis of the rotor with a seismic base shaking record scaled to various levels. The data was analyzed using simple but effective procedures to provide insight into the observed structural damping of the wind turbine. The experimental investigation showed that full scale seismic testing of wind turbines is possible and can provide valuable insight into dynamic behaviour of wind turbines. The results can be used to develop a more accurate picture of how wind turbines are impacted by earthquakes. The data regarding the low observed super-structure damping provides a basis for calibration and further development of verified design procedures. 20 refs., 3 tabs.

  4. Seismic Discrimination

    Science.gov (United States)

    1979-09-30

    were presumed nuclear explosions announced by ERDA. Of the last, 11 were at the Semipalatinsk test site , 2 at the Western Kazakh test site , 2 in Novaya...which will fulfill U.S. ob- ligations that may be incurred under a possible future Comprehensive Test Ban Treaty. This report includes 9 contributions...which could assume U.S. seismic-data-management responsibilities in the event that international agreement is reached on a Comprehensive Test Ban

  5. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  6. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  7. An optimum medium designed and verified for alcohol vinegar ...

    African Journals Online (AJOL)

    In this article, a novel formula of nutrient salt for alcohol vinegar production was derived based on mass conservation theory of carbon source, nitrogen source and inorganic ions. Series of semicontinuous fermentations were successfully carried out in a Frings 10 L fermentation tank. The average acetification rate of ...

  8. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  9. Quasi-static structural optimization under the seismic loads

    International Nuclear Information System (INIS)

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  10. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France)

    Science.gov (United States)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.

    2015-12-01

    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near

  11. On the effect of the 3-D regional geology on the seismic design of critical structures: the case of the Kashiwazaki-Kariwa Nuclear Power Plant

    Science.gov (United States)

    Gatti, F.; Lopez-Caballero, F.; Clouteau, D.; Paolucci, R.

    2018-05-01

    In this study, numerical investigation is performed on a realistic source-to-site earthquake scenario, with the aim to assess the role of complex 3-D geological structures on the predicted wavefield. With this respect, the paper pointedly targets the seismic response of nuclear power plants in near-field conditions and the verification of some simplified assumptions commonly adopted for earthquake ground motion prediction and site effects analysis. To this purpose, the Kashiwazaki-Kariwa Nuclear Power Plant (Japan) is assumed as reference case-study. In 2007, the nuclear site and its surroundings were struck by the Niigata-Ken Chūetsu-Oki seismic sequence, which caused some of the peak ground motion design limits to be largely overpassed. The dense observation network deployed at the site recorded a highly incoherent and impulsive earthquake ground motion. Many studies argued that the intricate syncline-anticline geology lying underneath the nuclear facility was highly responsible of the observed seismic response. Therefore, a physics-based numerical model of the epicentral area is built-up (≈60 km wide) and tested for small aftershocks, so to discount the effect of extended source on the synthetic site-response. The numerical model (based on the Spectral Element Method) reproduces the source-to-site wave propagation by embracing the effects of the surface topography along with the presence of the Japan Sea (i.e. the bathymetry, the coastline and the fluid-solid interaction). Broad-band (0-5 Hz) synthetic waveforms are obtained for two different aftershocks, located at the two opposite sides of the nuclear facility, aiming to assess the influence of the incidence angle the radiated wave field impinges the foldings beneath it. The effect of the folding presence is assessed by comparing it to a subhorizontally layered geology, in terms of numerical outcome, and by highlighting the differences with respect to the observations. The presence of an intricate geology

  12. Oklahoma seismic network

    International Nuclear Information System (INIS)

    Luza, K.V.; Lawson, J.E. Jr.; Univ. of Oklahoma, Norman, OK

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent

  13. Verifiable process monitoring through enhanced data authentication

    International Nuclear Information System (INIS)

    Goncalves, Joao G.M.; Schwalbach, Peter; Schoeneman, Barry Dale; Ross, Troy D.; Baldwin, George Thomas

