WorldWideScience

Sample records for venturi flow meters

  1. FUSION OF VENTURI AND ULTRASONIC FLOW METER FOR ENHANCED FLOW METER CHARACTERISTICS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    K.V. Santhosh

    2015-04-01

    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  2. Wet gas flow modeling for a vertically mounted Venturi meter

    International Nuclear Information System (INIS)

    Xu, Lijun; Zhou, Wanlu; Li, Xiaomin

    2012-01-01

    Venturi meters are playing an increasingly important role in wet gas metering in natural gas and oil industries. Due to the effect of liquid in a wet gas, the differential pressure over the converging section of a Venturi meter is higher than that when a pure gas flows through with the same flow rate. This phenomenon is referred to as over-reading. Thus, a correction for the over-reading is required. Most of the existing wet gas models are more suitable for higher pressure (>2 MPa) than lower pressure ( 0.5) than lower quality (<0.5) in recent years. However, conditions of lower pressure and lower quality also widely exist in the gas and oil industries. By comparing the performances of eight existing wet gas models in low-pressure range of 0.26–0.86 MPa and low-quality range of 0.07–0.36 with a vertically mounted Venturi meter of diameter ratio 0.45, de Leeuw's model was proven to perform best. Derived from de Leeuw's model, a modified model with better performance for the low-pressure and low-quality ranges was obtained. Experimental data showed that the root mean square of the relative errors of the over-reading was 2.30%. (paper)

  3. Operating experience using venturi flow meters at liquid helium temperature

    International Nuclear Information System (INIS)

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench

  4. Testing and qualification of CIRCE venturi-nozzle flow meter for large scale experiments

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Oriolo, F.; Tarantino, M.; Agostini, P.; Benamati, G.; Bertacci, G.; Elmi, N.; Alemberti, A.; Cinotti, L.; Scaddozzo, G.

    2005-01-01

    This paper is focused on the tests carried out at the ENEA Brasimone Centre for the qualification of a large Venturi-Nozzle flow meter operating in Lead Bismuth Eutectic (LBE). Such flow meter has been selected to provide flow rate measurements during the thermal-hydraulic tests that will be performed on the experimental facility CIRCE. This large-scale facility is installed at the ENEA Brasimone Centre for studying the fluid-dynamics and operating behaviour of ADS reactor plants, as well as to qualify several components intended to be used in the LBE technology. The Venturi-Nozzle flow meter has been supplied by the Euromisure s.r.l., together with the calculated theoretical characteristic equation. The results obtained by the tests performed allowed to qualify this theoretical curve supplied by the manufacturer, that presents a very good agreement especially at high flow rate values. (authors)

  5. Performance of combination of a Venturi and nuclear fraction meter in SAGD production operations

    Energy Technology Data Exchange (ETDEWEB)

    Hompoth, D.; Khun, N. [Suncor Energy, Calgary, AB (Canada); Pinguet, B.G.; Guerra, E. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    This paper described a multiphase flow meter (MFM) that used a Venturi and nuclear fraction meter combination for steam assisted gravity drainage (SAGD) well production testing. The device was designed by re-engineering a flow model and fluid property package to measure the steam phases. The meter was designed to improve pump monitoring processes in SAGD operations. The technology combined 2 basic measurement steps. The first was a nuclear multi Gamma-ray fraction meters which measured the fraction of each constituent at the Venturi tube's throat at high frequencies. Fractions were then determined from the solution of 3 simultaneous equations related to the Gamma ray attenuation, and a fraction balance equation. Pressure and temperature measurements were used to predict the fluid properties at line conditions. Primary outputs were based on nuclear measurements, gas fractions, water liquid ratios, and mixture densities. Secondary outputs from the meter included volumetric flow rates. Stability, dynamic responses, and reproducibility rates of the MFM were also presented. 9 refs., 6 tabs., 17 figs.

  6. Venturi Wet Gas Flow Modeling Based on Homogeneous and Separated Flow Theory

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2008-10-01

    Full Text Available When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.

  7. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  8. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  9. Feasibility Study of Power Uprate Using Ultrasonic Flow Meters in NPPs

    International Nuclear Information System (INIS)

    Kim, Tae Mi; Heo, Gyun Young

    2010-01-01

    Feedwater flowrate is an important input parameter in establishing the plant's operating power level. In Korean nuclear power plants, venturi flow meters have been used for measuring the feedwater flow of the secondary side. However, as time goes on, the fouling in venture meters could cause measurement uncertainties to grow and that could lead to operation at less than about 2% of the licensed thermal power limit. In order to resolve the problem, nuclear power plants in other countries use Ultrasonic Flow Meters (UFMs) which have relatively lower measurement uncertainty (about 0.5%) instead of venturi flow meters and have reduced the errors from the fouling in venturi-type flow meters. USA amended 10 CFR 50 Appendix K so that US nuclear power plants can use real value of Core Operating Limit Supervisory System (COLSS) uncertainty, which is currently fixed as 2%, by adopting the UFM. Korea also has been amended the law in order to get benefits from the technology. In this study, we are going to present the fundamental principles of UFMs and the advantages and disadvantages of its installation. Also, we inquire into the conventional uses of UFMs in the overseas sites and then check what is needed to consider for its domestic application

  10. Discharge coefficient correlations for circular-arc venturi flowmeters at critical /sonic/ flow

    Science.gov (United States)

    Arnberg, B. T.; Britton, C. L.; Seidl, W. F.

    1973-01-01

    Experimental data are analyzed to support theoretical predictions for discharge coefficients in circular-arc venturi flow meters operating in the critical sonic flow regime at throat Reynolds numbers above 150 thousand. The data tend to verify the predicted 0.25% decrease in the discharge coefficient during transition from a laminar to turbulent boundary layer. Four different test gases and three flow measurement facilities were used in the experiments with 17 venturis with throat sizes from 0.15 to 1.37 in. and Beta ratios ranging from 0.014 to 0.25. Recommendations are given as to how the effectiveness of future studies in the field could be improved.

  11. Numerical Evaluation of Averaging BDFT(bidirectional flow tube) Flow Meter on Applicability in the Fouling Condition

    International Nuclear Information System (INIS)

    Park, J. P.; Jeong, J. H.; Yuna, B. J.; Jerng, D. W.

    2013-01-01

    The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs. A new instrumentation, an averaging BDFT, was proposed to measure the accurate flow rate under corrosion environment. In this study, to validate the applicability of the averaging BDFT on the fouling conditions, flow analyses using the CFD code were performed. Analyses results show that this averaging BDFT does not lose the measuring performance even under the corrosion environment. Therefore, it is expected that the averaging BDFT can replace the type flow meters for the feedwater pipe of steam generator of NPPs. Most of the NPPs adopt pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT has a potentiality to minimize this problem. Therefore, it is expected that the averaging BDFT can replace the type venturi meters for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option

  12. MSET modeling of Crystal River-3 venturi flow meters

    International Nuclear Information System (INIS)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-01

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication

  13. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  14. Model based flow measurement using venturi flumes for return flow during drilling

    Directory of Open Access Journals (Sweden)

    Ivan Pirir

    2017-07-01

    Full Text Available In an oil well drilling operation, a proper knowledge of the return fluid flowrate is necessary both for the stabilization of the bottom hole pressure of the well and also as a primary indication of a kick or loss. In practice, the drill fluid flowing through the return line is usually measured with Coriolis meters. However this method is both expensive and has some downsides. For instance there is a risk of blockage due to drill cuttings while measuring the discharge. The presence of gas and cuttings in the drilling fluid will also have a negative effect in the measurement i.e. for multi-phase fluid, the readings from Coriolis meters may not be accurate. A cheaper alternative would be to use an open channel for the measurement of the discharge from the return flowline. In this paper, a venturi rig is used as the open channel and modeled by the Saint Venant equations. Experimental verification of the simulation results show a promising behavior of the model based measurement of the return fluid flow.

  15. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  16. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    Science.gov (United States)

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  17. A Smart Soft Sensor Predicting Feedwater Flow Rate

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  18. Numerical Simulation of Flow Behavior within a Venturi Scrubber

    OpenAIRE

    M. M. Toledo-Melchor; C. del C. Gutiérrez-Torres; J. A. Jiménez-Bernal; J. G. Barbosa-Saldaña; S. A. Martínez-Delgadillo; H. R. Mollinedo-Ponce de León; A. Yoguéz-Seoane; A. Alonzo-García

    2014-01-01

    The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water) in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in f...

  19. Numerical simulation of self-priming phenomena in venturi scrubber by two-phase flow simulation code TPFIT

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2015-01-01

    In the wake of Fukushima Daiichi nuclear disaster, reviews of the safety of nuclear facilities have been conducted in the world beginning with Japan. Countermeasures against severe accidents in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting containment and suppressing diffusion of the radioactive materials, it is important to install filtered venting devices to release high pressure pollutant gas to the atmosphere with elimination radioactive materials in the gas. One of the devices for the filtered venting is a Multi venturi scrubber system (MVSS), which is used to realize filtered venting without any power supply in European reactors. The MVSS is composed of a “venturi Scrubbers” part, in which there are hundreds of the venturi scrubbers, and a “bubble column” part. In the MVSS, all of the venturi scrubbers is branched off from a vent line which connect between the containment and the MVSS. In an operation mode of the MVSS, the radioactive materials are eliminated through the gas-liquid interface from the pollutant gas to the liquid phase of a dispersed flow in the venturi scrubber and a bubbly flow in the bubble column part. The dispersed flow is formed from the liquid, which is suctioned from around the venturi scrubber through the hole for suction (called self-priming). In previous studies, an evaluation method for the scrubbing performance of the venturi scrubber was developed. However, actual hydraulic behavior in it is too complicated, the previous evaluation was not validated the hydraulic behavior and studied the effect of differences between the simulated hydraulic behavior and an actual one on the performance of the venturi scrubber. To develop a validated evaluation method for the scrubbing performance, it is important to develop detailed evaluation method for the hydraulic behavior in the venturi scrubber. To simulate the complicated hydraulic behavior, we consider to use analysis code TPFIT. Then, the

  20. Performance characteristics of plane-wall venturi-like reverse flow diverters

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems

  1. SAGD production optimization : combination of ESP and multiphase metering

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, B.G.; Guerra, E.; Drever, C. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    Many commercial oil reservoirs in Canada are completed using electric submersible pumps (ESP) due to low reservoir pressures and extra heavy oils and bitumens. This paper presented details of an optimization process for steam-assisted gravity drainage (SAGD) wells. The process used ESP and a multiphase flow meter (MFM) based on Vx technology. The MFM was based on a Venturi and nuclear fraction meter combination that was engineered to measure the steam phases during SAGD processes. The technology was designed to measure total mass or total volumetric flow rates as well as oil, water and gas in producing wells. Length fractions of oil, water, and gas were calculated based on the attenuation of Gamma-rays as they passed through the Venturi section. Production was optimized in real time using the frequency control of the pump to improve oil flow rates. The results of field tests showed that the optimization process resulted in longer life cycles for the ESP. It was concluded that use of the meter results in changes to lift system operating parameters at the well site as well as improved monitoring during the workflow process. 3 refs., 1 tab., 11 figs.

  2. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  3. 3-D Numerical Investigation on Oxygen Transfer in a Horizontal Venturi Flow with Two Holes

    Directory of Open Access Journals (Sweden)

    Zegao Yin

    2018-02-01

    Full Text Available In order to investigate the dissolved oxygen increase caused by air suction in a horizontal Venturi flow with two holes, a 3-D computational fluid dynamics model was used to explore the water and bubble mixture flow, coupled with a dissolved oxygen transfer model. A series of experiments were conducted to validate the mathematical model. A relative saturation coefficient correlation was examined factoring in dissolved oxygen concentration at the inlet, water velocity at the inlet, the hole’s diameter, contraction ratio at throat section, and the downstream length of Venturi pipe. It was found that the relative saturation coefficient increases with increasing dissolved oxygen concentration at the inlet and downstream length of Venturi pipe respectively. However, it increases with decreasing water velocity at the inlet and contraction ratio at the throat section to some extent. The hole’s diameter plays a complex role in the relative saturation coefficient. The dimensional analysis method and the least square method were used to deduce a simple formula for the relative saturation coefficient, and this was consistent with related data.

  4. Study of a three-phase flow metering process for oil-water-gas flows; Etude d`un procede de mesure des debits d`un ecoulement triphasique de type eau-huile-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Ch.

    1996-11-01

    We propose a theoretical and experimental study of a three-phase flow metering process for oil-water-gas flows. The selected process is based on a combination of a mixer, a Venturi and ultrasonic methods. To perform an experimental validation of this process an instrumented set-up for three-phase air-oil-water flows has been designed, conceived and adjusted. An original theoretical model have been built to predict three-phase dispersed flows across a contraction. Once validated with two-phase air-water, oil-water and air-oil-water flows data, this model has been used to solve the Venturi metering problems. After a critical review of the available techniques, the ultrasonic propagation velocity has been selected to determine two-phase liquid-liquid flow composition. Two original models have been developed to describe the ultrasonic propagation with the dispersed phase fraction. The comparison with experimental data in oil-water flows show the superiority of one of the two models, the scattering model. For the void fraction determination in air-water flows, the work of Bensler (1990) based on the ultrasonic attenuation measurement has been extended to take into account the multiple scattering effects. Finally these techniques have been combined to determine the different flow rates in air-water, oil-water flows. For two-phase air-water and oil-water flows the problem is solved and the flow rates are measured with a very good accuracy ({+-} 3%). The results quality obtained with three-phase oil-water-gas flows and the secure theoretical bases allowing their interpretation give us the opportunity to strongly recommend the development of an industrial prototype based on the process we studied. (author) 183 refs.

  5. Applicability of numerical simulation code TPFIT to two-phase flow in Venturi scrubber

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2015-01-01

    As one of the filtered venting devices for light water reactor, Venturi scrubber can operate with effective decontamination efficiency because dispersed flow is formed in the Venturi scrubber by pressure difference between inside and outside of holes for liquid suction. Droplet diameter and its distribution in cross-section area are important for the decontamination. However, they are changed by hydraulic behavior of suctioned liquid until atomized, and kinds of atomization phenomena. In this report, to understand the hydraulic behavior of the liquid in detail for the filtered venting, we performed visualized observation experimentally and numerical simulation by TPFIT. Then the numerical simulation result was validated by the experimental data. (author)

  6. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Yoshida, Hiroyuki; Abe, Yutaka

    2016-01-01

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  7. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  8. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  9. An experimental investigation of hydrodynamic cavitation in micro-Venturis

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2006-10-01

    The existence of hydrodynamic cavitation in the flow of de-ionized water through micro-Venturis has been witnessed in the form of traveling bubble cavitation and fully developed streamer bubble/supercavitation, and their mechanisms have been discussed. High-speed photography and flow visualization disclose inchoate cavitation bubbles emerging downstream from the micro-Venturi throat and the presence of a single streamer bubble/supercavity, which is equidistant from the micro device walls. The supercavity initiates inside the diffuser section and extends until the microchannel exit and proceeds to bifurcate the incoming flow. This article strives to provide numerical data and experimental details of hydrodynamic cavitation taking place within micro-Venturis.

  10. The effects of arbitrary injection angle and flow conditions on venturi-jet mixer

    Directory of Open Access Journals (Sweden)

    Sundararaj S.

    2012-01-01

    Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.

  11. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  12. Numerical Simulation of Flow Behavior within a Venturi Scrubber

    Directory of Open Access Journals (Sweden)

    M. M. Toledo-Melchor

    2014-01-01

    Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.

  13. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Manisha Bal

    2017-12-01

    Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-ε turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60 m/s and liquid flow rate of 0.033 kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24 m/s and liquid flow rate of 0.016 kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction

  14. Experimental measurement of oil–water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    International Nuclear Information System (INIS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-01-01

    Oil–water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil–water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates. (paper)

  15. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  16. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  17. Development of the venturi scrubber model for the FILTRA-MVSS system

    International Nuclear Information System (INIS)

    Luangdilok, W.; Epstein, M.; Berger, W.E.; Augustsson, Thomas

    2009-01-01

    The thermal-hydraulic model of the venturi scrubber for the FILTRA-MVSS system was developed. The developed model was then incorporated into the MAAP4 code for performance analysis purposes. The results show that during severe accident conditions where the vent line control valve is used to regulate the flow to the vent line, the scrubbing performance of the venturi can peak at a value of about 5000 in the decontamination factor. For a fixed valve throttling there is a time window where scrubbing is effective. Outside this window the venturi scrubbing is ineffective due to either too high or too low pressure. To optimize the scrubbing performance, it would be necessary (1) to allow a substantial fraction of the high vent flow to bypass the venturi scrubber tubes so that a certain amount of vent flow is always scrubbed as well as (2) to adjust the flow control valve to its optimal position during the containment venting. (author)

  18. Liquid film thickness and interfacial wave propagate in venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Nakao, Yasuhiro; Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    As one of filtered venting systems which should be installed in light water reactors from the viewpoint of protecting a containment vessel and suppressing the diffusion of radioactive materials, there is a system composed of venturi scrubbers. The radioactive materials in the contaminated gas are collected into liquid. By forming dispersed flow in the venturi scrubber, interfacial area between liquid and gas is enhanced, finally, large decontamination factor is realized. In evaluation for the decontamination performance of the venturi scrubber, interface characteristics of droplets and liquid film are important. In this study, as a part of evaluation method of the interfacial area, the liquid film thickness in the venturi scrubber was measured. And evaluate the results of investigation experimentally for each ruffling average thickness and liquid film in a fluidized condition. The cross section area of a venturi scrubber is a rectangular one manufactured a transparent acrylic for visualization. In the venturi scrubber, a pressure drop occurs in the throat part by the inflow of air from the compressor. Water flows from the tank by a pressure difference between a suctioned hole with head pressure and a throat part. An annular spray flow is then formed in the venturi scrubber. (author)

  19. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    Science.gov (United States)

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  20. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  1. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  2. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail: alanleyfly@gmail.com; Jiang, Zeng

    2014-03-15

    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  3. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  4. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, H. S.; Kim, W. S.

    2016-01-01

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  5. Performance characteristics of axisymmetric venturi-like reverse-flow diverters. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1984-01-01

    This paper presents experimental and model-predicted pressure-flow characteristics of axisymmetric venturi-like reverse-flow diverters (RFDs), the key component of fluid pumping systems utilized for the transport of hazardous fluids. The effects of several key geometric parameters, operating conditions, and fluid properties on the performance of the RFD are presented and compared to model predictions. The results indicate good agreement between data and theory over a large portion of the range of variables studied. Cavitation is observed to be the primary factor in limiting the performance of the RFD at small values of load impedances

  6. Research on injection characteristics of venturi scrubber worked in self-priming mode

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Miao Zhuang

    2015-01-01

    The injection characteristics of Venturi scrubber worked in self-priming mode in containment filter venting system was studied experimentally under different air flows, liquid levels and system pressures. The results indicate that with the increase of superficial gas velocity in throat, the static pressure drop of both sides of the suction grows approximately following a parabolic law, and the injection flow rate injecting into the Venturi scrubber increases linearly. The effect of liquid level on injection characteristics relates closely with the relative position to the outlet of the Venturi scrubber. When the liquid level is below the outlet, the injection flow rate improves significantly with increasing liquid level and presents a partition phenomenon, and in the low throat velocity, the increase of liquid level is more effective to improve the injection flow rate. However, when the liquid level is above the outlet, it almost has no impact on the injection flow rate. The pressure is another important factor affecting the injection characteristic of self-priming Venturi scrubber, which is mainly caused by the change on gas density. In the range of 0.150 kPa, with the increase of pressure, the injection flow rate improves greatly and the influence of pressure is more obvious in high throat velocity than in low throat velocity. (authors)

  7. How to use your peak flow meter

    Science.gov (United States)

    ... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  8. Analysis of Liquid Fraction in Venturi Scrubber by E-E Method Using CFX

    OpenAIRE

    Majid Ali; Yan Changqi; Sun Zhongning; Wang Jianjun; Gu HaiFeng

    2012-01-01

    In this research, the distribution of liquid fraction in cylindrical venturi scrubber is analyzed in ANSYS CFX by Eulerian-Eulerian regime. Liquid gaps allow the aerosols to escape from the venturi scrubber. Therefore, it is vital to investigate the liquid fraction in venturi scrubber at different operating condition. The mesh model is developed in ANSYS ICEM and simulation is conducted in ANSYS CFX. k- ε turbulence model is used for simulation of two phase flow in venturi scrubber. The analy...

  9. Study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong

    2013-01-01

    Highlights: ► Study of iodine removal efficiency in a self-priming venturi scrubber. ► Investigation of iodine removal efficiency at different gas and liquid flow rates. ► Investigation of different inlet concentrations of iodine. ► Mathematical model based on mass transfer. - Abstract: Venturi scrubber is used in filtered vented containment system of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. In this research, an experimental and theoretical investigation has been carried out to study the iodine removal efficiency in a self-priming venturi scrubber. The aqueous solution is prepared by adding weight percentage of sodium hydroxide 0.5% and sodium thiosulphate 0.2% in scrubbing water to increase the absorbance of inorganic iodine (I 2 ) from the contaminated gas during emission. The iodine removal efficiency is investigated at various gas and liquid flow rates, and iodine inlet concentrations. The iodine removal efficiency is measured experimentally by measuring the inlet and outlet concentration of iodine at sampling ports. The petite droplets are formed in a venturi scrubber to absorb the iodine through the mass transfer phenomenon. A mathematical model for mass transfer based on a gas liquid interface is employed for the verification of experimental results. The contact time between iodine and scrubbing solution depends on the total volumetric flow of gas and liquid, and volume of throat and diffuser of the venturi scrubber. Sauter mean diameter is calculated from the Nukiyama and Tanasawa correlation. Steinberger and Treybal’s correlation is used to measure the mass transfer coefficient for the gas phase. The results calculated from the model under predict the experimental data

  10. Methodology of calibration for nucleonic multiphase meter technology for SAGD extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, B.; Pechard, P.; Guerra, E. [Schlumberger Canada Ltd., Calgary, AB (Canada); Arendo, V.; Shaffer, M.; Contreras, J. [Total, Paris (France)

    2008-10-15

    The challenges facing bitumen metering in steam assisted gravity drainage operations were discussed with reference to high operating temperatures, steam pressure in the gas phase, foaming, emulsion and small density differences between bitumen and produced water. A metering tool that can deal with these operating constraints was presented. The multiphase meter (MFM) uses a multi-energy gamma ray (nuclear fraction) meter together with a venturi tube to provide accurate monitoring and optimization of oil, water, gas and steam production. This paper presented the specific strengths of the MFM with emphasis on its ability to correctly meter the liquid/gas phases depending on the calibration method and operating measurement range. The paper presented a study of the main parameters which could influence the measurement associated with this technology. The study was based on practical and simulated data and evaluated the impact of changes in each parameter. The purpose of the paper was to improve the understanding of this technology and how to apply it to bitumen metering and provide a guideline of the technology for future users in the oil industry. It described the combination venturi-nucleonic measurement parameters, such as mass flow rate; fraction meter; solution triangle of the fraction meter; primary and secondary output; fluid properties information; and uncertainty associated to any technology. A sensitivity analysis study to identify the dependency to some key fluid parameters was also described. It was concluded that MFM can be used in a stand-alone configuration. 7 refs., 2 tabs., 22 figs.

  11. Some factors affecting the metering of subcooled water with a choked venturi

    International Nuclear Information System (INIS)

    Fincke, J.R.; Collins, D.R.

    1981-01-01

    A series of experiments was performed to characterize the subcooled choking process in a convergent-divergent nozzle with a constant-area throat. The experiments were conducted in a low-pressure flow loop capable of a maximum water flow rate of 5.5 L/s with a pressure head of 300 kPa. The pressure and temperature upstream of the nozzle in the flow loop were adjusted between 90 and 300 kPa and 53 and 96 0 C, respectively. The variables measured in this study of critical flow phenomena were the flow rate, upstream pressure and temperature, and the axial wall pressure profiles in the nozzle. Critical mass flow rate data were acquired along five isotherms as a function of stagnation pressure. Factors affecting metering performance are examined

  12. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2

    International Nuclear Information System (INIS)

    Tijerina S, F.

    2008-01-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  13. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  14. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  15. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  16. FLOW METERS WITH VERY GOOD PERFORMANCES

    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU

    2011-11-01

    Full Text Available We present the theoretical calculus of a patented flow meter, concerning such the thermodynamic and aerodynamic calculus, as well as the offered precision to measure the flow of the air in any meteorological conditions. In the same time we remark that the proposed flow meter, by its positioning, has not loss of head.

  17. Series Supply of Cryogenic Venturi Flowmeters for the ITER Project

    International Nuclear Information System (INIS)

    André, J; Poncet, J M; Ercolani, E; Clayton, N; Journeaux, J Y

    2015-01-01

    In the framework of the ITER project, the CEA-SBT has been contracted to supply 277 venturi tube flowmeters to measure the distribution of helium in the superconducting magnets of the ITER tokamak. Six sizes of venturi tube have been designed so as to span a measurable helium flowrate range from 0.1 g/s to 400g/s. They operate, in nominal conditions, either at 4K or at 300K, and in a nuclear and magnetic environment. Due to the cryogenic conditions and the large number of venturi tubes to be supplied, an individual calibration of each venturi tube would be too expensive and time consuming. Studies have been performed to produce a design which will offer high repeatability in manufacture, reduce the geometrical uncertainties and improve the final helium flowrate measurement accuracy. On the instrumentation side, technologies for differential and absolute pressure transducers able to operate in applied magnetic fields need to be identified and validated. The complete helium mass flow measurement chain will be qualified in four test benches: - A helium loop at room temperature to insure the qualification of a statistically relevant number of venturi tubes operating at 300K.- A supercritical helium loop for the qualification of venturi tubes operating at cryogenic temperature (a modification to the HELIOS test bench). - A dedicated vacuum vessel to check the helium leak tightness of all the venturi tubes. - A magnetic test bench to qualify different technologies of pressure transducer in applied magnetic fields up to 100mT. (paper)

  18. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  19. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Sample flow meter for batch sampling... Sample flow meter for batch sampling. (a) Application. Use a sample flow meter to determine sample flow... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  20. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S.I. [National Fusion Research Center, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)]. E-mail: paksunil@dreamwiz.com; Chang, K.S. [Department of Aerospace Engineering, KAIST, Daejeon (Korea, Republic of)]. E-mail: kschang@kaist.ac.kr

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  1. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    International Nuclear Information System (INIS)

    Pak, S.I.; Chang, K.S.

    2006-01-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements

  2. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    Science.gov (United States)

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  3. Mathematical modelling of non-isothermal venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering

    2005-06-01

    Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.

  4. 21 CFR 868.5600 - Venturi mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Venturi mask. 868.5600 Section 868.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5600 Venturi mask. (a) Identification. A venturi mask is a...

  5. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  6. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  7. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  8. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  9. 21 CFR 868.1860 - Peak-flow meter for spirometry.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peak-flow meter for spirometry. 868.1860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1860 Peak-flow meter for spirometry. (a) Identification. A peak-flow meter for spirometry is a device used to measure a patient's...

  10. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  11. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sarim Ahmed

    2018-06-01

    Full Text Available A venturi scrubber is an important element of Filtered Containment Venting System (FCVS for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide (TiO2 particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB model has been used to predict deformation of water droplets, whereas the Eulerian–Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity. Keywords: Computational Fluid Dynamics, Dust Particles, Filtered Containment Venting System, Self-priming Venturi Scrubber, Venturi Scrubber

  12. 40 CFR 1065.230 - Raw exhaust flow meter.

    Science.gov (United States)

    2010-07-01

    ... the following cases, you may use a raw exhaust flow meter signal that does not give the actual value... dew and pressure, p total at the flow meter inlet. Use these values in emission calculations according... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust...

  13. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  14. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  15. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  16. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  17. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  18. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    International Nuclear Information System (INIS)

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu

    2009-01-01

    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  19. Venturi scrubber modelling and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S [National Univ., La Jolla, CA (United States). School of Engineering and Technology; Ananthanarayanan, N.V. [National Univ. of Singapore (Singapore). Dept. of Chemical and Environmental Engineering; Azzopardi, B.J. [Nottingham Univ., Nottingham (United Kingdom). Dept. of Chemical Engineering

    2005-04-01

    This study presented a method to maintain the efficiency of venturi scrubbers in removing fine particulates during gas clean operations while minimizing pressure drop. Venturi scrubbers meet stringent emission standards. In order to choose the optimal method for predicting pressure drop, 4 established models were compared for their accuracy of prediction and simplicity in application. The enhanced algorithm optimizes Pease-Anthony type venturi scrubber performance by predicting the minimum pressure drop required to achieve the desired collection efficiency. This was accomplished by optimizing the key operating and design parameters such as liquid-to-gas ratio, throat gas velocity, number of nozzles, nozzle diameter and throat aspect ratio. Two of the 4 established models were expanded by providing an empirical algorithm to better predict pressure drop in the venturi throat. Model results were validated with experimental data. The optimization algorithm considers the non-uniformity in liquid distribution. It can be applied to cylindrical and rectangular Pease-Anthony type scrubbers. It offers an effective, systematic and accurate method to optimize the performance of new and existing scrubbers. 54 refs., 5 figs.

