WorldWideScience

Sample records for ventricular remodeling induced

  1. CT-1-CP-induced ventricular electrical remodeling in mice.

    Science.gov (United States)

    Chen, Shu-fen; Wei, Tao-zhi; Rao, Li-ya; Xu, Ming-guang; Dong, Zhan-ling

    2015-02-01

    The chronic effects of carboxyl-terminal polypeptide of Cardiotrophin-1 (CT-1-CP) on ventricular electrical remodeling were investigated. CT-1-CP, which contains 16 amino acids in sequence of the C-terminal of Cardiotrophin-1, was selected and synthesized, and then administered to Kunming mice (aged 5 weeks) by intraperitoneal injection (500 ng·g⁻¹·day⁻¹) (4 groups, n=10 and female: male=1:1 in each group) for 1, 2, 3 and 4 weeks, respectively. The control group (n=10, female: male=1:1) was injected by physiological saline for 4 weeks. The epicardial monophasic action potential (MAP) was recorded by using a contact-type MAP electrode placed vertically on the left ventricular (LV) epicardium surface, and the electrocardiogram (ECG) signal in lead II was monitored synchronously. ECG intervals (RR, PR, QRS and QT) and the amplitude of MAP (Am), the maximum upstroke velocity (Vmax), as well as action potential durations (APDs) at different repolarization levels (APD30, APD50, APD70, and APD90) of MAP were determined and analyzed in detail. There were no significant differences in RR and P intervals between CT-1-CP-treated groups and control group, but the PR segment and the QRS complex were greater in the former than in the latter (F=2.681 and 5.462 respectively, PCP-treated groups than in control group, the QT dispersion (QTd) of them was greater in the latter than in the former (F=3.090, PCP-treated groups and the prolongation of QT intervals increased gradually along with the time of exposure to CT-1-CP. The QRS complex had no significant change in control group, one-week and three-week CT-1-CP-treated groups, but prolonged significantly in two-week and four-week CT-1-CP-treated groups. Interestingly, the QTd after chest-opening was significantly greater than that before chest-opening in control group (t=5.242, PCP-treated groups. The mean MAP amplitude, Vmax and APD were greater in CT-1-CP-treated groups than those in control group, and became more obvious

  2. Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.

    Science.gov (United States)

    Zhang, Ying; Yan, Hua; Guang, Gong-Chang; Deng, Zheng-Rong

    2017-01-01

    To evaluate the improving effects of specifically overexpressed connective tissue growth factor (CTGF) in cardiomyocytes on mice with hypertension induced by angiotensin II (AngII) perfusion, 24 transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were divided into two equal groups that were perfused with acetic acid and AngII, respectively, for 7 days. Another 24 cage-control wild-type C57BL/6 mice (NLC) were divided and treated identically. Blood pressure was detected by caudal artery cannulation. Cardiac structural and functional changes were observed by echocardiography. Cardiac fibrosis was detected by Masson staining. After AngII perfusion, blood pressures of NLC and Tg-CTGF mice, especially those of the formers, significantly increased. Compared with NLC + AngII group, Tg-CTGF + AngII group had significantly lower left ventricular posterior wall thickness at end-diastole and left ventricular posterior wall thickness at end-systole as well as significantly higher left ventricular end-systolic diameter and left ventricular end-diastolic diameter (P tissues (P < 0.05). Tg-CTGF can protect AngII-induced cardiac remodeling of mice with hypertension by mitigating inflammatory response. CTGF may be a therapy target for hypertension-induced myocardial fibrosis, but the detailed mechanism still needs in-depth studies.

  3. Comparison of the effects of candesartan cilexetil and enalapril maleate on right ventricular myocardial remodeling in dogs with experimentally induced pulmonary stenosis.

    Science.gov (United States)

    Yamane, Tsuyoshi; Fujii, Yoko; Orito, Kensuke; Osamura, Kaori; Kanai, Takao; Wakao, Yoshito

    2008-12-01

    To compare the effects of candesartan cilexetil and enalapril maleate on right ventricular myocardial remodeling in dogs with experimentally induced pulmonary stenosis. 24 Beagles. 18 dogs underwent pulmonary arterial banding (PAB) to induce right ventricular pressure overload, and 6 healthy dogs underwent sham operations (thoracotomy only [sham-operated group]). Dogs that underwent PAB were allocated to receive 1 of 3 treatments (6 dogs/group): candesartan (1 mg/kg, PO, q 24 h [PABC group]), enalapril (0.5 mg/kg, PO, q 24 h [PABE group]), or no treatment (PABNT group). Administration of treatments was commenced the day prior to surgery; control dogs received no cardiac medications. Sixty days after surgery, right ventricular wall thickness was assessed echocardiographically and plasma renin activity, angiotensin-converting enzyme activity, and angiotensin I and II concentrations were assessed; all dogs were euthanatized, and collagenous fiber area, cardiomyocyte diameter, and tissue angiotensin-converting enzyme and chymase-like activities in the right ventricle were evaluated. After 60 days of treatment, right ventricular wall thickness, cardiomyocyte diameter, and collagenous fiber area in the PABNT and PABE groups were significantly increased, compared with values in the PABC and sham-operated groups. Chymase-like activity was markedly greater in the PABE group than in other groups. Results indicated that treatment with candesartan but not enalapril effectively prevented myocardial remodeling in dogs with experimentally induced subacute right ventricular pressure overload.

  4. Qishenyiqi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Chun Li

    Full Text Available AIM: Qi-shen-yi-qi (QSYQ, a formula used for the routine treatment of heart failure (HF in China, has been demonstrated to improve cardiac function through down-regulating the activation of the Renin-Angiotensin-Aldosterone System (RAAS. However, the mechanisms governing its therapeutic effects are largely unknown. The present study aims to demonstrate that QSYQ treatment can prevent left ventricular remodeling in heart failure by attenuating oxidative stress and inhabiting inflammation. METHODS: Sprague-Dawley (SD rats were randomly divided into 6 groups: sham group, model group (LAD coronary artery ligation, QSYQ group with high dosage, middle dosage and low dosage (LAD ligation and treated with QSYQ, and captopril group (LAD ligation and treated with captopril as the positive drug. Indicators of fibrosis (Masson, MMPs, and collagens and inflammation factors were detected 28 days after surgery. RESULTS: Results of hemodynamic alterations (dp/dt value in the model group as well as other ventricular remodeling (VR markers, such as MMP-2, MMP-9, collagen I and III elevated compared with sham group. VR was accompanied by activation of RAAS (angiotensin II and NADPHoxidase. Levels of pro-inflammatory cytokines (TNF-α, IL-6 in myocardial tissue were also up-regulated. Treatment of QSYQ improved cardiac remodeling through counter-acting the aforementioned events. The improvement of QSYQ was accompanied with a restoration of angiotensin II-NADPHoxidase-ROS-MMPs pathways. In addition, "therapeutic" QSYQ administration can reduce both TNF-α-NF-B and IL-6-STAT3 pathways, respectively, which further proves the beneficial effects of QSYQ. CONCLUSIONS: Our study demonstrated that QSYQ protected LAD ligation-induced left VR via attenuating AngII -NADPH oxidase pathway and inhabiting inflammation. These findings provide evidence as to the cardiac protective efficacy of QSYQ to HF and explain the beneficial effects of QSYQ in the clinical application for HF.

  5. MicroRNAs in right ventricular remodelling.

    Science.gov (United States)

    Batkai, Sandor; Bär, Christian; Thum, Thomas

    2017-10-01

    Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  6. Left ventricular remodeling in preclinical experimental mitral regurgitation of dogs.

    Science.gov (United States)

    Dillon, A Ray; Dell'Italia, Louis J; Tillson, Michael; Killingsworth, Cheryl; Denney, Thomas; Hathcock, John; Botzman, Logan

    2012-03-01

    Dogs with experimental mitral regurgitation (MR) provide insights into the left ventricular remodeling in preclinical MR. The early preclinical left ventricular (LV) changes after mitral regurgitation represent progressive dysfunctional remodeling, in that no compensatory response returns the functional stroke volume (SV) to normal even as total SV increases. The gradual disease progression leads to mitral annulus stretch and enlargement of the regurgitant orifice, further increasing the regurgitant volume. Remodeling with loss of collagen weave and extracellular matrix (ECM) is accompanied by stretching and hypertrophy of the cross-sectional area and length of the cardiomyocyte. Isolated ventricular cardiomyocytes demonstrate dysfunction based on decreased cell shortening and reduced intracellular calcium transients before chamber enlargement or decreases in contractility in the whole heart can be clinically appreciated. The genetic response to increased end-diastolic pressure is down-regulation of genes associated with support of the collagen and ECM and up-regulation of genes associated with matrix remodeling. Experiments have not demonstrated any beneficial effects on remodeling from treatments that decrease afterload via blocking the renin-angiotensin system (RAS). Beta-1 receptor blockade and chymase inhibition have altered the progression of the LV remodeling and have supported cardiomyocyte function. The geometry of the LV during the remodeling provides insight into the importance of regional differences in responses to wall stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Chen-Hui Ju

    2015-07-01

    Full Text Available Background/Aims: After myocardial infarction (MI, cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1 has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. Methods: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs stimulated by angiotensin II (Ang II was tested. Results: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. Conclusion: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

  8. Observations of super early left ventricular remodeling experimental myocardial infarction

    International Nuclear Information System (INIS)

    Zhang, C.G.; Jin, J.H.; Zhao, X.B.; Kang, C.S.; Liang, F.Y.; Yin, Z.M.; Liu, G.F.; Li, S.J.; Li, X.F.; Hu, G.; Qin, D.Z.; Song, L.Z.

    2004-01-01

    Purpose: Ventricular remodeling is defined as the changes in the shape and size of the entire left ventricle after acute myocardial infarction (AMI). Many investigators have shown that left ventricular remodeling is related to clinical outcomes, including mortality, that represent the natural history, of the heart failure syndrome. The aim of this study was to demonstrate that it is possible to observe super early left ventricular remodeling by 99mTc-MIBI myocardial imaging in the dog model of acute experimental myocardial infarction. Methods: Experimental subjects: Twenty-three healthy mongrel dogs (14-25 kg) of either sex were studied under general anesthesia (sodium pentobarbital, 30 mg/kg). The left anterior descending (LAD) coronary artery was dissected and ligated between the first and second diagonal branches. Seven dogs died of ventricular fibrillation after the LAD coronary artery ligation. The 16 remaining dogs were divided into two groups: Group A (GA) received 99mTc-MIBI myocardial imaging (n=8): Group B (GB) received 99mTc-MIBI myocardial imaging combined with echocardiography (n=8). 99mTc-MIBI myocardial perfusion imaging :Static 99mTc-MIBI myocardial imaging was taken with ADAC Vertex Dual-head SPECT. 99mTc-MIBI kit was manufactured in Syncor, China. Each dog served as its own control, and was scanned by 99mTc-MIBI myocardial imaging and chocardiography at 48-72 hours before ligation. The mean time of the first acquisition was 21.87 ± 11.03 (14-48) minutes post-operatively in GA, 57.63±22.83 (30-99) minutes for 99mTc-MIBI imaging in GB, 26.00±15.07 (12-50) minutes for echocardiography in GB. Acquisition techniques for Gated SPECT: ECG synchronized data collection: R wave trigger, 8 Frames/Cardiac cycle. Images were gathered by rotating the detectors 180 degrees at 6 degrees per frame. Each frame took 40 seconds. The dog position was supine. The images were acquired and recorded for 6 hours following the LAD coronary artery ligation. After 6 hours

  9. Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism

    Science.gov (United States)

    Reichert, Karla; Pereira do Carmo, Helison Rafael; Galluce Torina, Anali; Diógenes de Carvalho, Daniela; Carvalho Sposito, Andrei; de Souza Vilarinho, Karlos Alexandre; da Mota Silveira-Filho, Lindemberg; Martins de Oliveira, Pedro Paulo

    2016-01-01

    Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events. PMID:27880844

  10. Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle

    NARCIS (Netherlands)

    Reesink, Herre J.; Marcus, J. Tim; Tulevski, Igor I.; Jamieson, Stuart; Kloek, Jaap J.; Vonk Noordegraaf, Anton; Bresser, Paul

    2007-01-01

    OBJECTIVES: Pulmonary arterial hypertension causes right ventricular remodeling; that is, right ventricular dilatation, hypertrophy, and leftward ventricular septal bowing. We studied the effect of pulmonary endarterectomy on the restoration of right ventricular remodeling in patients with chronic

  11. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension.

    Science.gov (United States)

    Turner, M J; Spina, R J; Kohrt, W M; Ehsani, A A

    2000-04-01

    It is not known whether exercise training can induce a reduction of blood pressure (BP) and a regression of left ventricular hypertrophy (LVH) in older hypertensive subjects. This study was designed to determine whether endurance exercise training, by lowering BP, can induce regression of LVH and left ventricular (LV) concentric remodeling in older hypertensive adults. We studied 11 older adults with mild to moderate hypertension (BP 152.0 +/- 2.5/91.3 +/- 1.5 mm Hg, mean +/- SE), 65.5 +/- 1.2 years old, who exercised for 6.8 +/- 3.8 months. Seven sedentary hypertensive (BP 153 +/- 3/89 +/- 2 mm Hg) subjects, 68.5 +/- 1 years old, served as controls. LV size and geometry and function were assessed with the use of two-dimensional echocardiography. Exercise training increased aerobic power by 16% (p hypertension.

  12. Right ventricular remodelling after transcatheter pulmonary valve implantation.

    Science.gov (United States)

    Pagourelias, Efstathios D; Daraban, Ana M; Mada, Razvan O; Duchenne, Jürgen; Mirea, Oana; Cools, Bjorn; Heying, Ruth; Boshoff, Derize; Bogaert, Jan; Budts, Werner; Gewillig, Marc; Voigt, Jens-Uwe

    2017-09-01

    To define the optimal timing for percutaneous pulmonary valve implantation (PPVI) in patients with severe pulmonary regurgitation (PR) after Fallot's Tetralogy (ToF) correction. PPVI among the aforementioned patients is mainly driven by symptoms or by severe right ventricular (RV) dilatation/dysfunction. The optimal timing for PPVI is still disputed. Twenty patients [age 13.9 ± 9.2 years, (range 4.3-44.9), male 70%] with severe PR (≥3 grade) secondary to previous correction of ToF, underwent Melody valve (Medtronic, Minneapolis, MN) implantation, after a pre-stent placement. Full echocardiographic assessment (traditional and deformation analysis) and cardiovascular magnetic resonance evaluation were performed before and at 3 months after the intervention. 'Favorable remodelling' was considered the upper quartile of RV size decrease (>20% in 3 months). After PPVI, indexed RV effective stroke volume increased from 38.4 ± 9.5 to 51.4 ± 10.7 mL/m 2 , (P = 0.005), while RV end-diastolic volume and strain indices decreased (123.1 ± 24.1-101.5 ± 18.3 mL/m 2 , P = 0.005 and -23.5 ± 2.5 to -21 ± 2.5%, P = 0.002, respectively). After inserting pre-PPVI clinical, RV volumetric and deformation parameters in a multiple regression model, only time after last surgical correction causing PR remained as significant regressor of RV remodelling [R 2  = 0.60, beta = 0.387, 95%CI(0.07-0.7), P = 0.019]. Volume reduction and functional improvement were more pronounced in patients treated with PPVI earlier than 7 years after last RV outflow tract (RVOT) correction, reaching close-to-normal values. Early PPVI (<7 years after last RVOT operation) is associated with a more favorable RV reverse remodelling toward normal range and should be considered, before symptoms or RV damage become apparent. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Patterns of left ventricular remodeling among patients with essential and secondary hypertension.

    Science.gov (United States)

    Radulescu, Dan; Stoicescu, Laurentiu; Buzdugan, Elena; Donca, Valer

    2013-12-01

    High blood pressure causes left ventricular hypertrophy, which is a negative prognostic factor among hypertensive patients. To assess left ventricular geometric remodeling patterns in patients with essential hypertension or with hypertension secondary to parenchymal renal disease. We analyzed data from echocardiograms performed in 250 patients with essential hypertension (150 females) and 100 patients with secondary hypertension (60 females). The interventricular septum and the left ventricular posterior wall thickness were measured in the parasternal long-axis. Left ventricular mass was calculated using the Devereaux formula. The most common remodeling type in females and males with essential hypertension were eccentric and concentric left ventricular hypertrophy (cLVH), respectively. Among patients with secondary arterial hypertension, cLVH was most commonly observed in both genders. The prevalence of left ventricular hypertrophy was higher among patients with secondary hypertension. The left ventricular mass index and the relative left ventricular wall thickness were higher in males and also in the secondary hypertension group. Age, blood pressure values and the duration of hypertension, influenced remodeling patterns. We documented a higher prevalence of LVH among patients with secondary hypertension. The type of ventricular remodeling depends on gender, age, type of hypertension, blood pressure values and the duration of hypertension.

  14. Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse

    NARCIS (Netherlands)

    Strijkers, Gustav J.; Bouts, Annemiek; Blankesteijn, W. Matthijs; Peeters, Tim H. J. M.; Vilanova, Anna; van Prooijen, Mischa C.; Sanders, Honorius M. H. F.; Heijman, Edwin; Nicolay, Klaas

    2009-01-01

    The cardiac muscle architecture lies at the basis of the mechanical and electrical properties of the heart, and dynamic alterations in fiber structure are known to be of prime importance in healing and remodeling after myocardial infarction. In this study, left ventricular remodeling was

  15. Electrical remodeling and atrial dilation during atrial tachycardia are influenced by ventricular rate : Role of developing tachycardiomyopathy

    NARCIS (Netherlands)

    Schoonderwoerd, BA; Van Gelder, IC; Van Veldhuisen, DJ; Tieleman, RG; Grandjean, JG; Bel, KJ; Allessie, MA; Crijns, HJGM

    2001-01-01

    Atrial Remodeling in Tachycardiomyopathy. Introduction: Atrial fibrillation (AF) and congestive heart failure (CHF) are two clinical entities that often coincide. Our aim was to establish the influence of concomitant high ventricular rate and consequent development of CHF on electrical remodeling

  16. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers

    Science.gov (United States)

    Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S.; Weissmann, Norbert; Ghofrani, Hossein A.; Schermuly, Ralph T.

    2018-01-01

    Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function. PMID:29875701

  17. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Xiang-Rong Zuo

    Full Text Available BACKGROUND: Most of the deaths among patients with severe pulmonary arterial hypertension (PAH are caused by progressive right ventricular (RV pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT. RV systolic pressure (RVSP was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD reversed these beneficial effects of nicorandil in MCT-injected rats. CONCLUSIONS/SIGNIFICANCE: Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K(+ (mitoK(ATP channels. The use of a mitoK(ATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV

  18. Patterns of left ventricular remodeling among patients with essential and secondary hypertension

    OpenAIRE

    Radulescu,Dan; Stoicescu,Laurentiu; Buzdugan,Elena; Donca,Valer

    2013-01-01

    Background: High blood pressure causes left ventricular hypertrophy, which is a negative prognostic factor among hypertensive patients. Aim: To assess left ventricular geometric remodeling patterns in patients with essential hypertension or with hypertension secondary to parenchymal renal disease. Material and Methods: We analyzed data from echocardiograms performed in 250patients with essential hypertension (150 females) and 100 patients with secondary hypertension (60 females). The interven...

  19. Race differences in ventricular remodeling and function among college football players.

    Science.gov (United States)

    Haddad, Francois; Peter, Shanon; Hulme, Olivia; Liang, David; Schnittger, Ingela; Puryear, Josephine; Gomari, Fatemeh A; Finocchiaro, Gherardo; Myers, Jonathan; Froelicher, Victor; Garza, Daniel; Ashley, Euan A

    2013-07-01

    Athletic training is associated with increases in ventricular mass and volume. Recent studies have shown that left ventricular mass increases proportionally in white athletes with a mass/volume ratio approaching unity. The objective of this study was to compare the proportionality in ventricular remodeling and ventricular function in black versus white National Collegiate Athletic Association Division I football players. From 2008 to 2011, football players at Stanford University underwent cardiovascular screening with a 12-point history and physical examination, electrocardiography, and focused echocardiography. Compared with white players, black players had on average higher left ventricular mass indexes (77 ± 11 vs 71 ± 11 g/m(2), p = 0.009), higher mass/volume ratios (1.18 ± 0.16 vs 1.06 ± 0.09 g/ml, p 1.2. Mass/volume ratio was inversely related to early diastolic tissue Doppler velocity e' (r = -0.50, p football players exhibit more concentric ventricular remodeling, lower early diastolic annular velocities, and increased ventricular voltage compared with white players. Ventricular mass increases proportionally to volume in white players but not in black players. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad; Dherange, Parinita A; Natarajan, Balaji; Trutter, Lindsey; Brittain, Evan L; Hemnes, Anna R; Austin, Eric D; Patel, Kumar; Black, Stephen M; Garcia, Joe G N; Yuan Md PhD, Jason X; Vanderpool, Rebecca R; Rischard, Franz; Makino, Ayako; Bedrick, Edward J; Desai, Ankit A

    2018-06-01

    Diabetes mellitus is associated with left ventricular hypertrophy and dysfunction. Parallel studies have also reported associations between diabetes mellitus and right ventricular dysfunction and reduced survival in patients with pulmonary arterial hypertension. However, the impact of diabetes mellitus on the pulmonary vasculature has not been well characterized. We hypothesized that diabetes mellitus and hyperglycemia could specifically influence right ventricular afterload and remodeling in patients with Group I pulmonary arterial hypertension, providing a link to their known susceptibility to right ventricular dysfunction. Using an adjusted model for age, sex, pulmonary vascular resistance, and medication use, associations of fasting blood glucose, glycated hemoglobin, and the presence of diabetes mellitus were evaluated with markers of disease severity in 162 patients with pulmonary arterial hypertension. A surrogate measure of increased pulmonary artery stiffness, elevated pulmonary arterial elastance (P = .012), along with reduced log(pulmonary artery capacitance) (P = .006) were significantly associated with the presence of diabetes mellitus in patients with pulmonary arterial hypertension in a fully adjusted model. Similar associations between pulmonary arterial elastance and capacitance were noted with both fasting blood glucose and glycated hemoglobin. Furthermore, right ventricular wall thickness on echocardiography was greater in pulmonary arterial hypertension patients with diabetes, supporting the link between right ventricular remodeling and diabetes. Cumulatively, these data demonstrate that an increase in right ventricular afterload, beyond pulmonary vascular resistance alone, may influence right ventricular remodeling and provide a mechanistic link between the susceptibility to right ventricular dysfunction in patients with both diabetes mellitus and pulmonary arterial hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Relationship of left ventricular, elastic and muscular arteries remodeling in patients with uncontrolled arterial hypertension

    Directory of Open Access Journals (Sweden)

    S. Ya. Dotsenko

    2013-04-01

    Full Text Available Introduction. Uncontrolled hypertension is observed in 65-92% of hypertensive patients. It plays an important role in the development of adverse cardiovascular events and survival, which depend on subclinical target organ damage. There are reports on the relationship between ineffective hypertension control and left ventricular (LV hypertrophy or large arteries stiffness. However, the nature of the remodeling in uncontrolled hypertension remains poorly understood. Objective: to study the character and relationship of left ventricular and arterial remodeling depending on effectiveness of hypertension control. Design and method. We performed a study of 363 hypertensive patients (160 men and 203 women aged 50,8 ± 1,2 years without comorbidities, which were divided into 3 groups according to the effectiveness of blood pressure (BP control: 160 patients with controlled hypertension, 142 patients with uncontrolled hypertension and 61 patients with resistant hypertension. Uncontrolled BP based on measured systolic BP≥140 mmHg and diastolic BP≥90 mmHg. Remodeling indexes of left ventricular, elastic (common carotid and muscular (brachial artery were evaluated by the ultrasonic method. The severity and character of diastolic dysfunction, hypertrophy, types of remodeling and stiffness were assessed. Statistical processing of the results was performed using Student's t criterion and Pearson correlation analysis. Results and discussion. According to the results of the study, uncontrolled hypertension affected the development of subclinical cardiovascular lesions negatively. Thus, LV hypertrophy was detected more frequently in the third group (91,8% in resistant hypertension versus 46,8% in controlled hypertension, p<0,05. Differences in LV geometry with increasing of concentric remodeling types were also observed more frequently in the third group, where concentric remodeling and concentric hypertrophy types were founded in 14,8% and 59

  2. Left ventricular remodelling in chronic primary mitral regurgitation: implications for medical therapy.

    Science.gov (United States)

    McCutcheon, Keir; Manga, Pravin

    Surgical repair or replacement of the mitral valve is currently the only recommended therapy for severe primary mitral regurgitation. The chronic elevation of wall stress caused by the resulting volume overload leads to structural remodelling of the muscular, vascular and extracellular matrix components of the myocardium. These changes are initially compensatory but in the long term have detrimental effects, which ultimately result in heart failure. Understanding the changes that occur in the myocardium due to volume overload at the molecular and cellular level may lead to medical interventions, which potentially could delay or prevent the adverse left ventricular remodelling associated with primary mitral regurgitation. The pathophysiological changes involved in left ventricular remodelling in response to chronic primary mitral regurgitation and the evidence for potential medical therapy, in particular beta-adrenergic blockers, are the focus of this review.

  3. QRS Width as a Predictor of Right Ventricular Remodeling After Percutaneous Pulmonary Valve Implantation.

    Science.gov (United States)

    Paech, C; Dähnert, I; Riede, F T; Wagner, R; Kister, T; Nieschke, K; Wagner, F; Gebauer, R A

    2017-08-01

    Recent data showed a right ventricular dyssynchrony in patients with tetralogy of Fallot (TOF). Percutaneous pulmonary valve implantation (PPVI) has become an important procedure to treat a pulmonary stenosis and/or regurgitation of the right ventricular outflow tract in these patients. Despite providing good results, there is still a considerable number of nonresponders to PPVI. The authors speculated that electrical dysfunction of the right ventricle plays an underestimated role in the outcome of patients after PPVI. This study aimed to investigate the influence of right ventricular electrical dysfunction, i.e., right bundle branch block (RBBB) on the RV remodeling after PPVI. The study included consecutive patients after correction of TOF with or without RBBB, who had received a PPVI previously at the Heart Center of the University of Leipzig, Germany during the period from 2012 to 2015. 24 patients were included. Patients without RBBB, i.e., with narrow QRS complexes pre-intervention, had significantly better RV function and had smaller right ventricular volumes. Patients with pre-interventionally QRS width below 150 ms showed a post-interventional remodeling of the right ventricle with the decreasing RV volumes (p = 0.001). The parameters of LV function and volume as well as RV ejection fraction remained unaffected by RBBB. The presented data indicate that the QRS width seems to be a valuable parameter in the prediction of right ventricular remodeling after PPVI, as it represents both electrical and mechanical functions of the right ventricle and may serve as an additional parameter for optimal timing of a PPVI.

  4. Supplementing exposure to hypoxia with a copper depleted diet does not exacerbate right ventricular remodeling in mice.

    Directory of Open Access Journals (Sweden)

    Ella M Poels

    Full Text Available Pulmonary hypertension and subsequent right ventricular (RV failure are associated with high morbidity and mortality. Prognosis is determined by occurrence of RV failure. Currently, adequate treatment for RV failure is lacking. Further research into the molecular basis for the development of RV failure as well as the development of better murine models of RV failure are therefore imperative. We hypothesize that adding a low-copper diet to chronic hypoxia in mice reinforces their individual effect and that the combination of mild pulmonary vascular remodeling and capillary rarefaction, induces RV failure.Six week old mice were subjected to normoxia (N; 21% O2 or hypoxia (H; 10% O2 during a period of 8 weeks and received either a normal diet (Cu+ or a copper depleted diet (Cu-. Cardiac function was assessed by echocardiography and MRI analysis.Here, we characterized a mouse model of chronic hypoxia combined with a copper depleted diet and demonstrate that eight weeks of chronic hypoxia (10% is sufficient to induce RV hypertrophy and subsequent RV failure. Addition of a low copper diet to hypoxia did not have any further deleterious effects on right ventricular remodeling.

  5. Remodeling after acute myocardial infarction: mapping ventricular dilatation using three dimensional CMR image registration

    Directory of Open Access Journals (Sweden)

    O’Regan Declan P

    2012-06-01

    Full Text Available Abstract Background Progressive heart failure due to remodeling is a major cause of morbidity and mortality following myocardial infarction. Conventional clinical imaging measures global volume changes, and currently there is no means of assessing regional myocardial dilatation in relation to ischemic burden. Here we use 3D co-registration of Cardiovascular Magnetic Resonance (CMR images to assess the long-term effects of ischemia-reperfusion injury on left ventricular structure after acute ST-elevation myocardial infarction (STEMI. Methods Forty six patients (age range 33–77 years underwent CMR imaging within 7 days following primary percutaneous coronary intervention (PPCI for acute STEMI with follow-up at one year. Functional cine imaging and Late Gadolinium Enhancement (LGE were segmented and co-registered. Local left ventricular wall dilatation was assessed by using intensity-based similarities to track the structural changes in the heart between baseline and follow-up. Results are expressed as means, standard errors and 95% confidence interval (CI of the difference. Results Local left ventricular remodeling within infarcted myocardium was greater than in non-infarcted myocardium (1.6% ± 1.0 vs 0.3% ± 0.9, 95% CI: -2.4% – -0.2%, P = 0.02. One-way ANOVA revealed that transmural infarct thickness had a significant effect on the degree of local remodeling at one year (P 20% (4.8% ± 1.4 vs −0.15% ± 1.2, 95% CI: -8.9% – -0.9%, P = 0.017. Conclusions The severity of ischemic injury has a significant effect on local ventricular wall remodeling with only modest dilatation observed within non-ischemic myocardium. Limitation of chronic remodeling may therefore depend on therapies directed at modulating ischemia-reperfusion injury. CMR co-registration has potential for assessing dynamic changes in ventricular structure in relation to therapeutic interventions.

  6. Multidetector computed tomography predictors of late ventricular remodeling and function after acute myocardial infarction

    International Nuclear Information System (INIS)

    Lessick, Jonathan; Abadi, Sobhi; Agmon, Yoram; Keidar, Zohar; Carasso, Shemi; Aronson, Doron; Ghersin, Eduard; Rispler, Shmuel; Sebbag, Anat; Israel, Ora; Hammerman, Haim; Roguin, Ariel

    2012-01-01

    Background: Despite advent of rapid arterial revascularization as 1st line treatment for acute myocardial infarction (AMI), incomplete restoral of flow at the microvascular level remains a problem and is associated with adverse prognosis, including pathological ventricular remodeling. We aimed to study the association between multidetector row computed tomography (MDCT) perfusion defects and ventricular remodeling post-AMI. Methods: In a prospective study, 20 patients with ST-elevation AMI, treated by primary angioplasty, underwent arterial and late phase MDCT as well as radionuclide scans to study presence, size and severity of myocardial perfusion defects. Contrast echocardiography was performed at baseline and at 4 months follow-up to evaluate changes in myocardial function and remodeling. Results: Early defects (ED), late defects (LD) and late enhancement (LE) were detected in 15, 7 and 16 patients, respectively and radionuclide defects in 15 patients. The ED area (r = 0.74), and LD area (r = 0.72), and to a lesser extent LE area (r = 0.62) correlated moderately well with SPECT summed rest score. By univariate analysis, follow-up end-systolic volume index and ejection fraction were both significantly related to ED and LD size and severity, but not to LE size or severity. By multivariate analysis, end-systolic volume index was best predicted by LD area (p < 0.05) and ejection fraction by LD enhancement ratio. Conclusions: LD size and severity on MDCT are most closely associated with pathological ventricular remodeling after AMI and may thus play a role in early identification and treatment of this condition

  7. Correlation of Ventricular Arrhythmogenesis with Neuronal Remodeling of Cardiac Postganglionic Parasympathetic Neurons in the Late Stage of Heart Failure after Myocardial Infarction.

    Science.gov (United States)

    Zhang, Dongze; Tu, Huiyin; Wang, Chaojun; Cao, Liang; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2017-01-01

    Introduction: Ventricular arrhythmia is a major cause of sudden cardiac death in patients with chronic heart failure (CHF). Our recent study demonstrates that N-type Ca 2+ currents in intracardiac ganglionic neurons are reduced in the late stage of CHF rats. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Only AVG nerve terminals innervate the ventricular myocardium. In this study, we tested the correlation of electrical remodeling in AVG neurons with ventricular arrhythmogenesis in CHF rats. Methods and Results: CHF was induced in male Sprague-Dawley rats by surgical ligation of the left coronary artery. The data from 24-h continuous radiotelemetry ECG recording in conscious rats showed that ventricular tachycardia/fibrillation (VT/VF) occurred in 3 and 14-week CHF rats but not 8-week CHF rats. Additionally, as an index for vagal control of ventricular function, changes of left ventricular systolic pressure (LVSP) and the maximum rate of left ventricular pressure rise (LV dP/dt max ) in response to vagal efferent nerve stimulation were blunted in 14-week CHF rats but not 3 or 8-week CHF rats. Results from whole-cell patch clamp recording demonstrated that N-type Ca 2+ currents in AVG neurons began to decrease in 8-week CHF rats, and that there was also a significant decrease in 14-week CHF rats. Correlation analysis revealed that N-type Ca 2+ currents in AVG neurons negatively correlated with the cumulative duration of VT/VF in 14-week CHF rats, whereas there was no correlation between N-type Ca 2+ currents in AVG neurons and the cumulative duration of VT/VF in 3-week CHF. Conclusion: Malignant ventricular arrhythmias mainly occur in the early and late stages of CHF. Electrical remodeling of AVG neurons highly correlates with the occurrence of ventricular arrhythmias in the late stage of CHF.