    2010-01-01

    To ensure the peaceful intent for production and processing of nuclear fuel, verifiable process monitoring of the fuel production cycle is required. As part of a U.S. Department of Energy (DOE)-EURATOM collaboration in the field of international nuclear safeguards, the DOE Sandia National Laboratories (SNL), the European Commission Joint Research Centre (JRC) and Directorate General-Energy (DG-ENER) developed and demonstrated a new concept in process monitoring, enabling the use of operator process information by branching a second, authenticated data stream to the Safeguards inspectorate. This information would be complementary to independent safeguards data, improving the understanding of the plant's operation. The concept is called the Enhanced Data Authentication System (EDAS). EDAS transparently captures, authenticates, and encrypts communication data that is transmitted between operator control computers and connected analytical equipment utilized in nuclear processes controls. The intent is to capture information as close to the sensor point as possible to assure the highest possible confidence in the branched data. Data must be collected transparently by the EDAS: Operator processes should not be altered or disrupted by the insertion of the EDAS as a monitoring system for safeguards. EDAS employs public key authentication providing 'jointly verifiable' data and private key encryption for confidentiality. Timestamps and data source are also added to the collected data for analysis. The core of the system hardware is in a security enclosure with both active and passive tamper indication. Further, the system has the ability to monitor seals or other security devices in close proximity. This paper will discuss the EDAS concept, recent technical developments, intended application philosophy and the planned future progression of this system.

  14. Scenario based seismic hazard assessment and its application to the seismic verification of relevant buildings

    Science.gov (United States)

    Romanelli, Fabio; Vaccari, Franco; Altin, Giorgio; Panza, Giuliano

    2016-04-01

    The procedure we developed, and applied to a few relevant cases, leads to the seismic verification of a building by: a) use of a scenario based neodeterministic approach (NDSHA) for the calculation of the seismic input, and b) control of the numerical modeling of an existing building, using free vibration measurements of the real structure. The key point of this approach is the strict collaboration, from the seismic input definition to the monitoring of the response of the building in the calculation phase, of the seismologist and the civil engineer. The vibrometry study allows the engineer to adjust the computational model in the direction suggested by the experimental result of a physical measurement. Once the model has been calibrated by vibrometric analysis, one can select in the design spectrum the proper range of periods of interest for the structure. Then, the realistic values of spectral acceleration, which include the appropriate amplification obtained through the modeling of a "scenario" input to be applied to the final model, can be selected. Generally, but not necessarily, the "scenario" spectra lead to higher accelerations than those deduced by taking the spectra from the national codes (i.e. NTC 2008, for Italy). The task of the verifier engineer is to act so that the solution of the verification is conservative and realistic. We show some examples of the application of the procedure to some relevant (e.g. schools) buildings of the Trieste Province. The adoption of the scenario input has given in most of the cases an increase of critical elements that have to be taken into account in the design of reinforcements. However, the higher cost associated with the increase of elements to reinforce is reasonable, especially considering the important reduction of the risk level.

  15. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section B, Renovation calculations/supporting data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections. It is organized into seven parts. This document, Part V, Section B - Structural/Seismic Information provides a description of the seismic and structural analyses performed on the NMSF and their results

  16. Design of an UML conceptual model and implementation of a GIS with metadata information for a seismic hazard assessment cooperative project.

    Science.gov (United States)

    Torres, Y.; Escalante, M. P.

    2009-04-01

    This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.

  17. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment

    Science.gov (United States)

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing

    2017-10-01

    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  18. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  19. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education

    Science.gov (United States)

    Pavel, Nenad; Berg, Arild

    2015-01-01

    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  20. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  1. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  2. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  3. Reracking of fuel pools, experience with improved codes and design for reactor sites with high seismic loads

    International Nuclear Information System (INIS)

    Banck, J.; Wirtz, K.

    1998-01-01

    Reracking of existing pools to the maximum extent is desirable from the economical point of view. Although the load onto the storage rack structure and the fuel pool bottom will be increased, new improved codes, optimized structural qualification procedures and advanced design enable to demonstrate the structural integrity for all normal and accident conditions so that the design provides a safe compact storage of spent fuel under any condition.(author)

  4. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  5. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  6. Seismic assessment and upgrading of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    A comprehensive programme for seismic assessment and upgrading is currently in progress at Hungary's Paks NPP. The re-evaluation of the site seismic hazard had been already completed. The technology of safe shut down and heat removal is established and the systems and structures relevant for seismic safety are identified. A seismic instrumentation is installed. The pre-earthquake preparedness and post-earthquake actions are elaborated. The methods for seismic capacity assessment are selected. The seismic capacity evaluation and the design of upgrading measures are currently in progress. The easy to perform upgrading covering the most urgent measures had been already performed. (author)

  7. Flux wire measurements in Cavalier for verifying computer code applications

    International Nuclear Information System (INIS)

    Fehr, M.; Stubbs, J.; Hosticka, B.