  20. Performance of iodide vapour absorption in the venturi scrubber working in self-priming mode

    International Nuclear Information System (INIS)

    Zhou, Yanmin; Sun, Zhongning; Gu, Haifeng; Miao, Zhuang

    2016-01-01

    Highlights: • The absorption performance for iodide vapour was studied under different conditions. • A mathematical model was developed to describe the iodide absorption process. • The venturi scrubber can ensure absorption efficiiency and reduce pressure loss. - Abstract: The self-priming venturi scrubber is the key component of filtered containment venting systems for the removal of radioactive products during severe accidents in nuclear power plants. This paper is focused on the absorption performance of iodide vapour in the venturi scrubber, based on experiment and mathematical calculation. The results indicate that the absorption efficiency is closely related to solution flow rate, gas flow rate and temperature, but is not sensitive to iodide inlet concentration. When solution flow rate is low, the absorption efficiency increases rapidly with increasing the solution flow rate, and when the solution is excessive, the absorption efficiency remains around 99% stably; the influence of gas flow rate on absorption efficiency is mainly reflected in the variation of gas and liquid contacting time; when the solution flow rate is low, the increase of gas flow rate will led to an obvious decrease in absorption efficiency; temperature is not important when gas flow rate in constant but becomes effective for improving the absorption efficiency when gas velocity is constant. The proposed mathematical model can predict the iodide absorption process well in the range of experimental conditions. Especially, in the condition of lower gas flow rate and higher solution flow rate, the prediction accuracy is more satisfactory; however the accuracy of prediction will decrease at higher gas flow rates and lower solution flow rates because of neglecting the transverse exchange between gas and liquid phase.

  1. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  2. Compact mass flow meter based on a micro Coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Katerberg, M.R.; Lammerink, Theodorus S.J.; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2012-01-01

    In this paper we present a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 2 g/h (for water at a pressure drop of 2 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading. The temperature drift between 10 and 50 ºC is below 1 mg/h/ºC. The meter is robust,

  3. Flow Measurement of Wet CO2 Using an Averaging Pitot Tube and Coriolis Mass Flowmeters

    OpenAIRE

    Adefila, K.; Yan, Yong; Sun, Lijun; Wang, Tao

    2017-01-01

    The flow measurement of wet-gas is an active field with extensive research background that remains a modern-day challenge. The implication of wet-gas flow conditions is no different in Carbon Capture and Storage (CCS) pipelines. The associated complex flow regime with wet-gas flow makes it difficult to accurately meter the flow rate of the gas phase. Some conventional single-phase flowmeters like the Coriolis, Orifice plate, Ultrasonic, V-Cone, Venturi and Vortex have been tested for this app...

  4. 40 CFR 1065.220 - Fuel flow meter.

    Science.gov (United States)

    2010-07-01

    ... follows: (1) Use the actual value of calculated raw exhaust flow rate in the following cases: (i) For... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of carbon (or oxygen...

  5. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  6. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment.

    Science.gov (United States)

    Yang, Michael Y; Chan, Hak-Kim

    2017-06-01

    The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.

  7. Comparison of five portable peak flow meters.

    Science.gov (United States)

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (pmeters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (pmeters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  8. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  9. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Science.gov (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  11. Comparison of five portable peak flow meters

    Directory of Open Access Journals (Sweden)

    Glaucia Nency Takara

    2010-01-01

    Full Text Available OBJECTIVE: To compare the measurements of spirometric peak expiratory flow (PEF from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS: Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05, Spearman's correlation test and Bland-Altman's agreement test. RESULTS: The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263-688 L/min, 450 (350-800 L/min, 420 (310-720 L/min, 380 (300-735 L/min, 400 (310-685 L/min and 415 (335-610 L/min, respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001 and Galemed ® (p<0.01 meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS: The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  12. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  13. Ultrasonic flow-meter test in sodium

    International Nuclear Information System (INIS)

    Ishii, Y.; Uno, O.; Kamei, M.

    1978-01-01

    As a part of the R and D programme for the prototype fast breeder reactor MONJU, an ultrasonic flow-meter (USFM) test is being carried out in sodium in the O-Arai Engineering Center of PNC. Prior to the present test, an in-water test was done at the manufacturer's as a preliminary investigation. The results reported here are the results up to the present. Calibration tests using the actual fluid were conducted on a 12-inch ultrasonic flow-meter with guide rods fabricated for sodium flow measurement. The test conditions in sodium were a temperature of 200 approximately 400 0 C and flow-rates of 0 approximately 6m/s. The main results are: (1) The linearity of output signal was good and accuracy was within 1%; (2) The alternating type of the USFM was much better than the fixed type in temperature change; (3) 2MHz of transducer frequency was better than 3MHz in sodium; (4) The S/N ratio of the ultrasonic signal and the length/diameter effect in a wide range in sodium surpassed the in-water test. (author)

  14. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  15. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  16. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    Science.gov (United States)

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  17. Vibration isolation for Coriolis Mass-Flow meters

    NARCIS (Netherlands)

    van de Ridder, Bert

    2015-01-01

    A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, with high accuracy, range-ability and repeatability. The working principle of a CMFM is as follows: a fluid conveying tube is actuated to oscillate at a low amplitude. A

  18. Comparison of peristaltic and Venturi pumps in bimanual microincisional cataract surgery.

    Science.gov (United States)

    Karaguzel, Hande; Karalezli, Aylin; Aslan, Bekir Sitki

    2009-12-01

    Comparison of peristaltic and Venturi pumps in bimanual microincision phacoemulsification on the success of the cataract surgery by using sleeveless phaco tip. Bimanual microincision phacoemulsification was done in 49 eyes using a 1.4-mm temporal clear corneal incision. A peristaltic pump was used in 23 eyes, and a Venturi pump was used in 26 eyes for phacoemulsification. Intraoperative complications, anterior chamber stability, and mean duration of surgery were recorded. Duration of surgery was shorter in the Venturi pump group. Anterior chamber stability could not be established in 17 eyes in the peristaltic pump group; it was established in all eyes in the Venturi pump group. Corneal burns were observed in two eyes in the peristaltic pump group and no eyes in the Venturi pump group. Use of a Venturi pump system and a vented gas-forced infusion system can significantly shorten surgery time and reduce risk of thermal burns.

  19. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  20. The Research on Metrological Characteristics of House Water Meters during Transitional Flow Regimes

    Directory of Open Access Journals (Sweden)

    Inga Briliūtė

    2011-04-01

    Full Text Available The purpose of this research is to find the influence of transitional flow regimes on inlet water meters. Four construction types of mechanical inlet water meters (each capacity Q = 10 m3/h were investigated. The biggest additional volume 0,12–0,26% when Q = 0,2…2 m3/h shows single-jet vane wheel meter. This additional volume is less 0,06–0,13% for the multi-jet concentric water meter. The minimum influence of transitional flow regimes was for turbine water meters till 0,1% for all flow range. The volumetric meters are not sensitive for this effect.Article in Lithuanian

  1. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  2. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  4. On sizing of flow meters used in customer accounting devices in district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ingimundarson, Ari; Wollerstrand, J.; Arvastson, Lars

    1998-12-31

    The paper deals with accuracy problems when heat energy consumption in district heating (DH) systems is calculated by measuring the DH water flow rate and its cooling. An investigation on the influence that sizing of flow meters used has on the accuracy of DH water flow measurements in a typical DH subscriber station is presented. Furthermore the consequences of the choice of flow meter size on energy metering accuracy is studied. The goal is to determine rules leading to optimal sizing of the flow meters 9 refs, 14 figs

  5. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    OpenAIRE

    Jiří Kozák; Pavel Rudolf; Rostislav Huzlík; Martin Hudec; Radomír Chovanec; Ondřej Urban; Blahoslav Maršálek; Eliška Maršálková; František Pochylý; David Štefan

    2017-01-01

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics ...

  6. Flow measurement of liquid hydrocarbons with positive displacement meters: the correction for slippage

    International Nuclear Information System (INIS)

    García-Berrocal, Agustín; Montalvo, Cristina; Balbás, Miguel; Blázquez, Juan

    2013-01-01

    In the oil industry, the economical and fiscal impact of the measurements accuracy on the custody transfer operations implies fulfilling strict requirements of legal metrology. In this work, we focus on the positive displacement meters (PD meters) for refined liquid hydrocarbons. The state of the art of the lack of accuracy due to slippage flow in these meters is revised. The slippage flow due to the pressure drop across the device has been calculated analytically by applying the Navier–Stokes equation. No friction with any wall of the slippage channel has been neglected and a more accurate formula than the one found in the literature has been obtained. PD meters are calibrated against a bidirectional prover in order to obtain their meter factor which allows correction of their indications. Instead of the analytical model, an empirical one is proposed to explain the variation of the meter factor of the PD meters with flow rate and temperature for a certain hydrocarbon. The empirical model is based on the historical calibration data, of 9 years on average, of 25 m with four types of refined hydrocarbon. This model has been statistically validated by linear least-squares fitting. By using the model parameters, we can obtain the meter factor corresponding to different conditions of temperature and flow rate from the conditions in which the devices were calibrated. The flow parameter is such that a 10% flow rate variation implies a meter factor variation lower than 0.01%. A rule of thumb value for the temperature parameter is 0.005% per degree Celsius. The model residuals allow surveillance of the device drift and quantifying its contribution to the meter factor uncertainty. The observed drift is 0.09% at 95% confidence level in the analyzed population of meters. (paper)

  7. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    OpenAIRE

    Manisha Bal; Bhim Charan Meikap

    2017-01-01

    The filtered containment venting system (FCVS) is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD) has been used to predict the hydrodynamic behaviour of a newly designed venturi sc...

  8. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part II. Droplet dispersion.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Aguiar, M L; Coury, J R

    2004-12-10

    Droplet distribution is of fundamental importance to the performance of a Venturi scrubber. Ensuring good liquid distribution can increase performance at minimal liquid usage. In this study, droplet dispersion in a rectangular Pease-Anthony Venturi scrubber, operating horizontally, was examined both theoretically and experimentally. The Venturi throat cross-section was 24 mm x 35 mm, and the throat length varied from 63 to 140 mm. Liquid was injected through a single orifice (1.0 mm diameter) on the throat wall. This arrangement allowed the study of the influence of jet penetration on droplet distribution. Gas velocity at the throat was 58.3 and 74.6 m/s, and the liquid flow rate was 286, 559 and 853 ml/min. A probe with a 2.7 mm internal diameter was used to isokinetically remove liquid from several positions inside the equipment. It was possible to study liquid distribution close to the injection point. A new model for droplet dispersion, which incorporates the new description of the jet atomization process developed by the present authors in the first article of this series, is proposed and evaluated. The model predicted well the experimental data.

  9. Effect of Atmospheric Pressure and Temperature on a Small Spark Ignition Internal Combustion Engine’s Performance

    Science.gov (United States)

    2011-03-24

    aid of a pump . A carbureted 10 engine uses the principles of a venturi or system of venturis to produce the required fuel flow. The carburetor...fuel R specific gas constant Sg specific gravity t time ttot total time T torque (Eq. 4), (Eq. 6) T temperature (Eq. 10), (Eq. 13), (Eq. 22...meters the fuel based on a pressure difference created by the venturi . This fuel flow mixes with the air stream in the intake of the engine before it

  10. Experimental study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Gulhane, N.P.; Landge, A.D.; Shukla, D.S.; Kale, S.S.

    2015-01-01

    Highlights: • Fabrication, erection of experimental set up and carrying out experimentation with self priming venturi scrubber. • Predicting solubility of iodine in water and its pH dependency. • Increasing pH of water increases iodine removal efficiency. • Maximum iodine removal efficiency is obtained at 10 pH of water using sodium thiosulphate. - Abstract: The objective of present experimental study is to examine the iodine removal efficiency of a self-priming venturi scrubber for submerged operating condition. The venturi scrubber is used in Containment Filtered Venting System of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. The experiment consists of mixing the iodine vapours with the air using suction venturi and pressure cooker system. The purpose of iodine mixing with air is to examine scrubbing performance of the designed venturi scrubber with water as scrubbing liquid. The performance parameters of venturi scrubber are expressed mainly in terms of pressure drop and iodine removal efficiency. The iodine removal efficiency of venturi scrubber is estimated for a series of two experiments by measuring the quantity of iodine in water from iodometric titration with four distinct pH of water. It has been experimentally observed that iodine removal efficiency is improved by using higher pH value of scrubbing liquid since solubility of iodine gets improved at higher pH

  11. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    Science.gov (United States)

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  12. Reciprocity and its utilization in ultrasonic flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Vestrheim, Magne; Boe, Reidar; Smoergrav, Skule; Abrahamsen, Atle K.

    2005-07-01

    In ultrasonic transit time flow meters for gas and liquid (USMs), the flow direction, the flow velocity and the sound velocity are estimated from the measured up- and downstream transit times. At no-flow conditions, the up- and downstream transit times of such meters should ideally be the same, or the difference should be negligible. This may not be the case unless special precautions are made. In order to reduce the possibility of the meter to detect a false flow at no-flow conditions, USMs are typically ''dry calibrated'' before being installed in the field. ''Dry calibration'' (which may be made in different ways), in general involves measurement of (a) the time delays due to electronics, cables and transducers, (b) the so called ''{delta}t-correction'' (for each acoustic path, also denoted ''zero flow offset factor''), and (c) geometrical parameters. Various {delta}t-correction approaches may be used by different manufacturers, but these are basically similar and have the same purpose: to reduce the false flow detection and improve the accuracy at low and no-flow conditions (''zero flow adjustment''), without significantly affecting the accuracy at the high velocity measurements. The AGA-9 report and the API MPMS Ch. 5.8 standard both prescribe need for ''zero flow verification test (zero test)'' or ''zeroing the meter'', for gas and liquid USMs, respectively. Advances in USM technology based on the electro acoustic reciprocity principle have provided methods for reduction or even neglect ion of the need for ''{delta} t-correction'' of USMs. That means, if the USM measurement system is reciprocal, and operated in a ''sufficiently reciprocal'' way, the ''{delta}t-correction'' may be negligibly small over the operational range of pressure and temperature, and

  13. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas-Turbine Combustion

    Science.gov (United States)

    Heath, Christopher M.

    2013-01-01

    Injector geometry, physical mixing, chemical processes, and engine cycle conditions together govern performance, operability and emission characteristics of aviation gas-turbine combustion systems. The present investigation explores swirl-venturi lean direct injection combustor fundamentals, characterizing the influence of key geometric injector parameters on reacting flow physics and emission production trends. In this computational study, a design space exploration was performed using a parameterized swirl-venturi lean direct injector model. From the parametric geometry, 20 three-element lean direct injection combustor sectors were produced and simulated using steady-state, Reynolds-averaged Navier-Stokes reacting computations. Species concentrations were solved directly using a reduced 18-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear ?-e model. Results demonstrate sensitivities of the geometric perturbations on axially averaged flow field responses. Output variables include axial velocity, turbulent kinetic energy, static temperature, fuel patternation and minor species mass fractions. Significant trends have been reduced to surrogate model approximations, intended to guide future injector design trade studies and advance aviation gas-turbine combustion research.

  14. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  15. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    International Nuclear Information System (INIS)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon

    2015-01-01

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  16. 40 CFR 1065.225 - Intake-air flow meter.

    Science.gov (United States)

    2010-07-01

    ... as described in § 1065.650, as follows: (1) Use the actual value of calculated raw exhaust in the..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  17. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Koide, Kaoru; Takeichi, Atsushi

    1997-01-01

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10 -3 - 10 -4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  18. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  19. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  20. Generation of Submicron Bubbles using Venturi Tube Method

    Science.gov (United States)

    Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2016-08-01

    In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.

  1. Experimental and theoretical investigation of droplet dispersion in venturi scrubbers with axial liquid injection

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarian, N.; Talaei, A.; Karimikhosroabadi, M. [Islamic Azad University, Shahreza Branch, Shahreza (Iran); Sadeghi, F. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran); Talaie, M.R.

    2009-05-15

    Droplet dispersion in a Venturi scrubber with axial liquid injection was investigated both experimentally and theoretically. The main objective of this study was to develop a mathematical model to predict droplet dispersion in a Venturi scrubber with axial liquid injection. The effects of the Peclet number and droplet size distribution on droplet dispersion were studied using the developed model. Sampling of the droplets was carried out, isokinetically, in 16 positions at the end of the throat section. The experimental data were used to find the parameters of the developed model, such as the Peclet number. From the results of this study, it was found that the Peclet number was not constant across the cross section of the scrubber channel. In order to achieve a better agreement between the results of the model and the experimental data, it was required to consider Peclet number variations across the Venturi channel. It was also revealed that the parameter representing the width of the Rosin-Rammler distribution of droplet size could not be considered constant and it was influenced significantly by the operating parameters such as liquid flow rate and gas velocity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Compact mass flow meter based on a micro coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; van de Geest, Jan; Katerberg, Marcel; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Lötters, Joost Conrad

    2013-01-01

    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1

  3. Droplet size in a rectangular Venturi scrubber

    OpenAIRE

    Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.

    2004-01-01

    The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...

  4. Knowledge of spacer device, peak flow meter and inhaler technique ...

    African Journals Online (AJOL)

    Background: Metered dose inhalers are cornerstone in effective management of bronchial asthma when correctly used. Most studies hitherto have focused on assessing patient's knowledge of inhaler technique. We sought to assess the knowledge of inhaler technique, spacer device and peak flow meter among doctors and ...

  5. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.

    Science.gov (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier

    2002-03-29

    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  6. Qualifying Elbow Meters for High Pressure Flow Measurements in an Operating Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chan, A.M.; Maynard, K.J.; Ramundi, J.; Wiklung, E.

    2006-01-01

    To support the installation and use of elbow meters to measure the high pressure emergency coolant injection flow in an operating nuclear station, a test program was performed to qualify: (i) the 'hot' tapping procedure for field application and (ii) the use of elbow meters for accurate flow measurements over the full range of station ECI flow conditions. This paper describes the design conditions and major components of a flow loop used for the elbow meter calibrations. Typical test results are presented and discussed. (authors)

  7. Development of a novel vortex flow meter for downhole use

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.

    2008-01-01

    Due to the increasing complexity of oil and gas wells, the demand for instrumentation to measure conditions inside well tubing below the surface is growing rapidly. A robust meter was designed to measure liquid flows at downhole conditions. The meter is based on a specially-designed bluff body to

  8. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  9. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2; Medidores ultrasonicos en el flujo de agua de alimentacion para recuperar potencia termica en el reactor de la Central Nuclear Laguna Verde U1 and U2

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F. [CFE, Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)]. e-mail: francisco.tijerina@cfe.gob.mx

    2008-07-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  10. Particle aerosolisation and break-up in dry powder inhalers 1: evaluation and modelling of venturi effects for agglomerated systems.

    Science.gov (United States)

    Wong, William; Fletcher, David F; Traini, Daniela; Chan, Hak-Kim; Crapper, John; Young, Paul M

    2010-07-01

    This study utilized a combination of computational fluid dynamics (CFD) and standardized entrainment tubes to investigate the influence of turbulence on the break-up and aerosol performance of a model inhalation formulation. Agglomerates (642.8 mum mean diameter) containing 3.91 mum median diameter primary spherical mannitol particles were prepared by spheronisation. A series of entrainment tubes with different Venturi sections were constructed in silico, and the flow pattern and turbulence/impaction parameters were predicted using CFD. The entrainment models were constructed from the in silico model using three-dimensional printing. The aerosol performance of the mannitol was assessed by entraining the agglomerates into the experimental tubes at a series of flow rates and assessing the size distribution downstream of the venturi via in-line laser diffraction. A series of parameters (including Reynolds number (Re), turbulence kinetic energy, turbulence eddy frequency, turbulence length-scale, velocity and pressure drop) were calculated from the CFD simulation. The venturi diameter and volumetric flow rate were varied systematically. The particle size data of the agglomerated powders were then correlated with the CFD measurements. No correlation between turbulence and aerosol performance could be made (i.e. at a Reynolds number of 8,570, the d(0.1) was 52.5 mum +/- 19.7 mum, yet at a Reynolds number of 12,000, the d(0.1) was 429.1 mum +/- 14.8 mum). Lagrangian particle tracking indicated an increase in the number of impactions and the normal velocity component at the wall, with increased volumetric airflow and reduced venturi diameter. Chemical analysis of the mannitol deposited on the walls showed a linear relationship with respect to the theoretical number of impactions (R(2) = 0.9620). Analysis of the relationship between the CFD results and the experimental size data indicated a critical impact velocity was required to initiate agglomerate break

  11. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  12. Inadequate peak expiratory flow meter characteristics detected by a computerised explosive decompression device

    DEFF Research Database (Denmark)

    Miller, M.R.; Atkins, P.R.; Pedersen, O.F.

    2003-01-01

    Methods: The dynamic response of mini-Wright (MW), Vitalograph (V), TruZone (TZ), MultiSpiro (MS) and pneumotachograph (PT) flow meters was tested by delivering two differently shaped flow-time profiles from a computer controlled explosive decompression device fitted with a fast response solenoid.......1) and 257 (39.2), respectively, and at ≈200 l/min they were 51 (23.9) and 1 (0.5). All the meters met ATS accuracy requirements when tested with their waveforms. Conclusions: An improved method for testing the dynamic response of flow meters detects marked overshoot (underdamping) of TZ and MS responses...

  13. Maximizing the performance of a multiple-stage variable-throat venturi scrubber for particle collection

    Science.gov (United States)

    Muir, D. M.; Akeredolu, F.

    The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.

  14. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  15. Relationship between self-priming and hydraulic behavior in Venturi Scrubber

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    As revealed by Fukushima Daiichi nuclear disaster, countermeasures against severe accident in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting a containment and suppressing the diffusion of radioactive materials, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi Scrubbers System is used to realize filtered venting without any power supply (Lindau, 1988) (Rust, et al., 1995). The system operates with any power supply and high pressure gas filled in the containment. This system is able to define to be composed of Venturi Scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through a submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer parts of a throat part of the VS. This type of the VS is called self-priming ones. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. In this study, to understand the VS operation characteristics for the filtered venting, we discussed the mechanisms of the self-priming phenomena and the hydraulic behavior in the VS. In this paper, we conducted a visualized observation of the hydraulic behavior in the VS and measured liquid flow rate of the self-priming. As a result, it is shown that there is the possibility that the VS decontamination performance falls low level with no self-priming. (author)

  16. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  17. Separation of finest dusts in Venturi scrubber with hybrid nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reither, K. [Reither Venturiwaescher GmbH, Troisdorf (Germany); Boerger, G.G.; Listner, U.; Schweitzer, M. [Bayer AG, Leverkusen (Germany)

    2001-03-01

    Venturi scrubbers are high-performance dust separators whose efficiency is closely connected with high pressure losses. The tube-slot Venturi scrubber with hybrid nozzles is a novel scrubber type of simple and compact design, by means of which high separation efficiency is reached with pressure losses practically tending to zero. This new wet scrubber is particularly suitable for refitting existing plants. (orig.)

  18. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  19. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  20. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  1. Effect of nozzle arrangement on Venturi scrubber performance

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, N.V.; Viswanathan, S.

    1999-12-01

    The effect of nozzle arrangement on flux distribution is studied in a rectangular, pilot-scale, Pease-Anthony-type Venturi scrubber. The annular, two-phase, heterogeneous, three-dimensional gas-liquid flow inside the scrubber is modeled using a commercial computational fluid dynamic (CFD) package, FLUENT. The comparison of predicted liquid drop concentration shows good agreement with experimental data. The model predicts the fraction of liquid flowing as film on the walls reasonably well. Visualization of flux patterns studied using four typical nozzle configurations indicate that the nonuniformity in flux distribution increases when the nozzle-to-nozzle distance is greater than 10% of the width of the side on which the nozzles are placed. An analysis of the effect of multiple jet penetration lengths on liquid flux distribution yielded a comparable distribution at 10--45% less liquid than uniform penetration for a particular nozzle configuration. This would lead to significant improvements in scrubber performance by achieving comparable collection efficiency at a lower pressure drop.

  2. Development and evaluation of a meter for measuring return line fluid flow rates during drilling

    Energy Technology Data Exchange (ETDEWEB)

    Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))

    1992-06-01

    The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

  3. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  4. Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method

    Science.gov (United States)

    Arai, Kenta; Yoshida, Hajime

    2014-10-01

    Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.

  5. PIV in the two phases of hydrodynamic cavitation in a venturi type section

    Science.gov (United States)

    Fuzier, Sylvie; Coudert, Sébastien; Coutier Delgosha, Olivier

    2012-11-01

    The presence of cavitation can affect the performance of turbomachinery. Attached sheet cavities on the blades induce modifications of flow dynamics and turbulence properties. This phenomenon is studied here in a configuration of 2D flow in a venturi type section. Images of the bubbles as well as of the light emitted by fluorescent particles placed in the liquid are recorded simultaneously. Velocities of the bubbles and of the liquid phase are obtained by PIV. The slip velocity is analyzed function of the number of cavitation and other physical parameters. Different levels of turbulence are correlated with different bubble structures in the dipahasic cavity.

  6. Generating Electricity by Harnessing Air That Flows Around a Skyscraper by Using Bernoulli's Principle And The Venturi Effect w/Special Emphasis on Biomimicry

    Science.gov (United States)

    Pizzolato, R.

    2017-12-01

    Can skyscrapers become carbon neutral using wind that flows around them to power wind turbines? I say YES! To test this idea, I constructed a venturi to capture wind flowing around a skyscraper by applying Bernoulli's Principle and the Venturi Effect to power vertical axis wind turbines (VAWT) to generate electricity. The model was constructed from polycarbonate. Turbine blades (45°&60°) carved from balsa wood with square edges, airfoils, and trailing edge tubercles (Humpback whales-biomimicry) were tested in a wind tunnel. Output was measured using Vernier's Logger Pro 3.12 software, energy and wind sensors. Voltage (mV), current (mA), power (mW) and total energy (mJ) produced at winds speeds of 3.9, 5, 7.5 and 10 m/s were recorded. 10 trials were performed for each blade angle and each blade design for a total of 240 trials. Trials were 100 seconds long and recorded at a rate of 10 measurements/second. The blades that showed the largest %Δ in total average energy output (mJ) were the 60° airfoil blades w/ tubercles on the trailing edge (20,490 mJ) when compared to 60° square edged blades (7,021 mJ). The trend of the data showed that the airfoils w/tubercles (45° & 60°) outperformed all the other blade designs at wind speeds of 7.5 m/s and 10 m/s. Also, the 45° airfoil w/tubercles produced the highest output of 25,136 mJ! This was possibly due to the improved aerodynamics of the tubercle blades which led to improvements in lift and a reduction in drag. The data shows that turbine blades that incorporate biomimicry in their design result in more efficient power output. Through biomimicry, it is possible to efficiently generate electricity with a skyscraper and reduce our dependence upon fossil fuels!

  7. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  8. Development of the clamp-on ultrasound flow meter for steam in pipe

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Tsukada, Keisuke; Kikura, Hiroshige; Tanaka, Katsuhiko; Umezawa, Shuichi

    2014-01-01

    Gas flow metering of a pipe flow such as chemical plant, reactors and power stations is one of the significant techniques that enable to diagnose and control the behavior of working fluid, and to govern the entire fluid system in the industrial facilities. In order to operate the aforementioned systems, the precise measurement of the flow rate is required. The conventional flow meter, however, needs the installation of the spool piece that disturbs the stable and continuous operation of the plants. i.e., the destructive set-up process of the measurement section is necessary. In this study, the novel ultrasound gas flow metering technique has been developed by means of the clamp-on ultrasound transmitter and receivers. By the numerical simulation, the ultrasound propagation through the gas and metal pipe was firstly investigated. The effects of the external damping material, applicable vapor pressure range as well as the appropriate shape of the acoustic lens were analyzed that was followed by the feasibility test of the actual measurement system. The pressurized vapor flow was used as a working fluid. Pressure and sensor dimension were varied to compare the efficiency of the ultrasound transmission between transducers. The temperature of the working fluid was beyond 373 K. The ultrasound pulsar-receiver was used that could control the frequency, amplitude and phase of the burst sinusoids. The signal processing algorithm was developed in order to discriminate the direct signal through the gaseous flow from the unwanted circumference noise through the solid stainless pipe. The linear relation between flow rate and ultrasound peak shift was confirmed. (author)

  9. 40 CFR 86.116-94 - Calibrations, frequency and overview.

    Science.gov (United States)

    2010-07-01

    ... positive displacement pump or Critical Flow Venturi shall be calibrated following initial installation... an organic gas retention and calibration on the evaporative emissions enclosure (see § 86.117-90(c)). (4) Calibrate the gas meters or flow instrumentation used for providing total flow measurement for...

  10. Influence of the operating pressure in flow metering systems using turbine meters-key factors; Influencia da pressao em sistemas de medicao de gas natural com totalizadores de volume do tipo turbina: fatores a considerar

    Energy Technology Data Exchange (ETDEWEB)

    Wilcek, Alanna; Picanco, Marco Antonio S. [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2008-07-01

    Flow measurement is a strategic process in the Natural Gas transport and distribution industry. The diary measurement of the 43 million cubic meters consumed in Brazil is made by flow meters certified by the Rede Brasileira de Calibracao (Brazilian Calibration Network) and INMETRO. Turbine flow meters are commonly applied in high flow measurement systems. Some manufactures and authors discuss the sensibility of turbine meters to the operational conditions. The objective of this paper is to establish a discussion about the flow pressure effects in the turbine meter and the influence in measure errors. (author)

  11. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    Science.gov (United States)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  12. Transition of cavitating flow to supercavitation within Venturi nozzle - hysteresis investigation

    Science.gov (United States)

    Jiří, Kozák; Pavel, Rudolf; Rostislav, Huzlík; Martin, Hudec; Radomír, Chovanec; Ondřej, Urban; Blahoslav, Maršálek; Eliška, Maršálková; František, Pochylý; David, Štefan

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD) of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS) records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  13. A Self-diagnostic Method for the Electrode Adhesion of an Electromagnetic Flow-meter

    Directory of Open Access Journals (Sweden)

    Wen-Hua Cui

    2014-07-01

    Full Text Available Electrodes of electromagnetic flow-meter are subject to contamination in sewage measurement. In this paper, the relationship between the internal resistance of the flow-induced voltage and the electrode contamination is analyzed on the basis of numerical analysis. A new self- diagnostic method for electrode adhesion with additional excitation based on photovoltaic cell is proposed, in which magnetic excitation for flow-rate measurement and electric excitation for electrode self-diagnosis is divided in both time domain and frequency domain. A dual-excited electromagnetic flow-meter with electrode self-diagnosis was designed and validated. Simulation experiments based on the change of the internal resistance of the flow-induced voltage were carried out. And the experimental results fully show that this new method is feasible and promising.