  8. Relief of mitral leaflet tethering following chronic myocardial infarction by chordal cutting diminishes left ventricular remodeling.

    Science.gov (United States)

    Messas, Emmanuel; Bel, Alain; Szymanski, Catherine; Cohen, Iris; Touchot, Bernard; Handschumacher, Mark D; Desnos, Michel; Carpentier, Alain; Menasché, Philippe; Hagège, Albert A; Levine, Robert A

    2010-11-01

    one of the key targets in treating mitral regurgitation (MR) is reducing the otherwise progressive left ventricular (LV) remodeling that exacerbates MR and conveys adverse prognosis. We have previously demonstrated that severing 2 second-order chordae to the anterior mitral leaflet relieves tethering and ischemic MR acutely. The purpose of this study was to test whether this technique reduces the progression of LV remodeling in the chronic ischemic MR setting. a posterolateral MI was created in 18 sheep by obtuse marginal branch ligation. After chronic remodeling and MR development at 3 months, 6 sheep were randomized to sham surgery (control group) and 12 to second-order chordal cutting (6 each to anterior leaflet [AntL] and bileaflet [BiL] chordal cutting, techniques that are in clinical application). At baseline, chronic infarction (3 months), and follow-up at a mean of 6.6 months post-myocardial infarction (MI) (euthanasia), we measured LV end-diastolic (EDV) and end-systolic volume (ESV), ejection fraction, wall motion score index, and posterior leaflet (PL) restriction angle relative to the annulus by 2D and 3D echocardiography. All measurements were comparable among groups at baseline and chronic MI. At euthanasia, AntL and BiL chordal cutting limited the progressive remodeling seen in controls. LVESV increased relative to chronic MI by 109±8.7% in controls versus 30.5±6.1% with chordal cutting (Pbenefits have the potential to improve clinical outcomes.

  9. Atrioventricular node functional remodeling induced by atrial fibrillation.

    Science.gov (United States)

    Zhang, Youhua; Mazgalev, Todor N

    2012-09-01

    The atrioventricular node (AVN) plays a vital role in determining the ventricular rate during atrial fibrillation (AF). AF results in profound electrophysiological and structural remodeling in the atria as well as the sinus node. However, it is unknown whether AVN undergoes remodeling during AF. To determine whether AVN undergoes functional remodeling during AF. AVN conduction properties were studied in vitro in 9 rabbits with AF and 10 normal controls. A previously validated index of AVN dual-pathway electrophysiology, His-electrogram alternans, was used to monitor fast-pathway or slow-pathway (SP) AVN conduction in these experiments. AVN conduction properties were further studied in vivo in 7 dogs with chronic AF and 8 controls. Compared with the control rabbits, the rabbits with AF had a longer AVN conduction time (83 ± 16 ms vs 68 ± 7 ms; P AVN effective refractory period (141 ± 27 ms vs 100 ± 9 ms; P AVN effective refractory period and a slower ventricular rate during AF compared with the controls. Pronounced AVN functional electrophysiological remodeling occurs after long-term AF, which could lead to a spontaneous slowing of the ventricular rate. Furthermore, the SP dominance during AF underscores the effectiveness of its modification by ablation for ventricular rate control during AF. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Shukuan Ling

    2018-01-01

    Full Text Available Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1 is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG and wild type mice were hindlimb-suspended (HU to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.

  12. Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction

    Science.gov (United States)

    Carberry, Jaclyn; Carrick, David; Haig, Caroline; Rauhalammi, Samuli M.; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Davie, Andrew; Mahrous, Ahmed; Ford, Ian; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G.

    2016-01-01

    The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; Premote zone ECV (Premote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (Premote zone ECV at 6 months (ΔECV). ΔECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10–2.76); P=0.036). ΔECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, ΔECV has limited use as a clinical biomarker of remodeling. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT02072850. PMID:27354423

  13. Myocardial remodeling and bioelectric changes in tachycardia-induced heart failure in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Song, B.; Wang, B.N.; Chen, D.N.; Luo, Z.G. [Department of Cardiovascular Medicine, The First Affiliated Hospital, Anhui Medical University, HeFei, Anhui Province (China)

    2013-09-06

    In this study, electrical and structural remodeling of ventricles was examined in tachycardia-induced heart failure (HF). We studied two groups of weight-matched adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group (n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical symptoms of congestive HF were observed in both groups. Their hemodynamic parameters were determined and the severity of the HF was evaluated by M-mode echocardiography. Changes in heart morphology were observed by scanning electron and light microscopy. Ventricular action potential duration (APD), as well as the 50 and 90% APD were measured in both groups. All dogs exhibited clinical symptoms of congestive HF after rapid right ventricular pacing for 3 weeks. These data indicate that rapid, right ventricular pacing produces a useful experimental model of low-output HF in dogs, characterized by biventricular pump dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left ventricular contractility. Electrical and structural myocardial remodeling play an essential role in congestive HF progression, and should thus be prevented.

  14. Impact of Aortic Valve Replacement on Left Ventricular Remodeling in Patients with Severe Aortic Stenosis and Severe Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Abderrahmane Bakkali

    2016-12-01

    Full Text Available Objective: The aim of this study was to evaluate the effect of aortic valve replacement on left ventricular function and remodeling among patients with severe aortic stenosis and severe left ventricular dysfunction. Methods: In this retrospective bicentric study extended over a 15-year period, 61 consecutive patients underwent isolated AVR for severe AS associated to reduced LV function. The mean age was 58.21 ± 12.50 years and 83.60 % were men. 70.50% of patients were in class III or IV NYHA. The mean left ventricular ejection fraction (LVEF was 32.9 ± 5.6.The mean LVEDD and LVESD were respectively 63.6 ± 9.2 and 50.2 ± 8.8 mm. The mean calculated logistic EuroScore was 12.2 ±4.5. Results: The hospital mortality was 11.5%. Morbidity was marked mainly by low output syndrome in 40.8% of cases. After a median follow-up of 38 months we have recorded 3 deaths. Almost all survivors were in class I and II of NYHA. The mean LV end-diastolic and end-systolic diameters decreased significantly at late postoperative stage. The mean LV ejection fraction increased significantly from 32.9 ± 5.6 to 38.2 ± 9.3 and to 50.3 ± 9.6 in early and late postoperative stages, respectively. Multivariate linear regression analysis found that increased early postoperative LVEF (β= 0.44, 95% CI [0.14; 0.75], p=0.006 and low mean transprosthesis gradient (β=-0.72, 95% CI [-1.42; -0.02], p= 0.04 were the independent predictors of left ventricular systolic function recovery. Conclusion: Patients with aortic valve stenosis and impaired LV systolic function benefited from AVR as regard improvement of LV function parameters and regression of the LV diameters .This improvement depends mainly on early postoperative LVEF and mean transprosthesis gradient.

  15. Plasma bilirubin values on admission and ventricular remodeling after a first anterior ST-segment elevation acute myocardial infarction.

    Science.gov (United States)

    Miranda, Berta; Barrabés, José A; Figueras, Jaume; Pineda, Victor; Rodríguez-Palomares, José; Lidón, Rosa-Maria; Sambola, Antonia; Bañeras, Jordi; Otaegui, Imanol; García-Dorado, David

    2016-01-01

    Bilirubin may elicit cardiovascular protection and heme oxygenase-1 overexpression attenuated post-infarction ventricular remodeling in experimental animals, but the association between bilirubin levels and post-infarction remodeling is unknown. In 145 patients with a first anterior ST-segment elevation acute myocardial infarction (STEMI), we assessed whether plasma bilirubin on admission predicted adverse remodeling (left ventricular end-diastolic volume [LVEDV] increase ≥20% between discharge and 6 months, estimated by magnetic resonance imaging). Patients' baseline characteristics and management were comparable among bilirubin tertiles. LVEDV increased at 6 months (P bilirubin tertiles (10.8 [30.2], 10.1 [22.9], and 12.7 [24.3]%, P = 0.500). Median (25-75 percentile) bilirubin values in patients with and without adverse remodeling were 0.75 (0.60-0.93) and 0.73 (0.60-0.92) mg/dL (P = 0.693). Absence of final TIMI flow grade 3 (odds ratio 3.92, 95% CI 1.12-13.66) and a history of hypertension (2.04, 0.93-4.50), but not admission bilirubin, were independently associated with adverse remodeling. Bilirubin also did not predict the increase in ejection fraction at 6 months. Admission bilirubin values are not related to LVEDV or ejection fraction progression after a first anterior STEMI and do not predict adverse ventricular remodeling. Key messages Bilirubin levels are inversely related to cardiovascular disease, and overexpression of heme oxygenase-1 (the enzyme that determines bilirubin production) has prevented post-infarction ventricular remodeling in experimental animals, but the association between bilirubin levels and the progression of ventricular volumes and function in patients with acute myocardial infarction remained unexplored. In this cohort of patients with a first acute anterior ST-segment elevation myocardial infarction receiving contemporary management, bilirubin levels on admission were not predictive of the changes in left

  16. Left ventricular remodeling and fibrosis: Sex differences and relationship with diastolic function in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Chen, You-Zhou; Qiao, Shu-Bin; Hu, Feng-Huan; Yuan, Jian-Song; Yang, Wei-Xian; Cui, Jin-Gang; Zhang, Yan; Zhang, Chang-Lin

    2015-01-01

    Highlights: • There are significant differences in LV remodeling and fibrosis as divided by sex. • Women have worse diastolic dysfunction compared to men measured by CMR. • LV remodeling and fibrosis correlate with markers of diastolic dysfunction. - Abstract: Objectives: We investigated sex differences in left ventricular (LV) remodeling and fibrosis and their relationship with LV diastolic dysfunction by cardiovascular magnetic resonance (CMR). Methods: CMR imaging was performed simultaneously in 152 age-matched patients (76 men, 76 women; mean age: 49 ± 9 years) without LV systolic dysfunction. LV remodeling index (LVRI) was calculated as the ratio of LV mass and end-diastolic volume. Diastolic function indexes including peak filling rate (PFR) and time to PFR (tPFR) were evaluated. Extent of late gadolinium enhancement (LGE) was measured. Results: LVRI and extent of LGE were greater in women compared with men (1.48 ± 0.22 vs. 1.36 ± 0.28 g/ml; 13.15 ± 2.48 vs. 11.35 ± 2.34 g, respectively, both P < 0.001). Women had lower PFR and higher tPFR (both P < 0.001) than men. LVRI and the extent of LGE showed significant relationships with parameters of diastolic function in both sex. In a multivariate analysis, LVRI remained a strong independent predictor of PFR and TPFR in women (β = −0.272, P = 0.032; β = 0.348, P = 0.016, respectively), and in men (β = −0.374, P < 0.001; β = 0.660, P < 0.001, respectively). Furthermore, the extent of LGE also remained an independent predictor of PFR in women (β = −0.283, P = 0.033) and men (β = −0.492, P < 0.001). Conclusions: There are prominent sex differences in LV remodeling and myocardial fibrosis. We suggest that the effects of LV remodeling and fibrosis may lead to diastolic dysfunction with greater susceptibility to worse clinical outcome in women

  17. Left ventricular remodeling and fibrosis: Sex differences and relationship with diastolic function in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, You-Zhou [Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Qiao, Shu-Bin, E-mail: qsbfw@sina.com [Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Hu, Feng-Huan; Yuan, Jian-Song; Yang, Wei-Xian; Cui, Jin-Gang [Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Yan [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Chang-Lin [Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2015-08-15

    Highlights: • There are significant differences in LV remodeling and fibrosis as divided by sex. • Women have worse diastolic dysfunction compared to men measured by CMR. • LV remodeling and fibrosis correlate with markers of diastolic dysfunction. - Abstract: Objectives: We investigated sex differences in left ventricular (LV) remodeling and fibrosis and their relationship with LV diastolic dysfunction by cardiovascular magnetic resonance (CMR). Methods: CMR imaging was performed simultaneously in 152 age-matched patients (76 men, 76 women; mean age: 49 ± 9 years) without LV systolic dysfunction. LV remodeling index (LVRI) was calculated as the ratio of LV mass and end-diastolic volume. Diastolic function indexes including peak filling rate (PFR) and time to PFR (tPFR) were evaluated. Extent of late gadolinium enhancement (LGE) was measured. Results: LVRI and extent of LGE were greater in women compared with men (1.48 ± 0.22 vs. 1.36 ± 0.28 g/ml; 13.15 ± 2.48 vs. 11.35 ± 2.34 g, respectively, both P < 0.001). Women had lower PFR and higher tPFR (both P < 0.001) than men. LVRI and the extent of LGE showed significant relationships with parameters of diastolic function in both sex. In a multivariate analysis, LVRI remained a strong independent predictor of PFR and TPFR in women (β = −0.272, P = 0.032; β = 0.348, P = 0.016, respectively), and in men (β = −0.374, P < 0.001; β = 0.660, P < 0.001, respectively). Furthermore, the extent of LGE also remained an independent predictor of PFR in women (β = −0.283, P = 0.033) and men (β = −0.492, P < 0.001). Conclusions: There are prominent sex differences in LV remodeling and myocardial fibrosis. We suggest that the effects of LV remodeling and fibrosis may lead to diastolic dysfunction with greater susceptibility to worse clinical outcome in women.

  18. Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction

    DEFF Research Database (Denmark)

    Solomon, Scott D; Shin, Sung Hee; Shah, Amil

    2011-01-01

    Direct renin inhibitors provide an alternative approach to inhibiting the renin-angiotensin-aldosterone system (RAAS) at the most proximal, specific, and rate-limiting step. We tested the hypothesis that direct renin inhibition would attenuate left ventricular remodelling in patients following...

  19. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Šimko, F.; Pecháňová, Olga; Pelouch, Václav; Krajčírovičová, K.; Müllerová, M.; Bednárová, K.; Adamcová, M.; Paulis, L.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S5-S10 ISSN 0263-6352 R&D Projects: GA ČR GA305/09/0336 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac hypertrophy * fibrosis * ventricular remodeling Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  20. Effect of Renin-Angiotensin Blockers on Left Ventricular Remodeling in Severe Aortic Stenosis.

    Science.gov (United States)

    Goh, Serene Si-Ning; Sia, Ching-Hui; Ngiam, Nicholas Jinghao; Tan, Benjamin Yong-Qiang; Lee, Poay Sian; Tay, Edgar Lik-Wui; Kong, William Kok-Fai; Yeo, Tiong Cheng; Poh, Kian-Keong

    2017-06-01

    Studies have shown that medical therapy with renin-angiotensin blockers (RABs) may benefit patients with aortic stenosis (AS). However, its use and efficacy remains controversial, including in patients with low flow (LF) with preserved left ventricular ejection fraction (LVEF). We examined the effects of RAB use on LV remodeling in patients with severe AS with preserved LVEF, analyzing the differential effects in patients with LF compared with normal flow (NF). This is a retrospective study of 428 consecutive subjects from 2005 to 2014 with echocardiographic diagnosis of severe AS and preserved LVEF. Clinical and echocardiographic parameters were systematically collected and analyzed. Two hundred forty-two (57%) patients had LF. Sixty-four LF patients (26%) were treated with RAB. Patients on RAB treatment had a higher incidence of hyperlipidemia (69% vs 44%) and diabetes mellitus (53% vs 34%). Severity of AS in terms of valve area, transvalvular mean pressure gradient, and aortic valve resistance were similar between both groups as was the degree of LV diastolic function. The RAB group demonstrated significantly lower LV mass index with a correspondingly lower incidence of concentric LV hypertrophy. Regardless of the duration of RAB therapy, patients had increased odds of having a preserved LV mass index compared with those without RAB therapy. In conclusion, RAB therapy may be associated with less LV pathological remodeling and have a role in delaying patients from developing cardiovascular complications of AS. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A novel hydrodynamic approach of drag-reducing polymers to improve left ventricular hypertrophy and aortic remodeling in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-12-01

    Full Text Available Xinlu Zhang,1,* Xu Wang,2,* Feng Hu,1 Boda Zhou,3 Hai-Bin Chen,1 Daogang Zha,1 Yili Liu,1 Yansong Guo,4 Lemin Zheng,2 Jiancheng Xiu1 1Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 2The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, 3Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, Beijing, 4Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Drag-reducing polymers (DRPs, when added in minute concentrations, have been shown to decrease peripheral vascular resistance. In this study, the effect of DRPs on the hypertension-induced left ventricular hypertrophy and aortic remodeling was evaluated in spontaneously hypertensive rats (SHR. Male SHR and age-matched Wistar rats were divided into four groups and received intravenous injection of normal saline (NS or DRPs. Body weight (BW, heart rate (HR and systolic blood pressure (SBP were measured. Echocardiography was used to evaluate the changes in left ventricle (LV function and global wall motion. The LV and aorta were stained by hematoxylin and eosin. Cell size of cardiomyocytes and aortic medial thickness were evaluated for each section. The expression of endothelin-1 (ET-1 of LV and aorta was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR and immunohistochemistry. There was no significant difference in the increase of SBP among SHR + NS, SHR + 10DRP and SHR + 20DRP groups. SHR + NS group had markedly smaller left ventricular end

  2. Preoperative left ventricular ejection fraction and left atrium reverse remodeling after mitral regurgitation surgery.

    Science.gov (United States)

    Machado, Lucia R; Meneghelo, Zilda M; Le Bihan, David C S; Barretto, Rodrigo B M; Carvalho, Antonio C; Moises, Valdir A

    2014-11-06

    Left atrium enlargement has been associated with cardiac events in patients with mitral regurgitation (MR). Left atrium reverse remodeling (LARR) occur after surgical correction of MR, but the preoperative predictors of this phenomenon are not well known. It is therefore important to identify preoperative predictors for postoperative LARR. We enrolled 62 patients with chronic severe MR (prolapse or flail leaflet) who underwent successful mitral valve surgery (repair or replacement); all with pre- and postoperative echocardiography. LARR was defined as a reduction in left atrium volume index (LAVI) of ≥ 25%. Stepwise multiple regression analysis was used to identify independent predictors of LARR. LARR occurred in 46 patients (74.2%), with the mean LAVI decreasing from 85.5 mL/m2 to 49.7 mL/m2 (p <0.001). These patients had a smaller preoperative left ventricular systolic volume (p =0.022) and a higher left ventricular ejection fraction (LVEF) (p =0.034). LVEF was identified as the only preoperative variable significantly associated with LARR (odds ratio, 1.086; 95% confidence interval, 1.002-1.178). A LVEF cutoff value of 63.5% identified patients with LARR of ≥ 25% with a sensitivity of 71.7% and a specificity of 56.3%. LARR occurs frequently after mitral valve surgery and is associated with preoperative LVEF higher than 63.5%.

  3. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices.

    Science.gov (United States)

    Maltais, Simon; Topilsky, Yan; Tchantchaleishvili, Vakhtang; McKellar, Stephen H; Durham, Lucian A; Joyce, Lyle D; Daly, Richard C; Park, Soon J

    2012-06-01

    The HeartMate II (Thoratec Corp, Pleasanton, Calif) continuous-flow left ventricular assist device has emerged as the standard of care for patients with advanced heart failure. The objective of this study was to assess the safety and early effectiveness of concomitant tricuspid valve procedures in patients undergoing implantation of a HeartMate II device. From February 2007 to April 2010, 83 patients underwent HeartMate II left ventricular assist device implantation. Of these, 37 patients had concomitant tricuspid valve procedures (32 repairs, 5 replacements) for severe tricuspid regurgitation. The effects of a tricuspid valve procedure on tricuspid regurgitation and right ventricular remodeling were assessed comparing echocardiographic findings at baseline and 30 days after left ventricular assist device implantation. Overall survival was also compared. Patients undergoing a concomitant tricuspid valve procedure had more tricuspid regurgitation (vena contracta, 5.6 ± 2.1 mm vs 2.9 ± 2.0 mm; P tricuspid regurgitation was worse in patients who underwent left ventricular assist device implantation alone (+18.6%), whereas it improved significantly in patients undergoing a concomitant tricuspid valve procedure (-50.2%) (P = .005). A corresponding significant reduction in right ventricular end-diastolic area (33.6% ± 6.2% vs 30.1% ± 9.7%; P = .03) and a trend toward better right ventricular function (55.5% ± 79.7% vs 35.7% ± 60.5%; P = .28) were noted in patients undergoing a concomitant tricuspid valve procedure. Survival was comparable between the 2 groups. In patients with severe tricuspid regurgitation undergoing left ventricular assist device implantation, a concomitant tricuspid valve procedure effectively reduces tricuspid regurgitation and promotes reverse remodeling of the right ventricle. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Predictors of the left ventricular dysfunction induced by ventricular arrhythmia

    Directory of Open Access Journals (Sweden)

    А. І. Vytryhovskiy

    2016-08-01

    Full Text Available The most powerful predictor of life-threatening arrhythmia risk is a combination of low heart rate variability with low ejection fraction (EF of the left ventricle. Aim. To identify predictors of left ventricle dysfunction which is induced by ventricular arrhythmia. Materials and methods. To diagnose structural changes of left ventricular functional capacity and reserves in patients with previous myocardial infarction and patients with high and very high cardiovascular risk by SCORE scale and for establishment the relationship between morphological heart changes and pathological phenomenon of heart turbulence echocardiography and study of heart rate turbulence variability were performed. 603 patients were selected for the research. All patients were divided into groups: group 1 – patients with coronary heart disease, but without associated risk factors, such as smoking, obesity, metabolic syndrome; group 2 – patients who smoke tobacco more than 2 years (very high cardiovascular risk by scale SCORE; group 3 – patients with metabolic syndrome without coronary heart disease or arterial hypertension (very high cardiovascular risk by scale SCORE. The control group consisted of 149 persons. Results. The feature of structural changes in patients with myocardial infarction and in patients with a high cardiovascular risk by SCORE with heart rate turbulence compared with cases without НRT is considerably thickening of the left interventricular septum in systole. Based on this, it can be argued that the emergence of ventricular arrhythmia and accordingly phenomenon of heart rate turbulence in patients with existing cardiovascular diseases and risk factors has both morphological and functional character. Significant difference of echocardioscopy parameters in patients with postinfarction cardiosclerosis and risk factors by the SCORE system was established by index of intraventricular septum thickness in systole, and in persons with high risk – in

  5. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function.

    Science.gov (United States)

    Liu, Xiaoli; Pachori, Alok S; Ward, Christopher A; Davis, J Paul; Gnecchi, Massimiliano; Kong, Deling; Zhang, Lunan; Murduck, Jared; Yet, Shaw-Fang; Perrella, Mark A; Pratt, Richard E; Dzau, Victor J; Melo, Luis G

    2006-02-01

    We reported previously that predelivery of the anti-oxidant gene heme oxygenase-1 (HO-1) to the heart by adeno associated virus (AAV) markedly reduces injury after acute myocardial infarction (MI). However, the effect of HO-1 gene delivery on postinfarction recovery has not been investigated. In the current study, we assessed the effect of HO-1 gene delivery on post-MI left ventricle (LV) remodeling and function using echocardiographic imaging and histomorphometric approaches. Two groups of Sprague-Dawley rats were injected with 4 x 10(11) particles of AAV-LacZ (control) or AAV-hHO-1 in the LV wall. Eight wk after gene transfer, the animals were subjected to 30 min of ischemia by ligation of left anterior descending artery (LAD) followed by reperfusion. Echocardiographic measurements were obtained in a blinded fashion prior and at 1.5 and 3 months after I/R. Ejection fraction (EF) was reduced by 13% and 40% in the HO-1 and LacZ groups, respectively at 1.5 months after MI. Three months after MI, EF recovered fully in the HO-1, but only partially in the LacZ-treated animals. Post-MI LV dimensions were markedly increased and the anterior wall was markedly thinned in the LacZ-treated animals compared with the HO-1-treated animals. Significant myocardial scarring and fibrosis were observed in the LacZ-group in association with elevated levels of interstitial collagen I and III and MMP-2 activity. Post-MI myofibroblast accumulation was reduced in the HO-1-treated animals, and retroviral overexpression of HO-1 reduced proliferation of isolated cardiac fibroblasts. Our data indicate that rAAV-HO-1 gene transfer markedly reduces fibrosis and ventricular remodeling and restores LV function and chamber dimensions after myocardial infarction.

  6. Absence of cystatin C involvement in ventricular remodelling and heart failure.

    Science.gov (United States)

    Pérez-Calvo, J I; Castiella Muruzábal, T; Búcar Barjud, M; Josa Laorden, C; Sánchez Marteles, M; Lacambra Blasco, I; Asensio López, M C; Pascual Figal, D A

    2016-03-01

    Cystatin C (CysC) is a protease encoded by housekeeping genes. Although its prognostic value in heart failure (HF) is well known, it is debatable whether this value is due to the greater accuracy of CysC in calculating the glomerular filtration rate or to its involvement in pathological ventricular remodelling. The aim of this study was to determine whether CysC expression changes in the myocardium of foetuses of different ages and in the myocardium of adults with various cardiovascular diseases, as well as to analyse the correlation between its serum concentrations and cardiac structure and morphology in a patient group with HF. We analysed the correlations (Pearson's r and Spearman's test) between the serum CysC levels and echocardiographic parameters of 351 patients with HF. We also performed immunohistochemical staining for CysC, metalloproteinase-9 (MMP-9) and desmin in 9 cardiac tissue samples from autopsies of 4 foetuses of different gestational ages and 5 healthy adults or adults with cardiovascular disease. For the patients with HF, there was no correlation between the CysC concentrations and the cardiac parameters measured by 2D echocardiography. The immunohistochemistry showed a weak background staining for CysC in all samples, regardless of age and the presence or absence of cardiovascular diseases. Our results suggest that CysC does not have a significant role in the pathological remodelling of the left ventricle in HF. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  7. Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Simone Gorressen

    .Circulating NOS3 ameliorates maladaptive left ventricular remodeling following reperfused myocardial infarction.

  8. Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: insights from the BONAMI trial

    International Nuclear Information System (INIS)

    Manrique, Alain; Lemarchand, Patricia; Delasalle, Beatrice; Lamirault, Guillaume; Trochu, Jean-Noel; Le Tourneau, Thierry; Lairez, Olivier; Roncalli, Jerome; Sportouch-Duckan, Catherine; Piot, Christophe; Le Corvoisier, Philippe; Neuder, Yannick; Richardson, Marjorie; Lebon, Alain; Teiger, Emmanuel; Hossein-Foucher, Claude

    2016-01-01

    Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI. Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year. Eighty-three patients with a comprehensive 1-year follow-up were included. LV dyssynchrony was assessed by the standard deviation (SD) of the LV phase histogram using radionuclide angiography. Remodelling was defined as a 20 % increase in LV end-systolic volume index (LVESVI) at 1 year. At baseline, LVEF, wall motion score index, and perfusion defect size were significantly impaired in the 43 patients (52 %) with LV remodelling (all p < 0.001), without significant increase in LV mechanical dyssynchrony. During follow-up, there was a progressive increase in LV SD (p = 0.01). Baseline independent predictors of LV remodelling were perfusion SPECT defect size (p = 0.001), LVEF (p = 0.01) and a history of hypertension (p = 0.043). Bone marrow cell therapy did not affect the time-course of LV remodelling and dyssynchrony. LV remodelling 1 year after reperfused MI is associated with progressive LV dyssynchrony and is related to baseline infarct size and ejection fraction, without impact of cell therapy on this process. (orig.)

  9. Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: insights from the BONAMI trial

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain [Nuclear Medicine, CHU de Caen, Caen (France); Universite de Caen Normandie, EA 4650, Caen (France); CHU de Caen et GIP Cyceron, Caen cedex 6 (France); Lemarchand, Patricia; Delasalle, Beatrice; Lamirault, Guillaume; Trochu, Jean-Noel; Le Tourneau, Thierry [L' Institut du thorax, INSERM, UMR1087, Nantes (France); CNRS, UMR 6291, Nantes (France); Universite de Nantes, Nantes (France); CHU de Nantes, Nantes (France); Lairez, Olivier; Roncalli, Jerome [Institut CARDIOMET-Toulouse, Cardiac Imaging Center, CIC Biotherapies, CHU de Toulouse, Toulouse (France); Sportouch-Duckan, Catherine; Piot, Christophe [Universite Montpellier, Institut de Genomique Fonctionnelle, INSERM U661, CNRS UMR 5203, Montpellier (France); Clinique du Millenaire, Montpellier (France); Le Corvoisier, Philippe [Hopital Henri Mondor, INSERM, Centre d' Investigation Clinique 1430 et U955 equipe 3, Creteil (France); Neuder, Yannick [CHU de Grenoble, Pole Thorax et Vaisseaux, Grenoble (France); Richardson, Marjorie [CHRU Lille, Service d' Explorations Fonctionnelles Cardiovasculaires, Hopital Cardiologique, Lille (France); Lebon, Alain [CHU de Caen, Service de Cardiologie, Caen (France); Teiger, Emmanuel [Hopital Henri Mondor, AP-HP, Unite de Cardiologie Interventionnelle et Federation de Cardiologie, Creteil (France); Hossein-Foucher, Claude [Hopital Salengro CHRU de Lille, Service de Medecine Nucleaire, Lille (France); Universite de Lille 2, UFR de Medecine, Lille (France)

    2016-04-15

    Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI. Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year. Eighty-three patients with a comprehensive 1-year follow-up were included. LV dyssynchrony was assessed by the standard deviation (SD) of the LV phase histogram using radionuclide angiography. Remodelling was defined as a 20 % increase in LV end-systolic volume index (LVESVI) at 1 year. At baseline, LVEF, wall motion score index, and perfusion defect size were significantly impaired in the 43 patients (52 %) with LV remodelling (all p < 0.001), without significant increase in LV mechanical dyssynchrony. During follow-up, there was a progressive increase in LV SD (p = 0.01). Baseline independent predictors of LV remodelling were perfusion SPECT defect size (p = 0.001), LVEF (p = 0.01) and a history of hypertension (p = 0.043). Bone marrow cell therapy did not affect the time-course of LV remodelling and dyssynchrony. LV remodelling 1 year after reperfused MI is associated with progressive LV dyssynchrony and is related to baseline infarct size and ejection fraction, without impact of cell therapy on this process. (orig.)

  10. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Chen H

    2018-04-01

    Full Text Available Hengwen Chen,* Yan Dong,* Xuanhui He, Jun Li, Jie Wang Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China *These authors contributed equally to this work Background: Paeoniflorin (PF is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI. Materials and methods: In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 interleukin-10 (IL-10 and brain natriuretic peptide (BNP. Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results: Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of

  11. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways.

    Science.gov (United States)

    Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2017-08-01

    The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; Ptomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Severity of structural and functional right ventricular remodeling depends on training load in an experimental model of endurance exercise.

    Science.gov (United States)

    Sanz-de la Garza, Maria; Rubies, Cira; Batlle, Montserrat; Bijnens, Bart H; Mont, Lluis; Sitges, Marta; Guasch, Eduard

    2017-09-01

    Arrhythmogenic right ventricular (RV) remodeling has been reported in response to regular training, but it remains unclear how exercise intensity affects the presence and extent of such remodeling. We aimed to assess the relationship between RV remodeling and exercise load in a long-term endurance training model. Wistar rats were conditioned to run at moderate (MOD; 45 min, 30 cm/s) or intense (INT; 60 min, 60 cm/s) workloads for 16 wk; sedentary rats served as controls. Cardiac remodeling was assessed with standard echocardiographic and tissue Doppler techniques, sensor-tip pressure catheters, and pressure-volume loop analyses. After MOD training, both ventricles similarly dilated (~16%); the RV apical segment deformation, but not the basal segment deformation, was increased [apical strain rate (SR): -2.9 ± 0.5 vs. -3.3 ± 0.6 s -1 , SED vs. MOD]. INT training prompted marked RV dilatation (~26%) but did not further dilate the left ventricle (LV). A reduction in both RV segments' deformation in INT rats (apical SR: -3.3 ± 0.6 vs. -3.0 ± 0.4 s -1 and basal SR: -3.3 ± 0.7 vs. -2.7 ± 0.6 s -1 , MOD vs. INT) led to decreased global contractile function (maximal rate of rise of LV pressure: 2.53 ± 0.15 vs. 2.17 ± 0.116 mmHg/ms, MOD vs. INT). Echocardiography and hemodynamics consistently pointed to impaired RV diastolic function in INT rats. LV systolic and diastolic functions remained unchanged in all groups. In conclusion, we showed a biphasic, unbalanced RV remodeling response with increasing doses of exercise: physiological adaptation after MOD training turns adverse with INT training, involving disproportionate RV dilatation, decreased contractility, and impaired diastolic function. Our findings support the existence of an exercise load threshold beyond which cardiac remodeling becomes maladaptive. NEW & NOTEWORTHY Exercise promotes left ventricular eccentric hypertrophy with no changes in systolic or diastolic function in healthy rats. Conversely, right

  13. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    Science.gov (United States)

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  14. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat.