    1988-01-01

    The Cavalier and UVAR research reactors are to be converted from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. As a first step, an extensive set of gold wire activation measurements has been taken on the Cavalier reactor. Axial traverses show internal consistency to the order of ±5%, while horizontal traverses show somewhat larger deviations. The activation measurements will be converted to flux measurements via the Thermos code and will then be used to verify the Leopard-2DB codes. The codes will ultimately be used to design an upgraded LEU core for the UVAR

  8. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    experiment. The location accuracy was from few meters to few tens of meters in horizontal direction. In vertical direction the location accuracy was not as good and depended strongly on the vertical distribution of recordings. When the TBM is running continuous strong vibration is generated. This is usually observed by the Posiva's permanent seismic network. This study presents a method that can be used, if the location of the TBM or tunnel cannot be verified by the documentation of construction works or by field studies. Posiva's permanent seismic network can be designed so that it takes the possible undeclared TBM into account. The sensor types used in monitoring of the ONKALO's excavation induced seismicity are also suitable for monitoring the hits of the TBM's drill bit. If necessary, the network can be tuned to operate temporarily in a more sensitive mode for that purpose. (orig.)

  9. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    experiment. The location accuracy was from few meters to few tens of meters in horizontal direction. In vertical direction the location accuracy was not as good and depended strongly on the vertical distribution of recordings. When the TBM is running continuous strong vibration is generated. This is usually observed by the Posiva's permanent seismic network. This study presents a method that can be used, if the location of the TBM or tunnel cannot be verified by the documentation of construction works or by field studies. Posiva's permanent seismic network can be designed so that it takes the possible undeclared TBM into account. The sensor types used in monitoring of the ONKALO's excavation induced seismicity are also suitable for monitoring the hits of the TBM's drill bit. If necessary, the network can be tuned to operate temporarily in a more sensitive mode for that purpose. (orig.)

  10. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  11. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  12. Using Dafny, an Automatic Program Verifier

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Leino, K. Rustan M.; Carvalho Quaresma, Jose Nuno

    These lecture notes present Dafny, an automated program verication system that is based on the concept of dynamic frames and is capable of producing .NET executables. These notes overview the basic design, Dafny's history, and summarizes the environment conguration. The key language constructs, a...

  13. Verifying duration properties of timed transition systems

    DEFF Research Database (Denmark)

    Liu, Zhiming; Ravn, Anders P.; Li, Xiaoshan

    1998-01-01

    This paper proposes a method for formal real-time systems development:Requirements and high level design decisions are time interval properties and are therefore specified in the Duration Calculus (DC), while implementations are described bytimed transition systems (TTS). A link from implementati...

  14. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    Science.gov (United States)

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  15. Evaluation of verifiability in HAL/S. [programming language for aerospace computers

    Science.gov (United States)

    Young, W. D.; Tripathi, A. R.; Good, D. I.; Browne, J. C.

    1979-01-01

    The ability of HAL/S to write verifiable programs, a characteristic which is highly desirable in aerospace applications, is lacking since many of the features of HAL/S do not lend themselves to existing verification techniques. The methods of language evaluation are described along with the means in which language features are evaluated for verifiability. These methods are applied in this study to various features of HAL/S to identify specific areas in which the language fails with respect to verifiability. Some conclusions are drawn for the design of programming languages for aerospace applications and ongoing work to identify a verifiable subset of HAL/S is described.

  16. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  17. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  18. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  19. Seismic induced earth pressures in buried vaults

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.

    1994-01-01

    The magnitude and distribution of earth pressures acting on buried structures and induced by a seismic event are considered in this paper. A soil-structure-interaction analysis is performed for typical Department of Energy high level waste storage tanks using a lumped parameter model. The resulting soil pressure distributions are determined and compared with the static soil pressure to assess the design significance of the seismic induced soil pressures. It is found that seismic pressures do not control design unless the peak ground acceleration exceeds about 0.3 G. The effect of soil non linearities (resulting from local soil failure) are also found to have little effect on the predictions of the seismic response of the buried structure. The seismic induced pressures are found to be very similar to those predicted using the elastic model in ASCE 4-86

  20. Seismic resistance of equipment and building service systems: review of earthquake damage design requirements, and research applications in the USA

    International Nuclear Information System (INIS)

    Skjei, R.E.; Chakravartula, B.C.; Yanev, P.I.

    1979-01-01

    The history of earthquake damage and the resulting code design requirements for earthquake hazard mitigation for equipment in the USA is reviewed. Earthquake damage to essential service systems is summarized; observations for the 1964 Alaska and the 1971 San Fernando, California, earthquakes are stressed, and information from other events is included. USA building codes that reflect lessons learned from these earthquakes are discussed; brief summaries of widely used codes are presented. In conclusion there is a discussion of the desirability of adapting advanced technological concepts from the nuclear industry to equipment in conventional structures. (author)