  14. A seepage meter designed for use in flowing water

    Science.gov (United States)

    Rosenberry, D.O.

    2008-01-01

    Seepage meters provide one of the most direct means to measure exchange of water across the sediment-water interface, but they generally have been unsuitable for use in fluvial settings. Although the seepage bag can be placed inside a rigid container to minimize velocity head concerns, the seepage cylinder installed in the sediment bed projects into and disrupts the flow field, altering both the local-scale fluid exchange as well as measurement of that exchange. A low-profile seepage meter designed for use in moving water was tested in a seepage meter flux tank where both current velocity and seepage velocity could be controlled. The conical seepage cylinder protrudes only slightly above the sediment bed and is connected via tubing to a seepage bag or flowmeter positioned inside a rigid shelter that is located nearby where current velocity is much slower. Laboratory and field tests indicate that the net effect of the small protrusion of the seepage cylinder into the surface water flow field is inconsequentially small for surface water currents up to 65 cm s-1. Current velocity affects the variability of seepage measurements; seepage standard deviation increased from ???2 to ???6 cm d-1 as current velocity increased from 9 to 65 cm s-1. Substantial bias can result if the shelter is not placed to minimize hydraulic gradient between the bag and the seepage cylinder.

  15. Application of Data Smoothing Method in Signal Processing for Vortex Flow Meters

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2017-01-01

    Full Text Available Vortex flow meter is typical flow measure equipment. Its measurement output signals can easily be impaired by environmental conditions. In order to obtain an improved estimate of the time-averaged velocity from the vortex flow meter, a signal filter method is applied in this paper. The method is based on a simple Savitzky-Golay smoothing filter algorithm. According with the algorithm, a numerical program is developed in Python with the scientific library numerical Numpy. Two sample data sets are processed through the program. The results demonstrate that the processed data is available accepted compared with the original data. The improved data of the time-averaged velocity is obtained within smoothing curves. Finally the simple data smoothing program is useable and stable for this filter.

  16. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    Science.gov (United States)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  17. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    International Nuclear Information System (INIS)

    Hoffmann, D; Willmann, A; Göpfert, R; Becker, P; Folkmer, B; Manoli, Y

    2013-01-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced

  18. Predicting Extubation Outcome by Cough Peak Flow Measured Using a Built-in Ventilator Flow Meter.

    Science.gov (United States)

    Gobert, Florent; Yonis, Hodane; Tapponnier, Romain; Fernandez, Raul; Labaune, Marie-Aude; Burle, Jean-François; Barbier, Jack; Vincent, Bernard; Cleyet, Maria; Richard, Jean-Christophe; Guérin, Claude

    2017-12-01

    Successful weaning from mechanical ventilation depends on the patient's ability to cough efficiently. Cough peak flow (CPF) could predict extubation success using a dedicated flow meter but required patient disconnection. We aimed to predict extubation outcome using an overall model, including cough performance assessed by a ventilator flow meter. This was a prospective observational study conducted from November 2014 to October 2015. Before and after a spontaneous breathing trial, subjects were encouraged to cough as strongly as possible before freezing the ventilator screen to assess CPF and tidal volume (V T ) in the preceding inspiration. Early extubation success rate was defined as the proportion of subjects not re-intubated 48 h after extubation. Diagnostic performance of CPF and V T was assessed by using the area under the curve of the receiver operating characteristic curve. Cut-off values for CPF and V T were defined according to median values and used to describe the performance of a predictive test combining them with risk factors of early extubation failure. Among 673 subjects admitted, 92 had a cough assessment before extubation. For the 81 subjects with early extubation success, the median CPF was -67.7 L/min, and median V T was 0.646 L. For the 11 subjects with early extubation failure, the median CPF was -57.3 L/min, and median V T was 0.448 L. Area under the curve was 0.61 (95% CI 0.37-0.83) for CPF and 0.64 (95% CI 0.42-0.84) for CPF/V T combined. After dichotomization (CPF 0.55 L), there was a synergistic effect to predict early extubation success ( P meter of an ICU ventilator was able to predict extubation success and to build a composite score to predict extubation failure. The results were close to that found in previous studies that used a dedicated flow meter. This could help to identify high-risk subjects to prevent extubation failure. (ClinicalTrials.gov registration NCT02847221.). Copyright © 2017 by Daedalus Enterprises.

  19. Reactor core flow measurements during plant start-up using non-intrusive flow meter CROSSFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, V.; Sharp, B.; Gurevich, A., E-mail: vkanda@amag-inc.com, E-mail: bsharp@amag-inc.com, E-mail: agurevich@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada); Gurevich, Y., E-mail: yuri.gurevich@daystartech.ca [Daystar Technologies Inc., Ontario (Canada); Selvaratnarajah, S.; Lopez, A., E-mail: sselvaratnarajah@amag-inc.com, E-mail: alopez@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada)

    2013-07-01

    For the first time, direct measurements of the total reactor coolant flow and the flow distribution between the inner reactor zone and the outer zone were conducted using the non-intrusive clamp on ultrasonic cross-correlation flow meter, CROSSFLOW, developed and manufactured by Advanced Measurement & Analysis Group Inc. (AMAG). The measurements were performed at Bruce Power A Unit 1 on the Pump Discharge piping of the Primary Heat Transport (PHT) system during start-up. This paper describes installation processes, hydraulic testing, uncertainty analysis and traceability of the measurements to certified standards. (author)

  20. Nucleation of super-critical carbon dioxide in a venturi nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Jarrahbashi, D., E-mail: dorrin.jarrahbashi@me.gatech.edu; Pidaparti, S.R.; Ranjan, D.

    2016-12-15

    Highlights: • Nucleation of S-CO{sub 2} in a nozzle near critical point has been computationally studied. • The nucleation behavior is very sensitive to the inlet pressure and temperature. • After nucleation, high liquid-content two-phase mixture near wall travels downstream. - Abstract: Pressure reduction at the entrance of the compressor in supercritical CO{sub 2} Brayton cycles may cause nucleation and create a mixture of vapor and liquid droplets due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and degrade the materials used in the design. The nucleation behavior of supercritical carbon-dioxide inside a venturi nozzle near the critical point is computationally studied. A transient compressible 3D Navier–Stokes solver, coupled with continuity, and energy equations have been implemented. In order to expedite the simulations, Fluid property Interpolation Tables (FIT) based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO{sub 2} properties. The mass fraction of vapor created in the venturi nozzle has been calculated using homogeneous equilibrium model (HEM). Nucleation behavior has been shown to be very sensitive to the inlet pressure, inlet temperature, and flow rate. The flow conditions that led to nucleation were identified. Nucleation was observed in the throat area and divergent section of the nozzle for mass flow rates from 0.050 kg/s to 0.065 kg/s, inlet pressure from 7.8 to 7.4 MPa for fixed exit pressure equal to 7.28 MPa. The inception of high-vapor-content nucleation was first observed in the throat area away from the side walls that remained confined to the throat region in later times. However, near the walls, a high liquid-content two-phase region was detected, first in the divergent section. At later times, the two-phase region was convected downstream toward the nozzle exit

  1. Adaptive Venturi for Monopropellant Feed Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a unique venturi for future monopropellant feed systems that uses a passively controlled throat area to adjust propellant...

  2. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne

    1997-09-01

    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  3. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  4. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  5. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    Science.gov (United States)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  6. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    International Nuclear Information System (INIS)

    Krauter, N; Stefani, F

    2017-01-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation. (paper)

  7. Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer

    Science.gov (United States)

    Karon, David M. (Inventor); Cushing, Vincent (Inventor); Patel, Sandeep K. (Inventor)

    2014-01-01

    An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.

  8. Development and application of groundwater flow meter in fractured rocks: Measurement of velocity and direction of groundwater flow in single well

    International Nuclear Information System (INIS)

    Kawanishi, M.; Miyakawa, K.; Hirata, Y.

    2001-01-01

    For the confirmation of safety for the geological disposal of radioactive wastes, it is very important to demonstrate the groundwater flow by in-situ investigation in the deep underground. We have developed a groundwater flow meter to measure simultaneously the velocity and direction of groundwater flow by means of detecting the electric potential difference between the groundwater to evaluate and the distilled water as a tracer in a single well. In this paper, we describe the outline of the groundwater flow meter system developed by CRIEPI and Taisei-Kiso-Sekkei Co. Ltd. and the evaluation methodology for observed data by using it in fractured rocks. Furthermore, applied results to in-situ tests at the Tounou mine of Japan Nuclear Fuel Cycle Development Institute (JNC) and the Aespoe Hard Rock Laboratory (HRL) of Swedish Nuclear Fuel and Waste Management Co. (SK) are described. Both sites are different type of fractured rock formations of granite. From these results, it was made clear that this flow meter system can be practically used to measure the groundwater flow direction and velocity as low as order of 1x10 -3 ∼10 -7 cm/sec. (author)

  9. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    Directory of Open Access Journals (Sweden)

    Jiří Kozák

    2017-01-01

    Full Text Available Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  10. Determination of Multiphase Flow Meter Reliability and Development of Correction Charts for the Prediction of Oilfield Fluid Flow Rates

    Directory of Open Access Journals (Sweden)

    Samuel S. MOFUNLEWI

    2008-06-01

    Full Text Available The aim of field testing of Multiphase Flow Meter (MPFM is to show whether its accuracy compares favourably with that of the Test Separator in accurately measuring the three production phases (oil, gas and water as well as determining meter reliability in field environment. This study evaluates field test results of the MPFM as compared to reference conventional test separators. Generally, results show that MPFM compares favourably with Test Separator within the specified range of accuracy.At the moment, there is no legislation for meter proving technique for MPFM. However, this study has developed calibration charts that can be used to correct and improve meter accuracy.

  11. Experimental Investigation of the Performance of Tilt Current Meters in Wave-Dominated Flows

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan

    2017-01-01

    In recent years, tilt current meters (TCMs) have received renewed attention as they provide an inexpensive method for measuring currents in the coastal zone. However, previous studies focused mainly on current dominated flows or the current component of the flow. This study investigates the perfo...

  12. The Improvement of Carburater Efficiency Using Biogas-based Venturi

    Directory of Open Access Journals (Sweden)

    Lasmi Ni Ketut

    2016-01-01

    Full Text Available The elimination of the fossil fuel subsidy by the Indonesian government has caused an increase in fuel prices, and a solution to find a relatively cheap and environmentally friendly alternative energy is needed. Biogas is one of the sources of renewable energy that has a potential to be developed, especially in farming area where the abundant animal excrement is not yet optimally used and causes environmental problems. Addressing this issue, we have developed an innovation by making a biogas and air mixer instrument through venturi pipe, using the basic theory of fluid mechanism in order to increase the use of biogas as an electricity source. Usually, biogas-based electric generators use dual fuel system such as fossil fuel and biogas to perform combustion due to the low octane contained in the biogas. By replacing the readily available manufactured venturi with the modified venturi, optimal combustion can be reached with using only single fuel of biogas. The results of the experiments show that the biogas debit on carburetor increases from 13 to 439 watts consuming biogas fuel from 0.22 to 4.96 liter/minute, respectively. The amount of combusted biogas depends on the value of the load power. Within the scope of our results, the maximum voltage reached is about 211.13 – 211.76 volts which is feasible to use for 220 volts electrical appliances

  13. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo

    2017-01-01

    A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...... method to monitor severe slugging by means of low cost instrumentation, in particular, by replacing a cumbersome instrument such as a gamma-densitometer with a differential pressure transmitter. In field operation, the multiphase orifice used in these experiments can be replaced by a calibrated control...... of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...

  14. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  15. Venturi/Vortex Scrubber Technology for Controlling/Recycling Chromium Electroplating Emissions

    National Research Council Canada - National Science Library

    Hay, K

    1999-01-01

    ...) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution's surface...

  16. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, V.G.; Goncalves, J.A.S. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil); Coury, J.R. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil)], E-mail: jcoury@ufscar.br

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  17. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    International Nuclear Information System (INIS)

    Guerra, V.G.; Goncalves, J.A.S.; Coury, J.R.

    2009-01-01

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets

  18. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    Science.gov (United States)

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  19. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    Directory of Open Access Journals (Sweden)

    Świsulski Dariusz

    2017-01-01

    Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  20. Applications of Pitot-meter techniques in two-phase, steam/water, flow

    International Nuclear Information System (INIS)

    Kastner, W.; Manzano-Ruiz, J.J.

    1985-01-01

    A simple technique, based on the interpretation of dynamic-pressure readings obtained with local and averaging Pitot-meters (APM) in tow-phase flow, is described and analyzed. The mean dynamic-pressure measurements obtained with an APM allow the calculation of the mass flux of the mixture if the steam quality is known and a combination of two slip-factor correlations is used. The local dynamic-pressure measurements with a multiple Pitot-probe technique provide information on the transition between the most commonly found flow patterns in horizontal piping, i.e. stratified, annular and annular-mist flow

  1. Development of evaluation method for hydraulic behavior in Venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Horiguchi, Naoki; Nakao, Yasuhiro; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    Filtered venting systems have been installed to restart Nuclear Power Plants in Japan after Fukushima Daiichi Nuclear Disaster. Venturi scrubber is main component of one of the systems. To evaluate decontamination performance of the Venturi scrubber for filtered venting, mechanistic evaluation method for hydrodynamic behavior is important. In this paper, our objective is to develop the method. As approaches, we conducted experimental observation under adiabatic (air-water) condition, developed a numerical simulation code with one-dimensional two-fluid model and made verification and validation by comparison between these results in terms of superficial gas, static pressure, superficial liquid velocity, droplet ratio and droplet diameter in Venturi scrubber. As results, we observed the hydrodynamic behavior, developed the code and confirmed that it has capability to evaluate the parameters with following accuracy, superficial gas velocity with +30%, static pressure in throat part with +-10%, superficial liquid velocity with +-80%, droplet diameter with +-30% and droplet ratio with -50%. (author)

  2. Optimized design for heavy mound venturi

    Directory of Open Access Journals (Sweden)

    Xing Futang

    2017-01-01

    Full Text Available The venturi scrubber is one of the most efficient gas cleaning devices for removal of contaminating particles in industrial flue-gas purification processes. The velocity of the gas entering the scrubber is one of the key factors influencing its dust-removal efficiency. In this study, the shapes of the heavy mound and tube wall are optimized, allowing the girth area to become linearly adjustable. The resulting uniformity of velocity distribution is verified numerically.

  3. Gage for gas flow measurement especially in gas-suction pipes

    International Nuclear Information System (INIS)

    Renner, K.; Stegmanns, W.

    1978-01-01

    The gage utilizes the differential pressure given by a differential pressure producer to generate, in a bypass, a partial gas flow measured by means of a direct-reading anemometer of windmill type. The partial gas flow is generated between pressure pick-up openings in the gas-suction pipe in front of a venturi insert and pressure pick-up openings at the bottleneck of the venturi insert. The reading of the anemometer is proportional to the main gas flow and independent of the variables of state and the properties of the gases to be measured. (RW) [de

  4. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    OpenAIRE

    Costa, Maria Angélica Martins; Ribeiro, Ana Paula Rodrigues Alves; Tognetti, Érica Rodrigues; Aguiar, Mônica Lopes; Gonçalves, José Antônio Silveira; Coury, José Renato

    2005-01-01

    Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency var...

  5. Verification procedures of ultrasonic flow meters for natural gas applications; Procedimento de verificacao de medidores ultra-sonicos para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Tulio C. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    In recent years, the use of ultrasonic flow meters for natural gas applications has grown significantly, especially after the issuance of AGA Report 9 and AGA Report 10. The reasons this technology has stood out from the others, such as orifice-plates or turbines, are: accuracy, wide range ability, it is bi-directional, robustness, low maintenance and, mainly, integrated diagnostic parameters, such as sound velocity, signal quality and profile velocity analysis. TRANSPETRO currently operates 56 ultrasonic natural gas flow-meter systems. For operational control applications, 90% of the meters are ultrasonic, of which 85% are provided with internal diagnostic tools through the manufacturer's software. Within this perspective, it is essential and unquestionable that there are procedures and routines for ultrasonic flow-meter verification and analysis, in order to monitor their performance and integrity, in addition to the early identification of potential problems. This paper discusses the practical application of several tools and diagnostic parameters inherent in ultrasonic flow meters in periodical verifications using TRANSPETRO's procedure. (author)

  6. Influence of solid particles to a coriolis mass flow metering; Einfluss von Feststoffen in einer Fluessigkeitsstroemung auf die Coriolis-Massemessung

    Energy Technology Data Exchange (ETDEWEB)

    Goeke, J.; Steffensen, E. [Fachhochschule Koeln (Germany). Fakultaet Anlagen-, Energie- und Maschinensysteme

    2006-07-01

    Since more than 15 years coriolis mass flow meters could be regarded as an extraordinary metering system. Those old mechanical principle could be enhanced by application of new electronic technique. Today high precise technologies are available for the rough industrial application, which are often distorted from enviromental influences. Nevertheless there exist situations, which the rapid chance of parameters affect the state of the swinging metering system. And the algorithm could not react in an suggestive manner. This problem occurs for example at a two phase flow. Within this paper we present the reaction of a coriolis massflow meter in a liquid flow with little solid particles. The result show small deviations between the experimental results and the thoretical calculations. (orig.)

  7. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part I. Jet dynamics.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Henrique, P R; Coury, J R

    2003-02-28

    Jet dynamics, in particular jet penetration, is an important design parameter affecting the collection efficiency of Venturi scrubbers. A mathematical description of the trajectory, break-up and penetration of liquid jets initially transversal to a subsonic gas stream is presented. Experimental data obtained from a laboratory scale Venturi scrubber, operated with liquid injected into the throat through a single orifice, jet velocities between 6.07 and 15.9 m/s, and throat gas velocities between 58.3 and 74.9 m/s, is presented and used to validate the model.

  8. Eliminació de contaminants gasosos en un sistema d'absorció jet-venturi

    OpenAIRE

    Gamisans Noguera, Xavier

    2001-01-01

    Els sistemes absorbidors basats en l'efecte venturi (venturi 'scrubbers') han estat utilitzats tradicionalment per a l'eliminació de partícules i aerosols continguts en efluents gasosos. L'aplicació d'aquesta tecnologia a l'absorció de contaminants químics ha estat poc estudiada, malgrat que el sistema presenta les característiques idònies per a l'eliminació de soluts gasosos solubles en algun dissolvent líquid.En aquesta tesi s'han estudiat les possibilitats del sistema absorbidor jet-ventur...

  9. Development of Portable Venturi Kiln for Agricultural Waste Utilization by Carbonization Process

    Science.gov (United States)

    Agustina, S. E.; Chasanah, N.; Eris, A. P.

    2018-05-01

    Many types of kiln or carbonization equipment have been developed, but most of them were designed for big capacity and some also having low performance. This research aims to develop kiln, especially portable metal kiln, which has higher performance, more environmental- friendly, and can be used for several kinds of biomass or agricultural waste (not exclusive for one kind of biomass) as feeding material. To improve the kiln performance, a venturi drum type of portable kiln has been designed with an optimum capacity of 12.45 kg coconut shells. Basic idea of those design is heat flow improvement causing by venturi effect. The performance test for coconut shell carbonization shows that the carbonization process takes about 60-90 minutes to produce average yields of 23.8%., and the highest temperature of the process was 441 °C. The optimum performance has been achieved in the 4th test, which was producing 24% yield of highest charcoal quality (represented by LHV) in 65 minutes process at average temperature level 485 °C. For pecan shell and palm shell, design modification has been done by adding 6 air inlet holes and 3 ignition column to get better performance. While operation procedure should be modified on loading and air supply, depending on each biomass characteristic. The result of performance test showed that carbonization process of pecan shell produce 17 % yield, and palm shell produce 15% yield. Based on Indonesian Standard (SNI), all charcoal produced in those carbonization has good quality level.

  10. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  11. Cavitation and multiphase flow forum - 1985

    International Nuclear Information System (INIS)

    Hoyt, J.W.; Furuya, O.

    1985-01-01

    This book presents the papers given at a conference on fluid flow. Topics considered at the conference included cavitation inception, bubble growth, cavitation noise, holography, axial flow pumps, vortices, cavitation erosion, two-phase flow in nozzles, coal slurry valves, hopper flows of granular materials, helium bubble transport in a closed vertical duct, and a numerical model for flow in a venturi scrubber

  12. Virtual Product Development on Venturi Pump

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2011-10-01

    Full Text Available Market globalization and increased customer demands are leading providers of low product series to the high cost of development and construction. To overcome noted challenges it is necessary to use process of virtual product development. In that way it is possible, even in early phases of product development, to assess the operational product behaviour. Even the specific customer demands are determined before the actual product design phase. The paper presents an up to date concept of virtual product development with application on assessment of operational behaviour of Venturi pumps.

  13. Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

    OpenAIRE

    P. Lestinsky; D. Jecha; V. Brummer; P. Stehlik

    2015-01-01

    Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubb...

  14. Vibration isolation by compliant sensor mounting applied to a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes

    2014-01-01

    In this paper a vibration isolated design of the Coriolis Mass-Flow Meter (CMFM) is proposed, by introducing a compliant connection between the casing and the tube displacement sensors with the intention to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

  15. Arrival-Time Detection and Ultrasonic Flow-Meter Applications

    International Nuclear Information System (INIS)

    Willatzen, Morten; Soendergaard, Peter; Latino, Carl; Voss, Frands; Andersen, Niels Lervad; Brokate, Martin; Bounaim, Aicha

    2006-01-01

    The Danfoss problem on ultrasonic flow measurement has been separated into three parts each handled by a subgroup of the authors listed above. The first subgroup deals with a presentation of modelling equations describing the physics of ultrasonic flow meters employing reciprocal ultrasonic transducer systems. The mathematical model presented allows the electrical output signal to be determined corresponding to any time-dependent electrical input signal. The transducers modelled consist of a piezoceramic material layer and a passive acoustic matching layer. The second subgroup analyzes the possibility of coding the input signal so as to simplify arrival-time detection by re.nding the coded input sequence in the received signal. The narrow-band nature of the transducers makes this problem non-trivial but suggestions for improvement are proposed. The analysis given is based on traditional autoand cross-correlation techniques. The third subgroup attempts to improve existing correlation methods in determining arrival-time detection of signals. A mathematical formulation of the problem is given and the application to a set of real signals provided by Danfoss A/S is performed with good results

  16. Modeling of venturi scrubber efficiency

    Science.gov (United States)

    Crowder, Jerry W.; Noll, Kenneth E.; Davis, Wayne T.

    The parameters affecting venturi scrubber performance have been rationally examined and modifications to the current modeling theory have been developed. The modified model has been validated with available experimental data for a range of throat gas velocities, liquid-to-gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency. Most striking among the observations is the prediction of a new design parameter termed the minimum contactor length. Also noted is the prediction of little effect on collection efficiency with increasing liquid-to-gas ratio above about 2ℓ m-3. Indeed, for some cases a decrease in collection efficiency is predicted for liquid rates above this value.

  17. Influence of the bubbles on the turbulence in the liquid in hydrodynamic cavitation through a venturi

    Science.gov (United States)

    Fuzier, Sylvie; Coutier Delgosha, Olivier; Coudert, S. Ébastien; Dazin, Antoine

    2011-11-01

    The physical description of hydrodynamic cavitation is complex as it includes strongly unsteady, turbulent and phase change phenomena. Because the bubbles in the cavitation area render this zone opaque, nonintrusive experimental observation inside this zone is difficult and little is known about the detailed bubble, flow structure and physics inside. A novel approach using LIF-PIV to investigate the dynamics inside the cavitation area generated through a venturi is presented. The velocity in the liquid and of the bubbles are measured simultaneously and correlated with areas of various bubble structure. The influence of the bubble structure on the turbulence in the liquid is also studied.

  18. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    Directory of Open Access Journals (Sweden)

    Maria Angélica Martins Costa

    2005-06-01

    Full Text Available Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency varied from 87% to 98% for particles from 0.1 µm to 2.0 µm.

  19. Venturi scrubber with integrated separating column for aerosol precipitation and gas sorption

    International Nuclear Information System (INIS)

    Mayinger, F.; Lehner, M.

    1992-01-01

    A concept for a novel, compact process combination in the form of a Venturi scrubber with integrated separating column was developed. The design of the system is such as to meet the boundary conditions encountered in practice. Comprehensive tests were carried through with this high-performance Venturi scrubber in a wide range of parameters, using the superfine dusts titanium dioxide and zinc oxide as test aerosols. Separating efficiency was found to be excellent, especially for multi-stage spray injection of the scrubbing fluid. Multi-stage spray injection achieves a more favourable pulse exchange between gas and fluid so that pressure losses are relatively low even though loading may be high. A provisional experimental set-up is used for further optimization of separating efficiency and pressure loss. (orig.) [de

  20. Fabrication of a cantilever-based microfluidic flow meter with nL min(-1) resolution

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    A microfluidic flow meter based on cantilever deflection is developed, showing a resolution down to 3 nL min(-1) for flows in the microliter range. The cantilevers are fabricated in SU-8 and have integrated holes with dimensions from 5 x 5 to20x 20 mu m(2). The holes make it possible to measure i......, hole-to-hole distance, amount of holes, etc) the sensitivity of the sensor can be changed....

  1. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    International Nuclear Information System (INIS)

    Willingham, W.E.

    1996-01-01

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks

  2. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    Directory of Open Access Journals (Sweden)

    N. A. G. Puentes

    2012-03-01

    Full Text Available A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" could be used as a simple and quick way to estimate droplet dispersion. The purpose of this paper is to measure the spreading angle of jets transversally injected into the throat of a Venturi scrubber and correlate it with both gas and jet velocities. The throat gas velocities varied between 59 and 74 m/s and the jet velocity between 3.18 and 19.1 m/s. The angles were measured through image analysis, obtained with high velocity photography. The spreading angle was found to be strongly dependent on jet velocity.

  3. Numerical simulation of the effect of upstream swirling flow on swirl meter performance

    Science.gov (United States)

    Chen, Desheng; Cui, Baoling; Zhu, Zuchao

    2018-04-01

    Flow measurement is important in the fluid process and transmission system. For the need of accuracy measurement of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may produce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical simulations are carried out on the swirl meter. Using RNG k-ɛ turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A counter- swirl flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.

  4. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    Science.gov (United States)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  5. Introducing a new formula based on an artificial neural network for prediction of droplet size in venturi scrubbers

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2012-09-01

    Full Text Available Droplet size is a fundamental parameter for Venturi scrubber performance. For many years, the correlations proposed by Nukiyama and Tanasawa (1938 and Boll et al. (1974 were used for calculating mean droplet size in Venturi scrubbers with limited operating parameters. This study proposes an alternative approach on the basis of artificial neural networks (ANNs to determine the mean droplet size in Venturi scrubbers, in a wide range of operating parameters. Experimental data were used to design the ANNs. A neural network was trained based on the liquid to gas ratio (L/G and throat gas velocity (Vgth, as input parameters, and the Sauter mean diameter (D32 as the desired parameter. The back-propagation learning algorithms were used in the network and the best approach was found. A new formula for the prediction of D32 using the weights of the network was then generated. This formula predicts mean droplet size in Venturi scrubbers more accurately than the correlations of Boll et al. (1974 and Nukiyama and Tanasawa (1938. The Average Absolute Percent Deviation (AAPD of our formula and the Boll et al. and Nukiyama and Tanasawa correlations for the full ranges of experimental data are 26.04%, 40.19% and 32.99%, respectively.

  6. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  7. Effects of Inner Surface Roughness and Asymmetric Pipe Flow on Accuracy of Profile Factor for Ultrasonic Flow Meter

    International Nuclear Information System (INIS)

    Michitsugu Mori; Kenichi Tezuka; Yasushi Takeda

    2006-01-01

    Flow profile factors (PFs), which adjust measurements to real flow rates, also strongly depend on flow profiles. To determine profile factors for actual power plants, manufactures of flowmeters usually conduct factory calibration tests under ambient flow conditions. Indeed, flow measurements with high accuracy for reactor feedwater require them to conduct calibration tests under real conditions, such as liquid conditions and piping layouts. On the contrary, as nuclear power plants are highly aging, readings of flowmeters for reactor feedwater systems drift due to the changes of flow profiles. The causes of those deviations are affected by the change of wall roughness of inner surface of pipings. We have conducted experiments to quantify the effects of flow patterns on the PFs due to pipe roughness and asymmetric flow, and the results of our experiments have shown the effects of elbows and pipe inner roughness, which strongly affect to the creation of the flow patterns. Those changes of flow patterns lead to large errors in measurements with transit time (time-of-flight: TOF) ultrasonic flow meters. In those experiments, changes of pipe roughness result in the changes of PFs with certain errors. Therefore, we must take into account those effects in order to measure the flow rates of feedwater with better accuracy in actual power plants. (authors)

  8. Development of the test facilities for the measurement of core flow and pressure distribution of SMART reactor

    International Nuclear Information System (INIS)

    Ko, Y.J.; Euh, D.J.; Youn, Y.J.; Chu, I.C.; Kwon, T.S.