    Science.gov (United States)

    Brooks, Wesley W; Conrad, Chester H; Robinson, Kathleen G; Colucci, Wilson S; Bing, Oscar H L

    2009-02-01

    The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.

  15. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  16. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Cheng, Susan; Fernandes, Verônica R S; Bluemke, David A; McClelland, Robyn L; Kronmal, Richard A; Lima, João A C

    2009-05-01

    Age-related alterations of left ventricular (LV) structure and function that may predispose to cardiovascular events are not well understood. We used cardiac MRI to examine age-related differences in LV structure and function in 5004 participants without overt cardiovascular disease when enrolled in the Multi-Ethnic Study of Atherosclerosis; 1099 participants received additional strain analyses by MRI tagging. We also assessed the relation of age-associated remodeling with cardiovascular outcomes using Cox proportional hazard models adjusting for cardiovascular risk factors. Although LV mass decreased with age (-0.3 g per year), the mass-to-volume ratio markedly increased (+5 mg/mL per year, Pfall in stroke volume (-0.4 mL per year, P or =65 years; hazard ratio, 1.68 [CI 0.77 to 3.68]) individuals with the highest compared to lowest mass-to-volume ratio quintile (P(interaction)=0.013). Age is associated with a phenotype of LV remodeling marked by increased mass-to-volume ratio and accompanied by systolic as well as diastolic myocardial dysfunction that is not reflected by preserved ejection fraction. This pattern of ventricular remodeling confers significant cardiovascular risk, particularly when present earlier in life.

  17. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    Science.gov (United States)

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  18. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Philip R Buskohl

    Full Text Available Embryonic heart valve primordia (cushions maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ and serotonin (5-HT signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA and extracellular matrix expression (col1α2 in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT, resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical

  19. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    da Silva Gonçalves Bós, Denielli; Van Der Bruggen, Cathelijne E E; Kurakula, Kondababu; Sun, Xiao-Qing; Casali, Karina R; Casali, Adenauer G; Rol, Nina; Szulcek, Robert; Dos Remedios, Cris; Guignabert, Christophe; Tu, Ly; Dorfmüller, Peter; Humbert, Marc; Wijnker, Paul J M; Kuster, Diederik W D; van der Velden, Jolanda; Goumans, Marie-José; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; de Man, Frances S; Handoko, M Louis

    2018-02-27

    The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic

  20. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia

    Science.gov (United States)

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying

    2016-01-01

    Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. PMID

  1. Does global longitudinal speckle-tracking strain predict left ventricular remodeling in patients with myocardial infarction? a systematic review

    Directory of Open Access Journals (Sweden)

    Afsoon Fazlinejad

    2016-07-01

    Full Text Available Introduction: Left ventricular remodeling is a relatively prevalent complication of acute myocardial infarction (AMI, and it is associated with higher rates of medical issues and mortality. Left ventricle ejection fraction (LVEF and wall motion score index (WMSI are unable to detect accurately minor lesions following AMI. Global longitudinal strain (GLS, which is obtained through 2D-speckle tracking echocardiography (2D-STE, provides an angle-dependent measurement by which the infarcted area can be assessed as a means of identifying potential dysfunction. The main objective of this study was to evaluate whether GLS could adequately predict LV remodeling in AMI patients. Methods: The MEDLINE database from database inception to May 6th, 2015, was searched for relevant keywords and the reference lists of systematic reviews and eligible studies were also screened. All studies involving patients with their first reported case of AMI were examined for GLS by 2D-STE and were evaluated for LV remodeling at a three-month follow-up point.  Four English-language prospective cohort studies were eligible for inclusion in this study.Result: A total of 291 AMI patients (mean age=57.92 years were investigated across four different studies. The main finding of this study was that the most reliable and consistent measurement for the purposes of predicting LV remodeling in AMI patients is GLS obtained at the time of discharge, especially in STEMI patients.Discussion: In addition to their poor reproducibility, inability to stratify risks, and inter-observer variability, compensatory hyperkinesis of intact myocytes and myocardial stunning after an AMI are among the main reasons why LVEF and WMSI may not be the most effective predictors of LV remodeling in AMI.Conclusion: GLS obtained by 2D-STE at the time of discharge could be used as a reliable predictor of LV remodeling in AMI patients.

  2. Peri-infarct zone pacing to prevent adverse left ventricular remodelling in patients with large myocardial infarction

    DEFF Research Database (Denmark)

    Stone, Gregg W; Chung, Eugene S; Stancak, Branislav

    2016-01-01

    AIMS: We sought to determine whether peri-infarct pacing prevents left ventricular (LV) remodelling and improves functional and clinical outcomes in patients with large first myocardial infarction (MI). METHODS AND RESULTS: A total of 126 patients at 27 international sites within 10 days of onset.......92). There were also no significant between-group differences in the change in LV end-systolic volume or ejection fraction over time. Quality of life, as assessed by the Minnesota Living with Heart Failure (HF) and European Quality of Life-5 Dimension questionnaires and New York Heart Association class, was also...

  3. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  4. Impact of Atrial Fibrillation Ablation on Left Ventricular Filling Pressure and Left Atrial Remodeling

    Directory of Open Access Journals (Sweden)

    Simone Nascimento dos Santos

    2014-12-01

    Full Text Available Background: Left ventricular (LV diastolic dysfunction is associated with new-onset atrial fibrillation (AF, and the estimation of elevated LV filling pressures by E/e' ratio is related to worse outcomes in patients with AF. However, it is unknown if restoring sinus rhythm reverses this process. Objective: To evaluate the impact of AF ablation on estimated LV filling pressure. Methods: A total of 141 patients underwent radiofrequency (RF ablation to treat drug-refractory AF. Transthoracic echocardiography was performed 30 days before and 12 months after ablation. LV functional parameters, left atrial volume index (LAVind, and transmitral pulsed and mitral annulus tissue Doppler (e' and E/e' were assessed. Paroxysmal AF was present in 18 patients, persistent AF was present in 102 patients, and long-standing persistent AF in 21 patients. Follow-up included electrocardiographic examination and 24-h Holter monitoring at 3, 6, and 12 months after ablation. Results: One hundred seventeen patients (82.9% were free of AF during the follow-up (average, 18 ± 5 months. LAVind reduced in the successful group (30.2 mL/m2 ± 10.6 mL/m2 to 22.6 mL/m2 ± 1.1 mL/m2, p < 0.001 compared to the non-successful group (37.7 mL/m2 ± 14.3 mL/m2 to 37.5 mL/m2 ± 14.5 mL/m2, p = ns. Improvement of LV filling pressure assessed by a reduction in the E/e' ratio was observed only after successful ablation (11.5 ± 4.5 vs. 7.1 ± 3.7, p < 0.001 but not in patients with recurrent AF (12.7 ± 4.4 vs. 12 ± 3.3, p = ns. The success rate was lower in the long-standing persistent AF patient group (57% vs. 87%, p = 0.001. Conclusion: Successful AF ablation is associated with LA reverse remodeling and an improvement in LV filling pressure.

  5. Impact of Atrial Fibrillation Ablation on Left Ventricular Filling Pressure and Left Atrial Remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Simone Nascimento dos, E-mail: simonens@cardiol.br [Instituto Brasília de Arritmia- Universidade de Brasília, DF (Brazil); Faculdade de Medicina (UnB), Brasília, DF (Brazil); Henz, Benhur Davi; Zanatta, André Rodrigues; Barreto, José Roberto; Loureiro, Kelly Bianca; Novakoski, Clarissa; Santos, Marcus Vinícius Nascimento dos; Giuseppin, Fabio F.; Oliveira, Edna Maria; Leite, Luiz Roberto [Instituto Brasília de Arritmia- Universidade de Brasília, DF (Brazil)

    2014-12-15

    Left ventricular (LV) diastolic dysfunction is associated with new-onset atrial fibrillation (AF), and the estimation of elevated LV filling pressures by E/e' ratio is related to worse outcomes in patients with AF. However, it is unknown if restoring sinus rhythm reverses this process. To evaluate the impact of AF ablation on estimated LV filling pressure. A total of 141 patients underwent radiofrequency (RF) ablation to treat drug-refractory AF. Transthoracic echocardiography was performed 30 days before and 12 months after ablation. LV functional parameters, left atrial volume index (LAVind), and transmitral pulsed and mitral annulus tissue Doppler (e' and E/e') were assessed. Paroxysmal AF was present in 18 patients, persistent AF was present in 102 patients, and long-standing persistent AF in 21 patients. Follow-up included electrocardiographic examination and 24-h Holter monitoring at 3, 6, and 12 months after ablation. One hundred seventeen patients (82.9%) were free of AF during the follow-up (average, 18 ± 5 months). LAVind reduced in the successful group (30.2 mL/m{sup 2} ± 10.6 mL/m{sup 2} to 22.6 mL/m{sup 2} ± 1.1 mL/m{sup 2}, p < 0.001) compared to the non-successful group (37.7 mL/m{sup 2} ± 14.3 mL/m{sup 2} to 37.5 mL/m{sup 2} ± 14.5 mL/m{sup 2}, p = ns). Improvement of LV filling pressure assessed by a reduction in the E/e' ratio was observed only after successful ablation (11.5 ± 4.5 vs. 7.1 ± 3.7, p < 0.001) but not in patients with recurrent AF (12.7 ± 4.4 vs. 12 ± 3.3, p = ns). The success rate was lower in the long-standing persistent AF patient group (57% vs. 87%, p = 0.001). Successful AF ablation is associated with LA reverse remodeling and an improvement in LV filling pressure.

  6. Impact of Atrial Fibrillation Ablation on Left Ventricular Filling Pressure and Left Atrial Remodeling

    International Nuclear Information System (INIS)

    Santos, Simone Nascimento dos; Henz, Benhur Davi; Zanatta, André Rodrigues; Barreto, José Roberto; Loureiro, Kelly Bianca; Novakoski, Clarissa; Santos, Marcus Vinícius Nascimento dos; Giuseppin, Fabio F.; Oliveira, Edna Maria; Leite, Luiz Roberto

    2014-01-01

    Left ventricular (LV) diastolic dysfunction is associated with new-onset atrial fibrillation (AF), and the estimation of elevated LV filling pressures by E/e' ratio is related to worse outcomes in patients with AF. However, it is unknown if restoring sinus rhythm reverses this process. To evaluate the impact of AF ablation on estimated LV filling pressure. A total of 141 patients underwent radiofrequency (RF) ablation to treat drug-refractory AF. Transthoracic echocardiography was performed 30 days before and 12 months after ablation. LV functional parameters, left atrial volume index (LAVind), and transmitral pulsed and mitral annulus tissue Doppler (e' and E/e') were assessed. Paroxysmal AF was present in 18 patients, persistent AF was present in 102 patients, and long-standing persistent AF in 21 patients. Follow-up included electrocardiographic examination and 24-h Holter monitoring at 3, 6, and 12 months after ablation. One hundred seventeen patients (82.9%) were free of AF during the follow-up (average, 18 ± 5 months). LAVind reduced in the successful group (30.2 mL/m 2 ± 10.6 mL/m 2 to 22.6 mL/m 2 ± 1.1 mL/m 2 , p < 0.001) compared to the non-successful group (37.7 mL/m 2 ± 14.3 mL/m 2 to 37.5 mL/m 2 ± 14.5 mL/m 2 , p = ns). Improvement of LV filling pressure assessed by a reduction in the E/e' ratio was observed only after successful ablation (11.5 ± 4.5 vs. 7.1 ± 3.7, p < 0.001) but not in patients with recurrent AF (12.7 ± 4.4 vs. 12 ± 3.3, p = ns). The success rate was lower in the long-standing persistent AF patient group (57% vs. 87%, p = 0.001). Successful AF ablation is associated with LA reverse remodeling and an improvement in LV filling pressure

  7. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  8. Stress induced right ventricular dysfunction: An indication of reversible right ventricular ischaemia

    International Nuclear Information System (INIS)

    Underwood, S.R.; Walton, S.; Emanuel, R.W.; Swanton, R.H.; Campos Costa, D.; Laming, P.J.; Ell, P.J.

    1987-01-01

    Stress induced changes in left ventricular ejection fraction are widely used in the detection and assessment of coronary artery disease. This study demonstrates that right ventricular dysfunction may also occur, and assesses its significance in terms of coronary artery anatomy. This study involved 14 normal subjects and 26 with coronary artery disease investigated by equilibrium radionuclide ventriculography, at rest and during maximal dynamic exercise. Mean normal resting right ventricular ejection fraction (RVEF) was 0.40 (SD 0.118), and all normal subjects increased RVEF with stress (mean ΔRVEF+0.13 SD 0.099). Mean ΔRVEF in the subjects with coronary artery disease was significantly lower at 0.00 (SD 0.080), but there was overlap between the two groups. The largest falls in RVEF were seen if the right coronary artery was occluded without retrograde filling. In this subgroup with the most severely compromised right ventricular perfusion (nine subjects), RVEF always fell with stress, and mean ΔRVEF was -0.08 (SD 0.050). There was no significant correlation between ΔLVEF and ΔRVEF, implying that the right ventricular dysfunction was due to right ventricular ischaemia, rather than secondary to left ventricular dysfunction. Stress induced right ventricular ischaemia can therefore be detected readily by radionuclide ventriculography. (orig.)

  9. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  10. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure.

    Science.gov (United States)

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Huang, Shangwei; Han, Yanxin; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2018-01-01

    What is the central question of this study? In the present study, we investigated the effects of renal denervation on the vulnerability to ventricular fibrillation and the ventricular electrical properties in a rapid pacing-induced heart failure canine model. What is the main finding and its importance? Renal denervation significantly attenuated the process of heart failure and improved left ventricular systolic dysfunction, stabilized ventricular electrophysiological properties and decreased the vulnerability of the heart to ventricular fibrillation during heart failure. Thus, renal denervation can attenuate ventricular electrical remodelling and exert a potential antifibrillatory action in a pacing-induced heart failure canine model. In this study, we investigated the effects of renal denervation (RDN) on the vulnerability to ventricular fibrillation (VF) and the ventricular electrical properties in a canine model of pacing-induced heart failure (HF). Eighteen beagles were divided into the following three groups: control (n = 6), HF (n = 6) and HF+RDN (n = 6). Heart failure was induced by rapid right ventricular pacing. Renal denervation was performed simultaneously with the pacemaker implantation in the HF+RDN group. A 64-unipolar basket catheter was used to perform global endocardial mapping of the left ventricle. The restitution properties and dispersion of refractoriness were estimated from the activation recovery intervals (ARIs) by a pacing protocol. The VF threshold (VFT) was defined as the maximal pacing cycle length required to induce VF using a specific pacing protocol. The defibrillation threshold (DFT) was measured by an up-down algorithm. Renal denervation partly restored left ventricular systolic function and attenuated the process of HF. Compared with the control group, the VFT in the HF group was decreased by 27% (106 ± 8.0 versus 135 ± 10 ms, P Renal denervation significantly flattened the ventricular ARI restitution curve by 15% (1

  11. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    Science.gov (United States)

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Review in Translational Cardiology: MicroRNAs and Myocardial Fibrosis in Aortic Valve Stenosis, a Deep Insight on Left Ventricular Remodeling.

    Science.gov (United States)

    Iacopo, Fabiani; Lorenzo, Conte; Calogero, Enrico; Matteo, Passiatore; Riccardo, Pugliese Nicola; Veronica, Santini; Valentina, Barletta; Riccardo, Liga; Cristian, Scatena; Maria, Mazzanti Chiara; Vitantonio, Di Bello

    2016-01-01

    MicroRNAs (miRNAs) are a huge class of noncoding RNAs that regulate protein-encoding genes (degradation/inhibition of translation). miRNAs are nowadays recognized as regulators of biological processes underneath cardiovascular disorders including hypertrophy, ischemia, arrhythmias, and valvular disease. In particular, circulating miRNAs are promising biomarkers of pathology. This review gives an overview of studies in aortic valve stenosis (AS), exclusively considering myocardial remodeling processes. We searched through literature (till September 2016), all studies and reviews involving miRNAs and AS (myocardial compartment). Although at the beginning of a new era, clear evidences exist on the potential diagnostic and prognostic implementation of miRNAs in the clinical setting. In particular, for AS, miRNAs are modulators of myocardial remodeling and hypertrophy. In our experience, here presented in summary, the principal findings of our research were a confirm of the pathophysiological role in AS of miRNA-21, in particular, the interdependence between textural miRNA-21 and fibrogenic stimulus induced by an abnormal left ventricular pressure overload. Moreover, circulating miRNA-21 (biomarker) levels are able to reflect the presence of significant myocardial fibrosis (MF). Thus, the combined evaluation of miRNA-21, a marker of MF, and hypertrophy, together with advanced echocardiographic imaging (two-dimensional speckle tracking), could fulfill many existing gaps, renewing older guidelines paradigms, also allowing a better risk prognostic and diagnostic strategies.

  13. Intermittent Hypoxia-Induced Cardiovascular Remodeling Is Reversed by Normoxia in a Mouse Model of Sleep Apnea.

    Science.gov (United States)

    Castro-Grattoni, Anabel L; Alvarez-Buvé, Roger; Torres, Marta; Farré, Ramon; Montserrat, Josep M; Dalmases, Mireia; Almendros, Isaac; Barbé, Ferran; Sánchez-de-la-Torre, Manuel

    2016-06-01

    Intermittent hypoxia (IH) is the principal injurious factor involved in the cardiovascular morbidity and mortality associated with OSA. The gold standard for treatment is CPAP, which eliminates IH and appears to reduce cardiovascular risk. There is no experimental evidence on the reversibility of cardiovascular remodeling after IH withdrawal. The objective of the present study is to assess the reversibility of early cardiovascular structural remodeling induced by IH after resumption of normoxic breathing in a novel recovery animal model mimicking OSA treatment. We investigated cardiovascular remodeling in C57BL/6 mice exposed to IH for 6 weeks vs the normoxia group and its spontaneous recovery after 6 subsequent weeks under normoxia. Aortic expansive remodeling was induced by IH, with intima-media thickening and without lumen perimeter changes. Elastic fiber network disorganization, fragmentation, and estrangement between the end points of disrupted fibers were increased by IH. Extracellular matrix turnover was altered, as visualized by collagen and mucoid interlaminar accumulation. Furthermore, left ventricular perivascular fibrosis was increased by IH, whereas cardiomyocytes size was unaffected. These cardiovascular remodeling events induced by IH were normalized after recovery in normoxia, mimicking CPAP treatment. The early structural cardiovascular remodeling induced by IH was normalized after IH removal, revealing a novel recovery model for studying the effects of OSA treatment. Our findings suggest the clinical relevance of early detection and effective treatment of OSA in patients to prevent the natural course of cardiovascular diseases. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Patient-prosthesis mismatch and left ventricular remodelling after implantation of Shelhigh SuperStentless aortic valve prostheses.

    Science.gov (United States)

    Germing, A; Lindstaedt, M; Holt, S; Reber, D; Mügge, A; Laczkovics, A; Fritz, M

    2008-08-01

    Aortic valve replacement is a standard procedure for the treatment of severe aortic valve stenosis. Due to lower flow velocities stentless valves are associated with a more effective regression of left ventricular hypertrophy in comparison to stented valves. However, mismatch between body surface area and valve size supports unfavourable hemodynamic results. The aim of the study was to analyze hemodynamic parameters by echocardiography after implantation of the Shelhigh SuperStentless bioprosthesis and to analyze the occurrence of patient-prosthesis mismatch and left ventricular remodelling in this specific valve type. A total of 20 patients with severe aortic stenosis underwent implantation of a Shelhigh Super Stentless prosthesis. Clinical and echocardiographic assessment was done prior to, immediate after and six months after surgery. All surgical procedures were successful, no surgery-related complication was documented perioperatively. One patient died after development of multiorgan failure. Echocardiography during the first eight days after surgery showed mean gradients of 16 mmHg, mean valve orifice areas of 1.8 cm(2) and indexed effective orifice areas at 0.95 cm(2)/m(2). Six-months follow-up data were obtained in 19/20 patients. There were no relevant changes in echocardiographic hemodynamic findings at the time of follow-up measurements. Significant regression of left ventricular hypertrophy was shown (P=0.0088). A patient-prosthesis mismatch occurred in one patient (0.54 cm(2)/m(2)). No recurrent symptoms were documented. Patient-prosthesis mismatch after implantation of SuperStentless Shelhigh prosthesis is rare. A significant regression of left ventricular hypertrophy could be shown after six months. Hemodynamic valve function assessed by echocardiography may be predicted early after surgery.

  15. Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both

    DEFF Research Database (Denmark)

    Shah, Amil M; Hung, Chung-Lieh; Shin, Sung Hee

    2011-01-01

    The mechanisms responsible for the increased risk of heart failure (HF) post-myocardial infarction (MI) may differ between patients with versus without diabetes. We hypothesized that after high-risk MI, patients with diabetes would demonstrate patterns of remodeling that are suggestive of reduced...... ventricular compliance and that are associated with an increased risk of death or HF....

  16. Interaction of Left Ventricular Remodeling and Regional Dyssynchrony on Long-Term Prognosis after Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Tayal, Bhupendar; Sogaard, Peter; Delgado-Montero, Antonia

    2017-01-01

    BACKGROUND: Left ventricular (LV) remodeling in heart failure (HF) manifested by chamber dilatation is associated with worse clinical outcomes. However, the impact of LV dilatation on the association of measures of dyssynchrony with long-term prognosis and resynchronization potential after cardiac...... resynchronization therapy (CRT) remains unclear. METHODS: Two hundred sixty CRT patients in New York Heart Association classes II to IV, with ejection fractions ≤ 35% and QRS intervals ≥ 120 msec, were prospectively studied. Quantitative echocardiographic assessment of LV volumes and mechanical dyssynchrony...... of the baseline indexed LV end-diastolic volume (EDVI). Patients with less dilated left ventricles (EDVI left ventricles (EDVI ≥ 90 mL/m(2)) for both primary (adjusted hazard ratio [HR], 2.20; 95% CI, 1.44-3.38; P

  17. Aortic stenosis with abnormal eccentric left ventricular remodeling secondary to hypothyroidism in a Bourdeaux Mastiff

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Minozzo

    Full Text Available ABSTRACT: This paper describes a case of congenital aortic stenosis with eccentric left ventricular hypertrophy associated with hypothyroidism in a 1-year-old Bourdeaux Mastiff dog. The dog had ascites, apathy, alopecic and erythematous skin lesions in different parts of the body. A two-dimensional echocardiogram revealed aortic valve stenosis, with poststenotic dilation in the ascending aorta. The same exam showed eccentric hypertrophy and dilation of the left ventricle during systole and diastole. Aortic stenosis usually results in concentric left ventricular hypertrophy instead of eccentric hypertrophy; and therefore, this finding was very unusual. Hypothyroidism, which is uncommon in young dogs, may be incriminated as the cause of ventricular dilation, making this report even more interesting. Because hypothyroidism would only result in dilatation, the eccentric hypertrophy was attributed to pressure overload caused by aortic stenosis. Thus, cardiac alterations of this case represent a paradoxical association of both diseases.

  18. Ventricular tachycardia induced by weight loss pills

    DEFF Research Database (Denmark)

    Pareek, Manan; Hansson, Nils Henrik; Grove, Erik Lerkevang

    2013-01-01

    A previously healthy 29-year-old man was admitted with palpitations, dizziness, and near-syncope after he had recently started taking weight loss pills purchased on the internet. The pills contained caffeine and ephedrine. An electrocardiogram and telemetry revealed multiple episodes of non......-sustained monomorphic ventricular tachycardia, which was successfully treated with amiodarone. In conclusion, unauthorized weight loss pills can be harmful. In particular, ephedrine-containing drugs carry a risk of ventricular tachycardia and should be discouraged....

  19. Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ganame, Javier; Messalli, Giancarlo; Dymarkowski, Steven; Abbasi, Kayvan; Bogaert, Jan; Masci, Pier Giorgio; Werf, Frans van de; Janssens, Stefan

    2011-01-01

    To describe the time course of myocardial infarct (MI) healing and left ventricular (LV) remodelling and to assess factors predicting LV remodelling using cardiac MRI. In 58 successfully reperfused MI patients, MRI was performed at baseline, 4 months (4M), and 1 year (1Y) post MI Infarct size decreased between baseline and 4M (p < 0.001), but not at 1Y; i.e. 18 ± 11%, 12 ± 8%, 11 ± 6% of LV mass respectively; this was associated with LV mass reduction. Infarct and adjacent wall thinning was found at 4M, whereas significant remote wall thinning was measured at 1Y. LV end-diastolic and end-systolic volumes significantly increased at 1Y, p < 0.05 at 1Y vs. baseline and vs. 4M; this was associated with increased LV sphericity index. No regional or global LV functional improvement was found at follow-up. Baseline infarct size was the strongest predictor of adverse LV remodelling. Infarct healing, with shrinkage of infarcted myocardium and wall thinning, occurs early post-MI as reflected by loss in LV mass and adjacent myocardial remodelling. Longer follow-up demonstrates ongoing remote myocardial and ventricular remodelling. Infarct size at baseline predicts long-term LV remodelling and represents an important parameter for tailoring future post-MI pharmacological therapies designed to prevent heart failure. (orig.)

  20. Atorvastatin therapy during the peri-infarct period attenuates left ventricular dysfunction and remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xian-Liang Tang

    Full Text Available Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI. Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14 received oral atorvastatin (10 mg/kg/d daily for 3 wk before and 4 wk after MI, while group I (n = 12 received equivalent doses of vehicle. Infarct size (Masson's trichrome-stained sections was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF and fractional area change (FAC were higher while LV end-diastolic volume (LVEDV and LV end-systolic and end-diastolic diameters (LVESD and LVEDD were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dt(max, end-systolic elastance (Ees, and preload recruitable stroke work (PRSW and lower LV end-diastolic pressure (LVEDP. Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis.

  1. Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background

    Directory of Open Access Journals (Sweden)

    Marzia Rigolli

    2011-01-01

    Full Text Available Background. Neurohormonal systems play an important role in chronic heart failure (CHF. Due to interindividual heterogeneity in the benefits of therapy, it may be hypothesized that polymorphisms of neurohormonal systems may affect left ventricular (LV remodelling and systolic function. We aimed to assess whether genetic background of maximally treated CHF patients predicts variations in LV systolic function and volumes. Methods and Results. We prospectively studied 131 CHF outpatients on optimal treatment for at least six months. Echocardiographic evaluations were performed at baseline and after 12 months. Genotype analysis for ACE I/D, β1adrenergic receptor (AR Arg389Gly, β2AR Arg16Gly, and β2AR Gln27Glu polymorphisms was performed. No differences in baseline characteristics were detected among subgroups. ACE II was a significant predictor of improvement of LV end-diastolic and end-systolic volume (=.003 and =.002, respectively but not of LV ejection fraction (LVEF; β1AR389 GlyGly was related to improvement of LVEF (=.02 and LV end-systolic volume (=.01. The predictive value of polymorphisms remained after adjustment for other clinically significant predictors (<.05 for all. Conclusions. ACE I/D and β1AR Arg389Gly polymorphisms are independent predictors of reverse remodeling and systolic function recovery in CHF patients under optimal treatment.

  2. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis

    DEFF Research Database (Denmark)

    Dahl, Jordi S; Videbaek, Lars; Poulsen, Mikael K

    2010-01-01

    In hypertension, angiotensin receptor blockers can augment regression of left ventricular (LV) hypertrophy. It is not known whether this also is the case after aortic valve replacement (AVR) for severe aortic stenosis (AS). To test the hypothesis that treatment with candesartan in addition to con...

  3. Left ventricular remodeling and change of systolic function after closure of patent ductus arteriosus in adults: device and surgical closure.

    Science.gov (United States)

    Jeong, Young-Hoon; Yun, Tae-Jin; Song, Jong-Min; Park, Jung-Jun; Seo, Dong-Man; Koh, Jae-Kon; Lee, Se-Whan; Kim, Mi-Jeong; Kang, Duk-Hyun; Song, Jae-Kwan

    2007-09-01

    Left ventricular (LV) remodeling and predictors of LV systolic function late after closure of patent ductus arteriosus (PDA) in adults remain to be clearly demonstrated. In 45 patients with PDA, including 28 patients who received successful occlusion using the Amplatzer device (AD group) (AGA, Golden Valley, MN) and 17 patients who received surgical closure (OP group), echocardiography studies were performed before closure and 1 day (AD group) or within 7 days (OP group) after closure, and then were repeated at > or = 6 months (17 +/- 13 months). In both groups, LV ejection fraction (EF) and end-diastolic volume index were significantly decreased immediately after closure, whereas end-systolic volume index did not change. During the long-term follow-up period, end-systolic as well as end-diastolic volume indices decreased significantly in both groups and LV EF recovered compared to the immediate postclosure state. However, LV EF remained low compared to the preclosure state. Five patients (11.1%) including 3 patients in the AD group and 2 patients in the OP group showed persistent late LV systolic dysfunction (EF or = 62% had a sensitivity of 72% and a specificity of 83% for predicting late normal LV EF after closure. Left ventricular EF remains low late after PDA closure compared with preclosure state in adults. Preclosure LV EF is the best index to predict late postclosure LV EF.

  4. Left ventricular torsion assessed by two-dimensional echocardiography speckle tracking as a predictor of left ventricular remodeling and short-term outcome following primary percutaneous coronary intervention for acute myocardial infarction: A single-center experience.

    Science.gov (United States)

    Awadalla, Hany; Saleh, Mohamed Ayman; Abdel Kader, Mohamed; Mansour, Amr

    2017-08-01

    Left ventricular (LV) torsion is a novel method to assess systolic LV function. This study aimed at exploring the utility of 2D speckle tracking-based assessment of left ventricular torsion in patients with acute myocardial infarction (AMI) undertaking primary percutaneous intervention (pPCI) in predicting left ventricular remodeling. The study included 115 patients (mean±SD, age 52.2±9.67, males 84.3%) who underwent pPCI for AMI. Echocardiographic assessment of LV torsion by two-dimensional speckle tracking was performed early after the index pPCI. Patients underwent repeat echocardiography at 6 months to detect remodeling. LV torsion in the acute setting was significantly lower in those who demonstrated LV remodeling at follow-up compared to those without remodeling (7.56±1.95 vs 15.16±4.65; P<.005). Multivariate analysis identified peak CK & CK-MB elevation (β=-0.767 and -0.725; P<.001), SWMA index (β=-0.843; P<.001), and Simpson's derived LV ejection fraction (LVEF; β=0.802; P<.001) as independent predictors of baseline LV torsion. It also identified peak LV torsion (β: 0.27; 95% CI: 0.15-0.5, P=.001) and SWMA index (β: 1.07, 95% CI: 1.03-1.12, P=.005) as independent predictors of LV remodeling. Baseline Killip's grades II and higher (β: 48.6; 95% CI 5.5-428, P<.001) and diabetes mellitus (β: 29.7; 95% CI 1.1-763, P<.05) were independent predictors of mortality. Left ventricular torsion in acute MI setting is impaired and predicts subsequent LV remodeling at 6-month follow-up. © 2017, Wiley Periodicals, Inc.

  5. Biomass fuel smoke exposure was associated with adverse cardiac remodeling and left ventricular dysfunction in Peru.

    Science.gov (United States)

    Burroughs Peña, M S; Velazquez, E J; Rivera, J D; Alenezi, F; Wong, C; Grigsby, M; Davila-Roman, V G; Gilman, R H; Miranda, J J; Checkley, W

    2017-07-01

    While household air pollution from biomass fuel combustion has been linked to cardiovascular disease, the effects on cardiac structure and function have not been well described. We sought to determine the association between biomass fuel smoke exposure and cardiac structure and function by transthoracic echocardiography. We identified a random sample of urban and rural residents living in the high-altitude region of Puno, Peru. Daily biomass fuel use was self-reported. Participants underwent transthoracic echocardiography. Multivariable linear regression was used to examine the relationship of biomass fuel use with echocardiographic measures of cardiac structure and function, adjusting for age, sex, height, body mass index, diabetes, physical activity, and tobacco use. One hundred and eighty-seven participants (80 biomass fuel users and 107 non-users) were included in this analysis (mean age 59 years, 58% women). After adjustment, daily exposure to biomass fuel smoke was associated with increased left ventricular internal diastolic diameter (P=.004), left atrial diameter (P=.03), left atrial area (four-chamber) (P=.004) and (two-chamber) (P=.03), septal E' (P=.006), and lateral E' (P=.04). Exposure to biomass fuel smoke was also associated with worse global longitudinal strain in the two-chamber view (P=.01). Daily biomass fuel use was associated with increased left ventricular size and decreased left ventricular systolic function by global longitudinal strain. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    Directory of Open Access Journals (Sweden)

    Baoping Zhang

    Full Text Available The adverse effect induced by carbon ion radiation (CIR is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy or X-rays (2, 4, 6, and 12 Gy for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy. The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study

  8. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  9. The association of sleep disordered breathing with left ventricular remodeling in CAD patients: a cross-sectional study.