    2011-01-01

    A design of SMART reactor has been developed, of which the primary system is composed of four internal circulation pumps, a core of 57 fuel assemblies, eight cassettes of steam generators, flow mixing head assemblies, and other internal structures. Since primary design features are very different from conventional reactors, the characteristics of flow and pressure distribution are expected to be different accordingly. In order to analyze the thermal margin and hydraulic design characteristics of SMART reactor, design quantification tests for flow and pressure distribution with a preservation of flow geometry are necessary. In the present study, the design feature of the test facility in order to investigate flow and pressure distribution, named “SCOP” is described. In order to preserve the flow distribution characteristics, the SCOP is linearly reduced with a scaling ratio of 1/5. The core flow rate of each fuel assembly is measured by a venturi meter attached in the lower part of the core simulator having a similarity of pressure drop for nominally scaled flow conditions. All the 57 core simulators and 8 S/G simulators are precisely calibrated in advance of assembling in test facilities. The major parameters in tests are pressures, differential pressures, and core flow distribution. (author)

  9. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  10. Vibration Isolation by an Actively Compliantly Mounted Sensor Applied to a Coriolis Mass-Flow Meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

    2016-01-01

    In this paper, a vibration isolated design of a Coriolis mass-flow meter (CMFM) is proposed by introducing a compliant connection between the casing and the tube displacement sensors, with the objective to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

  11. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  12. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    Science.gov (United States)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  13. Contribution to the study of the exchanges to the interface liquid bubble, resulting from an ejector venturi, for the treatment of dust; Contribution a l'etude des echanges a l'interface bulle liquide, issue d'un ejecteur venturi, horizontal en vue du traitement des poussieres

    Energy Technology Data Exchange (ETDEWEB)

    Giovannacci, D.

    2002-06-15

    A great number of industrial processes generate aerosols that the legislation prohibited to reject too great quantities (Decree no 98-360, 6 may 1998). Among the processes of elimination but also of recovery of these pollutants, washing by means of selective solvent is widespread. This operation is realized in contactors gas-liquid that one can classify out of absorbers with columns and absorbers venturi. Among the latter, one distinguishes the ejector venturi, the venturi high energy and the venturi with emulsion. In this work, we proposed to study the ejector venturi on the plans of hydrodynamics and transfer of matter, in the case of pollutants in the form of dust. At the time of the hydrodynamic study, we determine experimentally using fast camera the characteristics of the interface, the surface of exchange a and the diameter of the bubbles. We then could establish the law of distribution of the diameters of the bubbles. The introduction of a model of evolution in three phases of the current of bubbles enabled us to understand the evolution of the diameter during the course of the bubble and to characterize the influence of coalescence. With regard to the study of transfer of matter, we introduced a new model characterizing the trapping of dust included into bubbles. The dominating mechanism in the trapping is then with the inertial effects with the range of diameter of dust [ 2;4 ] {mu}m for which the trapping is optimum. We measured in experiments the effectiveness of trapping of the ejector, and its variations with the temperature of two effluents, the time of course and the density of the particles. The results from this study make it possible to work out a new type of particle filter, based on the technique of the ejector venturi. (author)

  14. Development of quick-response area-averaged void fraction meter

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari

    2000-11-01

    Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)

  15. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  16. A comparison between red and infrared light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-06-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-55 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, because of technical limitations, data were obtained for the first three conditions only. The dam significantly decreased the mean blood flow by 82%. Injecting LA and cavity preparation had no significant effect. With red light, dam produced a decrease of 56%, and the resulting signal was reduced by 33% after LA and cavity preparation. The remaining signal fell by 46% after pulp removal and replacement. This contribution of the pulp is similar to that recorded previously with infrared light. There was no significant further change when the pulp was finally removed. The importance of using opaque rubber dam is confirmed. With dam, there is no advantage to using red rather than infrared light, and in each case the pulp contributes less than 50% to the blood flow signal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  18. Fast X-ray imaging of cavitating flows

    Energy Technology Data Exchange (ETDEWEB)

    Khlifa, Ilyass; Fuzier, Sylvie; Roussette, Olivier [Arts et Metiers ParisTech, Lille (France); Vabre, Alexandre [CEA Saclay, Gif-sur-Yvette (France); Hocevar, Marko [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia); Fezzaa, Kamel [Argonne National Laboratory, Advanced Photon Source, Lemont, IL (United States); Coutier-Delgosha, Olivier [Virginia Tech, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Blacksburg, VA (United States)

    2017-11-15

    A new method based on ultra-fast X-ray imaging was developed in this work for the investigation of the dynamics and the structures of complex two-phase flows. In this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fields of each phase were, therefore, calculated using image cross-correlations. The local vapour volume fractions were also obtained, thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between them, and hence enable to improve our understanding of their behaviour. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrate, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations. (orig.)

  19. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    Science.gov (United States)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  20. Inferential smart sensing for feedwater flowrate in PWRs

    International Nuclear Information System (INIS)

    Na, M. G.; Hwang, I. J.; Lee, Y. J.

    2006-01-01

    The feedwater flowrate that is measured by Venturi flow meters in most pressurized water reactors can be over-measured because of the fouling phenomena that make corrosion products accumulate in the Venturi meters. Therefore, in this work, two kinds of methods, a support vector regression method and a fuzzy modeling method, combined with a sequential probability ratio test, are used in order to accurately estimate online the feedwater flowrate, and also to monitor the status of the existing hardware sensors. Also, the data for training the support vector machines and the fuzzy model are selected by using a subtractive clustering scheme to use informative data from among all acquired data. The proposed inferential sensing and monitoring algorithm is verified by using the acquired real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations, it was known that the root mean squared error and the relative maximum error are so small and the proposed method early detects the degradation of an existing hardware sensor. (authors)

  1. Heat recovery using a venturi scrubber

    International Nuclear Information System (INIS)

    Gilbert, W.J.

    1982-01-01

    When an air pollution problem involves scrubbing at relatively elevated temperatures, the possibility exists for practical use of the heat contained with the gas. A venturi type scrubber has been shown to successfully handle such hot exhaust gases for removal of both gases and particulates, as well as heat recovery. The use of a relatively simple overall system, using the recirculated liquid loop for space heating, can be made practical and efficient. Whenever possible, this will allow the scrubbing equipment, normally considered a nuisance, to actually produce a pay-back for the customer. Careful consideration must be given to all aspects of the system's installation, operation, and maintenance. The feasibility of such a system depends on conditions at the particular location and the relative need for a low temperature heat source

  2. Venturi Air-Jet Vacuum Ejector For Sampling Air

    Science.gov (United States)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  3. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L [Powtel Monitoring Systems, Inc., Ajax, ON (Canada)

    1996-12-31

    Portable meters were discussed as alternatives to standard billing meters for temporary installations. Current, voltage and power factor at a distribution station were measured to calculate kW and kVAR, using an easy to install product that communicates live readings directly to the existing billing system. A background of situations where temporary metering is a possible alternative to regular meters was presented. Use of electronic, clamp on Electronic Recording Ammeters (ERA) and their drawbacks were discussed. An improved temporary metering solution using FM radio transmission to deliver live data to a receiving device, the Eagle Series 3500, was introduced. Improvements over previous ERA systems were discussed, including accuracy, lack of batteries, immediate confirmation of functionality, current, voltage and power factor monitoring, direct feed to billing system, line crew savings, need for only a single unit at any given site, bi-directional power flow metering, independent report storage media, and a portable voltage and P.F. diagnostic tool. Details of trial applications at the Utopia distribution station west of Barrie, ON were presented. This technology was said to be still in the testing stage, but its flexibility and economy were sonsidered to be very promising for future application.

  4. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  5. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    OpenAIRE

    Puentes,N. A. G.; Guerra,V. G.; Coury,J. R.; Gonçalves,J. A. S.

    2012-01-01

    A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" ...

  6. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    OpenAIRE

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  7. Experimental procedure for the determination of counting efficiency and sampling flow rate of a grab-sampling working level meter

    International Nuclear Information System (INIS)

    Grenier, M.; Bigu, J.

    1982-07-01

    The calibration procedures used for a working level meter (WLM) of the grab-sampling type are presented in detail. The WLM tested is a Pylon WL-1000C working level meter and it was calibrated for radon/thoron daughter counting efficiency (E), for sampling pump flow rate (Q) and other variables of interest. For the instrument calibrated at the Elliot Lake Laboratory, E was 0.22 +- 0.01 while Q was 4.50 +- 0.01 L/min

  8. Advances in gas flow metering - end of the history, peaceful co-existence or a new beginning; Les avancees dans le mesurage des debits de gaz - fin de l'histoire, coexistence pacifique ou nouveau commencement

    Energy Technology Data Exchange (ETDEWEB)

    Studzinski, W. [NOVA Research and Technology Centre, Calgary (Canada)

    2000-07-01

    Gas flow metering plays an important role in the technical and fiscal operations of pipeline systems. Over the last hundred years, the industry has gone through several technical revolutions. The recent two decades were characterized by the introduction of flow computers in the 80's and acceptance of ultrasonic meters in the 90's. These changes, associated with measurement technology, have had a profound impact on pipeline operation, deregulation of the gas industry and gas trading. Significant advances were made, however, it is certainly not the end for progress in gas flow metering. The future development of optoelectronic and mass flow meters combined with advances in telemetry and tele-calibration may significantly reduce capital and maintenance costs. Classical flow meters will be upgraded to a new level of performance and will co-exist with the newest technologies. The uncertainty of flow measurement will be improved, mainly in terms of stability over longer periods of time. Old and new meters will be able to perform in environments other than dry natural gas. Processing of flow measurement data will evolve with the progress in flow computers and smart transmitters. The advances in gas flow metering will be driven by life cycle cost reduction as well as new business and service requirements. (author)

  9. High capacity Venturi scrubber to separate aerosol-borne radioactivity from an air-gas-steam mixture. Final report

    International Nuclear Information System (INIS)

    Mayinger, F.; Glueckert, U.

    1993-01-01

    All German LWR are equipped with devices which in the case of a hypothetic accident permit a filtered depressurization of the containment precluding failure of the latter and minimizing the release of radioactive materials into the environment. To filter the aerosol charged air-steam mixture from the containment also a venturi scrubber is used. It has the great advantage that it can remove safely and over a certain period of time, even without active cooling systems, the after-heat released from the separated radioactive materials. Those separated radioactive materials are trapped in a scrubbing liquid which, in the event of a temporary failure of all active cooling systems, may partly evaporate and thus remove the heat in a completely passive way. The venturi scrubbers conceived earlier by the reactor manufacturer are of a very simple design and not optimized to achieve highest separation degrees. Therefore development work was started to optimize the separation behaviour of the venturi scrubber precisely with regard to submicron aerosols which are to be expected after a core meltdown accident. To achieve this, a special concept of scrubbing liquid addition developed by the contractor, the so-called multistage concept, was applied adapting it to the specific requirements. (orig./HP) [de

  10. A simpler sampling interface of venturi easy ambient sonic-spray ionization mass spectrometry for high-throughput screening enzyme inhibitors.

    Science.gov (United States)

    Liu, Ning; Liu, Yang; Yang, YuHan; He, Lan; Ouyang, Jin

    2016-03-24

    High-throughput screening (HTS) is often required in enzyme inhibitor drugs screening. Mass spectrometry (MS) provides a powerful method for high-throughput screening enzyme inhibitors because its high speed, sensitivity and property of lable free. However, most of the MS methods need complicated sampling interface system. Overall throughput was limited by sample loading in these cases. In this study, we develop a simple interface which coupled droplet segmented system to a venturi easy ambient sonic-spray ionization mass spectrometer. It is fabricated by using a single capillary to act as both sampling probe and the emitter, which simplifies the construction, reduces the cost and shorten the sampling time. Samples sucked by venturi effect are segmented to nanoliter plugs by air, then the plugs can be detected by MS directly. This system eliminated the need for flow injection which was popular used in classic scheme. The new system is applied to screen angiotensin converting enzyme inhibitors. High-throughput was achieved in analyzing 96 samples at 1.6 s per sample. The plugs formation was at 0.5s per sample. Carry-over between samples was less than 5%, the peak height RSD was 2.92% (n = 15). Dose-response curves of 3 known inhibitors were also measured to validate its potential in drug discovery. The calculated IC50 agreed well with reported values. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Science.gov (United States)

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  12. An evaluation of the active fracture concept with modeling unsaturated flow and transport in a fractured meter-sized block of rock

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-01-01

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network

  13. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  14. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements

    Science.gov (United States)

    Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.

    2018-06-01

    A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.

  15. Development of structure design program for venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng

    2012-01-01

    A structure design program was developed for Venturi scrubber working at the self-priming mode. This program proposed a complete logic for thermal parameters calculation and structure design of the throat. A revised calculation for resistance relationship was carried out based on experimental study. The relative error between revised results and experimental values is within 8.6%. (authors)

  16. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  17. Modeling of surface tension effects in venturi scrubbing

    Science.gov (United States)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  18. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  19. Modelling and calibration of a ring-shaped electrostatic meter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianyong [University of Teesside, Middlesbrough TS1 3BA (United Kingdom); Zhou Bin; Xu Chuanlong; Wang Shimin, E-mail: zhoubinde1980@gmail.co [Southeast University, Sipailou 2, Nanjing 210096 (China)

    2009-02-01

    Ring-shaped electrostatic flow meters can provide very useful information on pneumatically transported air-solids mixture. This type of meters are popular in measuring and controlling the pulverized coal flow distribution among conveyors leading to burners in coal-fired power stations, and they have also been used for research purposes, e.g. for the investigation of electrification mechanism of air-solids two-phase flow. In this paper, finite element method (FEM) is employed to analyze the characteristics of ring-shaped electrostatic meters, and a mathematic model has been developed to express the relationship between the meter's voltage output and the motion of charged particles in the sensing volume. The theoretical analysis and the test results using a belt rig demonstrate that the output of the meter depends upon many parameters including the characteristics of conditioning circuitry, the particle velocity vector, the amount and the rate of change of the charge carried by particles, the locations of particles and etc. This paper also introduces a method to optimize the theoretical model via calibration.

  20. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  1. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Directory of Open Access Journals (Sweden)

    Snorri Donaldsson

    Full Text Available The ability to determine airflow during nasal CPAP (NCPAP treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing.Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically.The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance.The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  2. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  3. Influence of gas inlet angle on the mixing process in a Venturi mixer

    Directory of Open Access Journals (Sweden)

    Romańczyk Mathias

    2017-01-01

    Full Text Available In this paper numerical analysis were performed to investigate the influence of gas inlet angle on mixing process in a Venturi mixer. Performance of an industrial gas engine depends significantly on the quality of mixing air and fuel; therefore, on the homogeneity of the mixture. In addition, there must be a suitable, adapted to the current load of fuel, air ratio. Responsible for this fact, among others, is the mixer located before entering the combustion chamber of the engine. Incorrect mixture proportion can lead to unstable operation of the engine, as well as higher emissions going beyond current environmental standards in the European Union. To validate the simulation the Air-Fuel Ratio (AFR was mathematically calculated for the air-fuel mixture of lean combustion gas engine. In this study, an open source three-dimensional computational fluid dynamics (CFD modelling software OpenFOAM has been used, to investigate and analyse the influence of different gas inlet angles on mixer characteristics and their performances. Attention was focused on the air-fuel ratio changes, pressure loss, as well as improvement of the mixing quality in the Venturi mixer.

  4. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. In-core flow measurement and calibration of gags using on-load instrumented stringers in a C.A.G.R. at Hinkley Point 'B'

    International Nuclear Information System (INIS)

    Harrison, W.E.; Carrick, I.H.

    1982-06-01

    The initial fuel loading of the first CAGR at Hinkley Point included 5 specially instrumented stringers (OLIS) each containing a flow-measuring venturi and additional thermocouples. Venturi absolute and differential pressures were measured by transducers mounted on the pile-cap. Transducers and thermocouples were routed to a computer/logger and processed into stringer performance data. The venturi was engineered to comply closely with appropriate British Standards but compromises were made to minimise interaction with other functions of the OLIS plug unit, justifying rig calibration of venturis to check for deviation in behaviour. High accuracy and reliability of the flow measuring system were established by thorough commissioning procedures. The transducers were selected for low sensitivity to their operational environment. Nevertheless calibration of all transducers was carried out both in laboratory and in-situ. Errors introduced by signal processing were identified and zero drift monitored. Pipe-runs were scrupulously leak-tested and leak sensitivity was evaluated. After one year re-calibration and recommissioning gave confidence of long term stability. Measurements of stringer behaviour were collected in a series of tests spanning the full range of both the setting of the channel flow control gags and the reactor power. Throughout these tests comprehensive monitoring, with intercalibration between the OLIS and comparison with installed reactor instrumentation has quantified residual error. These measurements were used to check the theoretical model used by the station for channel flow assessment. The excellent agreement obtained justified proceeding to the derivation of a universal gag resistance calibration applying to all power levels. In performance tests aimed at evaluation of overall generating efficiency, the theoretical model was used to make accurate estimates of reactor power and flow which agreed well with estimates based directly on further OLIS

  6. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  7. Pulpal blood flow recorded from exposed dentine with a laser Doppler flow meter using red or infrared light.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Vongsavan, Noppakun; Matthews, Bruce

    2018-03-01

    To determine the percentage of the blood flow signal that is derived from dental pulp when recording from exposed dentine in a human premolar. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-33 yr.) with a laser Doppler flow meter (Periflux 4001) using either a red (635 nm) or an infrared (780 nm) laser. After exposing dentine above the buccal pulpal horn (cavity diam. 1.6 mm, depth 3 mm) and isolating the crown with opaque rubber dam, blood flow was recorded alternately with infrared or red light from the exposed dentine under four conditions: before and after injecting local anaesthetic (3% Mepivacaine without vasoconstrictor) (LA) over the apex of the root of the tooth; after exposing the pulp by cutting a buccal, class V cavity in the tooth; and after sectioning the coronal pulp transversely through the exposure. There was no significant change in mean blood flow recorded with either light source when the tooth was anaesthetized or when the pulp was exposed. After the pulp had been sectioned, the blood flow recorded with infrared light fell by 67.8% and with red light, by 68.4%. The difference between these effects was not significant. When recording blood flow from exposed coronal dentine with either infrared or red light in a tooth isolated with opaque rubber dam, about 68% to the signal was contributed by the pulp. The signal:noise ratio was better with infrared than red light, and when recording from dentine than enamel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Apparent losses due to domestic water meter under-registration in South Africa

    OpenAIRE

    Couvelis, FA; van Zyl, JE

    2015-01-01

    This study investigated the extent of apparent losses due to water meter under-registration in South Africa. This was done by first estimating the under-registration of new meters due to on-site leakage, and then the additional under-registration due to meter aging. The extent and flow distributions of on-site leakage were determined through field studies in Cape Town, Mangaung and Johannesburg, by measuring the flow through new water meters when no legitimate consumption occurred on the prop...

  9. Data system for multiplexed water-current meters

    Science.gov (United States)

    Ramsey, C. R.

    1977-01-01

    Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.

  10. Elbow mass flow meter

    Science.gov (United States)

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  11. Experimental Study of Cavitation in Laminar Flow

    OpenAIRE

    Croci , Kilian; Ravelet , Florent; ROBINET , Jean-Christophe; Danlos , Amélie

    2017-01-01

    An experimental setup has been especially developed in order to observe cavitation in laminar flows. Experiments have been carried out with a silicon oil of viscosity υ = 100cSt passing through a Venturi-type geometry with 18°/8° convergent/divergent angles respectively. The range of Reynolds numbers at the inlet section is between 350 and 1000. Two dynamic regimes are identified. They are characterized by two critical Reynolds numbers, induced by major hydrodynamic changes in the flow, in ad...

  12. A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas

    International Nuclear Information System (INIS)

    Roach, G.J.; Watt, J.S.

    1997-01-01

    Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997

  13. Clean water billing monitoring system using flow liquid meter sensor and SMS gateway

    Science.gov (United States)

    Fahmi, F.; Hizriadi, A.; Khairani, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Public clean water company (PDAM) as a public service is designed and organized to meet the needs of the community. Currently, the number of PDAM subscribers is very big and will continue to grow, but the service and facilities to customers are still done conventionally by visiting the customer’s home to record the last position of the meter. One of the problems of PDAM is the lack of disclosure of PDAM customers’ invoice because it is only done monthly. This, of course, makes PDAM customers difficult to remember the date of payment of water account. Therefore it is difficult to maintain the efficiency. The purpose of this research is to facilitate customers of PDAM water users to know the details of water usage and the time of payment of water bills easily. It also facilitates customers in knowing information related to the form of water discharge data used, payment rates, and time grace payments using SMS Gateway. In this study, Flow Liquid Meter Sensor was used for data retrieval of water flowing in the piping system. Sensors used to require the help of Hall Effect sensor that serves to measure the speed of water discharge and placed on the pipe that has the same diameter size with the sensor diameter. The sensor will take the data from the rate of water discharge it passes; this data is the number of turns of the mill on the sensor. The results of the tests show that the built system works well in helping customers know in detail the amount of water usage in a month and the bill to be paid

  14. Fundamental principles of rotary displacement meters

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J. [Schlumberger Industries, Owenton, KY (United States)

    1995-12-01

    The gas meter exists to continually and accurately measure the volume of gas supplied over the complete flow range of the load. In effect the gas meter serves as the {open_quotes}cash register{close_quotes} of the gas industry; its accurate and dependable performance ensures fair dealings for both the supplier and the user. An investment both in and of itself, the gas meter should be chosen as a function of its usefullness both over the short term and the long term. Thus in addition to initial cost, one must take into account various associated factors, costs and benefits, including the following: Design Characteristics Application, suitability, Meter features and options, Operation constraints, Installation, Service and maintenance, Repair and replacement, Life expectancy, Compatibility with complimentary products, Correcting devices, Remote reading capabilities, Data generation and gathering, Upgradeabilty. This paper will look at one positive displacement meter, the Rotary meter, and address the fundamentals principals of the technology as well as looking at some of the benefits derived from its application. Rotary positive displacement meters were introduced at the end of last century. Used primarily for metering transmission sized loads, the meters` measuring capabilities have extended to cover nearly all areas of distribution with exception of domestic applications. Rotary meters are available in rated capacities from 800 cfh to 102,000 cfh and operating pressures from 175 PSIG to 1440 PSIG. The use of rotary meters on load ranges in the 800 to 10,000 cfh category has increased and is replacing the use of diaphragm meters because of the smaller relative size of rotaries, and improvements in rangeabilities in the last few years. Turbine meters are usually the meter of choice on loads over 16,000 cfh unless a meter with high rangeability is required because of varying load characteristics, in which case a large foot mounted rotary might still be selected.

  15. Venturi purification device and its application in purification of gaseous waste of nuclear facilities

    International Nuclear Information System (INIS)

    Kong Jinsong; Yu Ren; Yang Huanlei

    2013-01-01

    The working principle of Venturi purification device and its purification of aerosol have been described. Then, taking the gaseous iodine as an example, the absorption process of insoluble gas pollutants is discussed, the calculation methods of the gas-liquid contact area, mass transfer rate and efficiency of mass transfer are educed, and the factors that affect the efficiency of mass transfer are analyzed. (authors)

  16. Numerical study on over reading coefficient in wet steam flow measurement

    International Nuclear Information System (INIS)

    Bai Xuesong; Yuan Dewen; Yan Xiao; Peng Xingjian

    2013-01-01

    This paper investigated the flow process of wet steam in Venturi under interested conditions with CFD simulation software. The effect of pressure, mass flow rate, throat radius on over reading factor was analyzed. This paper aims to improve the wet steam over reading model and the prediction accuracy in wet steam. The results prove that the mass flow has a small effect on over reading coefficient, while the effect that throat radius has on over reading coefficient increases as the pressure rises. (authors)

  17. Numerical analysis of the performance of a venturi-shaped roof for natural ventilation : influence of building width

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Aanen, L.; Bronsema, B.

    2012-01-01

    A numerical analysis with Computational Fluid Dynamics (CFD) is performed to investigate the influence of building width on the performance of a venturi-shaped roof (called Ventec roof) for natural ventilation. The specific roof configuration is intended to create an underpressure in the narrowest

  18. An alternative arrangement of metered dosing fluid using centrifugal pump

    Science.gov (United States)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  19. How today's USM diagnostics solve metering problems[Ultrasonic meters

    Energy Technology Data Exchange (ETDEWEB)

    Lansing, John

    2005-07-01

    This paper discusses both basic and advanced diagnostic features of gas ultrasonic meters (USM), and how capabilities built into today's electronics can identify problems that often may not have been identified in the past. It primarily discusses fiscal-quality, multi-path USMs and does not cover issues that may be different with non-fiscal meters. Although USMs basically work the same, the diagnostics for each manufacturer does vary. All brands provide basic features as discussed in AGA 9. However, some provide advanced features that can be used to help identify issues such as blocked flow conditioners and gas compositional errors. This paper is based upon the Daniel USM design and the information presented here may or may not be applicable to other manufacturers. (author) (tk)

  20. Manage costs and revenues by achieving continuous measurement certainty with the Auto-Adjust Turbo Meter; Gerez les couts et les recettes en acquerant une certitude continuelle de mesure grace au Auto-Adjust Turbo Meter

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D. [Invensys Energy Metering, Pennsylvania (United States)

    2000-07-01

    Uncertainty in flow measurement and its consequent ramifications are accepted as normal costs of transporting and distributing natural gas. However, a notable advancement in turbine meter technology, pioneered by Invensys Energy Metering, uses two rotors in a tandem configuration to offer unique capabilities beyond those of the tried-and-proven, single-rotor turbine. A flow meter, which monitors its own performance and adjusts its measurement, on a real-time basis, for any deviations from its initial calibration, could largely eliminate many of the costs and lost revenue associated with flow metering and measurement uncertainty. The dual-rotor turbine, trade named the Auto-Adjust Turbo Meter (AAT), is such a flow meter; it provides Continuous Measurement Certainty, with the accompanying potential for enhanced management of costs and revenues. Proprietary algorithms in the AAT's secondary electronics correlate the velocities of the main rotor and the downstream sensing rotor, over the full range of the meter's rated capacity and pressure, such that a real-time adjustment to the indicated volume corrects it to the actual volume. Improved gas accountability results, and substantial savings related to meter site visits, meter testing and repair, preventive maintenance programs, and measurement disputes can be realized. Test data and case histories from a broad range of end users are related to demonstrate areas of potential savings and revenue recovery. (author)

  1. Effects of varying hydraulics on the calibration of eight path chordal ultrasonic meters

    International Nuclear Information System (INIS)

    Hauser, E.; Estrada, H.; Regan, J.

    2003-01-01

    Eight path transit time ultrasonic meters are being used in the US, Europe and Japan to support measurement uncertainty power uprates of nuclear power plants. Power uprates rely on the demonstration of improved power accuracy to justify a reduction in the traditional 2% margin between operating power and the power at which loss of coolant accidents and other transients have been analyzed. The flow, density and enthalpy of the feedwater are key elements in the power calculation, and the eight path ultrasonic meters measure the flow and temperature from which these elements are derived. A key element in the uncertainty analysis for these meters is an allowance for the uncertainties that the feedwater flow profiles introduce in the meters' flow calibrations. To minimize and bound this uncertainty calibration tests are performed on each eight path element to be used in an uprate application. This paper describes extensive testing of a prototype eight path meter, results of which have be used to define the sensitivity of 8 path meters to broad variations in flow profiles, both axial and transverse and to establish a methodology whereby the impact of these changes on the uncertainty of the meters can be minimized. This testing confirms the general insensitivity of 8 path chordal systems to axial and transverse fluid velocity profiles. An 8 path chordal system provides a quantitative measurement of the flatness of the axial profile, which allows a quantitative assessment of the differences in hydraulic profile seen by a meter in a plant versus the hydraulic profile seen by that same meter in the calibration lab. Since the sensitivity of the meter's calibration can be established as a function of profile flatness in the lab through parametric testing, the profile flatness in the plant can be used to confirm or to adapt as necessary the calibration coefficient measured in the lab for use in the plant. (author)

  2. Peak flow meter with a questionnaire and mini-spirometer to help detect asthma and COPD in real-life clinical practice: a cross-sectional study.

    Science.gov (United States)

    Thorat, Yogesh T; Salvi, Sundeep S; Kodgule, Rahul R

    2017-05-09

    Peak flow meter with questionnaire and mini-spirometer are considered as alternative tools to spirometry for screening of asthma and chronic obstructive pulmonary disease. However, the accuracy of these tools together, in clinical settings for disease diagnosis, has not been studied. Two hundred consecutive patients with respiratory complaints answered a short symptom questionnaire and performed peak expiratory flow measurements, standard spirometry with Koko spirometer and mini-spirometry (COPD-6). Spirometry was repeated after bronchodilation. Physician made a final diagnosis of asthma, chronic obstructive pulmonary disease and others. One eighty nine patients (78 females) with age 51 ± 17 years with asthma (115), chronic obstructive pulmonary disease (33) and others (41) completed the study. "Breathlessness > 6months" and "cough > 6months" were important symptoms to detect obstructive airways disease. "Asymptomatic period > 2 weeks" had the best sensitivity (Sn) and specificity (Sp) to differentiate asthma and chronic obstructive pulmonary disease. A peak expiratory flow of meter with few symptom questions can be effectively used in clinical practice for objective detection of asthma and chronic obstructive pulmonary disease, in the absence of good quality spirometry. Mini-spirometers are useful in detection of obstructive airways diseases but FEV 1 measured is inaccurate. DIFFERENTIATING CONDITIONS IN POORLY-EQUIPPED SETTINGS: A simple questionnaire and peak flow meter measurements can help doctors differentiate between asthma and chronic lung disease. In clinical settings where access to specialist equipment and knowledge is limited, it can be challenging for doctors to tell the difference between asthma and chronic obstructive pulmonary disease (COPD). To determine a viable alternative method for differentiating between these diseases, Rahul Kodgule and colleagues at the Chest Research Foundation in Pune, India, trialed a simplified version

  3. Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light.

    Science.gov (United States)

    Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce

    2011-07-01

    To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human premolar teeth. Recordings were made from 11 healthy teeth in 9 subjects (aged 16-30 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, the dam significantly decreased the mean blood flow by 80%. Injecting LA and cavity preparation had no significant effect. Removal and replacement of the pulp reduced the mean blood flow by 58%. There was no further change when the pulp was removed. With red light, the dam reduced the signal from intact teeth by 60%. Injecting LA and cavity preparation had no significant effect. The signal fell by 67% after pulp removal and replacement and did not change significantly when the pulp was removed. Opaque rubber dam minimises the contribution of non-pulpal tissues to the laser Doppler signal recorded from premolars. Using dam, the pulp contributed about 60% to the blood flow signal with both red and infrared light. The difference between them in this respect was not significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  5. Analysis and design of flow limiter used in steam generator

    International Nuclear Information System (INIS)

    Liu Shixun; Gao Yongjun

    1995-10-01

    Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)

  6. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.