    Science.gov (United States)

    Alonderis, Audrius; Raskauskiene, Nijole; Gelziniene, Vaidute; Mickuviene, Narseta; Brozaitiene, Julija

    2017-09-18

    There is still insufficient knowledge on the potential effect of mild to moderate sleep-disordered breathing (SDB) that is widely prevalent, often asymptomatic, and largely undiagnosed in patients with stable coronary artery disease (CAD). SDB affects 34% of men and 17% of women aged between 30 and 70. The objective of this study was to evaluate the association between SDB and left ventricular (LV) hypertrophy as well as structural remodeling in stable CAD patients. The study was based on a cross-sectional design. Echocardiography and polysomnography was performed in 772 patients with CAD and with untreated sleep apnea. All study participants underwent testing by Epworth Sleepiness Scale questionnaire. Their mean age, NYHA and left ventricular ejection fraction were, respectively: 57 ± 9 years, 2.1 ± 0.5 and 51 ± 8%, and 76% were men. Sleep apnea (SA) was defined as an apnea-hypopnea-index (AHI) ≥5 events/h, and, non-SA, as an AHI CAD patients with SA. The patients with SA had significantly higher values of both interventricular septal thickness and posterior wall thickness. Multiple logistic regression analysis showed that even mild sleep apnea was an independent predictor for LVH by wall thickness criteria and concentric LVH (OR = 1.5; 95% CI 1.04-2.2 and OR = 1.9; 1.3-2.9 respectively). We concluded that unrecognized sleep apnea was highly prevalent among patients with stable CAD, and the majority of those patients did not report daytime sleepiness. Mild to moderate sleep apnea was associated with increased LV wall thickness, LV mass, and with higher prevalence of concentric LV hypertrophy independently of coexisting obesity, hypertension, diabetes mellitus or advancing age.

  10. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling.

    Science.gov (United States)

    Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L

    2016-05-01

    Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Adrenomedullin plasma levels predict left ventricular reverse remodeling after cardiac resynchronization therapy.

    Science.gov (United States)

    Morales, Maria-Aurora; Maltinti, Maristella; Piacenti, Marcello; Turchi, Stefano; Giannessi, Daniela; Del Ry, Silvia

    2010-07-01

    Increase in adrenomedullin (ADM) plasma levels in congestive heart failure (HF) patients is due to many cardiac and systemic factors, particularly to greater fluid retention and to activation of sympathetic nervous system. Aim of this study was to assess the role of plasma ADM levels in HF patients treated by cardiac resynchronization therapy (CRT). 50 patients, mean age 70 years, 34 male, New York Heart Association (NYHA) Class III-IV HF, left ventricular ejection fraction (LVEF) or=1 NYHA Class improvement was observed in 38 patients. However, a >10% reduction in end-systolic dimensions (ESD) was reported in 21 patients (Group I): -16.6 +/- 1.8%; in the remaining 29 patients ESD change was almost negligible: -2.0 +/- 1.03% (Group II), P values before CRT could represent a group in whom the dysfunction is so advanced that no improvement can be expected.

  12. Impact of ventricular geometric pattern on cardiac remodeling after myocardial infarction

    OpenAIRE

    Farah, Elaine; Fusco, Daniéliso R.; Okumoto, Paulo R. R.; Minicucci, Marcos F.; Azevedo, Paula S.; Matsubara, Beatriz B.; Okoshi, Katashi; Zanati, Siméia G.; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2013-01-01

    FUNDAMENTO: A relevância do padrão de geometria após o infarto do miocárdio não é conhecida. OBJETIVOS: Analisar a presença de diferentes padrões de geometria ventricular esquerda (VE) e seu impacto como preditor de remodelação em pacientes com infarto do miocárdio. MÉTODOS: Pacientes com infarto agudo anterior (n = 80) foram divididos de acordo com o padrão de geometria: normal (índice de massa [IMVE] normal e espessura relativa da parede [ERP] normal), remodelação concêntrica (IMVE normal e...

  13. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial

    DEFF Research Database (Denmark)

    Daubert, Claude; Gold, Michael R; Abraham, William T

    2009-01-01

    were decreased in this patient population in New York Heart Association functional classes I or II. These observations suggest that CRT prevents the progression of disease in patients with asymptomatic or mildly symptomatic LV dysfunction. (REsynchronization reVErses Remodeling in Systolic Left v......OBJECTIVES: The aim of this study was to determine the long-term effects of cardiac resynchronization therapy (CRT) in the European cohort of patients enrolled in the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. BACKGROUND: Previous data suggest...... that CRT slows disease progression and improves the outcomes of asymptomatic or mildly symptomatic patients with left ventricular (LV) dysfunction and a wide QRS complex. METHODS: We randomly assigned 262 recipients of CRT pacemakers or defibrillators, with QRS > or =120 ms and LV ejection fraction...

  14. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices

    NARCIS (Netherlands)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I. Sophie T.; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-01-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced

  15. TNF-Like Weak Inducer of Apoptosis Aggravates Left Ventricular Dysfunction after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Kai-Uwe Jarr

    2014-01-01

    Full Text Available Background. TNF-like weak inducer of apoptosis (TWEAK has recently been shown to be potentially involved in adverse cardiac remodeling. However, neither the exact role of TWEAK itself nor of its receptor Fn14 in this setting is known. Aim of the Study. To analyze the effects of sTWEAK on myocardial function and gene expression in response to experimental myocardial infarction in mice. Results. TWEAK directly suppressed the expression of PGC-1α and genes of oxidative phosphorylation (OXPHOS in cardiomyocytes. Systemic sTWEAK application after MI resulted in reduced left ventricular function and increased mortality without changes in interstitial fibrosis or infarct size. Molecular analysis revealed decreased phosphorylation of PI3K/Akt and ERK1/2 pathways associated with reduced expression of PGC-1α and PPARα. Likewise, expression of OXPHOS genes such as atp5O, cycs, cox5b, and ndufb5 was also reduced. Fn14 -/- mice showed significantly improved left ventricular function and PGC-1α levels after MI compared to their respective WT littermates (Fn14 +/+. Finally, inhibition of intrinsic TWEAK with anti-TWEAK antibodies resulted in improved left ventricular function and survival. Conclusions. TWEAK exerted maladaptive effects in mice after myocardial infarction most likely via direct effects on cardiomyocytes. Analysis of the potential mechanisms revealed that TWEAK reduced metabolic adaptations to increased cardiac workload by inhibition of PGC-1α.

  16. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  17. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.

    Science.gov (United States)

    Spalazzi, Jeffrey P; Vyner, Moira C; Jacobs, Matthew T; Moffat, Kristen L; Lu, Helen H

    2008-08-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-alpha-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-beta3 (TGF-beta3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.

  18. Association of masked hypertension and left ventricular remodeling with the hypertensive response to exercise.

    Science.gov (United States)

    Sharman, James E; Hare, James L; Thomas, Scott; Davies, Justin E; Leano, Rodel; Jenkins, Carly; Marwick, Thomas H

    2011-08-01

    A hypertensive response to exercise (HRE; defined as normal clinic blood pressure (BP) and exercise systolic BP (SBP) ≥210 mm Hg in men or ≥190 mm Hg in women, or diastolic BP (DBP) ≥105 mm Hg) independently predicts mortality. The mechanisms remain unclear but may be related to masked hypertension. This study aimed to assess the prevalence of masked hypertension and its association with cardiovascular risk factors, including left ventricular (LV) mass, in patients with a HRE. Comprehensive clinical and echocardiographic evaluation (including central BP, aortic pulse wave velocity by tonometry) and 24-h ambulatory BP monitoring (ABPM) were performed in 72 untreated patients with HRE (aged 54 ± 9 years; 60% male; free from coronary artery disease confirmed by exercise stress echocardiography). Masked hypertension was defined according to guidelines as daytime ABPM ≥135/85 mm Hg and clinic BP hypertension was present in 42 patients (58%). These patients had higher LV mass index (41.5 ± 8.7 g/m(2.7) vs. 35.9 ± 8.5 g/m(2.7); P = 0.01), LV relative wall thickness (RWT; 0.42 ± 0.09 vs. 0.37 ± 0.06; P = 0.004) and exercise SBP (222 ± 17 mm Hg vs. 212 ± 14 mm Hg; P = 0.01), but no significant difference in aortic pulse wave velocity or central pulse pressure (P > 0.05 for both). The strongest independent determinant of LV mass index was the presence of masked hypertension (unstandardized β = 5.6; P = 0.007), which was also independently related to LV RWT (unstandardized β = 0.04; P = 0.03). Masked hypertension is highly prevalent in HRE patients with a normal resting office BP and is associated with increased LV mass index and RWT. Clinicians should consider measuring ABPM or home BP in HRE patients.

  19. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  20. Impact of endothelial dysfunction on left ventricular remodeling after successful primary coronary angioplasty for acute myocardial infarction. Analysis by quantitative ECG-gated SPECT

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakae, Ichiro; Matsumoto, Tetsuya; Horie, Minoru

    2006-01-01

    We hypothesized that endothelial cell integrity in the risk area would influence left ventricular remodeling after acute myocardial infarction. Twenty patients (61±8 y.o.) with acute myocardial infarction underwent 99m Tc-tetrofosmin imaging in the sub-acute phase and three months after successful primary angioplasty due to myocardial infarction. All patients were administered angiotensin-converting enzyme inhibitor after revascularization. Cardiac scintigraphies with quantitative gated SPECT were performed at the sub-acute stage and again 3 months after revascularization to evaluate left ventricular (LV) remodeling. The left ventricular ejection fraction (EF) and end-systolic and end-diastolic volume (ESV, EDV) were determined using a quantitative gated SPECT (QGS) program. Three months after myocardial infarction, all patients underwent cardiac catheterization examination with coronary endothelial function testing. Bradykinin (BK) (0.2, 0.6, 2.0 μg/min) was administered via the left coronary artery in a stepwise manner. Coronary blood flow was evaluated by Doppler flow velocity measurement. Patients were divided into two groups by BK-response: a preserved endothelial function group (n=10) and endothelial dysfunction group (n=10). At baseline, both global function and LV systolic and diastolic volumes were similar in both groups. However, LV ejection fraction was significantly improved in the preserved-endothelial function group, compared with that in the endothelial dysfunction group (42±10% to 48±9%, versus 41±4% to 42±13%, p<0.05). LV volumes progressively increased in the endothelial dysfunction group compared to the preserved-endothelial function group (123±45 ml to 128±43 ml, versus 111±47 ml to 109±49 ml, p<0.05). In re-perfused acute myocardial infarction, endothelial function within the risk area plays an important role with left ventricular remodeling after myocardial infarction. (author)

  1. Remodeling of the pulmonary artery induced by metastatic gastric carcinoma: a histopathological analysis of 51 autopsy cases

    International Nuclear Information System (INIS)

    Ishiwatari, Takao; Yamamoto, Yoshiro; Nakayama, Haruo; Shibuya, Kazutoshi; Okubo, Yoichiro; Tochigi, Naobumi; Wakayama, Megumi; Nemoto, Tetsuo; Kobayashi, Junko; Shinozaki, Minoru; Aki, Kyoko; Sasai, Daisuke

    2014-01-01

    Gastric carcinoma remains the second commonest cause of cancer deaths worldwide. Presence of the carcinoma cell in the pulmonary artery is serious condition that might cause remodeling of the pulmonary artery. The present study conducted detailed histopathological analyses to elucidate how gastric carcinoma cells may affect the structure and hemodynamics of pulmonary arteries. Remodeling of the pulmonary artery was assessed based on measurements of arterial diameters and stenosis rates from the autopsies, and their correlation were also validated. We additionally calculated 95 percent confidential intervals (CIs) for the rate of stenosis in groups of pulmonary arteries of different caliber zones (under 100, 100 to 300, and over 300 micrometer). The right ventricular thickness was measured and examined whether it correlated with the rate of pulmonary arterial stenosis. A total of 4612 autopsy cases were recorded at our institute, among which 168 had gastric carcinoma. Finally, 51 cases of the gastric carcinoma were employed for the study which had carcinoma cells in the lumen of the pulmonary artery. The mean right ventricular wall thickness of these cases was 3.14 mm. There were significant positive associations between the rates of pulmonary arterial stenosis and right ventricular thickness from pulmonary arteries of diameter under 100, 100 to 300, and over 300 micrometer. In these zones, 31, 31, and 33 cases had rates of pulmonary arterial stenosis that were below the lower limit of the 95 percent CI values, respectively. On the other hand, among cases with significant pulmonary stenosis, 17 of 18 cases with stenosis in the over 300 micrometer zone involved pulmonary arteries of both in the under 100 and 100 to 300 micrometer zones. One-third of autopsy with advanced gastric carcinoma had carcinoma cells in lumen of pulmonary artery, but implantation and proliferation may be essential to induce intimal thickening that causes an increasing of pulmonary arterial

  2. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.

    Science.gov (United States)

    Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf

    2016-08-01

    Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Rationale and methods of the Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/Valsartan Therapy for Heart Failure (PROVE-HF).

    Science.gov (United States)

    Januzzi, James L; Butler, Javed; Fombu, Emmanuel; Maisel, Alan; McCague, Kevin; Piña, Ileana L; Prescott, Margaret F; Riebman, Jerome B; Solomon, Scott

    2018-05-01

    Sacubitril/valsartan is an angiotensin receptor-neprilysin inhibitor indicated for the treatment of patients with chronic heart failure (HF) with reduced ejection fraction; however, its mechanism of benefit remains unclear. Biomarkers that are linked to ventricular remodeling, myocardial injury, and fibrosis may provide mechanistic insight and important clinical guidance regarding sacubitril/valsartan use. This 52-week, multicenter, open-label, single-arm study is designed to (1) correlate biomarker changes with cardiac remodeling parameters, cardiovascular outcomes, and patient-reported outcome data and (2) determine short- and long-term changes in concentrations of biomarkers related to potential mechanisms of action and effects of sacubitril/valsartan therapy. Approximately 830 patients with HF with reduced ejection fraction will be initiated and titrated on sacubitril/valsartan according to United States prescribing information. Primary efficacy end points include the changes in N-terminal pro-B-type natriuretic peptide concentrations and cardiac remodeling from baseline to 1 year. Secondary end points include changes in concentrations of N-terminal pro-B-type natriuretic peptide and remodeling to 6 months, and changes in patient-reported outcomes using the Kansas City Cardiomyopathy Questionnaire-23 from baseline to 1 year. In addition, several other relevant biomarkers will be measured. Biomarker changes relative to the number of cardiovascular events in 12 months will also be assessed as exploratory end points. Results from the Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/Valsartan Therapy for Heart Failure (PROVE-HF) will help establish a mechanistic understanding of angiotensin receptor-neprilysin inhibitor therapeutic benefits and provide clinicians with clarity on how to interpret information on biomarkers during treatment (PROVE-HF ClinicalTrials.gov identifier: NCT02887183). Copyright © 2018 The

  4. Loperamide Induced Life Threatening Ventricular Arrhythmia

    Directory of Open Access Journals (Sweden)

    Ankit Upadhyay

    2016-01-01

    Full Text Available Loperamide is over-the-counter antidiarrheal agent acting on peripherally located μ opioid receptors. It is gaining popularity among drug abusers as opioid substitute. We report a case of a 46-year-old male that was presented after cardiac arrest. After ruling out ischemia, cardiomyopathy, pulmonary embolism, central nervous system pathology, sepsis, and other drug toxicity, we found out that patient was using around 100 mg of Loperamide to control his chronic diarrhea presumably because of irritable bowel syndrome for last five years and consumed up to 200 mg of Loperamide daily for last two days before the cardiac arrest. We hypothesize that the patient’s QTc prolongation and subsequent cardiac arrest are due to Loperamide toxicity. Patient experienced gradual resolution of tachyarrhythmia and gradual decrease in QTc interval during hospitalization which supports the evidence of causal relationship between Loperamide overdose and potentially fatal arrhythmias. It also provided the clue that patient may have congenital long QT syndrome which was unmasked by Loperamide causing ventricular arrhythmias. This case adds one more pearl in the literature to support that Loperamide overdose related cardiac toxicity does exist and it raises concerns over Loperamide abuse in the community.

  5. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction

    Science.gov (United States)

    Jiao, Kun-Li; Li, Yi-Gang; Zhang, Peng-Pai; Chen, Ren-Hua; Yu, Yi

    2012-01-01

    Abstract The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. PMID:22128836

  6. Effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy

    Directory of Open Access Journals (Sweden)

    Xiao-Rui Xie

    2016-12-01

    Full Text Available Objective: To study the effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy. Methods: A total of 86 patients with acute myocardial infarction who received emergency PCI in our hospital between May 2013 and May 2016 were selected and randomly divided into two groups, ticagrelor group received perioperative ticagrelor therapy and clopidogrel group received perioperative clopidogrel therapy. After PCI, coronary blood flow reperfusion was evaluated, serum myocardial remodeling indexes and myocardial enzymes were determined, and cardiac color Doppler ultrasonography was conducted to determine the cardiac function indexes. Results: TIMI grading and TMPG grading of ticagrelor group after PCI were significantly higher than those of clopidogrel group; serum MMP9, BNP, CITP, PICP, PIIINP, CK, CK-MB, cTnI and cTnT content of ticagrelor group 24h after operation were significantly lower than those of clopidogrel group; LVEDD, LVSED and LVMI of ticagrelor group 2 weeks after operation were significantly lower than those of clopidogrel group while LVEF was significantly higher than that of clopidogrel group. Conclusion: Peri-PCI loading-dose ticagrelor can improve coronary blood perfusion and reduce ventricular remodeling and myocardial injury in patients with acute myocardial infarction.

  7. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  8. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  9. EXERCISE-INDUCED VENTRICULAR-TACHYCARDIA - A RARE MANIFESTATION OF DIGITALIS TOXICITY

    NARCIS (Netherlands)

    GOSSELINK, ATM; CRIJNS, HJGM; WIESFELD, ACP; LIE, KI

    Digitalis intoxication is one of the most common adverse drug reactions. Although some arrhythmias are seen more frequently than others, virtually any rhythm disturbance, including ventricular tachycardia, may occur. However, to our knowledge, exercise-induced ventricular tachycardia as a

  10. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  11. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  12. Association between lectin complement pathway initiators, C-reactive protein and left ventricular remodeling in myocardial infarction-a magnetic resonance study

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole

    2013-01-01

    Lectin complement pathway (LP) activation is an important mechanism in myocardial ischemia reperfusion injury (IRI). LP is activated via the recognition molecules mannose-binding lectin (MBL), ficolins-2 and-3 and is regulated by MBL/Ficolin-associated Protein-1 (MAP-1). Also, C-reactive protein...... (CRP) and ficolin-2 interact in vitro, but the role of the ficolins in IRI is unknown.Methods and results In 55 patients with ST segment elevation myocardial infarction, we investigated the association of LP components and CRP in plasma samples with left ventricular (LV) end systolic and diastolic......-activation in IRI and LV remodeling....

  13. Relationship between myocardial flow reserve by oxygen-15 water positron emission tomography in the subacute phase of myocardial infarction and left ventricular remodeling in the chronic phase

    International Nuclear Information System (INIS)

    Ohara, Minako; Yukiiri, Kazushi; Masugata, Hisashi

    2008-01-01

    The purposes of this study were to examine the effects of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) on myocardial flow reserve in patients with acute myocardial infarction (AMI) in the subacute phase using oxygen-15 positron emission tomography (PET) and to elucidate the relationship between the myocardial flow reserve and remodeling in the chronic phase. Sixty patients who had been treated with coronary angioplasty within 12 h after the onset of AMI were enrolled. Patients were divided into an enalapril (ACEI) group and a candesartan (ARB) group. The myocardial flow reserve was measured by oxygen-15 water PET in the subacute phase from the 20th to the 30th day after the onset of AMI. Left ventriculography was performed to measure the left ventricular ejection fraction in the chronic phase about 6 months after the onset. Ten patients (33%) in the enalapril group and 4 patients (13%) in the candesartan group stopped taking their respective medications within a few days of starting, because of side effects such as cough or hypotension. Thus, the prevalence of medication intolerance was higher in the enalapril group. The myocardial flow reserve in the subacute phase and the left ventricular ejection fraction in the chronic phase were lower in the enalapril group (2.08±0.30 and 42±6%) than in the candesartan group (2.25±0.20 and 49±5%) (p<0.05). The myocardial flow reserve significantly correlated with the left ventricular ejection fraction in all patients (r=0.45, p<0.01). The myocardial flow reserve assessed by PET in the subacute phase after AMI was found to be related to left ventricular remodeling in the chronic phase. (author)

  14. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    Science.gov (United States)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  15. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  16. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

    Science.gov (United States)

    Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2009-09-01

    The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

  17. Modification of a Volume-Overload Heart Failure Model to Track Myocardial Remodeling and Device-Related Reverse Remodeling

    Science.gov (United States)

    Tuzun, Egemen; Bick, Roger; Kadipasaoglu, Cihan; Conger, Jeffrey L.; Poindexter, Brian J.; Gregoric, Igor D.; Frazier, O. H.; Towbin, Jeffrey A.; Radovancevic, Branislav

    2011-01-01

    Purpose. To provide an ovine model of ventricular remodeling and reverse remodeling by creating congestive heart failure (CHF) and then treating it by implanting a left ventricular assist device (LVAD). Methods. We induced volume-overload heart failure in 2 sheep; 20 weeks later, we implanted an LVAD and assessed recovery 11 weeks thereafter. We examined changes in histologic and hemodynamic data and levels of cellular markers of CHF. Results. After CHF induction, we found increases in LV end-diastolic pressure, LV systolic and diastolic dimensions, wall thickness, left atrial diameter, and atrial natriuretic protein (ANP) and endothelin-1 (ET-1) levels; β-adrenergic receptor (BAR) and dystrophin expression decreased markedly. Biopsies confirmed LV remodeling. After LVAD support, LV systolic and diastolic dimensions, wall thickness, and mass, and ANP and ET-1 levels decreased. Histopathologic and hemodynamic markers improved, and BAR and dystrophin expression normalized. Conclusions. We describe a successful sheep model for ventricular and reverse remodeling. PMID:22347659

  18. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  19. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Aboli A Rane

    Full Text Available Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV remodeling post-myocardial infarction (MI. However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling.Poly(ethylene glycol (PEG gels of storage modulus G' = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI at 7±1 day(s post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01. However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01. The cellular response to injection was also similar in both groups.The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling.

  20. Benefits of lifelong exercise training on left ventricular function after myocardial infarction

    NARCIS (Netherlands)

    Maessen, M.F.H.; Eijsvogels, T.M.H.; Stevens, G.G.; Dijk, A.P.J. van; Hopman, M.T.E.

    2017-01-01

    Background Endurance exercise training induces cardio-protective effects, but athletes are not exempted from a myocardial infarction. Evidence from animal studies suggests that exercise training attenuates pathological left ventricular remodelling following myocardial infarction. We tested the

  1. Significance of change in serum bilirubin in predicting left ventricular reverse remodeling and outcomes in heart failure patients with cardiac resynchronization therapy.

    Science.gov (United States)

    Hosoda, Junya; Ishikawa, Toshiyuki; Matsumoto, Katsumi; Iguchi, Kohei; Matsushita, Hirooki; Ogino, Yutaka; Taguchi, Yuka; Sugano, Teruyasu; Ishigami, Tomoaki; Kimura, Kazuo; Tamura, Kouichi

    2017-11-01

    Research on the correlation of serum bilirubin level with cardiac function as well as outcomes in heart failure patients with cardiac resynchronization therapy (CRT) has not yet been reported. The aim of this study was to analyze the relationship between change in serum bilirubin level and left ventricular reverse remodeling, and also to clarify the impact of bilirubin change on clinical outcomes in CRT patients. We evaluated 105 consecutive patients who underwent CRT. Patients who had no serum total-bilirubin data at both baseline and 3-9 months' follow-up or had died less than 3 months after CRT implantation were excluded. Accordingly, a total of 69 patients were included in the present analysis. The patients were divided into two groups: decreased bilirubin group (serum total-bilirubin level at follow-up≤that at baseline; n=48) and increased bilirubin group (serum total-bilirubin level at follow-up>that at baseline; n=21). Mean follow-up period was 39.3 months. In the decreased bilirubin group, mean left ventricular end-systolic diameter decreased from 54.5mm to 50.2mm (p=0.001) and mean left ventricular ejection fraction increased significantly from 29.8% to 37.0% (p=0.001). In the increased bilirubin group, there was no significant change in echocardiographic parameters from baseline to follow-up. In Kaplan-Meyer analysis, cardiac mortality combined with heart failure hospitalization in the increased bilirubin group was significantly higher than that in the decreased bilirubin group (log-rank p=0.018). Multivariate Cox regression analysis revealed that increased bilirubin was an independent predictor of cardiac mortality combined with heart failure hospitalization (OR=2.66, p=0.023). The change in serum bilirubin is useful for assessment of left ventricular reverse remodeling and prediction of outcomes in heart failure patients with CRT. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  2. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  3. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  4. Differences in left ventricular remodelling in patients with aortic stenosis treated with transcatheter aortic valve replacement with corevalve prostheses compared to surgery with porcine or bovine biological prostheses

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh; Hassager, Christian; Thyregod, Hans Gustav Hørsted

    2018-01-01

    Aims: Patients with severe aortic stenosis (AS) can be considered for treatment with either transcatheter (TAVR) or surgical aortic valve replacement (SAVR). The purpose of this study was to compare left ventricular (LV) remodeling in patients with AS after treatment with TAVR or SAVR. Methods...... were randomized to TAVR and 112 to SAVR. From baseline to 12 months post-procedure, aortic valve area (AVA) increased in both groups, but with a larger increase in the TAVR group (0.65 ± 0.04 cm2 vs. 1.02 ± 0.05 cm2 for SAVR and TAVR group, P regression was more.......0001). Paravalvular leakage (PVL) and pacemaker implantations were more common in patients treated with TAVR, which was associated with an increase in EDV (P regression at 1 year compared with patients undergoing TAVR, which may be due to increasing...

  5. Usefulness of {sup 201}Tl myocardial perfusion SPECT in prediction of left ventricular remodeling following an acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Nam; Park, C. H.; Hwang, Kyung Hoon [Ajou Univ. College of Medicine, Suwon (Korea, Republic of)

    2000-02-01

    We investigated the role of myocardial perfusion SPECT in prediction of ventricular dilatation and the role of revascularization including thrombolytic therapy and PTCA in prevention of ventricular dilatation after an acute myocardial linfarction (AMI). We performed dipyridamole stress, 4 hour redistribution, and 24 hour reinjection Tl-201 SPECT in 6 patients with AMI two to nine days after attack. Perfusion and wall motion abnormalities were quantified by perfusion index(PI) and wall motion index (WMI). Left ventricular ejection fraction (LVEF), WMI and ventricular volume were measured within 1 week of AMI and after average of 6 months. According to serial changes of left ventricular end-diastolic volume (LVEDV), patients were divided into two groups. We compared WMI, PI and LVEF between the two groups. Relationships among degree of volume, stress-rest PI, WMI, CKMB,Q wave, LVEF and revascularization were analysed using multivariate analysis. Only initial rest perfusion index was significantly different between the two groups (p<0.05). While initial LVEF, stress PI, CKMB, trial of revascularization procedure, presence of Q wave and WMI were not significantly different between the two groups. Eight of 16 patients (50%) showed LV dilatation on follow-up echocardiography. Three of 3 patients (100%) who did not undergo revascualrization procedure documented LV dilatation. And only 5 (38%) of the remaining 13 patients who underwent revascularization revealed LV dilatation. There was no difference in infarct location between the two groups. By multivariate linear regression analysis in patients only undergoing revascularization, rest perfusion index was the only significant factor. Myocardial perfusion SPECT performed prior to revascularization was useful in prediction of LV dilatation after an AMI. Rest perfusion index on myocardial perfusion plays as a significant predictor of left ventricular dilatation after AMI. And revascularization appears to be a valuable

  6. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  7. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    Science.gov (United States)

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  8. Flecainide Therapy Reduces Exercise-Induced Ventricular Arrhythmias in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    NARCIS (Netherlands)

    van der Werf, Christian; Kannankeril, Prince J.; Sacher, Frederic; Krahn, Andrew D.; Viskin, Sami; Leenhardt, Antoine; Shimizu, Wataru; Sumitomo, Naokata; Fish, Frank A.; Bhuiyan, Zahurul A.; Willems, Albert R.; van der Veen, Maurits J.; Watanabe, Hiroshi; Laborderie, Julien; Haïssaguerre, Michel; Knollmann, Björn C.; Wilde, Arthur A. M.

    2011-01-01

    Objectives This study evaluated the efficacy and safety of flecainide in addition to conventional drug therapy in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). Background CPVT is an inherited arrhythmia syndrome caused by gene mutations that destabilize cardiac

  9. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  10. Obesity and exercise-induced ectopic ventricular arrhythmias in apparently healthy middle aged adults.

    Science.gov (United States)

    Sabbag, Avi; Sidi, Yechezkel; Kivity, Shaye; Beinart, Roy; Glikson, Michael; Segev, Shlomo; Goldenberg, Ilan; Maor, Elad

    2016-03-01

    Obesity and overweight are strongly associated with cardiovascular morbidity and mortality. However, there are limited data on the association between excess weight and the risk of ectopic ventricular activity. We investigated the association between body mass index (BMI) and the risk for ectopic ventricular activity (defined as multiple ventricular premature beats (≥3), ventricular bigeminy, nonsustained ventricular tachycardia or sustained ventricular tachycardia) during exercise stress testing among 22,516 apparently healthy men and women who attended periodic health screening examinations between the years 2000 and 2014. All subjects had completed maximal exercise stress testing annually according to the Bruce protocol. Subjects were divided at baseline into three groups: normal weight (BMI ≥ 18.5 kg/m(2) andexercise-induced ectopic ventricular activity arrhythmias was highest among obese subjects, intermediate among overweight subjects and lowest among subjects with normal weight (3.4%, 2.7% and 2.2% respectively; p exercise compared with subjects with normal weight (p = 0.005), and that each 1 kg/m(2) increase in BMI was associated with a significant 4% (p = 0.002) increased adjusted risk for exercise-induced ventricular arrhythmias. Obesity is independently associated with increased likelihood of ectopic ventricular arrhythmia during exercise. © The European Society of Cardiology 2015.

  11. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling

    International Nuclear Information System (INIS)

    Wang, Shuli; Li, Jinghui; Chen, Xiuyu; Yin, Gang; Lan, Tian; Dai, Linlin; Zhang, Yan; Yin, Xiaorong; Zhao, Shihua; Hu, Hongjie; Lu, Minjie; Sirajuddin, Arlene; Arai, Andrew E.; An, Jing; Song, Lei; Dang, Aimin; Kellman, Peter

    2017-01-01

    To determine whether extracellular volume fraction (ECV) quantification by cardiac magnetic resonance (CMR) can demonstrate left ventricle (LV) abnormalities and relationship between ECV and LV remodeling in hypertension (HTN) patients ECV quantification was prospectively performed in 134 consecutive HTN patients and 97 healthy subjects. Individual and regional ECV were compared to the regions on late gadolinium enhancement (LGE) images. Statistical analysis of the relationship between LV global functional parameters and ECV was carried out using Pearson's correlation, Student's t test and multiple regressions. In the HTN group, 70.1% (94/134) were LGE negative and 29.9% (40/134) LGE positive. The mean ECV after adjusting for age, sex, BMI, diabetes, smoking and dyslipidaemia in healthy controls and LGE-negative patients were 26.9 ± 2.67% and 28.5 ± 2.9% (p < 0.001), respectively. The differences in ECV reached statistical significance among the regions of LGE, LGE-Peri, LGE remote and the normal area between the control and LGE-positive subgroup (all p < 0.05). Global ECV significantly correlated with LVEF (r = -0.466, p < 0.001) and LV hypertrophy (r = 0.667, p < 0.001). ECV can identify LV abnormalities at an early stage in HTN patients without LGE. These abnormalities may reflect an increase in diffuse myocardial fibrosis and are associated with LV remodeling. (orig.)

  12. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuli; Li, Jinghui; Chen, Xiuyu; Yin, Gang; Lan, Tian; Dai, Linlin; Zhang, Yan; Yin, Xiaorong; Zhao, Shihua [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Magnetic Resonance Imaging, Cardiovascular Imaging and Intervention Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing (China); Hu, Hongjie [Zhejiang University, Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Hangzhou (China); Lu, Minjie [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Magnetic Resonance Imaging, Cardiovascular Imaging and Intervention Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing (China); Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD (United States); Sirajuddin, Arlene; Arai, Andrew E. [Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD (United States); An, Jing [Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen, Guangdong (China); Song, Lei; Dang, Aimin [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing (China); Kellman, Peter [National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), US Department of Health and Human Services, Cardiovascular and Pulmonary Branch, Bethesda, MD (United States)

    2017-11-15

    To determine whether extracellular volume fraction (ECV) quantification by cardiac magnetic resonance (CMR) can demonstrate left ventricle (LV) abnormalities and relationship between ECV and LV remodeling in hypertension (HTN) patients ECV quantification was prospectively performed in 134 consecutive HTN patients and 97 healthy subjects. Individual and regional ECV were compared to the regions on late gadolinium enhancement (LGE) images. Statistical analysis of the relationship between LV global functional parameters and ECV was carried out using Pearson's correlation, Student's t test and multiple regressions. In the HTN group, 70.1% (94/134) were LGE negative and 29.9% (40/134) LGE positive. The mean ECV after adjusting for age, sex, BMI, diabetes, smoking and dyslipidaemia in healthy controls and LGE-negative patients were 26.9 ± 2.67% and 28.5 ± 2.9% (p < 0.001), respectively. The differences in ECV reached statistical significance among the regions of LGE, LGE-Peri, LGE remote and the normal area between the control and LGE-positive subgroup (all p < 0.05). Global ECV significantly correlated with LVEF (r = -0.466, p < 0.001) and LV hypertrophy (r = 0.667, p < 0.001). ECV can identify LV abnormalities at an early stage in HTN patients without LGE. These abnormalities may reflect an increase in diffuse myocardial fibrosis and are associated with LV remodeling. (orig.)