    1998-01-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  7. Proposed method for reconstructing velocity profiles using a multi-electrode electromagnetic flow meter

    International Nuclear Information System (INIS)

    Kollár, László E; Lucas, Gary P; Zhang, Zhichao

    2014-01-01

    An analytical method is developed for the reconstruction of velocity profiles using measured potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). The method is based on the discrete Fourier transform (DFT), and is implemented in Matlab. The method assumes the velocity profile in a section of a pipe as a superposition of polynomials up to sixth order. Each polynomial component is defined along a specific direction in the plane of the pipe section. For a potential distribution obtained in a uniform magnetic field, this direction is not unique for quadratic and higher-order components; thus, multiple possible solutions exist for the reconstructed velocity profile. A procedure for choosing the optimum velocity profile is proposed. It is applicable for single-phase or two-phase flows, and requires measurement of the potential distribution in a non-uniform magnetic field. The potential distribution in this non-uniform magnetic field is also calculated for the possible solutions using weight values. Then, the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The reliability of the method is first demonstrated by reconstructing an artificial velocity profile defined by polynomial functions. Next, velocity profiles in different two-phase flows, based on results from the literature, are used to define the input velocity fields. In all cases, COMSOL Multiphysics is used to model the physical specifications of the EMFM and to simulate the measurements; thus, COMSOL simulations produce the potential distributions on the internal circumference of the flow pipe. These potential distributions serve as inputs for the analytical method. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The method described in this paper is most suitable for stratified flows and is not applicable to axisymmetric flows in

  8. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  9. Analysis of a Multi-Venturi filter for the venting of the primary container of a nuclear reactor

    International Nuclear Information System (INIS)

    Reyes G, A. A.; Sainz M, E.; Ortiz V, J.

    2017-09-01

    Since the Chernobyl nuclear accident, European nuclear power plants have opted to install filters in the containment vent pipes, whose function is to help mitigate the consequences of a severe accident, by means of the controlled depressurization of the containment passively through of a containment filtering vent system. These systems are designed to relieve the internal pressure of containment by deliberately opening pressure relief devices, either a valve or rupture disk during a severe accident and being channeled to the filtering unit. In this work, the hydraulic response of a liquid gas washing filtration system is evaluated, since this information is necessary to estimate the effect of the increase of the containment pressure on the venting capacity of the vent pipes. Through CFD simulation, using the programs with open source license CaeLinux-2014 and OpenFoam, the hydrodynamic characteristics of the Multi-Venturi system were obtained for the washing of the gases coming from the containment, which could be included in the general model of the vent pipe. Representative models of the venturi tubes of each concentric sector that are part of the washing system were generated and by parametric calculations the average mass expense established by each venturi was estimated, according to its dimensions and depth to which is located inside the tank. In the same way, the pressure and mass expense required to activate each concentric sector was calculated according to the pressure and mass load from the containment, in order to estimate the maximum expenditure that is established through the filter. The velocity profiles and the characteristic pressure at which each sector operates were also calculated, as well as the local and global discharge pressure drop. (Author)

  10. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, A.

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  11. Advanced Metering Infrastructure based on Smart Meters

    Science.gov (United States)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  12. Model to calculate mass flow rate and other quantities of two-phase flow in a pipe with a densitometer, a drag disk, and a turbine meter

    International Nuclear Information System (INIS)

    Aya, I.

    1975-11-01

    The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model

  13. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  14. DETERMINATION OF HYDRAULIC TURBINE EFFICIENCY BY MEANS OF THE CURRENT METER METHOD

    Directory of Open Access Journals (Sweden)

    PURECE C.

    2016-12-01

    Full Text Available The paper presents methodology used for determining the efficiency of a low head Kaplan hydraulic turbine with short converging intake. The measurement method used was the current meters method, the only measurement method recommended by the IEC 41standard for flow measurement in this case. The paper also presents the methodology used for measuring the flow by means of the current meters method and the various procedures for calculating the flow. In the last part the paper presents the flow measurements carried out on the Fughiu HPP hydraulic turbines for determining the actual operating efficiency.

  15. Development of quick-response area-averaged void fraction meter. Application to BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    Authors have been developed a practical conductance-type void fraction meter to measure instantaneously area-averaged void fraction in rod bundle. The principle of the meter is based on the fact that the electrical conductance changes with the change of void fraction in gas-liquid two-phase flow. According to air/water two-phase flow experiment, the void fraction was approximated by {alpha}=1-I/I{sub 0}, where {alpha} and I are void fraction and current (I{sub 0} is current at {alpha}=0). Authors investigated the performance of the void fraction meter under high temperature/high pressure conditions (BWR condition; 290degC, 7MPa). The results indicated that the void fraction was approximated by {alpha}=1-I/I{sub 0} even under high temperature/high pressure condition of stem/water flow. However, it is necessary to take account of temperature dependency of water specific conductance. Therefore, authors derived a correction equation for temperature dependency. Further, for applying the void fraction meter to a large-scale facility, it was found to be necessary to reduce the capacitance of the circuit. Then, authors developed the method to reduce the capacitance effect. Finally, authors succeeded to measure the void fraction in 2 x 2 bundle flow path at the range of 0% - 70% in the error of 10% under high temperature/high pressure and mass flux of less than 133 kg/m{sup 2}s. Developed void fraction meter is theoretically not affected by flow rate. Therefore, it can be applied to the condition of oscillating flow. (author)

  16. Cryogenic instrumentation for ITER magnets

    Science.gov (United States)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  17. High-Flow Nasal Interface Improves Oxygenation in Patients Undergoing Bronchoscopy

    Directory of Open Access Journals (Sweden)

    Umberto Lucangelo

    2012-01-01

    Full Text Available During bronchoscopy hypoxemia is commonly found and oxygen supply can be delivered by interfaces fed with high gas flows. Recently, the high-flow nasal cannula (HFNC has been introduced for oxygen therapy in adults, but they have not been used so far during bronchoscopy in adults. Forty-five patients were randomly assigned to 3 groups receiving oxygen: 40 L/min through a Venturi mask (V40, N=15, nasal cannula (N40, N=15, and 60 L/min through a nasal cannula (N60, N=15 during bronchoscopy. Gas exchange and circulatory variables were sampled before (FiO2 = 0.21, at the end of bronchoscopy (FiO2 = 0.5, and thereafter (V40, FiO2 = 0.35. In 8 healthy volunteers oxygen was randomly delivered according to V40, N40, and N60 settings, and airway pressure was measured. At the end of bronchoscopy, N60 presented higher PaO2, PaO2/FiO2, and SpO2 than V40 and N40 that did not differ between them. In the volunteers (N60 median airway pressure amounted to 3.6 cmH2O. Under a flow rate of 40 L/min both the Venturi mask and HFNC behaved similarly, but nasal cannula associated with a 60 L/min flow produced the better results, thus indicating its use in mild respiratory dysfunctions.

  18. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  19. The development of NRTM-turbine flow meter and measurement of the coolant flow rate in-core of 5 MW heating reactor

    International Nuclear Information System (INIS)

    Zha Meisheng; Wang Xiuqin; Ni Mengchen

    1995-01-01

    In order to measure the coolant flow rate in-core of 5 MW Heating Reactor the special turbine flowmeter of the type of NRTM has been developed. It consists of a body, a turbine with long screw blade and six pieces of Alnico magnets, and a coil mounted on the body. The advantage of this turbine flowmeter is of low resistance and long working-life. Another advantage is that when the turbine is working or not working its factor of resistance is about the same. It is very important for a natural circulation heating reactor. Because the cable, which is welded to the coil assembly, is long enough to extend out of the reactor vessel to the control room, the signal of flow rate is easy to be disturbed by noise in the case. The traditional method of counting the frequency of the A-C voltage which is induced in the coil has a poor ability for resisting noise. The method of the frequency-spectrum analysis of the frequency of the A-C voltage is used to make sure the accuracy of the measurement of the turbine flow meter. Compared with the method of the count it has a good ability for resisting noise. After three years operation a lot of valuable data were obtained

  20. Using Modelica to investigate the dynamic behaviour of the German national standard for high pressure natural gas flow metering

    International Nuclear Information System (INIS)

    Von der Heyde, M; Schmitz, G; Mickan, B

    2016-01-01

    This paper presents a computational model written in Modelica for the high pressure piston prover (HPPP) used as the national primary standard for high pressure natural gas flow metering in Germany. With a piston prover the gas flow rate is determined by measuring the time a piston needs to displace a certain volume of gas in a cylinder. Fluctuating piston velocity during measurement can be a significant source of uncertainty if not considered in an appropriate way. The model was built to investigate measures for the reduction of this uncertainty. Validation shows a good compliance of the piston velocity in the model with measured data for certain volume flow rates. Reduction of the piston weight, variation of the start valve switching time and integration of a flow straightener were found to reduce the piston velocity fluctuations in the model significantly. The fast and cost effective generation of those results shows the strength of the used modelling approach. (paper)

  1. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  2. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    Science.gov (United States)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  3. Calibration of the BASS acoustic current meter with carrageenan agar

    Science.gov (United States)

    Morrison, A.T.; Williams, A.J.; Martini, M.

    1993-01-01

    The BASS current meter can measure currents down to the millimeter per second range. Due to the dependence of zero offset on pressure, determining a sensor referenced velocity requires accurate in situ zeroing of the meter. Previously, flow was restricted during calibration by placing plastic bags around the acoustic volume. In this paper, bacterial grade and carrageenan agars are used in the laboratory to create a zero flow condition during calibration and are shown to be acoustically transparent. Additionally, the results of open ocean and dockside carrageenan and plastic bag comparisons are presented. Carrageenan is shown to reliably provide a low noise, zero mean flow environment that is largely independent of ambient conditions. The improved zeros make millimeter per second accuracy possible under field conditions.

  4. Cavitation and polyphase flow forum, 1975. Joint meeting of Fluids Engineering and Lubrication Division, Minneapolis, Minnesota, May 5--7, 1975

    International Nuclear Information System (INIS)

    Waid, R.L.

    1975-01-01

    The nine papers which comprise the 1975 Forum present a wide range of primarily experimental studies of cavitation and polyphase flows. These papers include the polyphase mechanism in froths, the cavitation collapse pressures in venturi flow, the effects of test conditions on developed cavity flow, a cavitation hypothesis for geophysical phenomena, the character and design of centrifugal pumps for cavitation performance, and the effect of fluid and magnetic and electrical fields on cavitation erosion

  5. Experimental study of pressure drop characteristics of venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng; Guo Xueqing; Yu Yong

    2012-01-01

    The pressure drop characteristics of Venturi scrubber working at self-priming mode were studied experimentally. The test sections were smooth glass scrubbers, with air and water as the working medium. The results show that the trends of empirical formula are more consistent with that of the experimental results, but the relative error is large, up to ±50% or more. The experimental correlation is proposed based on the experimental research, and the calculated results of which can well predict the experimental data and the relative error is within ±15%. (authors)

  6. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  7. Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E.

    2016-07-27

    The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that we make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering goals, but

  8. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    Science.gov (United States)

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  9. Development of portable flow calibrator

    International Nuclear Information System (INIS)

    Akiyama, Kiyomitsu; Iijima, Nobuo

    1995-01-01

    In the nuclear facilities, air sniffer system is often utilized to evaluate atmospheric concentration of radioactivity in the working environment. The system collects airborne dust on the filter during some sampling period. In this method, total air flow during the sampling period is an important parameter to evaluate the radioactivity concentration correctly. Therefore, calibration for the flow meter of air sniffer system must be done periodically according to Japan Industry Standards (JIS). As we have had to available device to calibrate the flow meter in the working area, we had to remove the flow meters from the installed place and carry them to another place where calibration can be made. This work required a great deal of labor. Now we have developed a portable flow calibrator for air sniffer system which enables us to make in-site calibration of the flow meter in the working area more easily. This report describes the outline of portable flow calibrator and it's experimental results. (author)

  10. Wet gas metering with the v-cone and neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, Haluk; Cai, Shiqian; Peters, Robert

    2005-07-01

    The paper presents analysis of extensive measurements taken at NEL, K-Lab and CEESI wet gas test loops. Differential and absolute pressure signals were sampled at high frequency across V-Cone meters. Turbulence characteristics of the flow captured in the sampled signals were characterized by pattern recognition techniques and related to the fractions and flow rates of individual phases. The sensitivity of over-reading to first and higher order features of the high frequency signals were investigated qualitatively. The sensitivities were quantified by means of the saliency test based on back propagating neural nets. A self contained wet gas meter based on neural net characterization of first and higher order features of the pressure, differential pressure and capacitance signals was proposed. Alternatively, a wet gas meter based on a neural net model of just pressure sensor inputs (based on currently available data) and liquid Froude number was shown to offer an accuracy of under 5% if the Froude number could be estimated with 25% accuracy. (author) (tk)

  11. 75 FR 43556 - Badger Meter, Inc., Including On-Site Leased Workers From Sourcepoint Staffing, Seek, and...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,666] Badger Meter, Inc... of Badger Meter, Inc., including on-site leased workers from Sourcepoint Staffing, Milwaukee... workers are engaged in the production of flow measurement devices and automatic meter reading equipment...

  12. Analysis of the interaction between a submerged jet and a receiver-diffuser in a reverse-flow diverter. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1983-01-01

    Two mathematical models of the interaction between a submerged jet emanating from the nozzle of a reverse flow diverter (RFD) and a receiver-diffuser of a venturi-like reverse flow diverter are presented and compared with experimental data. Both models predict the output characteristics fairly accurately, although the experimentally measured flow is observed to saturate at higher values of jet dynamic pressure and at lower values of output load impedances. An analysis based on the inviscid flow model indicates cavitation as the likely cause of the flow saturation

  13. Electricity as (Big Data: Metering, spatiotemporal granularity and value

    Directory of Open Access Journals (Sweden)

    Mette Kragh-Furbo

    2018-02-01

    Full Text Available Electricity is hidden within wires and networks only revealing its quantity and flow when metered. The making of its properties into data is therefore particularly important to the relations that are formed around electricity as a produced and managed phenomenon. We propose approaching all metering as a situated activity, a form of quantification work in which data is made and becomes mobile in particular spatial and temporal terms, enabling its entry into data infrastructures and schemes of evaluation and value production. We interrogate the transition from the pre-digital into the making of bigger, more spatiotemporally granular electricity data, through focusing on those actors selling and materialising new metering technologies, data infrastructures and services for larger businesses and public sector organisations in the UK. We examine the claims of truth and visibility that accompany these shifts and their enrolment into management techniques that serve to more precisely apportion responsibility for, and evaluate the status of, particular patterns and instances of electricity use. We argue that whilst through becoming Big Data electricity flow is now able to be known and given identity in significantly new terms, enabling new relations to be formed with the many heterogeneous entities implicated in making and managing energy demand, it is necessary to sustain some ambivalence as to the performative consequences that follow for energy governance. We consider the wider application of our conceptualisation of metering, reflecting on comparisons with the introduction of new metering systems in domestic settings and as part of other infrastructural networks.

  14. Nomogramas para ensamble y uso de la Inyectora Unidrench® de dispositivo venturi

    Directory of Open Access Journals (Sweden)

    Villalobos Roberto

    2010-08-01

    Full Text Available El término drench se refiere a la incorporación al suelo de un agroquímico en solución con el riego. Basada en un dispositivo venturi, Unidrench® es una inyectora desarrollada para aplicar este tipo de productos en áreas cultivadas en camas con especies como flores, hierbas aromáticas, hortalizas, etc. Operando con cualquier hidrante que suministre agua a presión, la inyectora permite realizar aplicaciones eficientes a través de sistemas de riego manual con manguera, empleando boquillas denominadas de acuerdo a su forma como cacho, codo, poma, flauta, y otras. Como las especificaciones del equipo se ajustan según las necesidades del usuario, el objetivo de esta investigación consistió en la caracterización hidráulica de la inyectora Unidrench ® y la construcción de sus nomogramas de desempeño. En el Laboratorio de Hidráulica de la Universidad Nacional de Colombia, sede Bogotá, se probaron diferentes especificaciones, así: i para cinco tipos de boquilla (descarga libre, cacho doble, flauta y poma doble de 400 y 1.000 huecos, se determinaron tanto caudales de riego como de inyección; ii se probaron dos longitudes (50 y 75 m de manguera de PVC; iii tanto en esta última como en los inyectores venturi que utiliza el sistema se ensayaron diámetros de 1,9 y 2,54 cm (¾ y 1 pulgada; y iv los reguladores de presión se evaluaron a seis niveles diferentes (15, 20, 25, 30, 35 y 40 PSI . Para facilitar la utilización del equipo se incluyen sus instrucciones de operación.

  15. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    Science.gov (United States)

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  16. 40 CFR Table 3 to Subpart Mmmmm of... - Performance Test Requirements for New or Reconstructed Flame Lamination Affected Sources

    Science.gov (United States)

    2010-07-01

    ... data only required for venturi scrubbers) every 15 minutes during the entire duration of each 1-hour... (pressure drop data only required for Venturi scrubbers) over the period of the performance test by... liquid flow rate, scrubber effluent pH, and pressure drop (pressure drop data only required for venturi...

  17. 40 CFR 63.7833 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Science.gov (United States)

    2010-07-01

    ... and maintaining each venturi scrubber CPMS according to § 63.7831(g) and recording all information... produced. (g) If the hourly average pressure drop or water flow rate for a venturi scrubber or hourly... corrective action(s) taken, and the date on which corrective action was completed. (d) For each venturi...

  18. Smart metering - energy data management at every meter point; Smart Metering - Energiedatenmanagement an jedem Zaehlpunkt

    Energy Technology Data Exchange (ETDEWEB)

    Keller-Giessbach, D.; Kiel, E. [LogicaCMG, Muenchen (Germany)

    2007-09-15

    The demise of monopolistic structures in the German energy market has also led to a change of perspective on metering. New requirements have to be met. Even in mass processing jobs such as meter reading it is no longer sufficient to simply read consumption data off a technically reliable meter or have customers do this themselves in preparation of billing. Currently used meters were not designed with a mind to demand management, environmental protection through energy conservation, changes in consumer behaviour or new service offers. This has been recognised in many European countries since the beginning of the present decade. The traditional task of metering is developing into a more comprehensive energy data management that takes account of the needs of customers, energy suppliers and regulatory requirements.

  19. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Directory of Open Access Journals (Sweden)

    Jaime M Beecroft

    2006-01-01

    Full Text Available BACKGROUND: The OxyMask (Southmedic Inc, Canada is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA in patients with chronic hypoxemia.

  20. Response of a gas turbine meter to an acoustic flow : validation of numerical models

    NARCIS (Netherlands)

    Stoltenkamp, P.W.; Luo, X.; Uittert, van F.M.R.; Zorge, R.A.; Hirschberg, A.

    2004-01-01

    We consider a turbine meter used for volume ow measurements in natural gas transport systems. In absence of main ow acoustical oscillations can induce rotation of the meter. This leads to spurious counts. We are in search of a theoretical model that would allow the design of a rotor minimizing

  1. Measuring a film flowing down a tube inner wall using a laser focus displacement meter and an image-processing method

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kobayashi, Kenji

    1999-01-01

    To elucidate details of the fascinating nonlinear phenomena of waves on a film, spatial temporal knowledge of the interfacial waves is essential. This paper presents an experimental study on waves on a film flowing down a vertical tube inner wall measured with a laser focus displacement meter (LFD) and an image-processing method. As a result, the film thickness was measured within a 1% margin of error by LFD, and the wave velocity was measured within a 10% margin of error by the image-processing. The experimental results are summarized as follows: At entry length L = 900 mm, the wave becomes a two-wave system. In the entry region, L = 216 mm, and 400 mm, the wave amplitude decreases as the flow rate increases, in the same manner as that in a film flowing down a plate wall. The velocity measured by the image processing agreed well with that calculated using Nusselt's theoretical equation and the Ito-Sasaki empirical equation for Reynolds numbers < 250. (author)

  2. Performance of Virtual Current Meters in Hydroelectric Turbine Intakes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Romero-Gomez, Pedro D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group

    2016-04-30

    Standards provide recommendations for the best practices in the installation of current meters for measuring fluid flow in closed conduits. These include PTC-18 and IEC-41 . Both of these standards refer to the requirements of the ISO Standard 3354 for cases where the velocity distribution is assumed to be regular and the flow steady. Due to the nature of the short converging intakes of Kaplan hydroturbines, these assumptions may be invalid if current meters are intended to be used to characterize turbine flows. In this study, we examine a combination of measurement guidelines from both ISO standards by means of virtual current meters (VCM) set up over a simulated hydroturbine flow field. To this purpose, a computational fluid dynamics (CFD) model was developed to model the velocity field of a short converging intake of the Ice Harbor Dam on the Snake River, in the State of Washington. The detailed geometry and resulting wake of the submersible traveling screen (STS) at the first gate slot was of particular interest in the development of the CFD model using a detached eddy simulation (DES) turbulence solution. An array of virtual point velocity measurements were extracted from the resulting velocity field to simulate VCM at two virtual measurement (VM) locations at different distances downstream of the STS. The discharge through each bay was calculated from the VM using the graphical integration solution to the velocity-area method. This method of representing practical velocimetry techniques in a numerical flow field has been successfully used in a range of marine and conventional hydropower applications. A sensitivity analysis was performed to observe the effect of the VCM array resolution on the discharge error. The downstream VM section required 11–33% less VCM in the array than the upstream VM location to achieve a given discharge error. In general, more instruments were required to quantify the discharge at high levels of accuracy when the STS was

  3. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    .... Since ground truth of the sea surface is still widely missing, a better understanding of the physics of these upper meter processes is of very important for the study of air-sea gas and momentum...

  4. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... gas mixture temperature, measured at a point immediately ahead of the critical flow venturi, must be.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...

  5. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  6. Otimização de sistema de autoaspiração de ar tipo Venturi para tratamento de água ferruginosa Optimization of auto-aspiration aeration system type Venturi for the treatment of ferruginous water

    Directory of Open Access Journals (Sweden)

    Jeferson S. Piccin

    2010-05-01

    Full Text Available Na confecção deste trabalho se utilizou a metodologia de superfície de resposta para otimizar o efeito do número de Reynolds, tempo de floculação e concentração de hipoclorito de sódio sobre a oxidação/floculação do ferro presente em águas subterrâneas em um sistema de aeração com autoaspiração de ar. O sistema se compunha de um vaso tipo Venturi, acoplado a um tubo de mistura para promover a oxigenação da água através da sucção do ar atmosférico. O mapeamento hidrodinâmico permitiu verificar as condições de operação no qual o sistema apresentou melhor eficiência de sucção de ar e menor consumo de energia, além de compará-las com as melhores condições a campo. Os resultados observados demonstraram que foi possível a remoção de 98,7% do ferro presente (residual ferro de 0,06 mg L-1 quando o sistema operou com número de Reynolds no estrangulamento do Venturi de 5,39 x 10(4, concentrações de hipoclorito de sódio de 38,4 mg L-1 e tempo de floculação 30 min. A metodologia de superfície de resposta foi satisfatória e permitiu otimizar as variáveis operacionais citadas.In this study the response surface methodology was used to optimize the effect of Reynolds number, flocculation time and sodium hypochlorite concentration on the iron oxidation/flocculation present in groundwaters in an aeration system with air auto-aspiration. This system was composed of a recipient type Venturi coupled to a mixture tube to promote the oxygenation of the water through the suction of the atmospheric air. The hydrodynamic mapping allowed the verification of the operation conditions in which the system presented the best air suction efficiency and energy consumption, and the comparison of the best field conditions. The observed results demonstrated that it was possible to remove 98.7% of present iron (residual iron of 0.06 mg L-1 when the system operated with Reynolds number of 5.39 x 10(4, sodium hypochlorite

  7. Meter Designs Reduce Operation Costs for Industry

    Science.gov (United States)

    2013-01-01

    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  8. Smart Metering. Technological, economic and legal aspects. 2. ed.; Smart Metering. Technologische, wirtschaftliche und juristische Aspekte des Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Koehler-Schute, Christiana (ed.)

    2010-07-01

    Smart metering comprises more than just meter technology, and the use of information and communication technologies is indispensable. Processes, roles and business models must be reconsidered as further challenges arise in the context of smart metering. For one, there is the operator of the metering points. Secondly, there is the end user who is in the role of an active market partner. Further, there is smart metering as a basic technology, e.g. for smart grids and smart homes. In spite of the need for action, many utilities are reluctant to introduce smart metering. Reasons for this are the cost, a lack of defined standards, and an unclear legal situation. On the other hand, smart metering offers potential for grids and distribution that should be made use of. The authors discuss all aspects of the subject. The point out the chances and limitations of smart metering and present their own experience. [German] Smart Metering geht weit ueber die Zaehlertechnologie hinaus und der Einsatz von Informations- und Kommunikationstechnologien ist unabdingbar. Damit einhergehend muessen Prozesse, Rollen und auch Geschaeftsmodelle neu durchdacht werden. Denn weitere Herausforderungen stehen im direkten Zusammenhang mit Smart Metering. Das ist zum einen die Rolle des Messstellenbetreibers / Messdienstleisters. Das ist zum anderen der Endnutzer, dem die Rolle des aktiven Marktpartners zugedacht wird. Das ist des Weiteren das Smart Metering als Basistechnologie beispielsweise fuer Smart Grid und Smart Home. Trotz des Handlungsdrucks stehen viele Unternehmen der Energiewirtschaft dem Smart Metering zurueckhaltend gegenueber. Drei gewichtige Gruende werden ins Feld gefuehrt: die Kostenfrage, nicht definierte Standards und die in vielen Bereichen ungeklaerte Gesetzeslage. Demgegenueber bietet das Smart Metering Potenziale fuer Netz und Vertrieb, die es zu nutzen gilt. Die Autoren setzen sich in ihren Beitraegen mit diesen Themen auseinander, zeigen Chancen, aber auch Grenzen des

  9. 40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures

    Science.gov (United States)

    2010-07-01

    ...-, nozzle-, or venturi-type fuel flowmeter under section 2.1.6 of appendix D to this part. These procedures... procedures for inspection of the primary element (i.e., orifice, venturi, or nozzle) of an orifice-, venturi... bypass stack, each of which has a certified flow monitor (e.g., a unit with a wet SO2 scrubber...

  10. A tool to increase information-processing capacity for consumer water meter data

    Directory of Open Access Journals (Sweden)

    Heinz E. Jacobs

    2012-06-01

    Objective: The objective of this research article was to describe the development of Swift, a locally developed software tool for analysing water meter data from an information management perspective, which engineers in the water field generally use, and to assess critically the influence of Swift on published research and industry. This article focuses on water usage and the challenge of data interchange and extraction as issues that various industries face. Method: This article presents the first detailed report on Swift. It uses a detailed knowledge review and presents and summarises the findings chronologically. Results: The water meter data flow path used to be quite simple. The risk of breaches in confidentiality was limited. Technological advances over the years have led to additional knowledge coming from the same water meter readings with subsequent research outputs. However, there are also complicated data flow paths and increased risks. Users have used Swift to analyse more than two million consumers’ water meter readings to date. Studies have culminated in 10 peer-reviewed journal articles using the data. Seven of them were in the last five years. Conclusion: Swift-based data was the basis of various research studies in the past decade. Practical guidelines in the civil engineering fraternity for estimating water use in South Africa have incorporated knowledge from these studies. Developments after 1995 have increased the information processing capacity for water meter data.

  11. 40 CFR Table 3 to Subpart Uuu of... - Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... scrubbing liquor) flow rate to the control device. (2) If you use a wet scrubber of the non-venturi jet... liquor) flow rate to the control device. (2) If you use a wet scrubber of the non-venturi jet-ejector... size Electrostatic precipitator or wet scrubber or no control device Continuous opacity monitoring...

  12. A Second Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    Science.gov (United States)

    Tacina, Kathleen M.; Chang, Clarence T.; He, Zhuohui Joe; Lee, Phil; Dam, Bidhan; Mongia, Hukam

    2014-01-01

    A low-NO (sub x) aircraft gas turbine engine combustion concept was developed and tested. The concept is a second generation swirl-venturi lean direct injection (SV-LDI) concept. LDI is a lean-burn combustion concept in which the fuel is injected directly into the flame zone. Three second generation SV-LDI configurations were developed. All three were based on the baseline 9-point SV-LDI configuration reported previously. These second generation configurations had better low power operability than the baseline 9-point configuration. Two of these second generation configurations were tested in a NASA Glenn Research Center flametube; these two configurations are called the at dome and 5-recess configurations. Results show that the 5-recess configuration generally had lower NO (sub x) emissions than the flat dome configuration. Correlation equations were developed for the flat dome configuration so that the landing-takeoff NO (sub x) emissions could be estimated. The flat dome landing-takeoff NO (sub x) is estimated to be 87-88 percent below the CAEP/6 standards, exceeding the ERA project goal of 75 percent reduction.

  13. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  14. Design and construction of two phases flow meter

    International Nuclear Information System (INIS)

    Nor Paiza Mohamad Hasan

    2002-01-01

    This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)

  15. Temperature Dependences for the Reactions of O2- and O- with N and O Atoms in a Selected-Ion Flow Tube Instrument

    Science.gov (United States)

    2013-10-07

    quadrupole mass filter, mass selected, and injected into the flow reactor via a Venturi - type inlet. Ions undergo ∼105 collisions with helium buffer... gas at pressures of 0.4 to 0.8 Torr resulting in complete or near-complete thermalization.10 The higher pressure was used when studying the high...butterfly gate valve resulting in lower pumping speeds and thus longer reaction times. Neutrals were injected 49 cm before the end of the flow tube and

  16. High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System

    Science.gov (United States)

    Tewolde, Mahder

    This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.

  17. Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2014-03-01

    Full Text Available Cavitation phenomena occuring in converging-diverging nozzle (Venturi tube are described in the paper. A closed test circuit with possibility to control both flow rate and static pressure level were used. Loss coefficient was evaluated for different sigma numbers resulting in full „static“ characterization of the nozzle. Visualizations of the cavitation pattern development were acquired and matched with evolution of the loss coefficient. Three cavitation regimes are described: partial cavitation, fully developed cavitation, supercavitation.

  18. A Density-Based Ramp Metering Model Considering Multilane Context in Urban Expressways

    Directory of Open Access Journals (Sweden)

    Li Tang

    2017-01-01

    Full Text Available As one of the most effective intelligent transportation strategies, ramp metering is regularly discussed and applied all over the world. The classic ramp metering algorithm ALINEA dominates in practical applications due to its advantages in stabilizing traffic flow at a high throughput level. Although ALINEA chooses the traffic occupancy as the optimization parameter, the classic traffic flow variables (density, traffic volume, and travel speed may be easier obtained and understood by operators in practice. This paper presents a density-based ramp metering model for multilane context (MDB-RM on urban expressways. The field data of traffic flow parameters is collected in Chengdu, China. A dynamic density model for multilane condition is developed. An error function represented by multilane dynamic density is introduced to adjust the different usage between lanes. By minimizing the error function, the density of mainstream traffic can stabilize at the set value, while realizing the maximum decrease of on-ramp queues. Also, VISSIM Component Object Model of Application Programming Interface is used for comparison of the MDB-RM model with a noncontrol, ALINEA, and density-based model, respectively. The simulation results indicate that the MDB-RM model is capable of achieving a comprehensive optimal result from both sides of the mainstream and on-ramp.

  19. Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota

    Directory of Open Access Journals (Sweden)

    Andreas Tigor Oktaga

    2016-06-01

    Full Text Available One dimensional flow is often used as a flood simulation for the planning capacity of the river. Flood is a type of unsteady non-uniform flow, that can be simulated using HEC-RAS. HEC-RAS software is often used for flood modeling with a one-dimensional flow method. Unsteady flow modeling results in HEC-RAS sometimes refer to error and warning due to unstable analysis program. The stability program among others influenced bend in the river flow, the steep slope of the river bottom, and changes in cross-section shape. Because the flood handling required maximum discharge and maximum flood water level, then a steady flow is often used as an alternative to simulate the flood flow. This study aimed to determine the advantages and disadvantages of modeling unsteady non-uniform and steady non-uniform flow. The research location in the Kanal Banjir Barat, in the Semarang City. Hydraulics modeling uses HEC-RAS 4.1 and for discharge the plan is obtained from the HEC-HMS 3.5. Results of the comparison modeling hydraulics the modeling of steady non-uniform flow has a tendency water level is higher and modeling of unsteady non-uniform flow takes longer to analyze. Results of the comparison the average flood water level maximun is less than 15%  (± 0,3 meters, that is 0.27 meters (13.16% for Q50, 0.25 meters (11.56% for Q100, dan 0.16 meters (4.73% for Q200. So the modeling steady non-uniform flow can still be used as a companion version the modeling unsteady non-uniform flow.

  20. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  1. Development and evaluation of an automated system for testing current meters

    Directory of Open Access Journals (Sweden)

    Ezequiel Saretta

    2016-02-01

    Full Text Available ABSTRACT Current meters are equipment widely used for estimating flow velocity in rivers and streams. Periodic calibrations of current meters are important to ensure the quality of measurements, but the required testing facilities are complex and only available in a few institutions. However, advances in electronics and automation may contribute to developing simple and reliable calibration systems. Thus, this study aimed to develop an automated system for testing current meters, which consisted of a trapezoidal channel, a step motor, a tow car and a management system, composed of a supervisory application and microprocessed modules to control the motor and the data acquisition. Evaluations of the displacement velocity showed that it matched the reference value up to 1.85 m s-1 for a vertical-axis current meter and 2.3 m s-1 for a horizontal-axis one. The developed system showed reliability during tests, for both current meter movement and data acquisition. The management of the system based on the developed modules and the supervisory application improved its user interface, turning all the procedure into a simple task.

  2. Real-time analysis of self-assembled nucleobases by Venturi easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin

    2014-10-01

    In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  4. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... conformance test requirements for the firmware upgradeability process for the Advanced Metering Infrastructure...

  5. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service d' Etudes Thermohydrauliques)

    1991-04-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.).

  6. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1991-01-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.)

  7. Measuring Thermal Conductivity of a Small Insulation Sample

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  8. Theory of errors in Coriolis flowmeter readings due to compressibility of the fluid being metered

    OpenAIRE

    Kutin, Jože; Hemp, John

    2015-01-01

    The compressibility of fluids in a Coriolis mass flowmeter can cause errors in the meter's measurements of density and mass flow rate. These errors may be better described as errors due to the finite speed of sound in the fluid being metered, or due to the finite wavelength of sound at the operating frequency of the meter. In this paper, they are investigated theoretically and calculated to a first approximation (small degree of compressibility). The investigation is limited to straight beam-...

  9. Performance assessment of containment filtered venting system with Venturi scrubber

    International Nuclear Information System (INIS)

    Adinarayna, K.N.V.; Ali, Seik Mansoor; Balasubramaniyan, V.

    2015-01-01

    Venting through appropriate filtration systems is now being considered as a severe accident management strategy for maintaining the containment integrity and also as a means to reduce the radiological consequences to the public and environment. The option of filtered containment venting appears to have assumed significance in the post- Fukushima accident backdrop. Back-fitting of a suitable Venturi scrubber based CFVS for the Indian BWRs (TAPS- 1 and 2) at Tarapur is now being contemplated. Several key issues need to be carefully addressed for ensuring the desired functional capability of such a system. At the outset, this paper highlights a few thermal hydraulic issues that are of interest from regulatory perspective. This is followed by a detailed description of the mathematical models developed for assessing the depressurization characteristics of CFVS, energy absorption capacity of the Scrubber Tank (ST) water inventory, iodine removal and aerosol retention capability etc. Finally, application of these models to investigate the response of CFVS under twin unit SBO conditions in TAPS-1 and 2 is presented. The studies presented here give insight into the key variables affecting the CFVS performance and would be useful to both the system designer as well as the regulator. (author)

  10. Smart meters. Smart metering. A solution module for a future-oriented energy system; Intelligente Zaehler. Smart Metering. Ein Loesungsbaustein fuer ein zukunftsfaehiges Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Nadia; Seidl, Hans [comps.

    2011-12-15

    The German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on smart metering as a solution module for a future-oriented energy system by means of the following contributions: (1) Key role for smart meters; (2) What is smart metering? (3) Implementation of smart metering in Europe; (4) The market development to date in Germany; (5) Practical experiences with smart metering in Germany; (6) Frequently asked questions; (7) Smart metering in intelligent networks; (8) Legal framework conditions; (9) Data security and data protection in the utilisation of smart meters; (10) Ongoing information; (11) Efficient energy systems.

  11. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply.

    Science.gov (United States)

    Criminisi, A; Fontanazza, C M; Freni, G; Loggia, G La

    2009-01-01

    Apparent losses are usually caused by water theft, billing errors, or revenue meter under-registration. While the first two causes are directly related to water utility management and may be reduced by improving company procedures, water meter inaccuracies are considered to be the most significant and hardest to quantify. Water meter errors are amplified in networks subjected to water scarcity, where users adopt private storage tanks to cope with the intermittent water supply. The aim of this paper is to analyse the role of two variables influencing the apparent losses: water meter age and the private storage tank effect on meter performance. The study was carried out in Palermo (Italy). The impact of water meter ageing was evaluated in laboratory by testing 180 revenue meters, ranging from 0 to 45 years in age. The effects of the private water tanks were determined via field monitoring of real users and a mathematical model. This study demonstrates that the impact on apparent losses from the meter starting flow rapidly increases with meter age. Private water tanks, usually fed by a float valve, overstate meter under-registration, producing additional apparent losses between 15% and 40% for the users analysed in this study.

  12. A tool to increase information-processing capacity for consumer water meter data

    Directory of Open Access Journals (Sweden)

    Heinz E. Jacobs

    2012-02-01

    Full Text Available Background: Water service providers invoice most South African urban consumers for the water they use every month. A secure treasury system generates water invoices at municipalities’ financial departments. Information about the water usage of customers initially comes from reading the water meters, usually located in gardens near the front boundaries of properties. Until as recently as 1990, the main purpose of the water meter readings was to generate invoices for water usage. There are various treasury systems for this purpose.Objective: The objective of this research article was to describe the development of Swift, a locally developed software tool for analysing water meter data from an information management perspective, which engineers in the water field generally use, and to assess critically the influence of Swift on published research and industry. This article focuses on water usage and the challenge of data interchange and extraction as issues that various industries face.Method: This article presents the first detailed report on Swift. It uses a detailed knowledge review and presents and summarises the findings chronologically.Results: The water meter data flow path used to be quite simple. The risk of breaches in confidentiality was limited. Technological advances over the years have led to additional knowledge coming from the same water meter readings with subsequent research outputs. However, there are also complicated data flow paths and increased risks. Users have used Swift to analyse more than two million consumers’ water meter readings to date. Studies have culminated in 10 peer-reviewed journal articles using the data. Seven of them were in the last five years.Conclusion: Swift-based data was the basis of various research studies in the past decade. Practical guidelines in the civil engineering fraternity for estimating water use in South Africa have incorporated knowledge from these studies. Developments after 1995 have

  13. Investigation and Comparison of Separate Meter-In Separate Meter-Out Control Strategies

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Skoubo, Tobias

    2014-01-01

    In the later years, there has been an increased focus on new valve types, which yield the possibility to do Separate Meter-In Separate Meter-Out (SMISMO) control. This includes both digital valves, but proportional valves with separate metering spools and build in pressure sensors are also emerging....... The possibility to independently control the meter-in and meter-out side not only increase the functionality of the system, but also opens up for better performance and/or lowered energy consumption. The focus of the current paper is therefore on investigation and comparison of what may be obtained using...

  14. Beyond revenue metering -- a new age for automatic meter reading

    Energy Technology Data Exchange (ETDEWEB)

    Chebra, R. J. [RJC Consulting L.L.C., PQ (Canada)

    2002-10-01

    Advanced metering, data management, and communications possibilities of automated meter reading are explored. Applications in the area of demand side management, including load reduction, peak shaving and load shifting, new tariff structures based on the 'time of use incentive/penalty' approach, and information grade metering are emphasized. Based on trends and expectations, it is predicted that AMR will continue to experience rapid growth and deployment as new services are made available to the mass market. For example, technological advances will enable the industry to make 'time of use metering ' more attractive and beneficial to residential consumers, and embedded intelligence will make it possible to achieve more holistic energy environments.

  15. Smart Soft-Sensing for the Feedwater Flowrate at PWRs Using a GMDH Algorithm

    Science.gov (United States)

    Lim, Dong Hyuk; Lee, Sung Han; Na, Man Gyun

    2010-02-01

    The thermal reactor power in pressurized water reactors (PWRs) is typically assessed using secondary system calorimetric calculations based on accurate measurements of the feedwater flowrate. Therefore, precise measurements of the feedwater flowrate are essential. In most PWRs, Venturi meters are used to measure the feedwater flowrate. However, the fouling phenomena of the Venturi meter deteriorate the accuracy of the existing hardware sensors. Consequently, it is essential to resolve the inaccurate measurements of the feedwater flowrate. In this study, in order to estimate the feedwater flowrate online with high precision, a smart soft sensing model for monitoring the feedwater flowrate was developed using a group method of data handling (GMDH) algorithm combined with a sequential probability ratio test (SPRT). The uncertainty of the GMDH model was also analyzed. The proposed sensing and monitoring algorithm was verified using the acquired real plant data from Yonggwang Nuclear Power Plant Unit 3.

  16. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  17. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  18. A direct digital controller for an automatic sodium plugging meter

    International Nuclear Information System (INIS)

    Tobias, A.

    1977-07-01

    A plugging meter is a device for monitoring the impurity level of liquid sodium. It is used to measure the temperature at which an impurity precipitates or re-dissolves at a restricting orifice. The concentration of the impurity may be then deduced from known solubility/temperature relationships. A software controller for a sodium plugging meter has been implemented on a PDP-11 using SWEPSPEED. The algorithm used to perform both flow and temperature control functions is based on a modified standard three-term controller. Both design and operation of the controller are described. The functions which may be performed by the controller are: (i) maintain a steady temperature at the restricting orifice, (ii) perform a temperature ramp at a rate defined by the operator, and (iii) maintain a partial plug of impurities at the orifice by appropriate manipulation of the temperature. Accuracies so far achieved are approximately +- 5% for flow control and better that +- 1 0 C for temperature control. (author)

  19. Assessment of the implementation regulations for smart meters; Beoordeling uitvoeringsregelingen Slimme Meter

    Energy Technology Data Exchange (ETDEWEB)

    Boekema, J.

    2011-03-15

    TNO (Netherlands) assessed whether the smart meter is reliable and future proof. By request of the Dutch Ministry of Economic Affairs, Agriculture and Innovation (ELI) an assessment was conducted of the requirements for smart meters and, as formulated in the Order in Council 'Decree on remotely readable metering devices', based on 48 tests regarding security, privacy and future stability. Taking into account a number of described recommendations, TNO deems the legislation and implementation schemes sufficient to allow for safe, reliable and future proof implementation of smart meters in the Netherlands. [Dutch] TNO heeft beoordeeld of de slimme meter betrouwbaar en toekomstvast is. Ten behoeve van het ministerie van Economische Zaken, Landbouw en Innovatie (ELI) zijn de eisen die aan slimme meters worden gesteld, en zoals verwoord in de AmvB 'Besluit op afstand uitleesbare meetinrichtingen', beoordeeld aan de hand van 48 toetsen over zekerheid (security), persoonlijke levenssfeer (privacy) en toekomstvastheid. Met inachtneming van een aantal omschreven aanbevelingen, vindt TNO wetgeving en uitvoeringsregelingen zodanig dat daarmee een veilige, betrouwbare en toekomstvaste slimme meter geimplementeerd kan worden in Nederland.

  20. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.

  1. Oil-water flows in wells with powerful fracture reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, N.P.

    1979-01-01

    The character of two phase liquid flows from powerful layer fractures to bottom holes in Starogrodnen and Malgobek-Voznesenskiy fields in the Chechen-Ingush ASSR found in the late stage of operation. The studies were done with the electrothermometer TEG-36, the manometer MGN-2, the remote control thermal flow meter T-4, the remote control moisture meter VBST-1, the density meter GGP-1M, whose accuracy class is 1.0 and whose working limits are: temperature, up to 150/sup 0/C and pressure, up to 1000 kGs/cm/sup 2/. The breakdown of the linear filtration law and the gravitational division of the water-oil mixture phase occurred during fieldwork. The oil and water, etc., flow intervals were defined. The data from the moisture meter and the gamma density meter coincided.

  2. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  3. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  4. Micro-gen metering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elland, J.; Dickson, J.; Cranfield, P.

    2003-07-01

    This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.

  5. Fluid Flow Technology that Measures Up

    Science.gov (United States)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  6. Active bypass flow control for a seal in a gas turbine engine

    Science.gov (United States)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-03-14

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  7. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  8. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  9. Comparación de resultados experimentales de un Venturi con simulación de dinámica de fluidos computacional

    OpenAIRE

    Mauro Iñiguez-Covarrubias

    2015-01-01

    En los sistemas de riego es necesario definir la línea de energíatotal del flujo de agua para evitar variaciones de presión ygasto en los puntos de entrega y control. En estos puntosse instalan equipos especiales, entre los que se encuentranlos aforadores Venturi. Estos dispositivos han sido pocoestudiados en relación con tamaños, formas, materiales ocondiciones de funcionamiento, y las recomendaciones deoperación provienen de características obtenidas de modoexperimental. Así, modelar su fun...

  10. Instrumentation for Sodium Circuits; Instrumentation des Circuits de Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E. [CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses (France); Lions, N. [CEA, Centre d' Etudes Nucleaires de Cadarache (France)

    1967-06-15

    Electromagnetic flow meters, level gauges and differential pressure gauges are among the main measurement instruments designed and tested at the Commissariat a l'Energie Atomique (CEA) for sodium reactors. The main characteristics of the flow meters used with RAPSODIE are indicated. The instruments used in this connection are of the permanent -magnet or electromagnet type (in the primary circuits). A description is given of the calibration methods employed - use is made of diaphragms or Venturi tubes as standard flow meters - and information is given on the results measured for maximum sodium flows of 400 m{sup 3}/h. Three types of continuous level gauge have been studied. Resistance gauge. Two varieties used for the 1 - and 10-MW test circuits of RAPSODIE are described. In one there is a compensation resistance along the whole height of the measuring element (the continuous gauges used with the RAPSODIE reactor are at present of this type). In the other type of gauge a device is incorporated to heat the measurement element and prevent the formation of conducting deposits (prototype sodium tests have been completed). Induction gauge. This type has two coupled coils and is fitted with a device to compensate for temperature effects. A description is given of a prototype which has been built and the results obtained in the course of sodium tests are described. Ultrasonic gauge. With this type, a transmitter is fitted on top of the outside of the sodium container; there is also a vertical wave guide, the bottom of which is immersed in the liquid metal and possesses a reflector system which returns the ultrasonic beam towards the surface. Fixed reference marks provide a permanent means of calibration and the whole apparatus is welded. This type of gauge is now being constructed. The differential pressure gauges that have been built, and used in particular with Venturi tube flow meters, are modified versions of the devices employed with the 1 - and 10-MW test circuits of

  11. Pórticos, letreiros, lareiras Le Corbusier e Robert Venturi, sobre simbolismo e velocidade no modernismo

    Directory of Open Access Journals (Sweden)

    Rafael Urano Frajndlich

    2010-12-01

    Full Text Available Este artigo procura investigar a leitura que o arquiteto Robert Venturi faz de alguns traços da obra de Le Corbusier, para conceber suas considerações sobre arquitetura e comunicação. Para isso, foram estudadas, de modo breve, as maneiras como Le Corbusier já fazia uso, em sua obra, de algumas categorias que, posteriormente, seriam atribuídas, excelentemente, aos ditos pós-modernos: a retórica, a alusão, a memória dos centro históricos e dos interiores decorados. Tendo em vista a obra geral do arquiteto suíço, é certo que essas categorias aparecem somente nas entrelinhas de seu projeto modernista de reorganização das cidades. Entretanto, uma leitura de minúcias revela alguns temas – especificamente o interesse de Corbusier nos monumentos de Paris, seus pórticos desenhados na Ville contemporaine (1921, e a lareira com motivos surrealistas na cobertura De Beistegui (1929 que seriam objeto de pleno interesse para historiadores e arquitetos da década de 1960. Justamente, nessa recuperação de traços obscuros de Corbusier, Venturi posiciona alguns de seus temas, especificamente em suas soluções residenciais, privilegiando – e, em alguns casos, mesmo exagerando, a imagem chaminé, duplicando sua altura ou colocando-a como grande ordenadora da planta. Todo esse debate será estudado tendo, como pano de fundo, escritos recentes que realizam um balanço crítico das rupturas engendradas pela dita arquitetura pós-moderna com os modernismos. Fazendo uso de considerações de Andreas Huyssen, Paul Virilio e Beatriz Colomina, entre outros, procurou-se ora delimitar, com maior clareza, a fronteira entre essas duas correntes do século 20, ora diluir seus contornos, revelando semelhanças que, eventualmente, fazem-nas indissociáveis.

  12. Studi Experimental Penggunaan Venturi Scrubber Dan Cyclonic Separator Untuk Meningkatkan Kinerja Pada Sistem Exhaust Gas Recirculation (EGR) Dalam Menurunkan NOX Pada Motor Diesel

    OpenAIRE

    N, Samsu Dlukha; Ariana, I Made; Fathallah, Aguk Z. M

    2012-01-01

    Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR). Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM) akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi ...

  13. A fluidic/pneumatic interface amplifier

    Science.gov (United States)

    Limbert, D. E.; Kegel, T. M.

    The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.

  14. Feedwater flow measurements: challenges, current solutions, and 'soft' developments

    International Nuclear Information System (INIS)

    Ruan, D.; Roverso, D.; Fantoni, P.F.; Sanabrias, J.I.; Carrasco, J.A.; Fernandez, L.

    2002-07-01

    This report presents an early progress of a feasibility study of a computational intelligence approach to the enhancement of the accuracy of feedwater flow measurements in the framework of an ongoing cooperation between Tecnatom s.a. in Madrid and the OECD Halden Reactor Project (HRP) in Halden. The aim of this research project is to contribute to the development and validation of a flow sensor in a nuclear power plant (NPP). The basic idea is to combine the use of applied computational intelligence approaches (noise analysis, neural networks, fuzzy systems, wavelets etc.) with existing traditional flow measurements, and in particular with cross correlation flow meter concepts. In this report, Section 2 outlines relevant aspects of thermal power calculations on electrical power plants. Section 3 reviews from the available literature possible approaches and solutions for feedwater flow measurement, including ultrasonic flow meters, cross-correlation flow meters, and 'Virtural' flow meters with artificial neural networks. Section 4 reports typical experimental measurements at the Tecnatom's facility. Section 5 presents an integration approach and preliminary experimental tests. Section 6 discusses the role of soft computing techniques in the context of feedwater flow measurements related nuclear fields, and Section 7 highlights the future research direction. (Author)

  15. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  16. Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on Freeway

    Directory of Open Access Journals (Sweden)

    Ming-hui Ma

    2015-01-01

    Full Text Available To enhance the efficiency of the existing freeway system and therefore to mitigate traffic congestion and related problems on the freeway mainline lane-drop bottleneck region, the advanced strategy for bottleneck control is essential. This paper proposes a method that integrates variable speed limits and ramp metering for freeway bottleneck region control to relieve the chaos in bottleneck region. To this end, based on the analyses of spatial-temporal patterns of traffic flow, a macroscopic traffic flow model is extended to describe the traffic flow operating characteristic by considering the impacts of variable speed limits in mainstream bottleneck region. In addition, to achieve the goal of balancing the priority of the vehicles on mainline and on-ramp, increasing capacity, and reducing travel delay on bottleneck region, an improved control model, as well as an advanced control strategy that integrates variable speed limits and ramp metering, is developed. The proposed method is tested in simulation for a real freeway infrastructure feed and calibrates real traffic variables. The results demonstrate that the proposed method can substantially improve the traffic flow efficiency of mainline and on-ramp and enhance the quality of traffic flow at the investigated freeway mainline bottleneck.

  17. The wire-mesh sensor as a two-phase flow meter

    Science.gov (United States)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  18. Comparación de resultados experimentales de un Venturi con simulación de dinámica de fluidos computacional

    OpenAIRE

    Iñiguez-Covarrubias, Mauro; Flores-Velazquez, Jorge; Ojeda-Bustamante, Waldo; Díaz-Delgado, Carlos; Mercado-Escalante, Roberto

    2015-01-01

    En los sistemas de riego es necesario definir la línea de energía total del flujo de agua para evitar variaciones de presión y gasto en los puntos de entrega y control. En estos puntos e instalan equipos especiales, entre los que se encuentran los aforadores Venturi. Estos dispositivos han sido poco estudiados en relación con tamaños, formas, materiales o condiciones de funcionamiento, y las recomendaciones de operación provienen de características obtenidas de modo experimental. Así, modelar...

  19. 40 CFR 63.7790 - What emission limitations must I meet?

    Science.gov (United States)

    2010-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  20. Experiment of aerosol-release time for a novel automatic metered dose inhaler

    Directory of Open Access Journals (Sweden)

    Mingrong Zhang

    2016-05-01

    Full Text Available The objective of this study was to evaluate the aerosol-release time in the development of a new automatic adapter for metered dose inhaler. With this device, regular manually operated metered dose inhalers become automatic. During the study, an inhalation simulator was designed and tested with the newly developed mechatronic system. By adjusting the volume and the pressure of the vacuum tank, most human inhalation waveforms were able to simulate. As an example, regular quick-deep and slow-deep waveforms were matched within reasonable accuracy. Finally, with the help of dynamic image processing, the aerosol-release time (Tr was carefully measured and fully discussed, including the switch-on time (Ts, the mechatronics-hysteresis (Tm and the intentional-delay (Ti. Under slow-deep inhalation condition which is suitable for metered dose inhaler medicine delivery, the switch-on flow-rate could reach as low as 10 L/min, and the corresponding switch-on time was approximately 0.20 s. While the mechatronics-hysteresis depended on the brand of metered dose inhaler, assuming there was no intentional-delay, the aerosol-release time could be as low as 0.40 and 0.60 s, respectively, for two commercially available metered dose inhalers studied in this article. Therefore, this newly developed mechatronic adapter system could ensure aerosol-release time (Tr within satisfactory range for metered dose inhalers.

  1. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  2. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L

    1996-12-31

    Electric utilities often face situations where conventional distribution station billing meters have been removed from service. This paper presents an innovative alternative to traditional solutions to the temporary billing situation such as the use of clamp-on devices called electronic recording ammeters. It examines how Ontario Hydro is measuring current, voltage, and power factor at a distribution station to calculate kilowatts and kVAR using an easy-to-install product that communicates its live readings directly to an existing billing system. The devices used for the measurements can be easily attached to a power line with a hotstick and contain a special core which senses current flow and powers appropriate electronics, which digitizes voltage and current data and transmits it via low-power FM radio for subsequent data storage and processing. The paper includes results of field trials and outlines the advantages of using the device.

  3. Hourly Variation in the Flow Measurements in the Jesus Maria Watershed with the Cup-type Current Meter Method

    Directory of Open Access Journals (Sweden)

    José Pablo Bonilla Valverde

    2017-12-01

    Full Text Available Conducting punctual gauging measurements in Costa Rica constitutes a common practice for the evaluation of water resources for drinking water supply.  The country has a database composed of punctual measurements made in most of the rivers of Costa Rica with almost forty years of information. Within this database, a single data (punctual gauging is used to characterize the whole month in which it was gauged. In order to corroborate the validity of this characterization, punctual gauging was performed every hour to confirm that the hourly variation is minimal.  The hourly gauging was carried out during the flow measurement campaign in the Jesus Maria watershed conducted on April 9th and 10th, 2013.  The flow measurements were performed using cup-type current meter method according to the ISO 2537: 2007 standard.  One third of the measurements showed less than ±1% variation and more than three quarters were in the range of ±5% variation. In all cases, excluding the lower basin of the Jesus Maria River, variations in the measurements are less than 10% relative to the median.  It is concluded that the hour variation is relatively small, and therefore, the database is validated – for the months at the end of the dry season.  This experience should be repeated in the same basin at other times of the year and on other basins to ensure that the temporal variability do not represent large differences in the flow.

  4. Improving mixing efficiency in a closed circuit water flow rig for ...

    African Journals Online (AJOL)

    . ... pulse velocity method, indicating that the flow meters functioned correctly. The modified rig with scaled-up mixing techniques could serve as platform for training in evaluating mixing vessels and flow meters in industrial process plants.

  5. Observation and characterization of flow in critical sections of a horizontal pressurized gating system using water models

    Directory of Open Access Journals (Sweden)

    Jaiganesh Venkataramani

    2013-07-01

    Full Text Available This work is concerned with the hydraulics and flow characterization in a pressurized, horizontal gating system with multiple ingates attached to a plate mold, using transparent water models. Runners with two different aspect ratios (w/h = 0.5 and 2 and four different types of ingates (rectangular, convergent, divergent and venturi were examined for their influence on flow behavior. Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second. Real time experimentation with a few runner – ingate combinations were carried out to validate the usefulness of water models in predicting the filling behavior. Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the filling behavior during real time casting.

  6. Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow

    International Nuclear Information System (INIS)

    Dong, F; Zhang, F S; Li, W; Tan, C

    2009-01-01

    Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.

  7. 40 CFR 63.7824 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Science.gov (United States)

    2010-07-01

    ... settings established in your capture system operation and maintenance plan. (b) For a venturi scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.7790(b)(2), you must.... (c) You may change the operating limits for a capture system or venturi scrubber if you meet the...

  8. 40 CFR 63.1450 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Science.gov (United States)

    2010-07-01

    ... mean of the results for the three separate test runs is used. (4) For a venturi wet scrubber applied to... the applicable emission limit. (5) For a control device other than a baghouse or venturi wet scrubber... pressure drop and scrubber water flow rate, you must establish site-specific operating limits according to...

  9. Digital temperature meter

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S

    1982-01-01

    Digital temperature meter for precise temperature measurements is presented. Its parts such as thermostat, voltage-frequency converter and digital frequency meter are described. Its technical parameters such as temperature range 50degC-700degC, measurement precision 1degC, measurement error +-1degC are given. (A.S.).

  10. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  11. 40 CFR 63.7831 - What are the installation, operation, and maintenance requirements for my monitors?

    Science.gov (United States)

    2010-07-01

    ... procedures you will follow in the event a venturi scrubber exceeds the operating limit in § 63.7790(b)(2...'s instrumentation and alarm may be shared among detectors. (g) For each venturi scrubber subject to operating limits in § 63.7790(b)(2) for pressure drop and scrubber water flow rate, you must install...

  12. Smart meter status report from Toronto

    International Nuclear Information System (INIS)

    O'Brien, D.