  13. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis

    International Nuclear Information System (INIS)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence; Catheline, Daniel; Sergent, Odile; Rioux, Vincent; Legrand, Philippe; Holme, Jorn A.; Dimanche-Boitrel, Marie-Therese; Lagadic-Gossmann, Dominique

    2010-01-01

    Benzo[α]pyrene (B[α]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[α]P-induced apoptotic process. In this study, we report that B[α]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[α]P exposure. B[α]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[α]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[α]P-related H 2 O 2 formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[α]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[α]P altered the composition of plasma membrane microstructures through AhR and H 2 O 2 dependent-regulation of lipid biosynthesis. In F258 cells, the B[α]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.

  14. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  16. INFLUENCE OF COMBINED ANTIHYPERTENSIVE AND ANTIDEPRESSANT THERAPY ON LEFT VENTRICULAR REMODELING IN PATIENTS WITH ARTERIAL HYPERTENSION, ANXIETY AND DEPRESSION

    Directory of Open Access Journals (Sweden)

    Y. A. Vasyuk

    2008-01-01

    Full Text Available Aim. To assess influence of combined antihypertensive (captopril or metoprolol and antidepressant (thianeptin or sertralin therapy on clinical status, blood pressure (BP and myocardial function in patients with arterial hypertension (HT and affective disorders (AD.Material and methods. 106 patients with HT were involved in the study. 64 patients (60,4% had concomitant AD. All patients were divided into 3 groups. 46 patients with HT and AD were included in the 1-st group. They received metoprolol or captopril in combination with tianeptine or sertaline. The 2-nd group included 18 patients with HT and AD who received only antihypertensive therapy. The 3-rd group consisted of 42 patients with HT without AD. They also received only antihypertensive therapy.Results. After 6 month therapy patients of the 1-st and the 3-rd groups had more significant clinical improvement and BP reduction (according to 24- hour BP monitoring as well as more farourable structural and functional changes of left ventricular in comparison with patients of the 2-nd group.Conclusion. In patients with HT and concomitant AD combined antihypertensive and antidepressant therapy result in favourable clinical changes, effectively reduce BP, improve left ventricular structure and function.

  17. Remodeling of the Mandibular Bone Induced by Overdentures Supported by Different Numbers of Implants.

    Science.gov (United States)

    Li, Kai; Xin, Haitao; Zhao, Yanfang; Zhang, Zhiyuan; Wu, Yulu

    2016-05-01

    The objective of this study was to investigate the process of mandibular bone remodeling induced by implant-supported overdentures. computed tomography (CT) images were collected from edentulous patients to reconstruct the geometry of the mandibular bone and overdentures supported by implants. Based on the theory of strain energy density (SED), bone remodeling models were established using the user material subroutine (UMAT) in abaqus. The stress distribution in the mandible and bone density change was investigated to determine the effect of implant number on the remodeling of the mandibular bone. The results indicated that the areas where high Mises stress values were observed were mainly situated around the implants. The stress was concentrated in the distal neck region of the distal-most implants. With an increased number of implants, the biting force applied on the dentures was almost all taken up by implants. The stress and bone density in peri-implant bone increased. When the stress reached the threshold of remodeling, the bone density began to decrease. In the posterior mandible area, the stress was well distributed but increased with decreased implant numbers. Changes in bone density were not observed in this area. The computational results were consistent with the clinical data. The results demonstrate that the risk of bone resorption around the distal-most implants increases with increased numbers of implants and that the occlusal force applied to overdentures should be adjusted to be distributed more in the distal areas of the mandible.

  18. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    Science.gov (United States)

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  19. Ventricular fibrillation induced by coagulating mode bipolar electrocautery during pacemaker implantation in Myotonic Dystrophy type 1 patient.

    Science.gov (United States)

    Russo, Vincenzo; Rago, Anna; DI Meo, Federica; Cioppa, Nadia Della; Papa, Andrea Antonio; Russo, Maria Giovanna; Nigro, Gerardo

    2014-12-01

    The occurrence of ventricular fibrillation, induced by bipolar electrocautery during elective dual chamber pacemaker implantation, is reported in a patient affected by Myotonic Distrophy type 1 with normal left ventricular ejection fraction.

  20. Relationship between myocardial extracellular space expansion estimated with post-contrast T1 mapping MRI and left ventricular remodeling and neurohormonal activation in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Son, Jung Woo; Chung, Hye Moon [Cardiology Division, Dept. of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    Post-contrast T1 values are closely related to the degree of myocardial extracellular space expansion. We determined the relationship between post-contrast T1 values and left ventricular (LV) diastolic function, LV remodeling, and neurohormonal activation in patients with dilated cardiomyopathy (DCM). Fifty-nine patients with DCM (mean age, 55 ± 15 years; 41 males and 18 females) who underwent both 1.5T magnetic resonance imaging and echocardiography were enrolled. The post-contrast 10-minute T1 value was generated from inversion time scout images obtained using the Look-Locker inversion recovery sequence and a curve-fitting algorithm. The T1 sample volume was obtained from three interventricular septal points, and the mean T1 value was used for analysis. The N-Terminal pro-B-type natriuretic peptide (NT-proBNP) level was measured in 40 patients. The mean LV ejection fraction was 24 ± 9% and the post-T1 value was 254.5 ± 46.4 ms. The post-contrast T1 value was significantly correlated with systolic longitudinal septal velocity (s'), peak late diastolic velocity of the mitral annulus (a'), the diastolic elastance index (Ed, [E/e']/stroke volume), LV mass/volume ratio, LV end-diastolic wall stress, and LV end-systolic wall stress. In a multivariate analysis without NT-proBNP, T1 values were independently correlated with Ed (β = -0.351, p = 0.016) and the LV mass/volume ratio (β = 0.495, p = 0.001). When NT-proBNP was used in the analysis, NT-proBNP was independently correlated with the T1 values (β = -0.339, p = 0.017). Post-contrast T1 is closely related to LV remodeling, diastolic function, and neurohormonal activation in patients with DCM.

  1. Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns: the Bogalusa Heart Study.

    Science.gov (United States)

    Lai, Chin-Chih; Sun, Dianjianyi; Cen, Ruiqi; Wang, Jian; Li, Shengxu; Fernandez-Alonso, Camilo; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S

    2014-10-14

    Cardiovascular risk factors are associated with left ventricular hypertrophy (LVH), but little is known regarding related impact of longitudinal measures of childhood adiposity and LV hemodynamic variables. The aim of this study was to examine the impact of cumulative long-term burden and trends of excessive adiposity and elevated blood pressure (BP) during childhood on adulthood LVH and LV geometric remodeling patterns. This longitudinal study consisted of 1,061 adults, age 24 to 46 years, who had been examined 4 or more times for body mass index (BMI) and BP starting in childhood, with a mean follow-up of 28.0 years. The area under the curve (AUC) was calculated as a measure of long-term burden (total AUC) and trends (incremental AUC) of BMI and BP from childhood to adulthood. Four LV geometric types were defined-normal, concentric remodeling (CR), eccentric hypertrophy (EH), and concentric hypertrophy (CH)-all on the basis of LV mass indexed for body height (m(2.7)) and relative wall thickness. Higher values of BMI and systolic and diastolic BP in childhood and adulthood, as well as total AUC and incremental AUC, were all significantly associated with higher LV mass index and LVH, adjusted for race, sex, and age. In addition, higher values of BMI and BP in childhood and adulthood, total AUC, and incremental AUC were significantly associated with EH and CH but not with CR. Importantly, all of these measures of BMI had a consistently and significantly greater influence on EH than did measures of BP. These findings indicate that the adverse influence of excessive adiposity and elevated BP levels on LVH begins in childhood. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling.

    Science.gov (United States)

    Emmerson, Amber; Trevelin, Silvia Cellone; Mongue-Din, Heloise; Becker, Pablo D; Ortiz, Carla; Smyth, Lesley A; Peng, Qi; Elgueta, Raul; Sawyer, Greta; Ivetic, Aleksandar; Lechler, Robert I; Lombardi, Giovanna; Shah, Ajay M

    2018-04-24

    The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II (AngII)-induced pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline whereas AngII-induced T-effector cell (Teffs) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of AngII-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 Ab-depletion of Tregs. Mechanistically, Nox2-/y Tregs showed higher in vitro suppression of Teffs proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on AngII-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.

  3. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  4. Left ventricular mechanics in humans with high aerobic fitness: adaptation independent of structural remodelling, arterial haemodynamics and heart rate

    Science.gov (United States)

    Stöhr, Eric J; McDonnell, Barry; Thompson, Jane; Stone, Keeron; Bull, Tom; Houston, Rory; Cockcroft, John; Shave, Rob

    2012-01-01

    Individuals with high aerobic fitness have lower systolic left ventricular strain, rotation and twist (‘left ventricular (LV) mechanics’) at rest, suggesting a beneficial reduction in LV myofibre stress and more efficient systolic function. However, the mechanisms responsible for this functional adaptation are not known and the influence of aerobic fitness on LV mechanics during dynamic exercise has never been studied. We assessed LV mechanics, LV wall thickness and dimensions, central augmentation index (AIx), aortic pulse wave velocity (aPWV), blood pressure and heart rate in 28 males (age: 21 ± 2 years SD) with a consistent physical activity level (no change >6 months). Individuals were examined at rest and during exercise (40% peak exercise capacity) and separated post hoc into a moderate and high aerobic fitness group (: 49 ± 5 and 63 ± 7 ml kg−1 min−1, respectively, P 0.05). However, for the same AIx, the high group had significantly lower LV apical rotation (P = 0.002) and LV twist (P = 0.003) while basal rotation and strain indices did not differ between groups (P > 0.05). We conclude that young males with high aerobic fitness have lower LV apical rotation at rest and during submaximal exercise that can occur without changes in gross LV structure, arterial haemodynamics or heart rate. The findings suggest a previously unknown type of physiological adaptation of the left ventricle that may have important implications for exercise training in older individuals and patient populations in which exercise training has previously failed to show clear benefits for LV function. PMID:22431336

  5. Adenosine induced ventricular arrhythmias in the emergency room

    NARCIS (Netherlands)

    Tan, H. L.; Spekhorst, H. H.; Peters, R. J.; Wilde, A. A.

    2001-01-01

    While adenosine effectively terminates most supraventricular tachycardias (SVT), rare case reports have demonstrated its proarrhythmic potential, including induction of ventricular tachycardia (VT). The aim of this study was to define the proarrhythmic effects of adenosine in a large, unselected

  6. Optimal time for predicting left ventricular remodeling after successful primary coronary angioplasty in acute myocardial infarction using serial myocardial contrast echocardiography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sakuma, Tadamichi; Okada, Takenori; Hayashi, Yasuhiko; Otsuka, Masaya; Hirai, Yuukou

    2002-01-01

    The objective of this study was to determine the optimal time to assess microvascular integrity within the risk area for myocardial infarction in order to predict unfavorable left ventricular remodeling (LVR) after successful primary coronary angioplasty. Fifty-three patients who underwent myocardial contrast echocardiography (MCE) just before recanalization, shortly after and 1 day (Day 2) and 3 weeks after recanalization were studied. The no- and low-reflow ratio (LR ratio) was analyzed at each stage. The wall-tinning ratio within the risk area was determined using magnetic resonance imaging performed 3-4 weeks after the recanalization. Thirteen of the 53 patients showed LVR 3-8 months after recanalization. The optimal time to predict LVR was found to be Day 2 based on the receiver operating characteristic curves. The LR ratio on Day 2 (χ 2 =7.39, p=0.007) and the collateral circulation before recanalization (χ 2 =4.57, p=0.03) were chosen as independent variables for predicting LVR. Patients with greater than 0.43 in the LR ratio on Day 2 showed a lower wall-thinning ratio (58±19% vs 72±20%, p=0.05). This study shows that the optimal time to estimate the microvascular integrity for predicting LVR is 1 day after recanalization, which is neither shortly after recanalization nor during the convalescent stage. (author)

  7. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  8. Basal cardiomyopathy develops in rabbits with ventricular tachyarrhythmias induced by a single injection of adrenaline.

    Science.gov (United States)

    Ashida, Terunao; Takato, Tetsuya; Matsuzaki, Gen; Seko, Yoshinori; Fujii, Jun; Kawai, Sachio

    2014-01-01

    We have recently demonstrated that basal cardiomyopathy develops in rabbits with ventricular tachyarrhythmias that have been induced by electrical stimulation of the cervical vagus. This study investigated whether similar basal cardiomyopathy would develop in rabbits with ventricular tachyarrhythmias induced by a single injection of adrenaline. Adrenaline was intravenously infused for 10-360 seconds in anesthetized rabbits. Colloidal carbon was injected after adrenaline infusion. Wall movement velocity of the left ventricular base was assessed by tissue Doppler echocardiography. Animals were killed either 1 week or 3-4 weeks later. Pathological lesions were identified by deposits of carbon particles. Animals were divided into two groups according to the infused dose of adrenaline. The small-dose group (group S, n = 15) received 1-10 μg and the large-dose group (group L, n = 23) received 15-60 μg of adrenaline. Adrenaline infusion induced premature ventricular contractions followed by monomorphic ventricular tachycardias in 22 of 23 animals in group L, but in only 1 of 15 animals in group S. Wall movement velocity of the left ventricular base decreased just after adrenaline infusion, remained low after 1 week, and recovered to near-baseline levels after 3-4 weeks in group L. Unique cardiac lesions identified by deposits of carbon particles were frequently observed on the left ventricular basal portion, almost always associated with the mitral valve and papillary muscles, but were never observed in the apical area. Lesions involving all areas of the left ventricular basal portion were observed in 22 of 23 animals in group L, but in only 2 of 15 animals in group S. Basal cardiomyopathy developed in rabbits with ventricular tachycardias induced by a single injection of adrenaline.

  9. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    Science.gov (United States)

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  10. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia.

    Science.gov (United States)

    Zhang, Lili; Lu, Xiangru; Gui, Le; Wu, Yan; Sims, Stephen M; Wang, Guoping; Feng, Qingping

    2016-08-01

    Rac1 is a small GTPase and plays key roles in multiple cellular processes including the production of reactive oxygen species (ROS). However, whether Rac1 activation during myocardial ischaemia and reperfusion (I/R) contributes to arrhythmogenesis is not fully understood. We aimed to study the effects of Rac1 inhibition on store overload-induced Ca(2+) release (SOICR) and ventricular arrhythmia during myocardial I/R. Adult Rac1(f/f) and cardiac-specific Rac1 knockdown (Rac1(ckd) ) mice were subjected to myocardial I/R and their electrocardiograms (ECGs) were monitored for ventricular arrhythmia. Myocardial Rac1 activity was increased and ventricular arrhythmia was induced during I/R in Rac1(f/f) mice. Remarkably, I/R-induced ventricular arrhythmia was significantly decreased in Rac1(ckd) compared to Rac1(f/f) mice. Furthermore, treatment with Rac1 inhibitor NSC23766 decreased I/R-induced ventricular arrhythmia. Ca(2+) imaging analysis showed that in response to a 6 mM external Ca(2+) concentration challenge, SOICR was induced with characteristic spontaneous intracellular Ca(2+) waves in Rac1(f/f) cardiomyocytes. Notably, SOICR was diminished by pharmacological and genetic inhibition of Rac1 in adult cardiomyocytes. Moreover, I/R-induced ROS production and ryanodine receptor 2 (RyR2) oxidation were significantly inhibited in the myocardium of Rac1(ckd) mice. We conclude that Rac1 activation induces ventricular arrhythmia during myocardial I/R. Inhibition of Rac1 suppresses SOICR and protects against ventricular arrhythmia. Blockade of Rac1 activation may represent a new paradigm for the treatment of cardiac arrhythmia in ischaemic heart disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  12. Exercise-Induced Ventricular Fibrillation: Seven Years Follow-Up

    Directory of Open Access Journals (Sweden)

    Gökmen Gemici

    2011-11-01

    Full Text Available We present a 7-year follow-up of a 55-year-old male who experienced ventricular fibrillation during the recovery period of exercise testing and refused implantation of an ICD. Normal left ventricular systolic function was found on echocardiographic examination, and coronary angiography revealed only a side branch disease with a vessel diameter of less than 2 millimeters. The patient was discharged on metoprolol and ASA in addition to his previous treatment with lisinopril and simvastatin. Outpatient cardiac evaluation by repeated 24-hour ECG monitorizations (Holter revealed normal findings. On follow up visits every six months for the past seven years, the patient was found to be asymptomatic.

  13. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    Science.gov (United States)

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  14. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  15. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  16. Quinidine-induced ventricular flutter and fibrillation without digitalis therapy

    NARCIS (Netherlands)

    Koster, R. W.; Wellens, H. J.

    1976-01-01

    Three cases are described with documented ventricular flutter and fibrillation during quinidine medication without concomitant digitalis therapy. In all three patients the arrhythmia developed while they were receiving moderate doses of quinidine. Although no changes in QRS width were observed after

  17. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling

    Science.gov (United States)

    ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2015-01-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of β-estradiol to infant Sema4D-deficient (Sema4D−/−) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D−/− mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D−/− mice compared with WT mice. The addition of recombinant Sema4D to Sema4D−/− vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of

  18. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    Science.gov (United States)

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  19. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats.

    Science.gov (United States)

    Si, Lislivia Yiang-Nee; Kamisah, Yusof; Ramalingam, Anand; Lim, Yi Cheng; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-07-01

    Vascular endothelial dysfunction (VED) plays an important role in the initiation of cardiovascular diseases. Roselle, enriched with antioxidants, demonstrates high potential in alleviating hypertension. This study was undertaken to investigate the effects of roselle supplementation of VED and remodelling in a rodent model with prolonged nicotine administration. Male Sprague-Dawley rats (n = 6 per group) were administered with 0.6 mg/kg nicotine for 28 days to induce VED. The rats were given either aqueous roselle (100 mg/kg) or normal saline orally 30 min prior to nicotine injection daily. One additional group of rats served as control. Thoracic aorta was isolated from rats to measure vascular reactivity, vascular remodelling and oxidative stress. Roselle significantly lowered aortic sensitivity to phenylephrine-induced vasoconstriction (Endo-(+) C max = 234.5 ± 3.9%, Endo-(-) C max = 247.6 ± 5.2%) compared with untreated nicotine group (Endo-(+) C max = 264.5 ± 6.9%, Endo-(-) C max = 276.5 ± 6.8%). Roselle also improved aortic response to endothelium-dependent vasodilator, acetylcholine (Endo-(+) R max = 73.2 ± 2.1%, Endo-(-) R max = 26.2 ± 0.8%) compared to nicotine group (Endo-(+) R max = 57.8 ± 1.7%, Endo-(-) R max = 20.9 ± 0.8%). In addition, roselle prevented an increase in intimal media thickness and elastic lamellae proliferation to preserve vascular architecture. Moreover, we also observed a significantly lowered degree of oxidative stress in parallel with increased antioxidant enzymes in aortic tissues of the roselle-treated group. This study demonstrated that roselle prevents VED and remodelling, and as such it has high nutraceutical value as supplement to prevent cardiovascular diseases.

  20. Effects of hydroxyl radical induced-Injury in atrial versus ventricular myocardium of dog and rabbit

    Directory of Open Access Journals (Sweden)

    Nitisha Hiranandani

    2010-09-01

    Full Text Available Aim: Despite the widespread use of ventricular tissue in the investigation involving hydroxyl-radical (OH* injury, one of the most potent mediators in ischemia-reperfusion injury, little is known about the impact on atrial myocardium. In this study we thus compared the OH*-induced injury response between atrial and right ventricular muscles from both rabbits and dogs under identical experimental conditions. Methods: Small, contracting ventricular and atrial rabbit and dog trabeculae were directly exposed to OH*, and contractile properties were examined and quantified. Results: A brief OH* exposure led to transient rigor like contracture with marked elevation of diastolic tension and depression of developed force. Although the injury response showed similarities between atrial and ventricular myocardium, there were significant differences as well. In rabbit atrial muscles, the development of the contracture and its peak was much faster as compared to ventricular muscles. Also, at the peak of contracture, both rabbit and dog atrial muscles show a lesser degree of contractile dysfunction. Conclusion: These results indicate that both atrial and ventricular muscles develop a rigor like contracture after acute OH*-induced injury, and atrial muscles showed a lesser degree of contractile dysfunction. Comparison of dog versus rabbit tissue shows that the response was similar in magnitude, but slower to develop in dog tissue.

  1. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  2. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  3. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  4. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  5. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension.

    Science.gov (United States)

    Liu, Liu; Kashyap, Shreya; Murphy, Brennah; Hutson, Dillion D; Budish, Rebecca A; Trimmer, Emma H; Zimmerman, Margaret A; Trask, Aaron J; Miller, Kristin S; Chappell, Mark C; Lindsey, Sarah H

    2016-04-15

    The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;PTreatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage. Copyright © 2016 the American Physiological Society.

  6. Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling.

    Science.gov (United States)

    Elvan, A; Wylie, K; Zipes, D P

    1996-12-01

    We assessed the effects of pacing-induced chronic atrial fibrillation (AF) on sinus node function, intra-atrial conduction, and atrial refractoriness. In 15 mongrel dogs (20 to 30 kg), AV nodal block was produced by radiofrequency catheter ablation, and a ventricular-inhibited (VVI) pacemaker (Minix 8330, Medtronic) was implanted and programmed to pace at 80 pulses per minute. In 11 of these dogs, right atrial endocardial pacing leads were connected to a pulse generator (Itrel 7432, Medtronic) and set at a rate of 20 Hz to induce AF. Corrected sinus node recovery time, P-wave duration, 24-hour Holter ECG to assess AF duration, maximal heart rate in response to isoproterenol (10 micrograms/min), intrinsic heart rate after administration of atropine (0.04 mg/kg) and propranolol (0.1 mg/kg), and atrial effective refractory periods (ERPs) were obtained at baseline (EPS-1) and after 2 to 6 weeks (EPS-2) of VVI pacing alone (n = 4) or VVI pacing and rapid atrial pacing (n = 11). At EPS-2, corrected sinus node recovery time and P-wave duration were prolonged, maximal heart rate and intrinsic heart rate were decreased, atrial ERPs were shortened, and the duration of AF was increased significantly compared with EPS-1. These changes partially reversed toward baseline 1 week after conversion to sinus rhythm. Sinus node function and AF inducibility observed in the control dogs that underwent ventricular pacing alone (n = 4) did not change. Pacing-induced chronic AF induces sinus node dysfunction, prolongs intra-atrial conduction time, shortens atrial refractoriness, and perpetuates AF, changes that reverse gradually after termination of AF.

  7. Induced Hyperproteinemia and Its Effects on the Remodeling of Fat Bodies in Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Xue-Dong Chen

    2018-03-01

    Full Text Available Hyperproteinemia, which is characterized by an abnormally elevated plasma protein concentration (PPC, is a high-mortality, metabolic complication associated with severe liver and kidney disease. It is difficult to clinically distinguish the difference between the impacts of primary diseases and hyperproteinemia on tissues and organs, and there are no available animal models of hyperproteinemia. Here, we constructed an animal model of hyperproteinemia with a controllable PPC and no primary disease effects in the silkworm Bombyx mori that has attracted interest owing to its potential use in the pathological analysis of model animals. Silkworm have an open circulatory system in which each organ is directly immersed in hemolymph. The fat body (FB of a silkworm, as a major organ for nutrient storage and energy metabolism, can effectively reflect hyperproteinemia-induced metabolic abnormalities in damaged visceral tissues. A pathogenesis study showed that hyperproteinemia attenuated cell autophagy and apoptosis by attenuating an endocrine hormone, thereby preventing FB remodeling during metamorphosis. Meanwhile, hyperproteinemia increased oxidative stress in the FB and resulted in a dysfunction of amino acid conversion. Supplementation with exogenous 20-hydroxyecdysone effectively mitigated the hyperproteinemia-mediated inhibition of FB remodeling.

  8. Induced Hyperproteinemia and Its Effects on the Remodeling of Fat Bodies in Silkworm, Bombyx mori

    Science.gov (United States)

    Chen, Xue-Dong; Wang, Yong-Feng; Wang, Yu-Long; Li, Qiu-Ying; Ma, Huan-Yu; Wang, Lu; Sima, Yang-Hu; Xu, Shi-Qing

    2018-01-01

    Hyperproteinemia, which is characterized by an abnormally elevated plasma protein concentration (PPC), is a high-mortality, metabolic complication associated with severe liver and kidney disease. It is difficult to clinically distinguish the difference between the impacts of primary diseases and hyperproteinemia on tissues and organs, and there are no available animal models of hyperproteinemia. Here, we constructed an animal model of hyperproteinemia with a controllable PPC and no primary disease effects in the silkworm Bombyx mori that has attracted interest owing to its potential use in the pathological analysis of model animals. Silkworm have an open circulatory system in which each organ is directly immersed in hemolymph. The fat body (FB) of a silkworm, as a major organ for nutrient storage and energy metabolism, can effectively reflect hyperproteinemia-induced metabolic abnormalities in damaged visceral tissues. A pathogenesis study showed that hyperproteinemia attenuated cell autophagy and apoptosis by attenuating an endocrine hormone, thereby preventing FB remodeling during metamorphosis. Meanwhile, hyperproteinemia increased oxidative stress in the FB and resulted in a dysfunction of amino acid conversion. Supplementation with exogenous 20-hydroxyecdysone effectively mitigated the hyperproteinemia-mediated inhibition of FB remodeling. PMID:29651251

  9. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  10. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    Science.gov (United States)

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  11. Cardiac arrhythmia with premature ventricular contractures induced by interferon beta in a patient with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Igor Sobol

    2015-03-01

    Full Text Available Multiple sclerosis (MS is an immune-mediated inflammatory and neurodegenerative disease of the central nervous system. Interferon (IFN beta is an active ingredient of five out of twelve disease modifying treatments approved for MS. We report a case of IFN-beta-induced cardiac arrhythmia with premature ventricular contractures in a patient recently diagnosed with MS.

  12. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Science.gov (United States)

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  13. Biomechanical and morphological remodelings of gastrointestinal tract in STZ-induced diabetic rats

    DEFF Research Database (Denmark)

    Sha, Hong; Zhao, Jingbo; Liu, Gui-Fang

    2012-01-01

    AIM: The aim of the study was to investigate the biomechanical and morphometrical remodeling of gastrointestinal (GI) tract in streptozotocin (STZ) induced diabetic rats. METERIALS AND METHODS: Eighteen SD male rats of diabetic group(DM, a single tail vein injection 40mg/kg of STZ, 9 rats...... in the esophageal, jejunal and colonic segments. RESULTS: The blood glucose level, the wet weight per unit to body weight ratio, wall thickness, opening angle, absolute value of residual strain in DM group were significantly higher than those in C0N group (Pstiffness of the esophageal......, jejunal, colonic wall in circumferential direction and the esophageal, colonic wall in longitudinal direction increased in DM group compared those with CON group (P

  14. Hemodynamic, biological, and right ventricular functional changes following intraatrial shunt repair in patients with flow-induced pulmonary hypertension.

    Science.gov (United States)

    Hsu, Chih-Hsin; Roan, Jun-Neng; Wang, Jieh-Neng; Huang, Chien-Chi; Shih, Chao-Jung; Chen, Jyh-Hong; Wu, Jing-Ming; Lam, Chen-Fuh

    2017-07-01

    Atrial septal defects may result in pulmonary hypertension and right heart remodeling. We analyzed improvements in patients with flow-induced pulmonary hypertension and the activation of endothelial progenitor cells after flow reduction. This prospective cohort study included 37 patients who were admitted for an occluder implantation. Blood samples were collected before and after the procedure. We determined the number of endothelial progenitor cells in outgrowth colonies and serum Hsp27 concentrations. Daily performance and cardiothoracic ratio were reevaluated later. Closure of the defect significantly reduced the pulmonary pressure and B-type natriuretic peptide levels. The cardiothoracic ratio and daily performance status also improved. The number of endothelial progenitor cell outgrowth colony-forming units significantly increased and was positively correlated with daily performance. In patients with enhanced colony formation, Hsp27 levels were significantly increased. The implantation of an occluder successfully improved hemodynamic, right ventricular, and daily performance. Qualitative enhancement of colony formation for endothelial progenitor cells was also noted and positively correlated with daily performance. Closure of defects may serve as a valid, reliable model to obtain a deeper understanding of the modulation of endothelial progenitor cell activity and its relationship with pulmonary hypertension prognosis. © 2017 Wiley Periodicals, Inc.

  15. Effect of streptozotocin-induced diabetes on left ventricular function in adult rats: an in vivo Pinhole Gated SPECT study

    Directory of Open Access Journals (Sweden)

    Weytjens Caroline

    2007-10-01

    Full Text Available Abstract Background Recent studies have suggested that diabetes mellitus (DM may cause left ventricular (LV dysfunction directly resulting in increased susceptibility to heart failure. Using pinhole collimators and advances in data processing, gated SPECT was recently adapted to image the rat heart. The present study was aimed to assess this new imaging technique for quantifying LV function and remodeling from the Streptozotocin (STZ rat model compared to controls. Methods Twenty one rats were randomly assigned to control or diabetic group. Six months after the induction of diabetes by STZ, Pinhole 99 m Tc-sestamibi gated SPECT was performed for determining rat LV volumes and function. Post-mortem histopathologic analysis was performed to evaluate the determinant of LV remodeling in this model. Results After six months, the normalized to body weight LV End-systolic volume was significantly different in diabetic rats compared to controls (0.46 ± 0.02 vs 0.33 ± 0.03 μL/g; p = 0.01. The normalized LV End-diastolic volume was also different in both groups (1.51 ± 0.03 vs 0.88 ± 0.05 μL/g; p = 0.001 and the normalized stroke volume was significantly higher in STZ-rats (1.05 ± 0.02 vs 0.54 ± 0.06 μL/g; p = 0.001. The muscular fibers were thinner at histology in the diabetic rats (0.44 ± 0.07 vs 0.32 ± 0.06 AU; p = 0.01. Conclusion Pinhole 99 m Tc-sestamibi gated SPECT can successfully be applied for the evaluation of cardiac function and remodeling in STZ-induced diabetic rats. In this model, LV volumes were significantly changed compared to a control population, leading to a LV dysfunction. These findings were consistent with the histopathological abnormalities. Finally, these data further suggest the presence of diabetes cardiomyopathy.

  16. Development of nonfibrotic left ventricular hypertrophy in an ANG II-induced chronic ovine hypertension model

    DEFF Research Database (Denmark)

    Klatt, Niklas; Scherschel, Katharina; Schad, Claudia

    2016-01-01

    setting. Therefore, the aim of this study was to establish a minimally invasive ovine hypertension model using chronic angiotensin II (ANG II) treatment and to characterize its effects on cardiac remodeling after 8 weeks. Sheep were implanted with osmotic minipumps filled with either vehicle control (n...... = 7) or ANG II (n = 9) for 8 weeks. Mean arterial blood pressure in the ANG II-treated group increased from 87.4 ± 5.3 to 111.8 ± 6.9 mmHg (P = 0.00013). Cardiovascular magnetic resonance imaging showed an increase in left ventricular mass from 112 ± 12.6 g to 131 ± 18.7 g after 7 weeks (P = 0...... any differences in epicardial conduction velocity and heterogeneity. These data demonstrate that chronic ANG II treatment using osmotic minipumps presents a reliable, minimally invasive approach to establish hypertension and nonfibrotic LVH in sheep....

  17. Left Ventricular Dysfunction and Dilated Cardiomyopathy in Infants and Children with Wolff-Parkinson-White Syndrome in the Absence of Tachyarrhythmias

    Science.gov (United States)

    2012-01-01

    Left ventricular (LV) dysfunction and dilated cardiomyopathy (DCM) are rarely attributable to sustained or incessant tachyarrhythmias in infants and children with Wolff-Parkinson-White (WPW) syndrome. However, several recent reports suggested that significant LV dysfunction may develop in WPW syndrome in the absence of tachyarrhythmias. It is assumed that an asynchronous ventricular activation over the accessory pathway, especially right-sided, induces septal wall motion abnormalities, ventricular remodeling and ventricular dysfunction. The prognosis of DCM associated with asymptomatic WPW is excellent. Loss of ventricular pre-excitation results in mechanical resynchronization and reverse remodeling where LV function recovers completely. The reversible nature of LV dysfunction after loss of ventricular pre-excitation supports the causal relationship between LV dysfunction and ventricular pre-excitation. This review summarizes recent clinical and electrophysiological evidence for development of LV dysfunction or DCM in asymptomatic WPW syndrome, and discusses the underlying pathophysiological mechanism. PMID:23323117

  18. Effect of Chang Run Tong on the Biomechanical and Morphometric Remodeling of Colon and Rectum in STZ Induced Diabetic Rats

    DEFF Research Database (Denmark)

    Sha, Hong; Zhao, Dong; Zhao, Jingbo

    2013-01-01

    The present study investigates the effect of Chang Run Tong (CRT) on the biomechanical and morphometrical remodeling of colon and rectum in streptozotocin-induced diabetic rats. The colonic and rectal segments were obtained from diabetic (DM), CRT-treated diabetic (T1, high dosage: 50 g/kg/day; T2...

  19. Remodeling process of the streptozotocln-induced diabetic rat's resected condyle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jung Pyo; Kim, Won Cheol; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, Oral Diagnosis and Oral Medicine, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1994-08-15

    The purpose of this study was to investigate the remodeling process of the streptozotocin-induced diabetic rat's resected condyle. The experiment was performed with male Sprague-Dawley strain rats weighing approximately 250 gm, which were rendered diabetic by an intravenous injection of streptozotocin (70 mg/kg body weight). After condylectomy, experimental rats were serially terminated on the 1st week, the 2nd week, the 3rd week, and the 4th week. The following termination, the mandible were dissected out to make specimens. Each mandibular condyle was radiographed with Hitex HA-80 (Hitex Co., Ltd. Japan). In addition to radiographic observation, the mandibular condyles, further decalcified and embedded in paraffin, were sectioned and stained with Hematoxylin and Eosin, Toluidine blue and Masson's trichrome. They were observed with a light microscope and a polarizing microscope. The results were as follows. 1. Soft X-ray radiograms revealed proliferation of bone after 1 week in both groups. Irregularly repaired bones and dense trabeculae were clearly observed in experimental group. 2. The resected condyles were repaired by intramembraneous and endochondral bone formation in both groups. 3. Bone tissue repair was initiated from the adjacent margin of resected bone, and cartilaginous tissues were observed at the top of repaired bone in both groups. 4. The number of osteoblasts of experimental group was small, compared with control group. Each osteoblast was small and flat. The thin trabeculae were irregularly formed. 5. Collagens of bone were gradually matured in both groups but the degree of maturation was lower in experimental group. 6. Fibrous tissues covered the upper parts of repaired bone were densely arranged in the both groups. Conclusively, atrophied osteoblasts, immature collagen of bone, and thin and irregular trabeculae function and caused disturbance of remodeling process of bone.

  20. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  1. Effect of gender on training-induced vascular remodeling in SHR

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2011-09-01

    Full Text Available There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR. Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density were similar in male and female SHR, supporting a similar hyperemic response to exercise.

  2. Effect of gender on training-induced vascular remodeling in SHR.

    Science.gov (United States)

    Amaral, S L; Michelini, L C

    2011-09-01

    There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar hyperemic response to exercise.

  3. A case of short-coupled premature ventricular beat-induced ventricular fibrillation with early repolarization in the inferolateral leads

    Directory of Open Access Journals (Sweden)

    Hidekazu Kondo, MD

    2015-02-01

    Full Text Available This case report describes a 19-year-old man with early repolarization (ER in the inferolateral leads and a normal QT interval who survived a cardiac arrest that was likely related to polymorphic ventricular tachycardia (VT. Electrocardiograms (ECGs also showed unifocal premature ventricular beats (PVBs with a relatively narrow QRS duration. A Holter ECG documented occasional short-coupled PVBs following non-sustained VTs. Pharmacological stress testing was also performed to assess the effects of anti-arrhythmic drugs on ER (the J wave and PVBs. We performed successful radiofrequency catheter ablation to prevent the recurrence of ventricular fibrillation after cardioverter-defibrillator implantation.

  4. Ventricular Fibrillation Induced by Thiopental Sodium During Anesthesia in a Dog

    OpenAIRE

    SARITAŞ, Zülfikar

    2014-01-01

    In this case report, a sudden devoloped ventricular fibrillation following Pentothal anaesthesia in a dog and the treatment done was subjected. No abnormal findings were detected according to haemotologic and biochemical tests and ECG obtained at the preoperative period. Blood gases analysis and ECG monitoring were performed before anaesthesia induction for this experimental surgery. After the case was premedicated with Xylazine hydrochlorid (2mg/kg im), anaesthesia was induced by pentotha...

  5. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    Science.gov (United States)

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  6. Prognosis parameters and polarimetric properties of erythrocytes of the patients suffering from arterial hypertension and coronary heart disease at various patterns of left ventricular remodeling

    Science.gov (United States)

    Ivaschuk, Oleg I.; Kolomoiets, M. Y.; Mikhaliev, K. O.; Chursina, T. Ya.

    2011-09-01

    The results of examination of 35 arterial hypertension and coronary heart disease patients are presented. The clinical, paraclinical and echocardiographic examinations were performed, and the parameters of prognosis (survival) according to Seattle Heart Failure Model, as well as the optical (polarimetric) properties of erythrocytic suspension were determined. The group of patients under examination was stratified by patterns of remodeling of left ventricle (LV). It was determined that increasing of anisotropy of erythrocytic suspension along LV remodeling patterns continuum correlates with aggravation of structural and functional state of LV and is associated with unfavorable prognosis.

  7. Role of Exercise-Induced Cardiac Remodeling in Ovariectomized Female Rats

    Directory of Open Access Journals (Sweden)

    Renáta Szabó

    2018-01-01

    Full Text Available Myocardial extracellular matrix (ECM is essential for proper cardiac function and structural integrity; thus, the disruption of ECM homeostasis is associated with several pathological processes. Female Wistar rats underwent surgical ovariectomy (OVX or sham operation (SO and were then divided into eight subgroups based on the type of diet (standard chow or high-triglyceride diet/HT and exercise (with or without running. After 12 weeks, cardiac MMP-2 activity, tissue inhibitor of metalloproteinase-2, content of collagen type I, the level of nitrotyrosine (3-NT and glutathione (GSH, and the ratio of infarct size were determined. Our results show that OVX and HT diet caused an excessive accumulation of collagen; however, this increase was not observed in the trained animals. Twelve weeks of exercise promoted elevation in the levels of 3-NT and GSH and similarly an increase in MMP-2 activity of both SO and OVX animals. The high infarct-size ratio caused by OVX and HT diet was mitigated by physical exercise. Our findings demonstrate that ovarian estrogen loss and HT diet caused collagen accumulation and increased ratio of the infarct size. However, exercise-induced cardiac remodeling serves as a compensatory mechanism by enhancing MMP-2 activity and reducing fibrosis, thus minimizing the ischemia/reperfusion injury.

  8. Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Antoine Huguet

    Full Text Available Cylindrospermopsin (CYN is a cyanotoxin that has been recognised as an emerging potential public health risk. Although CYN toxicity has been demonstrated, the mechanisms involved have not been fully characterised. To identify some key pathways related to this toxicity, we studied the transcriptomic profile of human intestinal Caco-2 cells exposed to a sub-toxic concentration of CYN (1.6 µM for 24hrs using a non-targeted approach. CYN was shown to modulate different biological functions which were related to growth arrest (with down-regulation of cdkn1a and uhrf1 genes, and DNA recombination and repair (with up-regulation of aptx and pms2 genes. Our main results reported an increased expression of some histone-modifying enzymes (histone acetyl and methyltransferases MYST1, KAT5 and EHMT2 involved in chromatin remodelling, which is essential for initiating transcription. We also detected greater levels of acetylated histone H2A (Lys5 and dimethylated histone H3 (Lys4, two products of these enzymes. In conclusion, CYN overexpressed proteins involved in DNA damage repair and transcription, including modifications of nucleosomal histones. Our results highlighted some new cell processes induced by CYN.

  9. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab

    Science.gov (United States)

    Roth, Michael; Zhao, Feng; Zhong, Jun; Lardinois, Didier; Tamm, Michael

    2015-01-01

    Background Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC) activity deposing extracellular matrix. Objective We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies. Methods Isolated human ASMC were exposed to serum obtained from: (i) healthy controls, or patients with (ii) allergic asthma, (iii) non-allergic asthma, and (iv) atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days. Results Serum from patients with allergies significantly stimulated: (i) ASMC proliferation, (ii) deposition of collagen type-I (48 hours) and (iii) of fibronectin (24 hours). One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects. Conclusion and Clinical Relevance Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC. PMID:26332463

  10. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab.

    Directory of Open Access Journals (Sweden)

    Michael Roth

    Full Text Available Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC activity deposing extracellular matrix.We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies.Isolated human ASMC were exposed to serum obtained from: (i healthy controls, or patients with (ii allergic asthma, (iii non-allergic asthma, and (iv atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days.Serum from patients with allergies significantly stimulated: (i ASMC proliferation, (ii deposition of collagen type-I (48 hours and (iii of fibronectin (24 hours. One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects.Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC.

  11. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure

    DEFF Research Database (Denmark)

    St John Sutton, Martin; Ghio, Stefano; Plappert, Ted

    2009-01-01

    BACKGROUND: Cardiac resynchronization therapy (CRT) improves LV structure, function, and clinical outcomes in New York Heart Association class III/IV heart failure with prolonged QRS. It is not known whether patients with New York Heart Association class I/II systolic heart failure exhibit left...... ventricular (LV) reverse remodeling with CRT or whether reverse remodeling is modified by the cause of heart failure. METHODS AND RESULTS: Six hundred ten patients with New York Heart Association class I/II heart failure, QRS duration > or =120 ms, LV end-diastolic dimension > or =55 mm, and LV ejection...... reduction in LV end-diastolic and end-systolic volume indexes and a 3-fold greater increase in LV ejection fraction in patients with nonischemic causes of heart failure. CONCLUSIONS: CRT in patients with New York Heart Association I/II resulted in major structural and functional reverse remodeling at 1 year...

  12. Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech.

    Science.gov (United States)

    Baranzini, Nicolò; Pedrini, Edoardo; Girardello, Rossana; Tettamanti, Gianluca; de Eguileor, Magda; Taramelli, Roberto; Acquati, Francesco; Grimaldi, Annalisa

    2017-05-01

    In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68 + and HmAIF-1 + macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.

  13. Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies.

    Science.gov (United States)

    Axell, Richard G; Giblett, Joel P; White, Paul A; Klein, Andrew; Hampton-Til, James; O'Sullivan, Michael; Braganza, Denise; Davies, William R; West, Nick E J; Densem, Cameron G; Hoole, Stephen P

    2017-06-06

    We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    Science.gov (United States)

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  15. Mental stress-induced left ventricular dysfunction and adverse outcome in ischemic heart disease patients.

    Science.gov (United States)

    Sun, Julia L; Boyle, Stephen H; Samad, Zainab; Babyak, Michael A; Wilson, Jennifer L; Kuhn, Cynthia; Becker, Richard C; Ortel, Thomas L; Williams, Redford B; Rogers, Joseph G; O'Connor, Christopher M; Velazquez, Eric J; Jiang, Wei

    2017-04-01

    Aims Mental stress-induced myocardial ischemia (MSIMI) occurs in up to 70% of patients with clinically stable ischemic heart disease and is associated with increased risk of adverse prognosis. We aimed to examine the prognostic value of indices of MSIMI and exercise stress-induced myocardial ischemia (ESIMI) in a population of ischemic heart disease patients that was not confined by having a recent positive physical stress test. Methods and results The Responses of Mental Stress Induced Myocardial Ischemia to Escitalopram Treatment (REMIT) study enrolled 310 subjects who underwent mental and exercise stress testing and were followed annually for a median of four years. Study endpoints included time to first and total rate of major adverse cardiovascular events, defined as all-cause mortality and hospitalizations for cardiovascular causes. Cox and negative binomial regression adjusting for age, sex, resting left ventricular ejection fraction, and heart failure status were used to examine associations of indices of MSIMI and ESIMI with study endpoints. The continuous variable of mental stress-induced left ventricular ejection fraction change was significantly associated with both endpoints (all p values mental stress, patients had a 5% increase in the probability of a major adverse cardiovascular event at the median follow-up time and a 20% increase in the number of major adverse cardiovascular events endured over the follow-up period of six years. Indices of ESIMI did not predict endpoints ( ps > 0.05). Conclusion In patients with stable ischemic heart disease, mental, but not exercise, stress-induced left ventricular ejection fraction change significantly predicts risk of future adverse cardiovascular events.

  16. Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.

    Science.gov (United States)

    Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben

    2016-01-01

    J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.

  17. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: The L-carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) trial

    NARCIS (Netherlands)

    S. Iliceto (Sabino); D. Scrutinio (Domenico); P. Bruzzi (P.); G. D'Ambrosio (Gaetano); A. Boni (Alejandro); M. Di Biase (Matteo); G. Biasco (Giuseppina); P.G. Hugenholtz (Paul); P. Rizzon (Paolo)

    1995-01-01

    textabstractObjectives. This study was performed to evaluate the effects of l-carnitine administration on long-term left ventricular dilation in patients with acute anterior myocardial infarction. Background. Carnitine is a physiologic compound that performs an essential role in myocardial energy

  18. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling

    Directory of Open Access Journals (Sweden)

    F.A. Pereira

    2007-04-01

    Full Text Available Data about the impact of bariatric surgery (BS and subsequent weight loss on bone are limited. The objective of the present study was to determine bone mineral density (BMD, bone remodeling metabolites and hormones that influence bone trophism in premenopausal women submitted to BS 9.8 months, on average, before the study (OGg, N = 16. The data were compared to those obtained for women of normal weight (CG, N = 11 and for obese women (OG, N = 12. Eight patients in each group were monitored for one year, with the determination of BMD, of serum calcium, phosphorus, magnesium, parathyroid hormone, 25-hydroxyvitamin D, insulin-like growth factor-I (IGF-I and osteocalcin, and of urinary calcium and deoxypyridinoline. The biochemical determinations were repeated every three months in the longitudinal study and BMD was measured at the end of the study. Parathyroid hormone levels were similar in the three groups. IGF-I levels (CG = 332 ± 62 vs OG = 230 ± 37 vs OGg = 128 ± 19 ng/mL were significantly lower in the operated patients compared to the non-operated obese women. Only OGg patients presented a significant fall in BMD of 6.2% at L1-L4, of 10.2% in the femoral neck, and of 5.1% in the forearm. These results suggest that the weight loss induced by BS is associated with a significant loss of bone mass even at sites that are not influenced by weight overload, with hormonal factors such as IGF-I being associated with this process.

  19. Fluid loading and norepinephrine infusion mask the left ventricular preload decrease induced by pleural effusion.

    Science.gov (United States)

    Wemmelund, Kristian Borup; Ringgård, Viktor Kromann; Vistisen, Simon Tilma; Hyldebrandt, Janus Adler; Sloth, Erik; Juhl-Olsen, Peter

    2017-09-11

    Pleural effusion (PLE) may lead to low blood pressure and reduced cardiac output. Low blood pressure and reduced cardiac output are often treated with fluid loading and vasopressors. This study aimed to determine the impact of fluid loading and norepinephrine infusion on physiologic determinants of cardiac function obtained by ultrasonography during PLE. In this randomised, blinded, controlled laboratory study, 30 piglets (21.9 ± 1.3 kg) had bilateral PLE (75 mL/kg) induced. Subsequently, the piglets were randomised to intervention as follows: fluid loading (80 mL/kg/h for 1.5 h, n = 12), norepinephrine infusion (0.01, 0.03, 0.05, 0.1, 0.2 and 0.3 μg/kg/min (15 min each, n = 12)) or control (n = 6). Main outcome was left ventricular preload measured as left ventricular end-diastolic area. Secondary endpoints included contractility and afterload as well as global measures of circulation. All endpoints were assessed with echocardiography and invasive pressure-flow measurements. PLE decreased left ventricular end-diastolic area, mean arterial pressure and cardiac output (p values  0.05) to baseline. Left ventricular contractility increased with norepinephrine infusion (p = 0.002), but was not affected by fluid loading (p = 0.903). Afterload increased in both active groups (p values > 0.001). Overall, inferior vena cava distensibility remained unchanged during intervention (p values ≥ 0.085). Evacuation of PLE caused numerical increases in left ventricular end-diastolic area, but only significantly so in controls (p = 0.006). PLE significantly reduced left ventricular preload. Both fluid and norepinephrine treatment reverted this effect and normalised global haemodynamic parameters. Inferior vena cava distensibility remained unchanged. The haemodynamic significance of PLE may be underestimated during fluid or norepinephrine administration, potentially masking the presence of PLE.

  20. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    Science.gov (United States)

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  1. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    Science.gov (United States)

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Effects of Low-Level Autonomic Stimulation on Prevention of Atrial Fibrillation Induced by Acute Electrical Remodeling

    Directory of Open Access Journals (Sweden)

    Yubi Lin

    2013-01-01

    Full Text Available Background. Rapid atrial pacing (RAP can induce electrical and autonomic remodeling and facilitate atrial fibrillation (AF. Recent reports showed that low-level vagosympathetic nerve stimulation (LLVNS can suppress AF, as an antiarrhythmic effect. We hypothesized that LLVNS can reverse substrate heterogeneity induced by RAP. Methods and Results. Mongrel dogs were divided into (LLVNS+RAP and RAP groups. Electrode catheters were sutured to multiple atrial sites, and LLVNS was applied to cervical vagosympathetic trunks with voltage 50% below the threshold slowing sinus rate by ⩽30 msec. RAP induced a significant decrease in effective refractory period (ERP and increase in the window of vulnerability at all sites, characterized by descending and elevated gradient differences towards the ganglionic plexi (GP sites, respectively. The ERP dispersion was obviously enlarged by RAP and more significant when the ERP of GP-related sites was considered. Recovery time from AF was also prolonged significantly as a result of RAP. LLVNS could reverse all these changes induced by RAP and recover the heterogeneous substrate to baseline. Conclusions. LLVNS can reverse the electrical and autonomic remodeling and abolish the GP-central gradient differences induced by RAP, and thus it can recover the homogeneous substrate, which may be the underlying mechanism of its antiarrhythmic effect.

  3. Relation between N-terminal pro-brain natriuretic peptide and cardiac remodeling and function assessed by cardiovascular magnetic resonance imaging in patients with arrhythmogenic right ventricular cardiomyopathy.

    Science.gov (United States)

    Cheng, Huaibing; Lu, Minjie; Hou, Cuihong; Chen, Xuhua; Wang, Jing; Yin, Gang; Chu, Jianmin; Zhang, Shu; Prasad, Sanjay K; Pu, Jielin; Zhao, Shihua

    2015-02-01

    Although N-terminal pro-brain natriuretic peptide (NT-proBNP) is a useful screening test of impaired right ventricular (RV) function in conditions affecting the right-sided cardiac muscle, the role of NT-proBNP remains unclear in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). This study was designed to clarify the relation between the plasma NT-proBNP level and the RV function evaluated by cardiovascular magnetic resonance (CMR) imaging. We selected 56 patients with confirmed ARVC only when their blood specimens for NT-proBNP measurements were collected within 48 hours of a CMR scan. The NT-proBNP level was significantly higher in patients with RV dysfunction than in patients without RV dysfunction (median of 655.3 [interquartile range 556.4 to 870.0] vs 347.0 [interquartile range 308.0 to 456.2] pmol/L, p rights reserved.

  4. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  5. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N., E-mail: ramn@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States); Sunil Kumar, P.B., E-mail: sunil@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Radhakrishnan, Ravi, E-mail: rradhak@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States)

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  6. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  7. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  8. Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats

    DEFF Research Database (Denmark)

    Lemkens, Pieter; Nelissen, Jelly; Meens, Merlijn J P M T

    2012-01-01

    Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hype...

  9. Early Right Ventricular Apical Pacing-Induced Gene Expression Alterations Are Associated with Deterioration of Left Ventricular Systolic Function

    Directory of Open Access Journals (Sweden)

    Haiyan Xu

    2017-01-01

    Full Text Available The chronic high-dose right ventricular apical (RVA pacing may have deleterious effects on left ventricular (LV systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF who underwent pacemaker implantation were randomly assigned to either RVA pacing (n=30 group or right ventricular outflow tract (RVOT pacing (n=30 group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month’s follow-up (both p<0.001. Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS that became apparent months later (p=0.002 and p=0.026, resp. The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.

  10. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression

    International Nuclear Information System (INIS)

    Li, Rujun; Lu, Kuiying; Wang, Yao; Chen, Mingxing; Zhang, Fengyu; Shen, Hui; Yao, Deshan; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Triptolide is the predominant active component of the Chinese herb Tripterygium wilfordii Hook F (TwHF) that has been widely used to treat several chronic inflammatory diseases due to its immunosuppressive, anti-inflammatory, and anti-proliferative properties. In the present study, we elucidated the cardioprotective effects of triptolide against cardiac dysfunction and myocardial remodeling in chronic pressure-overloaded hearts. Furthermore, the potential mechanisms of triptolide were investigated. For this purpose, C57/BL6 mice were anesthetized and subjected to transverse aortic constriction (TAC) or sham operation. Six weeks after the operation, all mice were randomly divided into 4 groups: sham-operated with vehicle group, TAC with vehicle group, and TAC with triptolide (20 or 100 μg/kg/day intraperitoneal injection) groups. Our data showed that the levels of NLRP3 inflammasome were significantly increased in the TAC group and were associated with increased inflammatory mediators and profibrotic factor production, resulting in myocardial fibrosis, cardiomyocyte hypertrophy, and impaired cardiac function. Triptolide treatment attenuated TAC-induced myocardial remodeling, improved cardiac diastolic and systolic function, inhibited the NLRP3 inflammasome and downstream inflammatory mediators (IL-1β, IL-18, MCP-1, VCAM-1), activated the profibrotic TGF-β1 pathway, and suppressed macrophage infiltration in a dose-dependent manner. Our study demonstrated that the protective effect of triptolide against pressure overload in the heart may act by inhibiting the NLRP3 inflammasome-induced inflammatory response and activating the profibrotic pathway. - Highlights: • Chronic pressure overload increases expression of NLRP3 inflammasome in the heart. • Triptolide attenuates chronic pressure overload-induced myocardial remodeling. • The mechanism appears to involve inhibition of NLRP3 inflammasome expression. • Triptolide is a therapeutic candidate for

  11. Effect of Tangweian Jianji on the Biomechanical and Morphometric Remodeling of Colon and Rectum in STZ Induced Diabetic Rats

    DEFF Research Database (Denmark)

    Sha, Hong; Tong, Xiao-Lin; Liu, Gui-Fang

    2012-01-01

    .01). Furthermore, the circumferential and longitudinal stiffness of the colonic wall increased in DM group compared those with CON group. TH but not TL treatment could significantly decrease the colonic wall stiffness in both directions (P...AIM: The aim of the study was to investigate the effect of TWAJJ on the biomechanical and morphometrical remodeling of colon and rectum in streptozotocin (STZ) induced diabetic rats. METHODS: The colonic and rectal segments obtained from diabetic (DM), TWAJJ treated diabetic (TH, high dosage: 10 g...

  12. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Xiaoqian; Cao, Henghua; Bai, Shuyun; Huo, Weibang; Ma, Yue

    2017-04-01

    The combination of non-human primate animals and their induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provides not only transplantation models for cell-based therapy of heart diseases, but also opportunities for heart-related drug research on both cellular and animal levels. However, the subtypes and electrophysiology properties of non-human primate iPSC-CMs hadn't been detailed characterized. In this study, we generated rhesus monkey induced pluripotent stem cells (riPSCs), and efficiently differentiated them into ventricular or atrial cardiomyocytes by modulating retinoic acid (RA) pathways. Our results revealed that the electrophysiological characteristics and response to canonical drugs of riPSC-CMs were similar with those of human pluripotent stem cell derived CMs. Therefore, rhesus monkeys and their iPSC-CMs provide a powerful and practicable system for heart related biomedical research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  14. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  15. Correlation between left ventricular filling and ischemic extent during exercise-induced myocardial ischemia

    International Nuclear Information System (INIS)

    Ando, Akitada; Yokota, Mitsuhiro; Iwase, Mitsunori

    1993-01-01

    The aim of this study was to determine how the extent of exercise-induced myocardial ischemia influence left ventricular filling. Twenty-two consecutive patients with effort angina, consisting of 16 with single vessel disease and 6 with double vessel disease, underwent exercise studies in lying and sitting positions. Extent score (ES) and severity score (SS) were calculated on polar map prepared from early exercise Tl-201 myocardial SPECT images to determine ischemic extent. Pulmonary arterial wedge pressure (PAWP), as obtained at exercise in lying position, correlated significantly well with both ES (r=0.75, p<0.001) and SS (r=0.61, p<0.01). There was, however, no significant correlation between the other hemodynamic parameters, such as heart rate, systolic pressure, rate-pressure product, cardiac index and stroke index, and both ES and SS. Either increased PAWP or ischemic extent was not dependent on the number of diseased vessels. In conclusion, the extent of increased left ventricular filling did not correlate with the number of diseased vessels, but correlated positively with ischemic extent. (N.K.)

  16. Remodelamento cardíaco: análise seriada e índices de detecção precoce de disfunção ventricular Remodelación cardiaca: análisis seriado e índices de detección precoz de disfunción ventricular Cardiac remodeling: serial analysis and indexes for early detection of ventricular dysfunction

    Directory of Open Access Journals (Sweden)

    Olga de Castro Mendes

    2010-01-01

    comportamiento del RC desde la fase inicial, ni los mejores parámetros para la identificación de la disfunción ventricular. OBJETIVO: 1 Caracterizar, precoz y evolutivamente, las modificaciones morfofuncionales durante el RC en ratones con EAo, y 2 identificar el índice más sensible para detección del momento de la aparición de la disfunción diastólica y sistólica del ventrículo izquierdo (VI. MÉTODOS: Ratones Wistar se dividieron en dos grupos - control (GC, n=13 y EAo (GEAo, n=24 - y estudiados en las 3ª, 6ª, 12ª y 18ª semanas post cirugía. Los corazones se analizaron por medio de ecocardiograma (ECO. RESULTADOS: Al final del experimento, las relaciones del VI, del ventrículo derecho y de los atrios con el peso corporal final fueron aumentadas en el GEAo. El ECO mostró que el atrio izquierdo sufrió una remodelación significativa a partir de la 6ª semana. En el GEAo, el porcentaje de acortamiento endocárdico presentó disminución significativa a partir de la 12ª semana y el porcentaje de acortamiento mesocárdico, en la 18ª semana. La relación onda E y onda A (E/A fue superior en el GC en comparación al GEAo en todos los momentos analizados. CONCLUSIÓN: El ventrículo izquierdo de los ratones con EAo, durante el proceso de remodelación, presentó hipertrofia concéntrica, disfunción diastólica precoz y mejora de la función sistólica, con posterior deterioro del desempeño. Además de ello, se constató que los índices ecocardiográficos más sensibles para la detección de la disfunción diastólica y sistólica son, respectivamente, la relación E/A y el porcentaje de acortamiento endocárdico.BACKGROUND: Supravalvar aortic stenosis (SVAS is used to study overload-induced cardiac remodeling (CR. In this model, neither CR behavior since beginning stage nor the best parameters to identify ventricular dysfunction are clearly stated. Objective: 1 Characterizing, early and evolutively, morphological and functional modifications during CR in rats

  17. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    Science.gov (United States)

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and

  18. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats.

    Directory of Open Access Journals (Sweden)

    Tsung-I Chen

    Full Text Available In obstructive sleep apnea (OSA, recurrent obstruction of the upper airway leads to intermittent hypoxia (IH during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON or to a group receiving 10 weeks of exercise training (EXE. During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE, whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl ethylenediamine (TPEN, or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect.

  19. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats

    Science.gov (United States)

    Chen, Michael Yu-Chih

    2016-01-01

    In obstructive sleep apnea (OSA), recurrent obstruction of the upper airway leads to intermittent hypoxia (IH) during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON) or to a group receiving 10 weeks of exercise training (EXE). During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE), whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect. PMID:27977796

  20. Prevalence of exercise-induced left ventricular outflow tract obstruction in symptomatic patients with non-obstructive hypertrophic cardiomyopathy.

    LENUS (Irish Health Repository)

    Shah, J S

    2008-10-01

    Resting left ventricular outflow tract obstruction (LVOTO) occurs in 25% of patients with hypertrophic cardiomyopathy (HCM) and is an important cause of symptoms and disease progression. The prevalence and clinical significance of exercise induced LVOTO in patients with symptomatic non-obstructive HCM is uncertain.

  1. Clarithromycine-Induced Ventricular Tachycardia in a Geriatric Patient Using Multiple Drugs

    Directory of Open Access Journals (Sweden)

    Gulsah Karaoren

    2016-07-01

    Full Text Available Long QT syndrome is a cardiac repolarization disorder, which can be either idiopathic or congenital, and cause sudden cardiac death. The iatrogenic form is generally associated with drugs or electrolyte imbalance. Although prolonged QT interval is frequently seen due to antiarrhythmic agents, it can also be seen with antibiotics or anti-epileptics. Adverse drug interaction can manifest in several clinicopathological forms in elder individuals. In such cases, potential adverse effects of drugs used should be taken into consideration before prescribing additional drugs. Here, we present a case of clarithromycine-induced ventricular arrhythmia accompanied by QT prolongation on the third day of therapy, and the subsequent therapeutic approach, in a 91-year-old man. The patient was taking multiple drugs due to comorbid conditions and was prescribed clarithromycine therapy in the intensive care unit.

  2. Methadone induced torsades de pointes and ventricular fibrillation: A case review

    Directory of Open Access Journals (Sweden)

    Somayeh Khalesi

    2014-11-01

    Full Text Available BACKGROUND: Methadone is a synthetic opioid, which has been successfully used in treating heroin addiction and chronic pain syndrome in palliative care for more than 30 years. This drug is a potent blocker of the delayed rectifier potassium ion channel, which may result in corrected QT (QTc interval prolongation and increased risk of torsades de pointes (TdP in susceptible individuals. CASE REPORT: We describe here a case of methadone-induced TdP that deteriorated into ventricular fibrillation, which was resolved after treatment with IV magnesium, potassium, and Lidocaine. Our purpose in this case review was to highlight the risk of cardiac arrhythmias, in particular QTc interval prolongation leading to TdP in a heroin-dependent patient receiving methadone substitution therapy, and then to present a perspective on treatment and prevention strategies of methadone induced prolonged QTc. CONCLUSION: Methadone-induced TdP is a potentially fatal complication of methadone therapy. As the popularity of methadone use grows, clinicians will encounter more cases of methadone induced TdP, especially in our region, Iran. Hence, a thorough patient history and electrocardiogram monitoring are essential for patients treated with this agent, and alterations in treatment options may be necessary.    Normal 0 false false false EN-US X-NONE AR-SA

  3. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  4. Association of obesity in early adulthood and middle age with incipient left ventricular dysfunction and structural remodeling: the CARDIA study (Coronary Artery Risk Development in Young Adults).

    Science.gov (United States)

    Kishi, Satoru; Armstrong, Anderson C; Gidding, Samuel S; Colangelo, Laura A; Venkatesh, Bharath A; Jacobs, David R; Carr, J Jeffery; Terry, James G; Liu, Kiang; Goff, David C; Lima, João A C

    2014-10-01

    The goal of this study was to investigate the relationship of body mass index (BMI) and its 25-year change to left ventricular (LV) structure and function. Longstanding obesity may be associated with clinical cardiac dysfunction and heart failure. Whether obesity relates to cardiac dysfunction during young adulthood and middle age has not been investigated. The CARDIA (Coronary Artery Risk Development in Young Adult) study enrolled white and black adults ages 18 to 30 years in 1985 to 1986 (Year-0). At Year-25, cardiac function was assessed by conventional echocardiography, tissue Doppler imaging (TDI), and speckle tracking echocardiography (STE). Twenty-five-year change in BMI (classified as low: obesity from young adulthood to middle age is associated with impaired LV systolic and diastolic function assessed by conventional echocardiography, TDI, and STE in a large biracial cohort of adults age 43 to 55 years. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Cellular mechanism underlying hypothermia-induced ventricular tachycardia/ventricular fibrillation in the setting of early repolarization and the protective effect of quinidine, cilostazol, and milrinone.

    Science.gov (United States)

    Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V; Antzelevitch, Charles

    2014-02-01

    Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome and examines the effectiveness of quinidine, cilostazol, and milrinone to prevent hypothermia-induced arrhythmias. Transmembrane action potentials were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3-10 μmol/L) and verapamil (1 μmol/L) was used to pharmacologically model the genetic mutations responsible for ER syndrome. Acetylcholine (3 μmol/L) was used to simulate increased parasympathetic tone, which is known to promote ER. In controls, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J-wave area on the ECG and accentuated epicardial action potential notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial action potential notch, leading to loss of the action potential dome at some sites but not others, thus creating the substrate for development of phase 2 reentry and VT/VF. Addition of the transient outward current antagonist quinidine (5 μmol/L) or the phosphodiesterase III inhibitors cilostazol (10 μmol/L) or milrinone (5 μmol/L) diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase 2 reentry. Quinidine, cilostazol, and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities.