    2006-01-01

    An update of Toronto Hydro's smart metering program was presented. Electricity demand is expected to keep increasing, and there is presently insufficient generation to match supply needs in Ontario. The smart metering program was introduced to aid in the Ontario government's energy conservation strategy, as well as to address peak supply problems that have led to power outages. It is expected that the smart metering program will reduce provincial peak supply by 5 per cent, as the meters support both time-of-use rates and critical peak pricing. Over 800,000 smart meters will be supplied to customers by 2007, and all 4.3 million homes in Toronto will have a smart meter by 2010. In order to meet targets for 2010, the utility will continue to install more 15,000 meters each month for the next 4 years. While the Ontario government has planned and coordinated the rollout and developed smart metering specifications and standards, Toronto Hydro is responsible for the purchase, installation, operation and maintenance of the meters. Advance testing of each meter is needed to ensure billing accuracy, and customer education on meter use is also. The complexity of the metering program has led the utility to establish a rigid project management process. Customer education pilot program are currently being conducted. Experience gained during the earlier phases of the program have enabled the utility to select appropriate metering systems based on density, topography and physical conditions. Project expenditures have been within budget due to improved project estimating and planning. The metering program has been conducted in tandem with the utility's peakSAVER program, a residential and small commercial load control program that has been successful in reducing summer peak demand by cycling air conditioners without causing discomfort. It was concluded that the utility will continue with its mass deployment of smart meters, and is currently preparing its call center to handled

  13. Streamlining Smart Meter Data Analytics

    OpenAIRE

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, ...

  14. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  15. Calibration of reference KAP-meters at SSDL and cross calibration of clinical KAP-meters

    International Nuclear Information System (INIS)

    Hetland, Per O.; Friberg, Eva G.; Oevreboe, Kirsti M.; Bjerke, Hans H.

    2009-01-01

    In the summer of 2007 the secondary standard dosimetry laboratory (SSDL) in Norway established a calibration service for reference air-kerma product meter (KAP-meter). The air-kerma area product, PKA, is a dosimetric quantity that can be directly related to the patient dose and used for risk assessment associated with different x-ray examinations. The calibration of reference KAP-meters at the SSDL gives important information on parameters influencing the calibration factor for different types of KAP-meters. The use of reference KAP-meters calibrated at the SSDL is an easy and reliable way to calibrate or verify the PKA indicated by the x-ray equipment out in the clinics. Material and methods. Twelve KAP-meters were calibrated at the SSDL by use of the substitution method at five diagnostic radiation qualities (RQRs). Results. The calibration factors varied from 0.94 to 1.18. The energy response of the individual KAP-meters varied by a total of 20% between the different RQRs and the typical chamber transmission factors ranged from 0.78 to 0.91. Discussion. It is important to use a calibrated reference KAP-meter and a harmonised calibration method in the PKA calibration in hospitals. The obtained uncertainty in the PKA readings is comparable with other calibration methods if the information in the calibration certificate is correct used, corrections are made and proper positioning of the KAP-chamber is performed. This will ensure a reliable estimate of the patient dose and a proper optimisation of conventional x-ray examinations and interventional procedures

  16. Solid state semiconductor detectorized survey meter

    International Nuclear Information System (INIS)

    Okamoto, Eisuke; Nagase, Yoshiyuki; Furuhashi, Masato

    1987-01-01

    Survey meters are used for measurement of gamma ray dose rate of the space and the surface contamination dencity that the atomic energy plant and the radiation facility etc. We have recently developed semiconductor type survey meter (Commercial name: Compact Survey Meter). This survey meter is a small-sized dose rate meter with excellent function. The special features are using semiconductor type detector which we have developed by our own technique, stablar wide range than the old type, long life, and easy to carry. Now we introduce the efficiency and the function of the survey meter. (author)

  17. Simple meters get smart? Cost benefit analysis of smart metering infrastructure

    International Nuclear Information System (INIS)

    Van Gerwen, R.J.F.; Jaarsma, S.A.; Koenis, F.T.C.

    2005-08-01

    The Dutch Ministry of Economic Affairs requested a cost-benefit analysis of the large scale introduction of a smart meter infrastructure for gas and electricity consumption by small consumers. The questions asked in the study need to be answered in order to enable a well-founded evaluation of the implementation of smart meters. [mk] [nl

  18. Metering apparatus and tariffs for electricity supply

    International Nuclear Information System (INIS)

    1990-01-01

    Conference papers presented cover system economies and tariff structure with papers on pricing of electricity and new metering technologies. Other topics reviewed include metering apparatus design, electronic metering apparatus and solid phase metering technology. Meter data retrieval, bulk supply metering, test equipment and maintenance, and legal requirements and standards are discussed. (author)

  19. Cross-cultural differences in meter perception.

    Science.gov (United States)

    Kalender, Beste; Trehub, Sandra E; Schellenberg, E Glenn

    2013-03-01

    We examined the influence of incidental exposure to varied metrical patterns from different musical cultures on the perception of complex metrical structures from an unfamiliar musical culture. Adults who were familiar with Western music only (i.e., simple meters) and those who also had limited familiarity with non-Western music were tested on their perception of metrical organization in unfamiliar (Turkish) music with simple and complex meters. Adults who were familiar with Western music detected meter-violating changes in Turkish music with simple meter but not in Turkish music with complex meter. Adults with some exposure to non-Western music that was unmetered or metrically complex detected meter-violating changes in Turkish music with both simple and complex meters, but they performed better on patterns with a simple meter. The implication is that familiarity with varied metrical structures, including those with a non-isochronous tactus, enhances sensitivity to the metrical organization of unfamiliar music.

  20. Multitasking metering enhances generation, transmission operations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E.

    2008-11-15

    The Dairyland Power Cooperative (DPC) which operates from La Crosse, Wisconsin has the capacity to generate and transmit 1000 MW of power to 25 member cooperatives and 20 municipalities who serve over 500,000 customers. When DPC was experiencing diminished service within its analog cellular-based data communications system, it was presented with an opportunity to install a new automated telecommunications system that would provide secure collection of meter readings from all of its substations. DPC decided to evaluate an advanced multifunctional digital meter from Schweitzer Engineering Laboratories (SEL). The SEL-734 Revenue Metering System offers complete instantaneous metering functions, including voltages, currents, power, energy and power factor. Other capabilities include predictive demand, time-of-use metering, automatic voltage monitoring, harmonics metering and synchrophasor measurement. From a metering perspective, DPC wanted to perform daily load profiles and interval-by-interval metering of their delivery points for billing purposes. They also wanted to provide real-time monitoring of electricity being delivered for both generation and transmission purposes and to make that information available to a distribution SCADA system for their members. The SEL-734 Revenue Meter was well suited to those needs. The SEL-734 provides very high-accuracy energy metering, load profile data collection, instantaneous power measurements, power quality monitoring, and communicates simultaneously over a modem, serial ports, and wide area networks (WAN). The meter is backed with a ten-year warranty as well as field support engineers. 5 figs.

  1. Smart meter incorporating UWB technology

    NARCIS (Netherlands)

    Khan, T.A.; Khan, A.B.; Babar, M.; Taj, T.A.

    2014-01-01

    Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional

  2. Good standards for smart meters

    NARCIS (Netherlands)

    Hoenkamp, R.A.; Huitema, G.B.

    2012-01-01

    This paper examines what lessons can be learned from the rollout of smart meters in the Netherlands to improve the European smart meter standardization. This study is based on the case of the Dutch meter rollout which preparations started in 2005 but finally was delayed until 2011 by governmental

  3. RFID-BASED Prepaid Power Meter

    OpenAIRE

    Teymourzadeh, Rozita

    2013-01-01

    An Electric power meter is an important component in electric energy service. In the past, many consumers have complained about reading inaccurate of the electric meter. This research presents the development of an electrical power meter equipped with RFID reader. The RFID reader reads a valid RFID card and activates the power meter so that it can supply electricity. When the credit is about low or before the electricity is auto cut off, an SMS message will be sent to the user’s handphone to ...

  4. Cancer-meter: measure and cure.

    Science.gov (United States)

    Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh

    2017-05-01

    This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.

  5. PIV measurement of a contraction flow using micro-bubble tracer

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Irabu, Kunio; Teruya, Isao; Nitta, Munehiro

    2009-01-01

    Recently, a technique using the micro-bubbles is focused. It was applied to many fields such as purification of rivers and lakes, washing the industrial parts, growth of plants and marine products. The characteristics of micro-bubbles are small size, wide surface area, low terminal velocity, and so on. If this micro-bubble is available as tracer of PIV (Particle Image Velocimetry), environment load would become lower because it doesn't need to discard particle. In this paper, we make a micro-bubble generator with Venturi type mechanism. The generated micro-bubbles are applied to a vertical channel flow with contraction. We validate about traceability of the micro-bubble tracer in comparison with the particle tracer.

  6. Privacy friendly aggregation of smart meter readings, even when meters crash

    NARCIS (Netherlands)

    Hoepman, J.H.

    2017-01-01

    A well studied privacy problem in the area of smart grids is the question of how to aggregate the sum of a set of smart meter readings in a privacy friendly manner, i.e., in such a way that individual meter readings are not revealed to the adversary. Much less well studied is how to deal with

  7. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  8. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  9. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P

    2013-01-01

    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  10. Monitoring of multiphase flows for superconducting accelerators and others applications

    Science.gov (United States)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  11. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  12. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Flow Over Abrupt Topography project from 1990-01-06 to 1991-12-03 (NODC Accession 9500077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from January 6, 1990 to December 3, 1991. Data were submitted by...

  13. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  14. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  15. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  16. Intake port

    Science.gov (United States)

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  17. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  18. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  19. Continuous monitoring of fluid flow rate and contemporaneous biogeochemical fluxes in the sub-seafloor; the Mosquito flux meter

    Science.gov (United States)

    Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.

    2013-12-01

    , the OS's monitor the tracer concentrations through time, which are modeled for fluid flow rates. Simultaneously the Mosquito provides a continuous record of fluid, at high-resolution, for chemical analysis. The fluid chemistry time series, in combination with the fluid flow rate record, provide a serial record of biogeochemical fluxes. The robust nature and adaptable layout of the Mosquito allows for a wide variety of deployment settings from mid ocean ridges to the continental shelf as well as lacustrine environments. Preliminary results are being presented for three major deployments of the new flow meters; a 5-day campaign style deployment at Hydrate Ridge offshore of Oregon, a recently recovered 2-year deployment at Hydrate Ridge, and two transects of Mosquito deployments spanning from the deformation front to the upper slope at the Cascadia subduction zone off the coast of Washington.

  20. Studi Experimental Penggunaan Venturi Scrubber dan Cyclonic Separator Untuk Meningkatkan Kinerja pada Sistem Exhaust Gas Recirculation (EGR dalam Menurunkan NOX pada Motor Diesel

    Directory of Open Access Journals (Sweden)

    Samsu Dlukha N

    2012-09-01

    Full Text Available Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR. Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi NOX tanpa meningkatkan PM. Hasil pengujian menunjukkan NOX turun sebesar 48.89% dan PM turun dari 69,87%  menjadi 9.87%.

  1. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  2. Sector smart meter audit review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-31

    This paper presented the results of an electricity distributor sector smart meter audit review conducted by the Ontario Energy Board (OEB) for the period of January 1, 2006 to September 30, 2009. The review summarized the results of a questionnaire related to distributors' smart meter regulatory accounting treatment. Seventy-eight distributors responded to the survey. The review included details of: (1) total investments in smart metering initiative for capital expenditures (CAPEX) and operating maintenance and administrative expenses (OM and A), (2) funding dollars received by the distributors, (3) board-approved recoveries for CAPEX and OM and A, (4) recorded stranded meter costs, and (5) number of smart meters installed in the review period. The audit review demonstrated that some distributors incorrectly recorded carrying charges related to smart meter OM and A expenses, and that some smart meter transactions were recorded in accounts other than OEB established accounts in the general ledger. Results of the audit will be used to provide further accounting assistance to electricity distributors. 7 tabs.

  3. Knowledge is power: Customer load metering in the Victorian End-Use Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, G. [CitiPower Ltd., Melbourne, VIC (Australia)

    1995-12-31

    The Victorian End-Use Measurement Program is a sophisticated load metering program being conducted over 500 sites in Victoria, covering the major customer sectors of residential, commercial and industrial. Its goal is to gather sufficient data to determine with statistical accuracy the load profiles of these major sectors, together with the load profiles of selected customer end-uses in the residential and commercial sectors, and selected building types in the commercial sector. This paper discusses the major elements of the program, the history of its development, the design of the statistical and operational components of the program, and its implementation in the field. In the Victorian electricity industry, with the combination of contestable customer metering and the End-Use Measurement program metering for the franchise/non-contestable market, there is now a considerable flow of customer load data. The opportunity exists for an accurate understanding of customer load needs, and the minimization of risk in business operations in the retail and wholesale market. (author).

  4. Hardware Design of a Smart Meter

    OpenAIRE

    Ganiyu A. Ajenikoko; Anthony A. Olaomi

    2014-01-01

    Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and elimina...

  5. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured t...

  6. The design and commissioning of cold trap purifying system of hydrogen meter sodium loop

    International Nuclear Information System (INIS)

    Zhao Zhaoyi; Jia Baoshan; Chen Xiaoming; Pan Fengguo

    1993-01-01

    The design feature and parameters of cold trap purifying system of hydrogen meter sodium loop and its commissioning results are reported and discussed. In order to adjust the flow easily,. the cold trap purifying system is arranged in the exit of the electromagnetic pump. It is composed of regenerator and the cold trap. The regenerator is above the cold trap. The high temperature sodium in the main-loop flows through the regenerator, in the entrance of the cold trap, its temperature is reduced to 180 degree C. After entering into the cold trap, the sodium flows to the purifying region by side, when it arrives the bottom of the trap, its temperature is reduced to 110 degree C. The cold trap is cooled by air. The temperature of the clean sodium rises nearby the main-loop's by the regenerator, and then it returns to the entrance of the electromagnetic pump. According to the commissioning results, the sodium's temperature of the cold trap could be reduced to 110 degree C by reducing the flow of the cold trap purifying system and the temperature of the main-loop, or increasing the air flow and cutting off the power supply of its heating. The authors think that the latter is more conformable with the design stipulation and with the requirement of the hydrogen meter experiment, and it can meet the requirements of the operation of the Nuclear Power Plant

  7. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  8. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  9. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  10. Reservoir computer predictions for the Three Meter magnetic field time evolution

    Science.gov (United States)

    Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.

    2017-12-01

    The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.

  11. Percutaneous Transtracheal Jet Ventilation with Various Upper Airway Obstruction

    Directory of Open Access Journals (Sweden)

    Tomoki Doi

    2015-01-01

    Full Text Available A “cannot-ventilate, cannot-intubate” situation is critical. In difficult airway management, transtracheal jet ventilation (TTJV has been recommended as an invasive procedure, but specialized equipment is required. However, the influence of upper airway resistance (UAR during TTJV has not been clarified. The aim of this study was to compare TTJV using a manual jet ventilator (MJV and the oxygen flush device of the anesthetic machine (AM. We made a model lung offering variable UAR by adjustment of tracheal tube size that can ventilate through a 14-G cannula. We measured side flow due to the Venturi effect during TTJV, inspired tidal volume (TVi, and expiratory time under various inspiratory times. No Venturi effect was detected during TTJV with either device. With the MJV, TVi tended to increase in proportion to UAR. With AM, significant variations in TVi was not detected with changes in any UAR. In conclusion, UAR influenced forward flow of TTJV in the model lung. The influence of choked flow from the Venturi effect was minimal under all UAR settings with the MJV, but the AM could not deliver sufficient flow.

  12. A local-velocity meter for hypersonic plasma jet

    International Nuclear Information System (INIS)

    Nyazev, A.A.; Lerner, N.B.; Svinolupov, K.I.

    1985-01-01

    This paper describes a system for a resonant laser Doppler meter for the local velocity in a hypersonic plasma flow. Preliminary test results on the prototype are reported for a jet of air containing sodium at 1100 degrees K, air pressure in the working region 20-200 Pa, and jet speed 6-8 km/sec. Measured speeds agree with theoretical predictions. The prototype and the method do not impose constraints on the working conditions but can be extended to wide ranges in temperature and pressure, such as ones in which the line width does not exceed the Doppler shift

  13. Analysis of a Multi-Venturi filter for the venting of the primary container of a nuclear reactor; Analisis de un filtro multiventuri para el venteo del contenedor primario de un reactor nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reyes G, A. A.; Sainz M, E.; Ortiz V, J., E-mail: alejandroantonioreyess@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    Since the Chernobyl nuclear accident, European nuclear power plants have opted to install filters in the containment vent pipes, whose function is to help mitigate the consequences of a severe accident, by means of the controlled depressurization of the containment passively through of a containment filtering vent system. These systems are designed to relieve the internal pressure of containment by deliberately opening pressure relief devices, either a valve or rupture disk during a severe accident and being channeled to the filtering unit. In this work, the hydraulic response of a liquid gas washing filtration system is evaluated, since this information is necessary to estimate the effect of the increase of the containment pressure on the venting capacity of the vent pipes. Through CFD simulation, using the programs with open source license CaeLinux-2014 and OpenFoam, the hydrodynamic characteristics of the Multi-Venturi system were obtained for the washing of the gases coming from the containment, which could be included in the general model of the vent pipe. Representative models of the venturi tubes of each concentric sector that are part of the washing system were generated and by parametric calculations the average mass expense established by each venturi was estimated, according to its dimensions and depth to which is located inside the tank. In the same way, the pressure and mass expense required to activate each concentric sector was calculated according to the pressure and mass load from the containment, in order to estimate the maximum expenditure that is established through the filter. The velocity profiles and the characteristic pressure at which each sector operates were also calculated, as well as the local and global discharge pressure drop. (Author)

  14. ATD-2 Surface Scheduling and Metering Concept

    Science.gov (United States)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  15. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  16. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  17. A simple reactivity-meter system

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1992-01-01

    This paper describes a new version of a reactivity meter developed at the Institute of Nuclear Energy Research (IPEN) (Brazil). The reactivity meter computes the reactor reactivity utilizing a programmable electrometer that performs the data aquisition. The software commands the main functions of the electrometer, the data acquisition, data transfer, and reactivity calculation. The necessary hardware for this reactivity meter are a programmable electrometer, a microcomputer, and interfaces for the microcomputer to communicate with the electrometer. If it is necessary, it is possible to connect a graphic register to the microcomputer. With this conventional hardware, available in any nuclear reactor facility, one can build a powerful reactivity meter. Adding to these advantages, one can use the microcomputer on-line to analyze the data, store the data on diskettes, or create graphics

  18. MULTICHANNEL DISTRIBUTION METER: A VERITABLE ...

    African Journals Online (AJOL)

    eobe

    Usually, commercial home owners preferred the installation of one or few .... communication (GSM) based solution were presented. The authors ... meters. The proposed meters in their work uses .... The most probable data entry component to ...

  19. Hydro Ottawa achieves Smart Meter milestone

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    As Ontario's second largest municipal electricity company, Hydro Ottawa serves more than 285,000 residential and business customers in the city of Ottawa and the village of Casselman. Since 2006, the utility has installed more than 230,000 Smart Meters throughout its service territory in an effort to provide better services to its customers. This initiative represents the largest operational advanced metering infrastructure network in Canada. This move was necessary before time-of-use rates can be implemented in Ottawa. The Smart Meters deliver data wirelessly to Hydro Ottawa's Customer Information System for billing and eliminating manual readings. The Smart Meters are designed to promote more efficient use of electricity. The Government of Ontario has passed legislation requiring the installation of Smart Meters throughout the province by the end of 2010

  20. Contactless flowrate sensors for Na, PbBi and Pb flows

    International Nuclear Information System (INIS)

    Buchenau, D.; Gerbeth, G.; Priede, J.

    2011-01-01

    Accurate and reliable flow rate measurements are required for various liquid metal systems such as the Na or Lead-flows in fast reactors, the PbBi-flows in transmutation systems, or the flows in liquid metal targets. For liquid metal flows, a contactless measurement is preferable. In this paper we report on the recent development of two types of such flow meters. The former operates by detecting the flow-induced disturbance in the phase distribution of an externally applied AC magnetic field. Such a phase-shift flow meter was developed with an emitting coil at one side of the duct and two sensing coils at the opposite side. The second approach uses a rotatable single cylindrical permanent magnet, which is placed close to the liquid metal duct. The rotation rate of this magnet is proportional to the flow rate. (author)

  1. Modified distribution parameter for churn-turbulent flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: jschlege@purdue.edu; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-10-15

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction.

  2. Modified distribution parameter for churn-turbulent flows in large diameter channels

    International Nuclear Information System (INIS)

    Schlegel, J.P.; Macke, C.J.; Hibiki, T.; Ishii, M.

    2013-01-01

    Highlights: • Void fraction data collected in pipe sizes up to 0.304 m using impedance void meters. • Flow conditions extend to transition between churn-turbulent and annular flow. • Flow regime identification results agree with previous studies. • A new model for the distribution parameter in churn-turbulent flow is proposed. -- Abstract: Two phase flows in large diameter channels are important in a wide range of industrial applications, but especially in analysis of nuclear reactor safety for the prediction of BWR behavior and safety analysis in PWRs. To remedy an inability of current drift-flux models to accurately predict the void fraction in churn-turbulent flows in large diameter pipes, extensive experiments have been performed in pipes with diameters of 0.152 m, 0.203 m and 0.304 m to collect area-averaged void fraction data using electrical impedance void meters. The standard deviation and skewness of the impedance meter signal have been used to characterize the flow regime and confirm previous flow regime transition results. By treating churn-turbulent flow as a transition between cap-bubbly dispersed flow and annular separated flow and using a linear ramp, the distribution parameter has been modified for churn-turbulent flow. The modified distribution parameter has been evaluated through comparison of the void fraction predicted by the drift-flux model and the measured void fraction

  3. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  4. A Comparison of Three Second-generation Swirl-Venturi Lean Direct Injection Combustor Concepts

    Science.gov (United States)

    Tacina, Kathleen M.; Podboy, Derek P.; He, Zhuohui Joe; Lee, Phil; Dam, Bidhan; Mongia, Hukam

    2016-01-01

    Three variations of a low emissions aircraft gas turbine engine combustion concept were developed and tested. The concept is a second generation swirl-venturi lean direct injection (SV-LDI) concept. LDI is a lean-burn combustion concept in which the fuel is injected directly into the flame zone. All three variations were based on the baseline 9- point SV-LDI configuration reported previously. The three second generation SV-LDI variations are called the 5-recess configuration, the flat dome configuration, and the 9- recess configuration. These three configurations were tested in a NASA Glenn Research Center medium pressure flametube. All three second generation variations had better low power operability than the baseline 9-point configuration. All three configurations had low NO(sub x) emissions, with the 5-recess configuration generally having slightly lower NO(x) than the flat dome or 9-recess configurations. Due to the limitations of the flametube that prevented testing at pressures above 20 atm, correlation equations were developed for the at dome and 9-recess configurations so that the landing-takeoff NO(sub x) emissions could be estimated. The flat dome and 9-recess landing-takeoff NO(x) emissions are estimated to be 81-88% below the CAEP/6 standards, exceeding the project goal of 75% reduction.

  5. Flow rates in the head and neck lymphatics after food stimulation in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Thommesen, P.; Buhl, J.; Jansen, K.; Funch-Jensen, P.

    1981-02-01

    In 22 healthy subjects lymph transport flow rates was studied in the head lymphatics after food stimulation, mastication (chewing) and taste. After food stimulation there was a significantly higher transport rate (0.67 meter/hour) than after taste (0.57 meter/hour) and mastication (0.55 meter/hour). The calculation of transport flow rate was independent of quantitative distribution of radioactivity in the head and neck lymphatics, and it could therefore perhaps be of clinical value.

  6. Flow rates in the head and neck lymphatics after food stimulation in healthy subjects

    International Nuclear Information System (INIS)

    Thommesen, P.; Buhl, J.; Jansen, K.; Funch-Jensen, P.; Central Hospital Randers; Municipal Hospital Aarhus

    1981-01-01

    In 22 healthy subjects lymph transport flow rates was studied in the head lymphatics after food stimulation, mastication (chewing) and taste. After food stimulation there was a significantly higher transport rate (0.67 meter/hour) than after taste (0.57 meter/hour) and mastication (0.55 meter/hour). The calculation of transport flow rate was independent of quantitative distribution of radioactivity in the head and neck lymphatics, and it could therefore perhaps be of clinical value. (orig.) [de

  7. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  8. Design and development of drag-disc flow meter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1989-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 6 figs

  9. Real-time measurement of gas and liquid flow rates in two-phase slug flow by an advanced electromagnetic flowmeter and conductance probes

    International Nuclear Information System (INIS)

    Kim Jongrok; Ahn Yeh-Chan; Oh Byung Do; Kang Deok-Hong; Kim Moo Hwan

    2005-01-01

    Full text of publication follows: In order to measure the liquid mean velocity (cross-sectional average) in two-phase flow with an electromagnetic flowmeter, each flow pattern must be considered separately because of their different flow characteristics. Since bubbly flow can be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no additional measurement difficulties compared to single-phase flow. Cha et al. (2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas core is located at the center of the flow tube. Slug flow, however, is the most complicated, since the liquid axial velocity over a slug unit experiences considerable acceleration or deceleration. Therefore an electromagnetic flowmeter with high temporal resolution is needed. In slug flow, film velocity measurements are also difficult to perform because the liquid film is very thin and can be easily disturbed, thus altering the flow field. Only two experimental results for liquid film velocity measurement could be found. They were performed using photo-chromic dye method (DeJesus, 1997) and PIV technique (Polonsky et al., 1999). In this study, an advanced electromagnetic flow-metry was developed to measure liquid mean velocity with high transients. In addition, two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with three rings designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From the

  10. Intelligent Metering for Urban Water: A Review

    OpenAIRE

    Rodney Stewart; Stuart White; Candice Moy; Ariane Liu; Pierre Mukheibir; Damien Giurco; Thomas Boyle

    2013-01-01

    This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering) has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been ...

  11. Estimation of Parameters and Flow Characteristics for the Design of Sanitary Sewers in Malaysia

    Directory of Open Access Journals (Sweden)

    Kamran Ansari

    2013-01-01

    Full Text Available Determination of the flow characteristics is very important for the design of sanitary sewers in any area. In the present study these are determined in the running sewers for the two parameters; per capita flow contribution and the peak flow factor. ISCO area - velocity flow meter model 4250 is used for this purpose. The flow meter, before being used in the running sewers, is calibrated first in the Hydraulics and Hydrology Laboratory of the UTM (Universiti Teknologi Malaysia. During the study the flow meter is installed inside the manhole in 10 different phases in the months of June, August, September, and October 2005 to monitor the sewage flow running in it. Continuous data is recorded in the flow meter during the process and the recorded time varies between 47 hours 25 minutes and 128 hours 35 minutes. The rainfall data is also collected during the same time using an automatic rain gauge which recorded rainfall at every five minutes of interval. Both the parameters thus calculated are then compared with the Malaysian Standard for sewer design i.e. MS 1228:1991. The results show that higher values of these parameters are being used in the design of sanitary sewers and extensive study needs to be carried out to review these values for future use

  12. Ambiguity effects of rhyme and meter.

    Science.gov (United States)

    Wallot, Sebastian; Menninghaus, Winfried

    2018-04-23

    Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Properties of cellulose triacetate dose meter

    International Nuclear Information System (INIS)

    Tamura, N.; Tanaka, R.; Mitomo, S.; Matsuda, K.; Nagai, S.

    1981-01-01

    Several clear plastics and dyed plastics are commercially available for dosimetry in intense radiation field, especially for radiation processing applications. Among these dose meters cellulose triacetate (CTA) dose meter has two advantages for routine uses; (1) it has linear response in mega-rad dose region and (2) the main product form is long tape. However, the manufacture of Numelec CTA film so far used had been discontinued, and for this reason we developed a new film for dosimetry uses. To determine the manufacturing conditions of the film, we examined the influence of additives, triphenylphosphate (TPP) and others, and film thickness on the dosimetric properties, since these two conditions remarkably influence the sensitivity of the dose meter. It is necessary for the reliability of plastic dose meters that the radiation induced colorations should be understood as radiation chemical processes. In this paper we describe the determination of the manufacturing conditions of the new film, the feature of the new dose meter, and the coloration mechanism. (author)

  14. 39 CFR 501.15 - Computerized Meter Resetting System.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Computerized Meter Resetting System. 501.15... AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.15 Computerized Meter Resetting System. (a) Description. The Computerized Meter Resetting System (CMRS) permits customers to reset their postage meters at...

  15. A Probabilistic Model of Meter Perception: Simulating Enculturation

    Directory of Open Access Journals (Sweden)

    Bastiaan van der Weij

    2017-05-01

    Full Text Available Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  16. Development and testing of highway storm-sewer flow measurement and recording system

    Science.gov (United States)

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  17. Radiofrequency energy exposure from the Trilliant smart meter.

    Science.gov (United States)

    Foster, Kenneth R; Tell, Richard A

    2013-08-01

    This paper reviews radiofrequency (RF) field levels produced by electric utility meters equipped with RF transceivers (so-called Smart Meters), focusing on meters from one manufacturer (Trilliant, Redwood City, CA, USA, and Granby, QC, Canada). The RF transmission levels are summarized based on publicly available data submitted to the U.S. Federal Communications Commission supplemented by limited independent measurements. As with other Smart Meters, this meter incorporates a low powered radiofrequency transceiver used for a neighborhood mesh network, in the present case using ZigBee-compliant physical and medium access layers, operating in the 2.45 GHz unlicensed band but with a proprietary network architecture. Simple calculations based on a free space propagation model indicate that peak RF field intensities are in the range of 10 mW m or less at a distance of more than 1-2 m from the meters. However, the duty cycle of transmission from the meters is very low (meter that were consistent with data reported by the vendor to the U.S. Federal Communications Commission. Limited measurements conducted in two houses with the meters were unable to clearly distinguish emissions from the meters from the considerable electromagnetic clutter in the same frequency range from other sources, including Wi-Fi routers and, when it was activated, a microwave oven. These preliminary measurements disclosed the difficulties that would be encountered in characterizing the RF exposures from these meters in homes in the face of background signals from other household devices in the same frequency range. An appendix provides an introduction to Smart Meter technology. The RF transmitters in wireless-equipped Smart Meters operate at similar power levels and in similar frequency ranges as many other digital communications devices in common use, and their exposure levels are very far below U.S. and international exposure limits.

  18. A special device used for measuring waste gas flow rate in the vent channel of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yingjun; Zong Guifang; Shi Huaming; Yang Huimin; Jiang Yuana.

    1988-01-01

    A special Venturi-Pitot complex device is discribed which is used for measuring waste gas flow rate in the vent channel of Qinshan nuclear power plant. The device is located at the center of the channel. It can produce enlarged differential pressure signal under the condition of low gas velocity. And the flow resistance of this device is negligible. Experiments to determine the ratio of the velocity at the center of the channel to the average velocity were performed on a 1:12 test model. The special device was calibrated in a closed wind tunnel and its discharge coefficient was obtained. The uncertainty is ±3.5% and the nonlinearity is ±1.3%. The enlargement ratio and the discharge coefficient of the device are also deduced analytically on the basis of hydrodynamics theory

  19. Investigation of technology for the monitoring of UF6 mass flow in UF6 streams diluted with H2

    International Nuclear Information System (INIS)

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.

    1986-12-01

    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF 6 streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF 6 concentration in a UF 6 - H 2 process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF 6 environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement

  20. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  1. A Probabilistic Model of Meter Perception: Simulating Enculturation

    NARCIS (Netherlands)

    van der Weij, B.; Pearce, M.T.; Honing, H.

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter

  2. Measuring methods in power metering 2013; Elektrizitaetsmesstechnik 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kahmann, Martin; Zayer, Peter (eds.)

    2012-07-01

    The book addresses technical and economic issues of power metering, data communication and data processing. Smart metering is the key issue discussed in all 14 contributions: 1. The perspective of Smart Metering in Europe through 2020; 2. Introduction of Smart Metering in Austria; 3. Metering after the amended EnWG 2011; 4. The FNN project ''MessSystem 2020''; 5. Technological requirements of Smart Grid and Smart Market; 6. DIN Spec 33440 ''Ergonomic Aspects of Smart Grids and Electromobility''; 7. Load management as a key element of energy transition; 8. Added value in Smart Metering as a result of Smart Home applications, 9. The main cost factors of the new metering systems; 10. BSI protection profile: Smart Meter Gateway certification; 11. The influence of new boundary conditions in metering on intercompany processes; 12. Reliable time allotment via internet; 13. Recommendations of the EEG Clearing Authority on metering problems; 14. Outline quality management manual for state-authorized test services for electric power, gas, water, and heat. [German] Dieses Buch richtet seinen Blick sowohl auf technische wie auch auf energiewirtschaftliche Themen rund um das Thema Mess- und Zaehltechnik sowie die inzwischen immer bedeutsamer werdende zugehoerige Datenkommunikations- und Datenverarbeitungstechnik. Eine zunehmende Betrachtung des Smart Metering als einen Teilaspekt des grossen Themas Smart Grid bildet die gemeinsame Klammer um die Beitraege. Die Themen der 14 Beitraege sind: 1. Perspektive Smart Metering in Europa bis 2020; 2. Smart-Meter-Einfuehrung in Oesterreich; 3. Das Messwesen nach der EnWG-Novelle 2011; 4. Das FNN-Projekt ''MessSystem 2020''; 5. Anforderungen durch Smart Grid und Smart Market an die intelligente Messtechnik; 6. DIN Spec 33440 ''Ergonomie-Aspekte zu Smart Grid und Elektromobilitaet''; 7. Lastverschiebung als Baustein der Energiewende; 8. Mehrwerte beim Smart

  3. Data report for current meters on Mooring CMMW-4, 1981; Pacific study area W-N

    International Nuclear Information System (INIS)

    Pillsbury, R.D.; Bottero, J.; Still, R.E.; Heath, G.R.

    1985-01-01

    The mooring designated CMMW-4 was installed on cruise W8103A by R/V Wecoma during March, 1981. It was recovered by the same ship 5 months later. All four meters from the mooring were recovered and gave good data. CMMW-4 is the continuation of the central series of W-N moorings (it was preceded by CMMW-1, 2, and 3). The series is designed to determined the long-term mean flow at W-N; and in combination with spatial data from CMMW-5 to 9, it will provide input data for a circulation model of the eastern Pacific. The CMMW-4 results re-establish the net SSE current trends evident in CMMW-1. The eddy-like feature in the CMMW-2 records has moved on. The low-frequency component of the deep meter records is quite coherent, but some shear is evident between 1250 and 3000 meters. 5 references, 54 figures, 1 tables

  4. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  5. 24 CFR 965.401 - Individually metered utilities.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Individual Metering of Utilities for Existing PHA-Owned Projects § 965.401 Individually metered utilities. (a) All utility service shall be... supplier or through the use of checkmeters, unless: (1) Individual metering is impractical, such as in the...

  6. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  7. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  8. Investigation of Separate Meter-In Separate Meter-Out Control Strategies for Systems with Over Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Hansen, Rico Hjerm

    2010-01-01

    to overcome this problem, but it typically implies higher energy consumption and/or decreased control performance. With the development of robust sensors and new valve types with separate meter-in, separate meter-out control it is, however, possible to overcome these stability problems in a much more...... intelligent way, also adding increased functionality to the system. The focus of the current paper is therefore on investigation of different control strategies for Separate Meter-In Separate Meter-Out (SMISMO) control of general single axis hydraulic system with a differential cylinder and an over......-centre valve included. The paper first presents a general model of the system considered, which is experimentally verified. This is followed by a discussion of different control strategies and their implications. For each of the control strategies controllers are described, taking into account the dynamics...

  9. Evaluation of Virtual Refrigerant Mass Flow Sensors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor ma...

  10. Korea advanced liquid metal reactor development - Development of measuring techniques of the sodium two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Hwan; Cha, Jae Eun [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    The technology which models and measures the behavior of bubble in liquid sodium is very important to insure the safety of the liquid metal reactor. In this research, we designed/ manufactured each part and loop of experimental facility for sodium two phase flow, and applied a few possible methods, measured characteristic of two phase flow such as bubbly flow. A air-water loop similar to sodium loop on each measuring condition was designed/manufactured. This air-water loop was utilized to acquire many informations which were necessary in designing the two phase flow of sodium and manufacturing experimental facility. Before the manufacture of a electromagnetic flow meter for sodium, the experiment using each electromagnetic flow mete was developed and the air-water loop was performed to understand flow characteristics. Experiments for observing the signal characteristics of flow were performed by flowing two phase mixture into the electromagnetic flow mete. From these experiments, the electromagnetic flow meter was designed and constructed by virtual electrode, its signal processing circuit and micro electro magnet. It was developed to be applicable to low conductivity fluid very successfully. By this experiment with the electromagnetic flow meter, we observed that the flow signal was very different according to void fraction in two phase flow and that probability density function which was made by statistical signal treatment is also different according to flow patterns. From this result, we confirmed that the electromagnetic flow meter could be used to understand the parameters of two phase flow of sodium. By this study, the experimental facility for two phase flow of sodium was constricted. Also the new electromagnetic flow meter was designed/manufactured, and experimental apparatus for two phase flow of air-water. Finally, this study will be a basic tool for measurement of two phase flow of sodium. As the fundamental technique for the applications of sodium at

  11. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    suppliers, but they can also play a big role in the control of the Microgrid since the recorded power and energy profiles can be integrated in energy management systems (EMS). In addition, basic power quality (PQ) disturbance can de detected and reported by some advanced metering systems. Thus, this paper...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  12. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  13. Versatile operation meter for nuclear information

    International Nuclear Information System (INIS)

    Huang Yong; Xiao Yabin; Wang Shuyuan; Shu Jingfang; Di Shaoliang; Wu Hongbin

    1995-01-01

    This paper states a low-cost, small-volume, multi-function, reproducible and new model intelligent nuclear electronic meter. It's hardware and Software were detailed and the 137 Cs spectrum with this meter was presented

  14. Smart metering - new possibilities for energy distribution in the mass customer sector; Smart Metering - neue Moeglichkeiten fuer den Energievertrieb im Massenkundenbereich

    Energy Technology Data Exchange (ETDEWEB)

    Haller, T. [Simon-Kucher aand Partners GmbH, Wien (Austria); Hoffmann, S.O.; Rentschler, M.D. [Simon-Kucher and Partners Strategy and Marketing Consultants GmbH, Bonn (Germany)

    2008-06-15

    As a result of the liberalisation of gas and electricity metering procedures energy suppliers are more and more turning their attention to innovative and intelligent metering techniques. Smart Metering allows energy suppliers to improve their metering processes while at the same time responding better to their customers' needs. These developments are also opening up new sales opportunities because intelligent meters facilitate the launch of new products in the mass customer sector. There is therefore much in favour of looking at this topic in greater detail.

  15. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  16. Regularization methods for inferential sensing in nuclear power plants

    International Nuclear Information System (INIS)

    Hines, J.W.; Gribok, A.V.; Attieh, I.; Uhrig, R.E.

    2000-01-01

    Inferential sensing is the use of information related to a plant parameter to infer its actual value. The most common method of inferential sensing uses a mathematical model to infer a parameter value from correlated sensor values. Collinearity in the predictor variables leads to an ill-posed problem that causes inconsistent results when data based models such as linear regression and neural networks are used. This chapter presents several linear and non-linear inferential sensing methods including linear regression and neural networks. Both of these methods can be modified from their original form to solve ill-posed problems and produce more consistent results. We will compare these techniques using data from Florida Power Corporation's Crystal River Nuclear Power Plant to predict the drift in a feedwater flow sensor. According to a report entitled 'Feedwater Flow Measurement in U.S. Nuclear Power Generation Stations' that was commissioned by the Electric Power Research Institute, venturi meter fouling is 'the single most frequent cause' for derating in Pressurized Water Reactors. This chapter presents several viable solutions to this problem. (orig.)

  17. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    Science.gov (United States)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  18. Proceedings of the 2006 smart metering conference and expo

    International Nuclear Information System (INIS)

    2006-01-01

    Ontario's smart metering program was launched as part of a general demand response management strategy to improve energy conservation in the province. Smart metering will help consumers to control their electricity bills through conservation and demand response, and will allow consumers to better manage their energy consumption and use it more effectively during cheaper, off-peak times of day. Smart metering systems measure how much electricity a customer uses on an hourly basis, and data is transferred daily to local electricity distributors. Toronto Hydro will have close to 200,000 smart meters installed by the end of 2006. By 2010, Toronto will be North America's largest urban centre to have made the full transition to smart metering technology across its entire base. This conference provided an update of Toronto Hydro's smart metering project, as well as details of their demand response program. Presentations were given by a variety of experts in information technology as well as electric power industry leaders North American demand and response metering strategies were reviewed, as well as various initiatives in advanced metering infrastructure (AMI). Security risks associated with smart metering environments were reviewed. An evaluation of the current regulatory environment was presented along with a discussion of smart metering standards and compatibility issues. New metering technologies were presented as well as various associated demand side management tools. Smart metering pilot programs and initiatives were discussed, and best practices in smart metering were evaluated. Twenty-nine presentations were given at the conference, 13 of which have been indexed separately for inclusion in this database. refs., tabs., figs

  19. Flow protection trip limits operational charge-discharge facility -- C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van Wormer, F.W.

    1958-09-19

    Because of wide variations in the venturi throat pressure, well beyond the panellit gage trip range, that occur during the sequence of operational charge-discharge, the panellit gage cannot be included in the scram safety circuit during the period of time that charge- discharge operations are being performed. In its stead, the function of the panellit gage is replaced in an overlapping manner by a tube inlet pressure monitor that is equipped with high and low pressure trip mechanisms that may be included in the scram safety circuit during the time that the panellit gage must be by-passed. The tube inlet pressure monitor is then used to provide the protection from unstable flow that is normally obtained with the panellit gage. This memorandum describes the manner in which the tube inlet pressure monitor trip points are to be determined and used.

  20. Microcomputer-controlled flow meter used on a water loop

    International Nuclear Information System (INIS)

    Haniger, L.

    1982-01-01

    The report describes a microcomputer-controlled instrument intended for operational measurement on an experimental water loop. On the basis of pressure and temperature input signals the instrument calculates the specific weight, and for ten operator-selectable measuring channels it calculates the mass flow G(kp/s), or the voluminal flow Q(m 3 /h). On pressing the appropriate push-buttons the built-in display indicates the values of pressure (p) and temperature (t), as well as the values of specific weight γ calculated therefrom. For ten individually selectable channels the instrument displays either the values of the pressure differences of the measuring throttling elements (√Δpsub(i)), or the values of Gsub(i) or Qsub(i) as obtained by calculation. In addition, on pressing the Σ-push-button it summarizes the values of Gsub(i) and Qsub(i) for the selected channels. The device is controlled by an 8085 microprocessor, the analog unit MP 6812 being used as the A/D convertor. The instrument algorithm indicates some possible errors which may concern faults of input signals or mistakes in calculation. (author)

  1. A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications

    Science.gov (United States)

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-01-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156

  2. Arduino based radiation survey meter

    International Nuclear Information System (INIS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee; Muzakkir, Amir

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr −1 ). Conversion factor (CF) value for conversion of CPM to μSvhr −1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  3. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  4. Pilot trials of the microbial degradation of Christos-Bitas water in oil emulsion (chocolate mousse) and BP llandarcy gas oil using venturi aeration.

    Science.gov (United States)

    Berwick, P G

    1985-01-01

    Oil residues arising from the Christos-Bitas spillage were found to contain 28% of oil extractable by carbon tetrachloride; the remainder consisted of water and undefined solids. Christos-Bitas mousse was added to 1.18 m(3) liquor inoculated with oil-contaminated marine mud, and aerated with a 1.5-hp vortex pump and venturi nozzle (12.5 mm) in a cylindrical tank. After 70 days, oil degradation reached 7 mg oil/L/h. About 98% of the solvent extractable oil added was degraded over 83 days. Analysis of oil residues harvested at the end of this experiment showed that there was a decreasing trend in percent degradation in the following order: aromatics > saturates > heterocyclics > asphalts. No less than 94% of any fraction analysed was degraded.In the second pilot trial, oil degradation was carried out in a cylindrical jacket tank containing 6.82 m(3) liquor inoculated with oil-contaminated marine mud from Penarth, South Wales, UK, together with pure cultures derived from the same source, and aerated with a 7.5-hp vortex pump and venturi nozzle (18 mm diameter). Mixing of the oil was inhomogeneous for the first 100-110 days. The overall degree of substrate dispersion and total oil balance was determined by sampling at different depths. Degradation by the mixed culture was achieved at the rate of 164 mg oil/L/h. After 224 days, this was equivalent to 9.6 x 10(3)/kg(-1)/yr;(214 kg/wk) for 6.82 m(3) of liquor. The degradation rate continued to rise as the feed rate was increased by means of an automatic, timed pump. A lag phase of five to six months was necessary to allow the mixed population to build up to an exploitable level.

  5. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    International Nuclear Information System (INIS)

    Pradeep, Chaminda; Yan, Ru; Mylvaganam, Saba; Vestøl, Sondre; Melaaen, Morten C

    2014-01-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  6. Automatic ranging circuit for a digital panel meter

    International Nuclear Information System (INIS)

    Mueller, T.R.; Ross, H.H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to ensure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit. The system was designed for readout of a fluorescence analyzer for uranium analysis

  7. EU data protection and smart metering. Legal boundary conditions; EU-Datenschutz und Smart Metering. Rechtliche Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Hladjk, Joerg [Praxisgruppe European Data Protection and Privacy, Hunton and Williams, Bruessel (Belgium)

    2011-07-01

    With the introduction of smart metering, the problem of data protection arises. The independent Article 29 Data Protection Group of the European Commission drew up an expert opinion with the intention of explaining the applicable EU data protection regulations for the smart metering technology in the power supply sector. (orig.)

  8. Active bypass flow control for a seal in a gas turbine engine

    Science.gov (United States)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  9. Your Glucose Meter

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...

  10. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  11. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    such systems, for small pressure drop penalty and with good flow stability. .... ied the effect of divergence angle on mean and transient pressure/temperature distribution and .... supplying a fixed voltage and current using a power source meter.

  12. De Minimis Thresholds for Federal Building Metering Appropriateness

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  13. Water metering in England and Wales

    Directory of Open Access Journals (Sweden)

    David Zetland

    2016-02-01

    Full Text Available The transformation of water services that began with the privatisation of water companies in 1989 extended to households with the implementation of water metering. Meters 'privatised' water and the cost of provision by allocating to individual households costs that had previously been shared within the community. This (ongoing conversion of common pool to private good has mostly improved economic, environmental and social impacts, but the potential burden of metering on poorer households has slowed the transition. Stronger anti-poverty programmes would be better at addressing this poverty barrier than existing coping mechanisms reliant on subsidies from other water consumers.

  14. 18 CFR 367.9020 - Account 902, Meter reading expenses.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 902, Meter... GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9020 Account 902, Meter reading... customer meters, and determining consumption when performed by employees engaged in reading meters. (b...

  15. Smart Metering. Between technical challenge and societal acceptance - Interdisciplinary status quo; Smart Metering. Zwischen technischer Herausforderung und gesellschaftlicher Akzeptanz - Interdisziplinaerer Status Quo

    Energy Technology Data Exchange (ETDEWEB)

    Westermann, Dirk; Doering, Nicola; Bretschneider, Peter (eds.)

    2013-04-01

    The international research project RESIDENS (more efficient energy utilization by means of system technical integration of the private ultimate consumer) investigates the technology of smart metering that is the utilization of intelligent smart meters in private households. The interdisciplinary character of the RESIDENS project becomes visible by different sub-projects examining different formulations of a question from perspectives of different scientific disciplines: First of all, chapter 2 of the contribution under consideration follows up the question, what impact the media coverage on smart metering has on the perception of this technology in the population at large. Chapter 3 reports on the state of the art of the smart metering. Chapter 4 illustrates how a load control of private consumers can be performed by means of the smart meter technology. Chapter 5 reports on the impacts of the smart metering on the procurement of energy in the liberalised energy market. Chapter 6 investigates the smart metering from the customer's point of view. Concretely, the user-friendliness of an internet portal is evaluated by which the customers may follow up their consumption of electricity by means of an intelligent smart meter continuously. Chapter 7 illustrates legal aspects of smart metering from the perspective of the customer, electricity suppliers and distribution system operators. Chapter 8 presents the conception and implementation of an online gaming operation for the promotion of competency of private power customers: In line with this game, the participants may learn to handle smart metering and flexible electricity tariffs in an entertaining manner. Finally, chapter 9 reports on an expert interview in which the smart metering technology is evaluated by public utilities being involved in this project.

  16. Investigation of technology for monitoring UF6 mass flow

    International Nuclear Information System (INIS)

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF 6 concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF 6 and H 2 , a mass flow measurement in conjunction with a measurement of the uranium (or UF 6 ) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF 6 streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF 6 concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs

  17. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  18. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  19. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  20. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  1. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  2. Research on Operation Assessment Method for Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  3. PELATIHAN RENANG GAYA DADA 8 KALI 25 METER 4 SET LEBIH MENINGKATKAN KECEPATAN RENANG 100 METER GAYA DADA DARIPADA 4 KALI 50 METER 4 SET PADA RENANG PEMULA PUTRA

    Directory of Open Access Journals (Sweden)

    I Wayan Suarta

    2013-07-01

    Full Text Available Sports pool in Indonesia are well known to the public, which is reduced when driving (after the end of the recovery to begin hand pull another hand, the breaststroke is the style of the most interesting because it does not quickly tiring when compared with other styles, because the process of respiration take place with ease, making them easier use in long-distance swim, at the start to affect the pace to continue this next movement needs to get training and a variety of training models, especially at students aged 10-12 years. Training pool 8 times 25 times 50 meters and 4 meters is one of the training methods that can speed up travel time. The best training model has not been encountered in the data. So do the research to find a model training 25 meter pool 8 times and 4 times 4 sets of 50 meters. The study was conducted with pretest-postes group design. Samples taken from the novice swimmer Toya Ening on Dalung Badung, as many as 26 people were randomly selected simple. Samples were divided into 2 groups each group totaled 13 people. Both groups were equally give training in the first group to pool 8 by 25 feet 4 sets, and 4 times the second group of 4 sets of 50 meters. 0.05 ab. Differences in results were analyzed statistically with  The data analyzed were age, height, weight, leg length and physical fitness.  13.49 seconds.± 107.69, and 126.38 ±The mean test results of the final 100 meter breaststroke swimming in a row 12.14 seconds  F count the results obtained respectively by 0.95 seconds with p = 0.59 and 0.93 seconds with a value of p = 0.34. Data showed significant differences significant (p> 0.05. These results indicate that the training of swimming the breaststroke 8 by 25 feet 4 sets is better than 4 times in 4 sets of 50 meter speed up travel time 100-meter breaststroke swimming novice men (p <0.05. Suggested the use of breaststroke swimming training method 8 by 25 feet 4 sets to be intensified to provide training pool at 100

  4. 10 CFR 451.7 - Metering requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements. The net electric energy generated and sold (kilowatt-hours) by the owner or operator of a qualified...

  5. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can ...

  6. Multichannel Distribution Meter: A Veritable Solution in Power ...

    African Journals Online (AJOL)

    Partitioned apartments in commercial buildings particularly in congested environments shares energy supply meters among several users. This often leads to disputes and results to power theft in the form of unpaid bills and meter tampering. This paper described how power from a single supply meter can be adequately ...

  7. Continuous recording of excretory water loss from Musca domestica using a flow-through humidity meter: hormonal control of diuresis.

    Science.gov (United States)

    Coast, Geoffrey M

    2004-05-01

    Water loss from adult male houseflies was continuously recorded using a flow-through humidity meter, which enabled losses to be apportioned between the sum of cuticular and respiratory transpiration, salivation and excretion. Transpiration accounted for >95% of water lost from sham-injected flies, compared with excretion (3.0%) and salivation (2.4%). In contrast, excretion accounted for 40% of water lost from flies injected with > or =3 microl of saline, whereas salivary losses were unchanged. Saline injections (1-5 microl) expanded the abdomen in the dorsal-ventral plane, and this expansion was positively correlated with the magnitude of the ensuing diuresis, suggesting the signal for diuretic hormone release originates from stretch receptors in abdominal tergal-sternal muscles. The effects of decapitation, severing the ventral nerve cord within the neck or ligaturing the neck, showed the head was needed to initiate and maintain diuresis, but was neither the source of diuretic hormone nor did it control the discharge of urine from the anus. These findings indicate the head is part of the neural-endocrine pathway between abdominal stretch receptors and sites for diuretic hormone release from the thoracic-abdominal ganglion mass. Evidence is presented for Musdo-K having a hormonal role in the control of diuresis, although other neuropeptides may also be implicated.

  8. The relationships between common measures of glucose meter performance.

    Science.gov (United States)

    Wilmoth, Daniel R

    2012-09-01

    Glucose meter performance is commonly measured in several different ways, including the relative bias and coefficient of variation (CV), the total error, the mean absolute relative deviation (MARD), and the size of the interval around the reference value that would be necessary to contain a meter measurement at a specified probability. This fourth measure is commonly expressed as a proportion of the reference value and will be referred to as the necessary relative deviation. A deeper understanding of the relationships between these measures may aid health care providers, patients, and regulators in comparing meter performances when different measures are used. The relationships between common measures of glucose meter performance were derived mathematically. Equations are presented for calculating the total error, MARD, and necessary relative deviation using the reference value, relative bias, and CV when glucose meter measurements are normally distributed. When measurements are also unbiased, the CV, total error, MARD, and necessary relative deviation are linearly related and are therefore equivalent measures of meter performance. The relative bias and CV provide more information about meter performance than the other measures considered but may be difficult for some audiences to interpret. Reporting meter performance in multiple ways may facilitate the informed selection of blood glucose meters. © 2012 Diabetes Technology Society.

  9. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  10. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  11. Wanted: competitive metering infrastructure. Metering must be automated in a high grade; Gesucht: wettbewerbsfaehige Metering-Infrastruktur. Metering muss hochgradig automatisiert werden

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Elschner, C. [T-Systems Enterprise Services GmbH, Bonn (Germany). Business Development und Marketing

    2008-04-21

    Accurate on-time consumption metering and data transmission are increasingly important as energy markets are being deregulated. Measuring and information systems combine measurements with intelligent modules for automatic transmission of consumption information. A meaningful cost-benefit comparision results only when the total system is considered. Telecommunication companies as ICT service systems and service sectors can do a clear contribution to the total system. (orig./GL)

  12. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780 Section 868.1780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount...

  13. Analysis of a quantum nondemolition speed-meter interferometer

    International Nuclear Information System (INIS)

    Purdue, Patricia

    2002-01-01

    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g. LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors rather than monitoring their relative position. This paper describes and analyzes the most straightforward design for a speed meter interferometer that accomplishes this--a design (due to Braginsky, Gorodetsky, Khalili and Thorne) that is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and is used to show [in accord with the speed being a quantum nondemolition observable] that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies, and can do so without the use of squeezed vacuum or any auxiliary filter cavities at the interferometer's input or output. However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation. This analysis forms a foundation for ongoing attempts to develop a more practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising LIGO-III/EURO interferometer design that entails low laser power

  14. Metering in the gas supply sector; Metering in der Gasversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wernekinck, U. [RWE Westfalen-Weser-Ems, Recklinghausen (Germany)

    2007-10-15

    The new conditions of competition in the gas supply sector have strongly increased the requirements on gas grid operators. Mainly an exact gas metering and -accouting will become more and more important. The systems and procedures are presented in detail in this contribution. (GL)

  15. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  16. Smart Metering. Synergies within medium voltage automation; Synergien durch Smart Metering. Automatisierung auf Mittelspannungsebene

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-11-15

    Transparent interdivisional system solutions are an indispensable and decisive precondition for the optimization of business processes. The implementation of a Smart Metering solution does not only provide data for billing purposes, but also renders important data for network operation. Synergies can be achieved through the use of a common infrastructure which covers both the needs of Smart Metering and network operation. An open architecture of the solution allows for the future integration of further services of the domains Smart Grid and Smart Home. (orig.)

  17. Calibration of dose meters used in radiotherapy

    International Nuclear Information System (INIS)

    1979-01-01

    This manual is a practical guide, not a comprehensive textbook, to the instrumentation and procedures necessary to calibrate a radiation dose meter used in clinical practice against a secondary standard dose meter

  18. The development of two-phase flow instrumentation at PNC O-arai Engineering Center

    International Nuclear Information System (INIS)

    Obata, T.; Kobori, T.; Hayamizu, Y.

    1975-10-01

    This paper reviews development works on the two-phase flow instrumentation carried out at PNC Oarai Engineering Center for FUGEN safety test. The paper describes heater surface temperature measurement, four types of void meters and two steam quality meters. (auth.)

  19. Flow and transport properties of a 200 meters multi scale fractured block at the Aespoe (Sweden) underground laboratory

    International Nuclear Information System (INIS)

    Grenier, C.; Bernard-Michel, G.; Fourno, A.; Benaderrahmane, H.

    2005-01-01

    Full text of publication follows: Within the framework of nuclear spent fuel storage, special care is put on experimentation and modelling work to improve the modelling capabilities for the transfers of radionuclides within a natural fractured media. Several aspects make it a challenging task, among which the heterogeneity of the system, the scarcity of the available information, the strong contrasts in the parameter values between mobile and immobile zones. In addition to these difficulties relative to the system, the assessment of storage capacity of a repository involves predictions at very large time scales (typically 100.000 years) which are not accessible to experimentation. We provide here with some of the results obtained within the SKB Task Force (Task6) related with the Aespoe granitic underground laboratory in Sweden. The purpose of this task, involving several other modelling teams, is to provide a bridge between detailed SC (Site Characterization) models operating at experimental and local time scale and more simple PA (Performance Assessment) models operating at large spatial and time scales used for sensitivity analysis to different scenarios. The present step involves a study of a 200 meters complex and realistic fractured system considering several scales of fracturing or heterogeneity according to the in situ observations: deterministic features identified from the Block Scale project, synthetic background fractures simulated based on in situ measurements of smaller scale fracturing and finally complexity of the fractures at different scales (fault zones with several channels along Cataclasite to simple joints with fracture coating). Tracer tests conducted within local portions of the system during Block Scale project are provided as well as laboratory measurements of the properties of the system. We present an overview of our modelling strategy and transport results as well as associated studies highlighting the role played by the different sub

  20. In-situ calibration of clinical built-in KAP meters with traceability to a primary standard using a reference KAP meter.

    Science.gov (United States)

    Malusek, A; Helmrot, E; Sandborg, M; Grindborg, J-E; Carlsson, G Alm

    2014-12-07

    The air kerma-area product (KAP) is used for settings of diagnostic reference levels. The International Atomic Energy Agency (IAEA) recommends that doses in diagnostic radiology (including the KAP values) be estimated with an accuracy of at least ± 7% (k = 2). Industry standards defined by the International Electrotechnical Commission (IEC) specify that the uncertainty of KAP meter measurements should be less than ± 25% (k = 2). Medical physicists willing to comply with the IAEA's recommendation need to apply correction factors to KAP values reported by x-ray units. The aim of this work is to present and evaluate a calibration method for built-in KAP meters on clinical x-ray units. The method is based on (i) a tandem calibration method, which uses a reference KAP meter calibrated to measure the incident radiation, (ii) measurements using an energy-independent ionization chamber to correct for the energy dependence of the reference KAP meter, and (iii) Monte Carlo simulations of the beam quality correction factors that correct for differences between beam qualities at a standard laboratory and the clinic. The method was applied to the KAP meter in a Siemens Aristos FX plus unit. It was found that values reported by the built-in KAP meter differed from the more accurate values measured by the reference KAP meter by more than 25% for high tube voltages (more than 140 kV) and heavily filtered beams (0.3 mm Cu). Associated uncertainties were too high to claim that the IEC's limit of 25% was exceeded. Nevertheless the differences were high enough to justify the need for a more accurate calibration of built-in KAP meters.