  6. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Fadel Elie

    2011-09-01

    Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature

  7. Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101 - Breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI

    International Nuclear Information System (INIS)

    Pituskin, Edith; Paterson, Ian; Haykowsky, Mark; Mackey, John R; Thompson, Richard B; Ezekowitz, Justin; Koshman, Sheri; Oudit, Gavin; Chow, Kelvin; Pagano, Joseph J

    2011-01-01

    MANTICORE 101 - Breast (Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research) is a randomized trial to determine if conventional heart failure pharmacotherapy (angiotensin converting enzyme inhibitor or beta-blocker) can prevent trastuzumab-mediated left ventricular remodeling, measured with cardiac MRI, among patients with HER2+ early breast cancer. One hundred and fifty-nine patients with histologically confirmed HER2+ breast cancer will be enrolled in a parallel 3-arm, randomized, placebo controlled, double-blind design. After baseline assessments, participants will be randomized in a 1:1:1 ratio to an angiotensin-converting enzyme inhibitor (perindopril), beta-blocker (bisoprolol), or placebo. Participants will receive drug or placebo for 1 year beginning 7 days before trastuzumab therapy. Dosages for all groups will be systematically up-titrated, as tolerated, at 1 week intervals for a total of 3 weeks. The primary objective of this randomized clinical trial is to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer, as measured by 12 month change in left ventricular end-diastolic volume using cardiac MRI. Secondary objectives include 1) determine the evolution of left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer, 2) understand the mechanism of trastuzumab mediated cardiac toxicity by assessing for the presence of myocardial injury and apoptosis on serum biomarkers and cardiac MRI, and 3) correlate cardiac biomarkers of myocyte injury and extra-cellular matrix remodeling with left ventricular remodeling on cardiac MRI in patients with HER2+ early breast cancer. Cardiac toxicity as a result of cancer therapies is now recognized as a significant health problem of increasing prevalence. To our knowledge, MANTICORE will be the first randomized trial testing proven heart failure pharmacotherapy in

  8. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis.

    Science.gov (United States)

    Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne

    2017-08-01

    Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nurse-coordinated collaborative disease management improves the quality of guideline-recommended heart failure therapy, patient-reported outcomes, and left ventricular remodelling.

    Science.gov (United States)

    Güder, Gülmisal; Störk, Stefan; Gelbrich, Goetz; Brenner, Susanne; Deubner, Nikolas; Morbach, Caroline; Wallenborn, Julia; Berliner, Dominik; Ertl, Georg; Angermann, Christiane E

    2015-04-01

    Heart failure (HF) pharmacotherapy is often not prescribed according to guidelines. This longitudinal study investigated prescription rates and dosages of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEi/ARB), beta-blockers, and mineralocorticoid receptor antagonists (MRA), and concomitant changes of symptoms, echocardiographic parameters of left ventricular (LV) function and morphology and results of the Short Form-36 (SF-36) Health Survey in participants of the Interdisciplinary Network Heart Failure (INH) programme. The INH study evaluated a nurse-coordinated management, HeartNetCare-HF(TM) (HNC), against Usual Care (UC) in patients hospitalized for decompensated HF [LV ejection fraction (LVEF) ≤40% before discharge). A total of 706 subjects surviving >18 months (363 UC, 343 HNC) were examined 6-monthly. At baseline, 92% received ACEi/ARB, (HNC/UC 91/93%, P = 0.28), 86% received beta-blockers (86/86%, P = 0.83), and 44% received MRA (42/47%, P = 0.07). After 18 months, beta-blocker use had increased only in HNC (+7.6%, P change +17/+14%, P = 0.010), LV end-diastolic diameter (59 ± 9 vs. 61 ± 9.6 mm, P = 0.024, change -2.3/-1.4 mm, P = 0.13), New York Heart Association class (1.9 ± 0.7 vs. 2.1 ± 0.7, P = 0.001, change -0.44/-0.25, P = 0.002) and SF-36 physical component summary score (41.6 ± 11.2 vs. 38.5 ± 11.8, P = 0.004, change +3.3 vs. +1.1 score points, P changes after 18 months. © 2015 The Authors. European Journal of Heart Failure © 2015 European Society of Cardiology.

  10. TVP1022 Protects Neonatal Rat Ventricular Myocytes against Doxorubicin-Induced Functional Derangements

    Science.gov (United States)

    Berdichevski, Alexandra; Meiry, Gideon; Milman, Felix; Reiter, Irena; Sedan, Oshra; Eliyahu, Sivan; Duffy, Heather S.; Youdim, Moussa B.; Binah, Ofer

    2010-01-01

    Our recent studies demonstrated that propargylamine derivatives such as rasagiline (Azilect, Food and Drug Administration-approved anti-Parkinson drug) and its S-isomer TVP1022 protect cardiac and neuronal cell cultures against apoptotic-inducing stimuli. Studies on structure-activity relationship revealed that their neuroprotective effect is associated with the propargylamine moiety, which protects mitochondrial viability and prevents apoptosis by activating Bcl-2 and protein kinase C-ε and by down-regulating the proapoptotic protein Bax. Based on the established cytoprotective and neuroprotective efficacies of propargylamine derivatives, as well as on our recent study showing that TVP1022 attenuates serum starvation-induced and doxorubicin-induced apoptosis in neonatal rat ventricular myocytes (NRVMs), we tested the hypothesis that TVP1022 will also provide protection against doxorubicin-induced NRVM functional derangements. The present study demonstrates that pretreatment of NRVMs with TVP1022 (1 μM, 24 h) prevented doxorubicin (0.5 μM, 24 h)-induced elevation of diastolic [Ca2+]i, the slowing of [Ca2+]i relaxation kinetics, and the decrease in the rates of myocyte contraction and relaxation. Furthermore, pretreatment with TVP1022 attenuated the doxorubicin-induced reduction in the protein expression of sarco/endoplasmic reticulum calcium (Ca2+) ATPase, Na+/Ca2+ exchanger 1, and total connexin 43. Finally, TVP1022 diminished the inhibitory effect of doxorubicin on gap junctional intercellular coupling (measured by means of Lucifer yellow transfer) and on conduction velocity, the amplitude of the activation phase, and the maximal rate of activation (dv/dtmax) measured by the Micro-Electrode-Array system. In summary, our results indicate that TVP1022 acts as a novel cardioprotective agent against anthracycline cardiotoxicity, and therefore potentially can be coadmhence, the inistered with doxorubicin in the treatment of malignancies in humans. PMID:19915070

  11. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  12. Pharmacological delayed preconditioning against ischaemia-induced ventricular arrhythmias: effect of an adenosine A1-receptor agonist

    OpenAIRE

    Tissier, Renaud; Souktani, Rachid; Parent de Curzon, Olivier; Lellouche, Nicolas; Henry, Patrick; Giudicelli, Jean-François; Berdeaux, Alain; Ghaleh, Bijan

    2001-01-01

    The goal of this study was to investigate the effects of the delayed pharmacological preconditioning produced by an adenosine A1-receptor agonist (A1-DPC) against ventricular arrhythmias induced by ischaemia and reperfusion, compared to those of ischaemia-induced delayed preconditioning (I-DPC).Eighty-nine instrumented conscious rabbits underwent a 2 consecutive days protocol. On day 1, rabbits were randomly divided into four groups: ‘Control' (saline, i.v.), ‘I-DPC' (six 4-min coronary arter...

  13. A case of appropriate inappropriate device therapy: Hyperkalemia-induced ventricular oversensing

    Science.gov (United States)

    Oudit, Gavin Y; Cameron, Doug; Harris, Louise

    2008-01-01

    The present case describes a patient who received inappropriate, but potentially life-saving, therapy from her implantable cardioverter defibrillator (ICD) in the setting of acute hyperkalemia (plasma potassium concentration = 8 mM). Hyperkalemia was associated with the development of a slow sinusoidal ventricular tachycardia, at a rate of 100 beats/min to 125 beats/min (610 ms to 480 ms) in a patient who is pacemaker-dependent. There was associated fractionation of the ICD electrogram and T wave oversensing, leading to ventricular oversensing with resultant detection in the ventricular fibrillation rate zone. This was followed by shock therapy, even though the ventricular tachycardia rate was below the programmed detection rate of the ICD. The subsequent emergency treatment of the hyperkalemia normalized the electrogram, corrected the ventricular oversensing and arrhythmia, and restored rate-adaptive single-chamber ventricular pacing. PMID:18340383

  14. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  15. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septo-temporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septo-temporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  16. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  17. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals.

    Science.gov (United States)

    Chen, Yanmei; Zhang, Chuanxi; Shen, Shuxin; Guo, Shengcun; Zhong, Lintao; Li, Xinzhong; Chen, Guojun; Chen, Gangbin; He, Xiang; Huang, Chixiong; He, Nvqin; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-12-01

    Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (PBMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both PBMC transplantation increased capillary density, myocardial cell proliferation and c-kit + cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit + cells. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. The Effect of Chang Run Tong on Biomechanical Colon Remodeling in STZ-Induced Type I Diabetic Rats - Is It Related to Advanced Glycation End Product Formation?

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    BACKGROUND AND AIM: The Chinese medicine Chang Run Tong (CRT) effectively improved senile constipation in the clinics. The aims of the present study were to investigate the effect of CRT on colonic remodeling in streptozotocin (STZ) induced diabetic rats and to explore the mechanisms of the CRT...

  19. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    Science.gov (United States)

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    photocoagulation site and around it. Confocal microscopy demonstrates that the vessels throughout the path lesion are located within the neuroretina while in the choroid (after separation of the neural retina) only GFAP-positive but no lectin-positive cells can be seen. The involvement of infiltrating inflammatory cells in these remodeling and healing processes remained minimal throughout the study period. During the 4 weeks following krypton laser photocoagulation in the mouse eye, processes of wound healing and remodeling appear to be driven by cells (and vessels) originating from the retina.

  20. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  1. TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity.

    Science.gov (United States)

    Kleiner, Yana; Bar-Am, Orit; Amit, Tamar; Berdichevski, Alexandra; Liani, Esti; Maor, Gila; Reiter, Irina; Youdim, Moussa B H; Binah, Ofer

    2008-09-01

    We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.

  2. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  3. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    Science.gov (United States)

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. © 2016. Published by The Company of Biologists Ltd.

  4. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    Science.gov (United States)

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  5. Physically-induced cytoskeleton remodeling of cells in three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Sheng-Lin Lee

    Full Text Available Characterizing how cells in three-dimensional (3D environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension.

  6. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance.

    Science.gov (United States)

    Contreras, G Andres; Thelen, Kyan; Schmidt, Sarah E; Strieder-Barboza, Clarissa; Preseault, Courtney L; Raphael, William; Kiupel, Matti; Caron, John; Lock, Adam L

    2016-12-01

    Excessive rates of demand lipolysis in the adipose tissue (AT) during periods of negative energy balance (NEB) are associated with increased susceptibility to disease and limited lactation performance. Lipolysis induces a remodeling process within AT that is characterized by an inflammatory response, cellular proliferation, and changes in the extracellular matrix (ECMT). The adipose tissue macrophage (ATM) is a key component of the inflammatory response. Infiltration of ATM-forming cellular aggregates was demonstrated in transition cows, suggesting that ATM trafficking and phenotype changes may be associated with disease. However, it is currently unknown if ATM infiltration occurs in dairy cows only during NEB states related to the transition period or also during NEB-induced lipolysis at other stages of lactation. The objective of this study was to evaluate changes in ATM trafficking and inflammatory phenotypes, and the expression of genetic markers of AT remodeling in healthy late-lactation cows during feed restriction-induced NEB. After a 14-d (d -14 to d -1) preliminary period, Holstein cows were randomly assigned to 1 of 2 feeding protocols, ad libitum (AL) or feed restriction (FR), for 4 d (d 1-4). Caloric intake was reduced in FR to achieve a targeted energy balance of -15 Mcal/d of net energy for lactation. Omental and subcutaneous AT samples were collected laparoscopically to harvest stromal vascular fraction (SVF) cells on d -3 and 4. The FR induced a NEB of -14.1±0.62 Mcal/d of net energy for lactation, whereas AL cows remained in positive energy balance (3.2±0.66 Mcal/d of NE L ). The FR triggered a lipolytic response reflected in increased plasma nonesterified fatty acids (0.65±0.05 mEq/L on d 4), enhanced phosphorylation of hormone sensitive lipase, and reduced adipocyte diameter. Flow cytometry and immunohistochemistry analysis revealed that on d 4, FR cows had increased numbers of CD172a + , an ATM (M1 and M2) surface marker, cells in SVF that

  7. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    Science.gov (United States)

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  8. A exposição crônica à fumaça do cigarro resulta em remodelação cardíaca e prejuízo da função ventricular em ratos Chronic cigarette smoke exposure results in cardiac remodeling and impaired ventricular function in rats

    Directory of Open Access Journals (Sweden)

    Édson Castardeli

    2005-04-01

    Full Text Available OBJETIVO: Determinar as alterações cardíacas estruturais e funcionais causadas pela exposição à fumaça do cigarro em ratos. MÉTODOS: Os animais foram aleatoriamente distribuídos em dois grupos: fumante (F, composto por 10 animais, expostos à fumaça do cigarro, na taxa de 40 cigarros/dia e controle (C, constituído por 10 animais não submetidos à exposição. Após 4 meses, os animais foram submetidos a estudo morfológico e funcional por meio do ecocardiograma. As variáveis estudadas foram analisadas pelo teste t ou pelo teste de Mann-Whitney. RESULTADOS: Os ratos fumantes apresentaram maior átrio esquerdo (F=4,2± 0,7mm; C=3,5±0,6mm; pOBJECTIVE: To determine the cardiac structural and functional alterations caused by cigarette smoke exposure in rats. METHODS: The animals were randomly distributed into the following 2 groups: 1 smokers (S, comprising 10 animals exposed to cigarette smoke at a rate of 40 cigarettes/day; and 2 control (C, comprising 10 animals not exposed to cigarette smoke. After 4 months, the animals underwent morphological and functional study with echocardiography. The variables studied were analyzed by use of the t test or the Mann-Whitney test. RESULTS: The smoking rats had a greater left atrium (S=4.2±0.7mm; C=3.5±0.6mm; P<0.05, and greater left ventricular diastolic (S=7.9±0.7mm; C=7.2±0.5mm; P<0.05 and systolic (S=4.1±0.5; C=3.4±0.5; P<0.05 diameters. The left ventricular mass index was greater in the smoking animals (S=1.5mg/kg±0.2; C=1.3mg/kg±0.2; P<0.05, and the ejection fraction (S=0.85±0.03; C=0.89±0.03; P<0.05 and the shortening fraction (S=47.8%±3.7; C=52.7%±4.6; P<0.05 were greater in the control group. No differences were observed in the diastolic transmitral flow variables (E wave, A wave, and E/A ratio. CONCLUSION: Chronic cigarette smoke exposure results in cardiac remodeling with a decrease in ventricular functional capacity.

  9. The DD genotype of the angiotensin converting enzyme gene is negatively associated with right ventricular hypertrophy in male patients with chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    van Suylen, R. J.; Wouters, E. F.; Pennings, H. J.; Cheriex, E. C.; van Pol, P. E.; Ambergen, A. W.; Vermelis, A. M.; Daemen, M. J.

    1999-01-01

    The renin angiotensin system plays an important role in the development of pulmonary artery remodeling and right ventricular hypertrophy in hypoxia-induced pulmonary hypertension as may occur in patients with COPD. Several polymorphisms of genes encoding for components of the renin angiotensin

  10. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  11. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  12. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition.

    Directory of Open Access Journals (Sweden)

    Sarah L Sherrington

    2017-05-01

    Full Text Available Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.

  13. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition

    Science.gov (United States)

    Sorsby, Eleanor; Mahtey, Nabeel; Brown, Ian

    2017-01-01

    Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this “unmasking” of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection. PMID:28542528

  14. Impact of obesity on hypertension-induced cardiac remodeling: role of oxidative stress and its modulation by gemfibrozil treatment in rats.

    Science.gov (United States)

    Singh, Randhir; Singh, Amrit Pal; Singh, Manjeet; Krishan, Pawan

    2011-01-15

    This study investigated the possible synergistic role of obesity in hypertension-induced cardiac remodeling and its modulation by gemfibrozil treatment in rats. Male Wistar rats were fed a high-fat diet (HFD) for 90 days. Normal rats were subjected to hypertension by partial abdominal aortic constriction (PAAC) for 28 days. In the HFD+PAAC control group, rats on HFD were subjected to PAAC on the 62nd day and were sacrificed on the 90th day. HFD and PAAC individually resulted in significant cardiac hypertrophy and fibrosis along with increased oxidative stress and mean arterial blood pressure (MABP) in rats as evidenced by various morphological, biochemical, and histological parameters. Moreover, the HFD + PAAC control group showed marked cardiac remodeling compared to rats subjected to HFD or PAAC alone. The HFD+gemfibrozil and HFD+PAAC+gemfibrozil groups showed significant reduction in cardiac remodeling along with reduction in oxidative stress and MABP. Hence, it may be concluded that oxidative stress plays a key role in obesity-mediated synergistic effects on induction and progression of PAAC-induced cardiac remodeling, and its deleterious effects could be reversed by gemfibrozil treatment in rats through its antioxidant activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Disfunção ventricular esquerda transitória por cardiomiopatia induzida por estresse Transient left ventricular dysfunction due to stress-induced cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Simões

    2007-10-01

    Full Text Available Apresenta-se o caso de uma paciente de 71 anos que preencheu os critérios diagnósticos para cardiomiopatia induzida por estresse que foi desencadeada por intenso estresse emocional após atropelamento por bicicleta. O quadro clínico mimetizou o infarto agudo do miocárdio, manifestando-se com dor precordial, supradesnivelamento do segmento ST, seguido por ondas T profundas e prolongamento do intervalo QT, elevação discreta de enzimas cardíacas e cursando com disfunção sistólica apical do ventrículo esquerdo e hipercinesia das porções basais (conferindo o aspecto de "abaloamento apical", mas na ausência de obstrução coronariana subepicárdica. A função ventricular normalizou-se após a segunda semana de evolução.The case presented here is of a 71-yr-old female patient who met the diagnostic criteria for stress-induced cardiomyopathy, which was triggered by intense emotional stress after being hit by a bicycle. The clinical picture mimicked that of an acute myocardial infarction, manifesting as precordial pain, ST-segment depression followed by deep negative T waves and prolonging of the QT interval, slight increase in cardiac enzymes and coursing with transient apical ballooning of the left ventricle and hyperkinesis of the basal walls (conferring the aspect of "apical ballooning", although in the absence of subepicardial coronary obstruction. Ventricular function normalized after the second week of clinical evolution.

  16. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  17. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  18. A exposição à fumaça de cigarro intensifica a remodelação ventricular após o infarto agudo do miocárdio Cigarette smoke exposure intensifies ventricular remodeling process following myocardial infarction

    Directory of Open Access Journals (Sweden)

    Leonardo A. M. Zornoff

    2006-04-01

    Full Text Available OBJETIVO: Analisar os efeitos da exposição à fumaça de cigarro (EFC na remodelação ventricular após o infarto agudo do miocárdio (IAM. MÉTODOS: Ratos foram infartados e distribuídos em dois grupos: C (controle, n = 31 e F (EFC: 40 cigarros/dia, n = 22. Após seis meses, foi realizado ecocardiograma, estudo funcional com coração isolado e morfometria. Para comparação, foi utilizado o teste t (com média ± desvio padrão ou teste de Mann-Whitney (com mediana e percentis 25 e 75. RESULTADOS: Os animais EFC apresentaram tendência a maiores áreas ventriculares diastólicas (C = 1,5 ± 0,4 mm², F = 1,9 ± 0,4 mm²; p = 0,08 e sistólicas (C = 1,05 ± 0,3 mm², F = 1,32 ± 0,4 mm²; p = 0,08 do VE. A função sistólica do VE, avaliada pela fração de variação de área, tendeu a ser menor nos animais EFC (C = 31,9 ± 9,3 %, F = 25,5 ± 7,6 %; p = 0,08. Os valores da - dp/dt dos animais EFC foram estatisticamente inferiores (C = 1474 ± 397 mmHg, F = 916 ± 261 mmHg; p = 0,02 aos animais-controle. Os animais EFC apresentaram maior peso do VD, ajustado ao peso corporal (C = 0,8 ± 0,3 mg/g, F = 1,3 ± 0,4 mg/g; p = 0,01, maior teor de água nos pulmões (C = 4,8 (4,3-4,8%, F = 5,4 (5,1-5,5; p = 0,03 e maior área seccional do miócito do VE (C = 239,8 ± 5,8 µm², F = 253,9 ± 7,9 µm²; p = 0,01. CONCLUSÃO: A exposição à fumaça de cigarro intensifica a remodelação ventricular após IAM.OBJECTIVE: To evaluate the role of cigarette smoke exposure (CSE on ventricular remodeling following acute myocardial infarction (AMI. METHODS: Rats were submitted to myocardial infarction and divided into two groups: C (control, n = 31 and F (CSE: 40 cigarettes/day, n = 22. After 6 months, the survivors were submitted to echocardiogram, functional study with isolated heart, and morphometric analysis. For comparison purposes, we used the t test (mean ± standard deviation or the Mann-Whitney test (with median and 25th and 75th percentiles

  19. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction.

    Directory of Open Access Journals (Sweden)

    Sebastião D Silva

    Full Text Available Exercise training reduces renin-angiotensin system (RAS activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR and age-matched WKY controls the weekly effects of training on blood pressure (BP, plasma and left ventricle (LV Ang II and Ang-(1-7 content (HPLC, LV oxidative stress (DHE staining, gene and protein expression (qPCR and WB of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T or maintained sedentary (S for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes' diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1 vs T4 in WKY-T, normalized oxidative stress (T2, augmented antioxidant defense (T4 and reduced both collagen deposition and inflammatory profile (T8, without changing cardiomyocytes' diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4 and reduced BP (T8. SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1-7 content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.

  20. Kinetics of gene expression and bone remodelling in the clinical phase of collagen induced arthritis

    DEFF Research Database (Denmark)

    Denninger, Katja Caroline Marie; Litman, Thomas; Marstrand, Troels

    2015-01-01

    Introduction: Pathological bone changes differ considerably between inflammatory arthritic diseases and most studies have focused on bone erosion. Collagen-induced arthritis (CIA) is a model for rheumatoid arthritis, which, in addition to bone erosion, demonstrates bone formation at the time...

  1. Lymphangiogenesis and lymphatic remodeling induced by filarial parasites: implications for pathogenesis.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    2009-12-01

    Full Text Available Even in the absence of an adaptive immune system in murine models, lymphatic dilatation and dysfunction occur in filarial infections, although severe irreversible lymphedema and elephantiasis appears to require an intact adaptive immune response in human infections. To address how filarial parasites and their antigens influence the lymphatics directly, human lymphatic endothelial cells were exposed to filarial antigens, live parasites, or infected patient serum. Live filarial parasites or filarial antigens induced both significant LEC proliferation and differentiation into tube-like structures in vitro. Moreover, serum from patently infected (microfilaria positive patients and those with longstanding chronic lymphatic obstruction induced significantly increased LEC proliferation compared to sera from uninfected individuals. Differentiation of LEC into tube-like networks was found to be associated with significantly increased levels of matrix metalloproteases and inhibition of their TIMP inhibitors (Tissue inhibitors of matrix metalloproteases. Comparison of global gene expression induced by live parasites in LEC to parasite-unexposed LEC demonstrated that filarial parasites altered the expression of those genes involved in cellular organization and development as well as those associated with junction adherence pathways that in turn decreased trans-endothelial transport as assessed by FITC-Dextran. The data suggest that filarial parasites directly induce lymphangiogenesis and lymphatic differentiation and provide insight into the mechanisms underlying the pathology seen in lymphatic filariasis.

  2. Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway.

    Directory of Open Access Journals (Sweden)

    Wared eNour-Eldine

    2016-04-01

    Full Text Available INTRODUCTION: Adiponectin (APN, an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II.METHODS AND RESULTS: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO, the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor (SNAP, or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 hr Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. CONCLUSIONS: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.

  3. Prevention of airway hyperresponsiveness induced by left ventricular dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Petak Ferenc

    2012-12-01

    Full Text Available Abstract Background The effectiveness of strategies for treatment of the altered static lung volume and against the development of bronchial hyperreactivity (BHR following a left ventricular dysfunction (LVD induced by myocardial ischaemia was investigated in a rat model of sustained postcapillary pulmonary hypertension. Methods Airway resistance (Raw was identified from the respiratory system input impedance (Zrs in four groups of rats. End-expiratory lung volume (EELV was determined plethysmographically, and Zrs was measured under baseline conditions and following iv infusions of 2, 6 or 18 μg/kg/min methacholine. Sham surgery was performed in the rats in Group C, while the left interventricular coronary artery was ligated and Zrs and its changes following identical methacholine challenges were reassessed in the same rats 8 weeks later, during which no treatment was applied (Group I, or the animals were treated daily with a combination of an angiotensin enzyme converter inhibitor and a diuretic (enalapril and furosemide, Group IE, or a calcium channel blocker (diltiazem, Group ID. The equivalent dose of methacholine causing a 100% increase in Raw (ED50 was determined in each group. Diastolic pulmonary arterial pressure (PapD was assessed by introducing a catheter into the pulmonary artery. Results The sustained presence of a LVD increased PapD in all groups of rats, with variable but significant elevations in Groups I (p = 0.004, ID (p = 0.013 and IE (p = 0.006. A LVD for 8 weeks induced no changes in baseline Raw but elevated the EELV independently of the treatments. In Group I, BHR consistently developed following the LVD, with a significant decrease in ED50 from 10.0 ± 2.5 to 6.9 ± 2.5 μg/kg/min (p = 0.006. The BHR was completely abolished in both Groups ID and IE, with no changes in ED50 (9.5 ± 3.6 vs. 10.7 ± 4.7, p = 0.33 and 10.6 ± 2.1 vs. 9.8 ± 3.5 μg/kg/min p = 0.56, respectively

  4. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery.

    Science.gov (United States)

    Hübner, Neele Saskia; Merkle, Annette; Jung, Bernd; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2015-01-01

    Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  6. Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling

    Czech Academy of Sciences Publication Activity Database

    Mollenhauer, M.; Friedrichs, K.; Lange, M.; Gesenberg, J.; Remane, L.; Kerkenpass, Ch.; Krause, J.; Schneider, J.; Ravekes, T.; Maass, M.; Halbach, M.; Peinkofer, G.; Saric, T.; Mehrkens, D.; Adam, M.; Deuschl, F.G.; Lau, D.; Geertz, B.; Manchanda, K.; Eschenhagen, T.; Kubala, Lukáš; Rudolph, T.K.; Wu, Y.; Tang, W.H.W.; Hazen, S.L.; Baldus, S.; Klinke, A.; Rudolph, V.

    2017-01-01

    Roč. 121, č. 1 (2017) ISSN 0009-7330 Grant - others:GA MŠk(CZ) LQ1605 Institutional support: RVO:68081707 Keywords : pluripotent stem-cells * sudden cardiac death Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 13.965, year: 2016

  7. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    Science.gov (United States)

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  8. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction.

    Science.gov (United States)

    Martens, Pieter; Beliën, Hanne; Dupont, Matthias; Vandervoort, Pieter; Mullens, Wilfried

    2018-05-17

    Major classes of medical therapy for heart failure with reduced ejection fraction (HFrEF) induce reverse remodeling. The revere remodeling response to sacubitril/valsartan remains unstudied. We performed a single-center, prospective assessor-blinded study to determine the reverse remodeling response of sacubitril/valsartan therapy in HFrEF patients with a class I indication (New York heart Association [NYHA]-class II-IV, Left ventricular ejection fraction [LVEF] sacubitril/valsartan were optimized to individual tolerance. Echocardiographic images were assessed offline by 2 investigators blinded to both the clinical data and timing of echocardiograms. One-hundred-twenty-five HFrEF patients (66 ± 10 years) were prospectively included. The amount of RAS-blocker before and after switch to sacubitril/valsartan was similar(P = .290), indicating individual optimal dosing of sacubitril/valsartan. Over a median(IQR) follow-up of 118(77-160) days after initiation of sacubitril/valsartan, LVEF improved (29.6 ± 6% vs 34.8 ± 6%; P sacubitril/valsartan leading to more reverse remodeling. Switching therapy in eligible HFrEF patients from a RAS-blocker to sacubitril/valsartan induces beneficial reverse remodeling of both metrics of systolic as diastolic function. © 2018 John Wiley & Sons Ltd.

  9. Exercise-induced changes in left ventricular global longitudinal strain in asymptomatic severe aortic stenosis.

    Science.gov (United States)

    Lech, Agnieszka K; Dobrowolski, Piotr P; Klisiewicz, Anna; Hoffman, Piotr

    2017-01-01

    The management of patients with asymptomatic severe aortic stenosis (ASAS) is still under discussion. Therefore, it is advisable to search for the parameters of early damage to left ventricular (LV) function. The aim of the study was to assess exercise-induced changes in LV global longitudinal strain (GLS) in ASAS. The ASAS group consisted of 50 patients (26 women and 24 men, aged 38.4 ± 18.1 years) meeting the echocardiographic criteria of severe aortic stenosis (AVA 4 m/s, mean aortic gradient > 40 mm Hg), with normal LV ejection fraction (LVEF ≥ 55%) and sinus rhythm on electrocardiogram, and without significant concomitant valvular heart diseases. The control group consisted of 21 people matched for age and sex. Echocardiographic examinations and echocardiographic stress tests with the assessment of GLS using the speckle tracking imaging were performed. The ASAS group was characterised by statistically significantly higher LV mass index (LVMI) and higher LVEF. GLS values at rest in both groups were within normal limits but were significantly higher in the control group (-18.9 ± 2.4% vs. -20.7 ± 1.7%, p = 0.006). An increase in GLS at peak exercise in both groups was observed, lower in the ASAS group (the difference was not statistically significant: -0.8 ± 3.0% vs. -2.2 ± 3.1%, p = 0.086). Changes in GLS during exercise (ΔGLS) did not correlate with the parameters of the severity of aortic stenosis. In the multivariate model, LVMI proved to be a factor associated with GLS at rest and during exercise. In patients with ASAS, GLS is a non-invasive marker of an early stage of LV myocardial damage associated with myocardial hypertrophy. An increase in GLS during exercise in the ASAS group, smaller than in the control group, indicates a preserved functional reserve of the LV myocardium but smaller than in healthy individuals. The assessment of the clinical usefulness of exercise-induced changes in GLS requires further research.

  10. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  11. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  12. Effect of vitamin D on aortic remodeling in streptozotocin-induced diabetes

    Directory of Open Access Journals (Sweden)

    Salum Erik

    2012-07-01

    Full Text Available Abstract Background Diabetes mellitus is associated with micro- and macrovascular complications and increased cardiovascular risk. Elevated levels of serum asymmetric dimethylarginine (ADMA may be responsible for endothelial dysfunction associated with diabetes-induced vascular impairment. Vitamin D may have potential protective effects against arterial stiffening. This study aimed to examine both the effects of diabetes on the functional/structural properties of the aorta and the endothelial function and the effects of vitamin D supplementation. Methods Male Wistar rats (n = 30 were randomly assigned to control untreated, diabetic untreated, and diabetic + cholecalciferol groups. Diabetes was induced by intraperitoneal injection of streptozotocin, followed by oral administration of cholecalciferol (500 IU/kg for 10 weeks in the treatment group. Aortic pulse wave velocity (PWV was recorded over a mean arterial pressure (MAP range of 50 to 200 mmHg using a dual pressure sensor catheter. Intravenous infusion of phenylephrine and nitroglycerine was used to increase and decrease MAP, respectively. Serum 25-hydroxyvitamin D [25(OHD] levels were measured using a radioimmune assay. ADMA levels in serum were measured by enzyme-linked immunoassay. Aortic samples were collected for histomorphometrical analysis. Results PWV up to MAP 170 mmHg did not reveal any significant differences between all groups, but in diabetic rats, PWV was significantly elevated across MAP range between 170 and 200 mmHg. Isobaric PWV was similar between the treated and untreated diabetic groups, despite significant differences in the levels of serum 25(OHD (493 ± 125 nmol/L vs 108 ± 38 nmol/L, respectively. Serum levels of ADMA were similarly increased in the treated and untreated diabetic groups, compared to the control group. The concentration and integrity of the elastic lamellae in the medial layer of the aorta was impaired in untreated

  13. The overloaded right heart and ventricular interdependence.

    Science.gov (United States)

    Naeije, Robert; Badagliacca, Roberto

    2017-10-01

    The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights

  14. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    Science.gov (United States)

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  15. Left Ventricular Thrombus as a Complication of Clozapine-Induced Cardiomyopathy: A Case Report and Brief Literature Review.

    Science.gov (United States)

    Malik, Shahbaz A; Malik, Sarah; Dowsley, Taylor F; Singh, Balwinder

    2015-01-01

    A 48-year-old male with history of schizoaffective disorder on clozapine presented with chest pain, dyspnea, and new left bundle branch block. He underwent coronary angiography, which revealed no atherosclerosis. The patient's workup was unrevealing for a cause for the cardiomyopathy and thus it was thought that clozapine was the offending agent. The patient was taken off clozapine and started on guideline directed heart failure therapy. During the course of hospitalization, he was also discovered to have a left ventricular (LV) thrombus for which he received anticoagulation. To our knowledge, this is the first case report of clozapine-induced cardiomyopathy complicated by a LV thrombus.

  16. Left Ventricular Thrombus as a Complication of Clozapine-Induced Cardiomyopathy: A Case Report and Brief Literature Review

    Directory of Open Access Journals (Sweden)

    Shahbaz A. Malik

    2015-01-01

    Full Text Available A 48-year-old male with history of schizoaffective disorder on clozapine presented with chest pain, dyspnea, and new left bundle branch block. He underwent coronary angiography, which revealed no atherosclerosis. The patient’s workup was unrevealing for a cause for the cardiomyopathy and thus it was thought that clozapine was the offending agent. The patient was taken off clozapine and started on guideline directed heart failure therapy. During the course of hospitalization, he was also discovered to have a left ventricular (LV thrombus for which he received anticoagulation. To our knowledge, this is the first case report of clozapine-induced cardiomyopathy complicated by a LV thrombus.

  17. Fast nonclinical ventricular tachycardia inducible after ablation in patients with structural heart disease: Definition and clinical implications.

    Science.gov (United States)

    Watanabe, Masaya; de Riva, Marta; Piers, Sebastiaan R D; Dekkers, Olaf M; Ebert, Micaela; Venlet, Jeroen; Trines, Serge A; Schalij, Martin J; Pijnappels, Daniël A; Zeppenfeld, Katja

    2018-01-08

    Noninducibility of ventricular tachycardia (VT) with an equal or longer cycle length (CL) than that of the clinical VT is considered the minimum ablation endpoint in patients with structural heart disease. Because their clinical relevance remains unclear, fast nonclinical VTs are often not targeted. However, an accepted definition for fast VT is lacking. The shortest possible CL of a monomorphic reentrant VT is determined by the ventricular refractory period (VRP). The purpose of this study was to propose a patient-specific definition for fast VT based on the individual VRP (fVT VRP ) and assess the prognostic significance of persistent inducibility after ablation of fVT VRP for VT recurrence. Of 191 patients with previous myocardial infarction or with nonischemic cardiomyopathy undergoing VT ablation, 70 (age 63 ± 13 years; 64% ischemic) remained inducible for a nonclinical VT and composed the study population. FVT VRP was defined as any VT with CL ≤VRP 400 + 30 ms. Patients were followed for VT recurrence. After ablation, 30 patients (43%) remained inducible exclusively for fVT VRP and 40 (57%) for any slower VT. Patients with only fVT VRP had 3-year VT-free survival of 64% (95% confidence interval [CI] 46%-82%) compared to 27% (95% CI 14%-48%) for patients with any slower remaining VT (P = .013). Inducibility of only fVT VRP was independently associated with lower VT recurrence (hazard ratio 0.38; 95% CI 0.19-0.86; P = .019). Among 36 patients inducible for any fVT VRP , only 1 had recurrence with fVT VRP . In patients with structural heart disease, inducibility of exclusively fVT VRP after ablation is associated with low VT recurrence. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Enalaprilato na prevenção da hipertrofia ventricular esquerda induzida pelo isoproterenol Enalaprilat prevents the left ventricular hypertrophy induced by isoproterenol

    Directory of Open Access Journals (Sweden)

    Eduardo A. S. Costa

    1997-07-01

    Full Text Available OBJETIVO: Avaliar se o enalaprilato, droga inibidora da enzima de conversão da angiotensina I, previne a hipertrofia ventricular esquerda (HVE induzida pelo isoproterenol. MÉTODOS: Foram divididos em 4 grupos, 72 ratos Wistar-EPM: CON controle; ENA, tratados com enalaprilato (1mg/kg via subcutânea (sc por 8 dias; ISO, tratados com isoproterenol (0,3mg/kg via sc/8 dias e ENA+ISO, tratados simultaneamente com ambas as drogas. Em 10 animais de cada grupo foram determinadas a freqüência cardíaca (FC e a pressão arterial (PA e verificado o peso de ventrículo esquerdo (VE. Em 8 animais de cada grupo, fragmento do VE foi corado com hematoxilina-eosina e picro-sírius e preparado para estudo morfométrico e ultra-estrutural, respectivamente, com microscópio de luz e eletrônico. RESULTADOS: Nos grupos estudados (CON, ENA, ISO e ISO+ENA não ocorreram variações na PA. Os grupos ISO e ISO+ENA exibiram aumentos significantes na FC. O grupo ISO apresentou aumento significativo do peso do VE (PU= 0,821g e PS= 0,204g, quando comparado ao grupo CON. O grupo ENA não exibiu modificação de peso do VE quando comparado ao grupo CON (PU= 0,590g e PS= 0,139g. No grupo ENA+ISO (PU= 0,737g e PS= 0,177g constatou-se diferença de peso ao ser comparado aos grupos ISO e CON. A análise morfométrica e ultra-estrutural mostraram que o ISO induziu hipertrofia dos cardiomiócitos e aumento do tecido conjuntivo com depósito de fibras colágenas do tipo I. O enalaprilato associado com isoproterenol atenuou importantemente aquela manifestação. CONCLUSÃO: O enalaprilato inibiu a ação do isoproterenol sobre os cardiomiócitos, evitando parcialmente, na dose utilizada, a HVE e diminuindo também a quantidade de fibras colágenas.PURPOSE: To evaluate whether the enalaprilat, angiotensin I enzyme conversion inhibitor, could prevent the left ventricular hypertrophy (LVH induced by isoproterenol. METHODS: Seventy two adult Wistar-EPM rats were divided into four

  19. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    Science.gov (United States)

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for

  20. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes

    Directory of Open Access Journals (Sweden)

    Trine Krogh-Madsen

    2017-12-01

    Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

  1. A case of appropriate inappropriate device therapy: Hyperkalemia-induced ventricular oversensing

    OpenAIRE

    Oudit, Gavin Y; Cameron, Doug; Harris, Louise

    2008-01-01

    The present case describes a patient who received inappropriate, but potentially life-saving, therapy from her implantable cardioverter defibrillator (ICD) in the setting of acute hyperkalemia (plasma potassium concentration = 8 mM). Hyperkalemia was associated with the development of a slow sinusoidal ventricular tachycardia, at a rate of 100 beats/min to 125 beats/min (610 ms to 480 ms) in a patient who is pacemaker-dependent. There was associated fractionation of the ICD electrogram and T ...

  2. Targeting miR-423-5p Reverses Exercise Training-Induced HCN4 Channel Remodeling and Sinus Bradycardia

    DEFF Research Database (Denmark)

    D'Souza, Alicia; Pearman, Charles M.; Wang, Yanwen

    2017-01-01

    -generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction...

  3. Positive effect of Chang Run Tong on colonic remodeling in streptozotocin-induced diabetic rats and mechanisms involved

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Sha, Hong; Gregersen, Hans

    2015-01-01

    Objective: It has been documented that the Chinese medicine Chang Run Tong (CRT) has a positive effect on constipation which is a prominent symptom in diabetic patients. This present study investigated the effect and the possible mechanism of CRT on colonic remodeling in streptozotocin (STZ...

  4. Early recurrences of atrial fibrillation after electrical cardioversion : A result of fibrillation-induced electrical remodeling of the atria?

    NARCIS (Netherlands)

    Tieleman, RG; Van Gelder, IC; Crijns, HJGM; De Kam, PJ; Van den Berg, MP; Haaksma, J; Van der Woude, HJ; Allessie, MA

    Objectives, We sought to investigate whether, in humans, the timing and incidence of a relapse of atrial fibrillation (AF) during the first month after cardioversion indicates the presence of electrical remodeling and whether this could be influenced by prevention of intracellular calcium overload

  5. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    Science.gov (United States)

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  6. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics - Insights from a 3D Model of the Human Atria.

    Science.gov (United States)

    Adeniran, Ismail; MacIver, David H; Garratt, Clifford J; Ye, Jianqiao; Hancox, Jules C; Zhang, Henggui

    2015-01-01

    Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2-3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.

  7. Remodeling of the residual gastric mucosa after roux-en-y gastric bypass or vertical sleeve gastrectomy in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Konstantinos Arapis

    Full Text Available Whereas the remodeling of intestinal mucosa after bariatric surgeries has been the matter of numerous studies to our knowledge, very few reported on the remodeling of the residual gastric mucosa. In this study, we analyzed remodeling of gastric mucosa after Roux-en-Y gastric bypass (RYGB and vertical sleeve gastrectomy (VSG in rats. Diet-induced obese rats were subjected to RYGB, VSG or sham surgical procedures. All animals were assessed for food intake, body-weight, fasting blood, metabolites and hormones profiling, as well as insulin and glucose tolerance tests before and up to 5 weeks post-surgery. Remodeling of gastric tissues was analyzed by routine histology and immunohistochemistry studies, and qRT-PCR analyses of ghrelin and gastrin mRNA levels. In obese rats with impaired glucose tolerance, VSG and RYGB caused substantial weight loss and rats greatly improved their oral glucose tolerance. The remaining gastric mucosa after VSG and gastric pouch (GP after RYGB revealed a hyperplasia of the mucous neck cells that displayed a strong immunoreactivity for parietal cell H+/K+-ATPase. Ghrelin mRNA levels were reduced by 2-fold in remaining fundic mucosa after VSG and 10-fold in GP after RYGB. In the antrum, gastrin mRNA levels were reduced after VSG in line with the reduced number of gastrin positive cells. This study reports novel and important observations dealing with the remaining gastric mucosa after RYGB and VSG. The data demonstrate, for the first time, a hyperplasia of the mucous neck cells, a transit cell population of the stomach bearing differentiating capacities into zymogenic and peptic cells.

  8. Dyssynchronous Ventricular Activation in Asymptomatic Wolff-Parkinson-White Syndrome: A Risk Factor for Development of Dilated Cardiomyopathy

    Science.gov (United States)

    Udink ten Cate, Floris EA; Wiesner, Nathalie; Trieschmann, Uwe; Khalil, Markus; Sreeram, Narayanswami

    2010-01-01

    A subset of children and adults with Wolff-Parkinson-White (WPW) syndrome develop dilated cardiomyopathy (DCM). Although DCM may occur in symptomatic WPW patients with sustained tachyarrhythmias, emerging evidence suggests that significant left ventricular dysfunction may arise in WPW in the absence of incessant tachyarrhythmias. An invariable electrophysiological feature in this non-tachyarrhythmia type of DCM is the presence of a right-sided septal or paraseptal accessory pathway. It is thought that premature ventricular activation over these accessory pathways induces septal wall motion abnormalities and ventricular dyssynchrony. LV dyssynchrony induces cellular and structural ventricular remodelling, which may have detrimental effects on cardiac performance. This review summarizes recent evidence for development of DCM in asymptomatic patients with WPW, discusses its pathogenesis, clinical presentation, management and treatment. The prognosis of accessory pathway-induced DCM is excellent. LV dysfunction reverses following catheter ablation of the accessory pathway, suggesting an association between DCM and ventricular preexcitation. Accessory pathway-induced DCM should be suspected in all patients presenting with heart failure and overt ventricular preexcitation, in whom no cause for their DCM can be found. PMID:20552060

  9. Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica.

    Science.gov (United States)

    Zelko, Igor N; Zhu, Jianxin; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-11-28

    Occupational and environmental exposure to crystalline silica may lead to the development of silicosis, which is characterized by inflammation and progressive fibrosis. A substantial number of patients diagnosed with silicosis develop pulmonary hypertension. Pulmonary hypertension associated with silicosis and with related restrictive lung diseases significantly reduces survival in affected subjects. An animal model of silicosis has been described previously however, the magnitude of vascular remodeling and hemodynamic effects of inhaled silica are largely unknown. Considering the importance of such information, this study investigated whether mice exposed to silica develop pulmonary hypertension and vascular remodeling. C57BL6 mice were intratracheally injected with either saline or crystalline silica at doses 0.2 g/kg, 0.3 g/kg and 0.4 g/kg and then studied at day 28 post-exposure. Pulmonary hypertension was characterized by changes in right ventricular systolic pressure and lung histopathology. Mice exposed to saline showed normal lung histology and hemodynamic parameters while mice exposed to silica showed increased right ventricular systolic pressure and marked lung pathology characterized by a granulomatous inflammatory reaction and increased collagen deposition. Silica-exposed mice also showed signs of vascular remodeling with pulmonary artery muscularization, vascular occlusion, and medial thickening. The expression of pro-inflammatory genes such as TNF-α and MCP-1 was significantly upregulated as well as the expression of the pro-remodeling genes collagen type I, fibronectin and the metalloproteinases MMP-2 and TIMP-1. On the other hand, the expression of several vasculature specific genes involved in the regulation of endothelial function was significantly attenuated. We characterized a new animal model of pulmonary hypertension secondary to pulmonary fibrosis induced by crystalline silica. Our data suggest that silica promotes the damage of the

  10. Transient left ventricular apical ballooning and exercise induced hypertension during treadmill exercise testing: is there a common hypersympathetic mechanism?

    Directory of Open Access Journals (Sweden)

    Oh Jae K

    2008-07-01

    Full Text Available Abstract Objective To describe two cases of Takotsubo like myocardial contractile pattern during exercise stress test secondary to hypertensive response. Background Treadmill exercise testing is known to cause sympathetic stimulation, leading to increased levels of catecholamine, resulting in alteration in vascular tone. Hypertensive response during exercise testing can cause abnormal consequences, resulting in false positive results. Cases We present the cases of two patients experiencing apical and basal akinesis during exercise stress echocardiography, in whom normal wall motion response was observed on subsequent pharmacologic stress testing. The first patient developed transient left ventricular (LV apical akinesis during exercise stress echocardiography. Due to high suspicion that this abnormality might be secondary to hypertensive response, pharmacologic stress testing was performed after three days, which was completely normal and showed no such wall motion abnormality. Qualitative assessment of myocardial perfusion using contrast was also performed, which showed good myocardial blood flow, indicating low probability for significant obstructive coronary artery disease. The second patient developed LV basal akinesis as a result of hypertensive response during exercise testing. Coronary angiogram was not performed in either patient due to low suspicion for coronary artery disease, and subsequently negative stress studies. Results Transient stress induced cardiomyopathy can develop secondary to hypertensive response during exercise stress testing. Conclusion These cases provide supporting evidence to the hyper-sympathetic theory of left ventricular ballooning syndrome.

  11. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  12. Noninvasive cardiac activation imaging of ventricular arrhythmias during drug-induced QT prolongation in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin

    2013-10-01

    Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.

  13. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    Science.gov (United States)

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  14. Successful Implantation of a Left Ventricular Assist Device in a Patient with Heparin-Induced Thrombocytopenia and Thrombosis

    Science.gov (United States)

    Garland, Cassandra; Somogyi, David

    2014-01-01

    Abstract: We report the case of a 27-year-old woman with signs of heparin-induced thrombocytopenia and thrombosis (HITT) and left heart failure presenting for urgent implantation of a left ventricular assist device (LVAD). HITT can occur in 4.2–6.1% of patients with LVADs. If the patient remains hemodynamically stable, implantation can be delayed for several months until the heparin/PF-4 antibodies decline allowing the use of heparin on cardiopulmonary bypass, However, in most cases related to cardiogenic shock, surgery cannot be delayed. We present the case of a patient who underwent implantation of a HeartMate II LVAD and discuss management strategy using bivalirudin during cardiopulmonary bypass. PMID:25208434

  15. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

    Directory of Open Access Journals (Sweden)

    Fabrizio Accardi

    2015-01-01

    Full Text Available Multiple myeloma (MM is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.

  16. High baseline left ventricular and systolic volume may identify patients at risk of chemotherapy-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Atiar Rahman; Alex Gedevanishvili; Seham Ali; Elma G Briscoe; Vani Vijaykumar

    2004-01-01

    contribute to cardiac toxicity, but neither low baseline peak filling rates nor left ventricular en d diastolic volume predicted future progression to chemotherapy induced cardiotoxicity. Summary: We conclude that high baseline left ventricular end systolic volumes may identify patients at risk of chemotherapy-induced cardiotoxicity, this parameter should be carefully evaluated prior to initiation for chemotherapy. (authors)

  17. Matrix Metalloproteinase-2 Activity is Associated with Divergent Regulation of Calponin-1 in Conductance and Resistance Arteries in Hypertension-induced Early Vascular Dysfunction and Remodelling.

    Science.gov (United States)

    Parente, Juliana M; Pereira, Camila A; Oliveira-Paula, Gustavo H; Tanus-Santos, José E; Tostes, Rita C; Castro, Michele M

    2017-10-01

    Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent

  18. Sub-aortic obstruction of left ventricular outflow tract secondary to benfluorex-induced endocardial fibrosis

    Directory of Open Access Journals (Sweden)

    Catherine Szymanski

    2015-12-01

    Full Text Available Patients exposed to benfluorex have an increased risk of restrictive organic valvular heart disease. Aortic and mitral regurgitations caused by fibrotic valve disease are the most common features observed in exposure to fenfluramine derivatives in general and benfluorex in particular. We report here, for the first time to our knowledge, a well-documented case in which obstructive sub-aortic endocardium fibrosis within the left ventricular outflow tract is related with exposure to a drug that modifies the metabolism of serotonin. It now remains to be established whether extensive fibrosis of the myocardium in addition to well-documented valvular fibrosis may develop in patients exposed to amphetamine-derived drugs affecting the serotonin system.

  19. Recurrent Pulseless Ventricular Tachycardia Induced by Commotio Cordis Treated with Therapeutic Hypothermia

    Directory of Open Access Journals (Sweden)

    Sanghyun Lee

    2015-11-01

    Full Text Available The survival rate of commotio cordis is low, and there is often associated neurological disability if return of spontaneous circulation (ROSC can be achieved. We report a case of commotio cordis treated with therapeutic hypothermia (TH that demonstrated a favorable outcome. A 16-year-old female was transferred to our emergency department (ED for collapse after being struck in the chest with a dodgeball. She has no history of heart problems. She was brought to our ED with pulseless ventricular tachycardia (VT, and ROSC was achieved with defibrillation. She was comatose at our ED and was treated with TH at a target temperature of 33°C for 24 hours. After transfer to the intensive care unit, pulseless VT occurred, and defibrillation was performed twice. She recovered to baseline neurologic status with the exception of some memory difficulties.

  20. Tachycardia-Induced J-Wave Changes in Patients With and Without Idiopathic Ventricular Fibrillation.

    Science.gov (United States)

    Aizawa, Yoshiyasu; Takatsuki, Seiji; Nishiyama, Takahiko; Kimura, Takehiro; Kohsaka, Shun; Kaneko, Yoshiaki; Inden, Yasuya; Takahashi, Naohiko; Nagase, Satoshi; Aizawa, Yoshifusa; Fukuda, Keichi

    2017-07-01

    To know the underlying mechanisms of J waves, the response to atrial pacing was studied in patients with idiopathic ventricular fibrillation (IVF) and patients with non-IVF. In 8 patients with IVF, the J-wave amplitude was measured before, during, and after atrial pacing. All patients had episodes of ventricular fibrillation without structural heart disease. The responses of J waves were compared with those of the 17 non-IVF control subjects who revealed J waves but no history of cardiac arrest and underwent electrophysiological study. The IVF patients were younger than the non-IVF patients (28±10 versus 52±14 years, respectively; P =0.002) and had larger J waves with more extensive distribution. J waves decreased from 0.35±0.26 to 0.22±0.23 mV ( P =0.025) when the RR intervals were shortened from 782±88 to 573±162 ms ( P =0.001). A decrease (≥0.05 mV) in the J-wave amplitude was observed in 6 of the 8 patients. In addition, 1 patient showed a distinct reduction of J waves in the unipolar epicardial leads. In contrast, J waves were augmented in the 17 non-IVF subjects from 0.27±0.09 to 0.38±0.10 mV ( P J waves to rapid pacing suggest different mechanisms: early repolarization in IVF patients and conduction delay in non-IVF patients. The response to atrial pacing was different between the IVF and non-IVF patients, which suggests the presence of different mechanisms for the genesis of J waves. © 2017 American Heart Association, Inc.

  1. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  2. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  3. Stent-assisted, balloon-induced intimal disruption and relamination of aortic dissection in patients with Marfan syndrome: Midterm outcomes and aortic remodeling.

    Science.gov (United States)

    Faure, Elsa Madeleine; El Batti, Salma; Abou Rjeili, Marwan; Ben Abdallah, Iannis; Julia, Pierre; Alsac, Jean-Marc

    2018-05-17

    The study objective was to assess the midterm outcomes and aortic remodeling in patients with Marfan syndrome with complicated acute type B aortic dissection treated with stent-assisted, balloon-induced intimal disruption and relamination. We reviewed all patients treated with stent-assisted, balloon-induced intimal disruption and relamination for a complicated acute type B aortic dissection associated with Marfan syndrome according to the revised Ghent criteria. Between 2015 and November 2017, 7 patients with Marfan syndrome underwent stent-assisted, balloon-induced intimal disruption and relamination for a complicated acute type B aortic dissection. The median age of patients was 47 years (range, 23-70). Four patients had a history of aortic root replacement. Technical success was achieved in 100%. Three patients required an adjunctive procedure for renal artery stenting (n = 2) and iliac artery stenting (n = 1). There was no in-hospital death, 30-day postoperative stroke, spinal cord ischemia, ischemic colitis, or renal failure requiring dialysis. At a median follow-up of 15 months (range, 7-28), 1 patient required aortic arch replacement for aneurysmal degeneration associated with a type Ia endoleak at 2 years, giving a late reintervention rate of 14%. There was no other secondary endoleak. The primary visceral patency rate was 100%. There were no all-cause deaths reported. At last computed tomography scan, all patients had complete aortic remodeling of the treated thoracoabdominal aorta. Distally, at the nonstented infrarenal aortoiliac level, 6 patients had persistent false lumen flow with stable aorto-iliac diameter in 5. One patient had iliac diameter growth (27 mm diameter at last computed tomography scan). Stent-assisted, balloon-induced intimal disruption and relamination of aortic dissection in patients with Marfan syndrome is feasible, safe, and associated with an immediate and midterm persisting thoracoabdominal aortic remodeling. Copyright

  4. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload.

    Science.gov (United States)

    Ito, Koji; Hirooka, Yoshitaka; Sunagawa, Kenji

    2014-02-01

    The hypothalamic mineralocorticoid receptor (MR)-angiotensin II type 1 receptor (AT1R) pathway is activated in mice with chronic pressure overload (CPO). When this activation is combined with high salt intake, it leads to sympathoexcitation, hypertension, and left ventricular (LV) dysfunction. Salt intake is thus an important factor that contributes to heart failure. Miso, a traditional Japanese food made from fermented soybeans, rice, wheat, or oats, can attenuate salt-induced hypertension in rats. However, its effects on CPO mice with salt-induced sympathoexcitation and LV dysfunction are unclear. Here, we investigated whether miso has protective effects in these mice. We also evaluated mechanisms associated with the hypothalamic MR-AT1R pathway. Aortic banding was used to produce CPO, and a sham operation was performed for controls. At 2 weeks after surgery, the mice were given water containing high NaCl levels (0.5%, 1.0%, and 1.5%) for 4 weeks. The high salt loading in CPO mice increased excretion of urinary norepinephrine (uNE), a marker of sympathetic activity, in an NaCl concentration-dependent manner; however, this was not observed in Sham mice. Subsequently, CPO mice were administered 1.0% NaCl water (CPO-H) or miso soup (1.0% NaCl equivalent, CPO-miso). The expression of hypothalamic MR, serum glucocorticoid-induced kinase-1 (SGK-1), and AT1R was higher in the CPO-H mice than in the Sham mice; however, the expression of these proteins was attenuated in the CPO-miso group. Although the CPO-miso mice had higher sodium intake, salt-induced sympathoexcitation was lower in these mice than in the CPO-H group. Our findings indicate that regular intake of miso soup attenuates salt-induced sympathoexcitation in CPO mice via inhibition of the hypothalamic MR-AT1R pathway.

  5. Astragalus Granule Prevents Ca2+ Current Remodeling in Heart Failure by the Downregulation of CaMKII

    Directory of Open Access Journals (Sweden)

    Sinai Li

    2017-01-01

    Full Text Available Background. Astragalus was broadly used for treating heart failure (HF and arrhythmias in East Asia for thousands of years. Astragalus granule (AG, extracted from Astragalus, shows beneficial effect on the treatment of HF in clinical research. We hypothesized that administration of AG prevents the remodeling of L-type Ca2+ current (ICa-L in HF mice by the downregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII. Methods. HF mice were induced by thoracic aortic constriction (TAC. After 4 weeks of AG treatment, cardiac function and QT interval were evaluated. Single cardiac ventricular myocyte was then isolated and whole-cell patch clamp was used to record action potential (AP and ICa-L. The expressions of L-type calcium channel alpha 1C subunit (Cav1.2, CaMKII, and phosphorylated protein kinase A (p-PKA were examined by western blot. Results. The failing heart manifested distinct electrical remodeling including prolonged repolarization time and altered ICa-L kinetics. AG treatment attenuated this electrical remodeling, supported by AG-related shortened repolarization time, decreased peak ICa-L, accelerated ICa-L inactivation, and positive frequency-dependent ICa-L facilitation. In addition, AG treatment suppressed the overexpression of CaMKII, but not p-PKA, in the failing heart. Conclusion. AG treatment protected the failing heart against electrical remodeling and ICa-L remodeling by downregulating CaMKII.

  6. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yu-luan; He, Li [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xiao, Jun [Department of Cardiology, Chongqing Emergency Medical Center, Chongqing (China); Xia, Shuang; Deng, Song-bai [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xiu, Yun [Institute of Life Science, Chongqing Medical University, Chongqing (China); She, Qiang [Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2012-02-17

    Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (I{sub to}) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM+TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg{sup −1}·day{sup −1}). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of I{sub to} was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated I{sub to} reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced I{sub to} of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.

  7. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus

    International Nuclear Information System (INIS)

    Xiang, Yu-luan; He, Li; Xiao, Jun; Xia, Shuang; Deng, Song-bai; Xiu, Yun; She, Qiang

    2012-01-01

    Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (I to ) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM+TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg −1 ·day −1 ). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of I to was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated I to reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced I to of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM

  8. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-01-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  9. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  10. Remodelling of living bone induced by dynamic loading and drug delivery—Numerical modelling and clinical treatment

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Klika, Václav; Chlup, Hynek

    2010-01-01

    Roč. 80, č. 6 (2010), s. 1278-1288 ISSN 0378-4754 R&D Projects: GA ČR GA106/03/1073; GA ČR(CZ) GA106/08/0557 Grant - others:GA ČR(CZ) GA201/06/0352 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodelling * chemical kinetics * biochemical model Subject RIV: BJ - Thermodynamics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4VT1FYX-1-1&_cdi=5655&_user=640952&_pii=S0378475409000664&_origin=search&_coverDate=02%2F28%2F2010&_sk=999199993&view=c&wchp=dGLzVlz-zSkzV&md5=efaf801defe31154a1c6c44a9c5edef0&ie=/sdarticle.pdf

  11. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease.

    Science.gov (United States)

    Tong, Xin-Kang; Nicolakakis, Nektaria; Kocharyan, Ara; Hamel, Edith

    2005-11-30

    The roles of oxidative stress and structural alterations in the cerebrovascular dysfunctions associated with Alzheimer's disease (AD) were investigated in transgenic mice overexpressing amyloid precusor protein (APP+) or transforming growth factor-beta1 (TGF+). Age-related impairments and their in vitro reversibility were evaluated, and underlying pathogenic mechanisms were assessed and compared with those seen in AD brains. Vasoconstrictions to 5-HT and endothelin-1 were preserved, except in the oldest (18-21 months of age) TGF+ mice. Despite unaltered relaxations to sodium nitroprusside, acetylcholine (ACh) and calcitonin gene-related peptide-mediated dilatations were impaired, and there was an age-related deficit in the basal availability of nitric oxide (NO) that progressed more gradually in TGF+ mice. The expression and progression of these deficits were unrelated to the onset or extent of thioflavin-S-positive vessels. Manganese superoxide dismutase (SOD2) was upregulated in pial vessels and around brain microvessels of APP+ mice, pointing to a role of superoxide in the dysfunctions elicited by amyloidosis. In contrast, vascular wall remodeling associated with decreased levels of endothelial NO synthase and cyclooxygenase-2 and increased contents of vascular endothelial growth factor and collagen-I and -IV characterized TGF+ mice. Exogenous SOD or catalase normalized ACh dilatations and NO availability in vessels from aged APP+ mice but had no effect in those of TGF+ mice. Increased perivascular oxidative stress was not evidenced in AD brains, but vascular wall alterations compared well with those seen in TGF+ mice. We conclude that brain vessel remodeling and associated alterations in levels of vasoactive signaling molecules are key contributors to AD cerebrovascular dysfunctions.

  12. Effect of steroid eluting versus conventional electrodes on propafenone induced rise in chronic ventricular pacing threshold.

    Science.gov (United States)

    Cornacchia, D; Fabbri, M; Maresta, A; Nigro, P; Sorrentino, F; Puglisi, A; Ricci, R; Peraldo, C; Fazzari, M; Pistis, G

    1993-12-01

    The aim of this study was to evaluate chronic ventricular pacing threshold increase after oral propafenone therapy. Eighty-three patients affected by advanced atrioventricular block and sick sinus syndrome were studied at least 3 months after pacemaker implantation, before and after oral propafenone therapy (450-900 mg/day based on body weight). The patients were subdivided into three groups according to the type of unipolar electrode that was implanted: group I (41 patients) Medtronic CapSure 4003, group II (30 patients) Medtronic Target Tip 4011, and group III (12 patients) Osypka Vy screw-in lead. In all cases a Medtronic unipolar pacemaker was implanted: 30 Minix, 23 Activitrax, 14 Elite, 12 Legend, and 4 Pasys. Propafenone blood level was measured in 75 patients 3-5 hours after propafenone administration. The pacing autothreshold was measured at 0.8 V, 1.6 V, and 2.5 V by reducing pulse width. At the three different outputs before and after propafenone, threshold increments were significantly lower in group I in comparison with group II and group III (propafenone ranging from < 0.001 to < 0.05). No significant difference was found in pacing impedance or in propafenone plasma concentration in the three groups. Strength-duration curves were drawn for each group at baseline and after propafenone administration. Before propafenone, in group I, the knee was markedly shifted to the left and downward as compared to the classic curve, so that the steep part was predominant; in group II and group III this shift was progressively less evident.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  14. Rosemary supplementation (Rosmarinus oficinallis L. attenuates cardiac remodeling after myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Bruna Paola Murino Rafacho

    Full Text Available Myocardial infarction (MI is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown.To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1 Sham group fed standard chow (SR0, n = 23; 2 Sham group fed standard chow supplemented with 0.02% rosemary (R002 (SR002, n = 23; 3 Sham group fed standard chow supplemented with 0.2% rosemary (R02 (SR02, n = 22; 4 group submitted to MI and fed standard chow (IR0, n = 13; 5 group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8; and 6 group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9. After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively.Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.

  15. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  16. Attenuated ventricular β-adrenergic response and reduced repolarization reserve in a rabbit model of chronic heart failure

    DEFF Research Database (Denmark)

    Nissen, Jakob Dahl; Thomsen, Morten Bækgaard; Bentzen, Bo Hjorth

    2012-01-01

    Animal models of pacing-induced heart failure (HF) are often associated with high acute mortality secondary to high pacing frequencies. The present study therefore exploits lower-frequency left ventricular pacing (300 beats per minute) in rabbits for 11 weeks to produce chronic HF with low acute...... mortality but profound structural, functional, and electrical remodeling and compare with nonpaced controls. Pacing increased heart weight/body weight ratio and decreased left ventricular fractional shortening in tachypaced only. Electrocardiogram recordings during sinus rhythm revealed QTc prolongation...... in paced animals. Ventricular arrhythmias or sudden death was not observed. Isoproterenol increased heart rate similarly in both groups but showed a blunted QT-shortening effect in tachypaced rabbits compared with controls. Langendorff experiments revealed significant monophasic action potential duration...

  17. Impact of diabetes on treatment-induced changes in left ventricular structure and function in hypertensive patients with left ventricular hypertrophy. The LIFE study

    DEFF Research Database (Denmark)

    Gerdts, E; Okin, P M; Omvik, P

    2009-01-01

    in diabetic and non-diabetic groups during treatment (33/18 vs. 28/16mmHg (ns)), diabetes was associated with higher prevalence of persistent LVH (47 vs. 39%, pdiabetes independently predicted less LV mass reduction and less improvement in stress-corrected LV midwall......BACKGROUND AND AIM: Diabetes is associated with left ventricular hypertrophy (LVH) and impaired systolic function in hypertensive patients, but less is known about its impact on LVH regression and functional improvement during antihypertensive treatment. METHODS AND RESULTS: We performed annual...... echocardiography in 730 non-diabetic and 93 diabetic patients (aged 55-80 years) with hypertension and electrocardiographic LVH during 4.8-year losartan- or atenolol-based treatment in the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. Baseline mean blood pressure (BP) and LV mass did...

  18. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  19. Acute left ventricular failure in a patient with hydroxychloroquine-induced cardiomyopathy

    NARCIS (Netherlands)

    Hartmann, M.; Hartmann, M.; Meek, I.L.; van Houwelingen, G.K.; Lambregts, H.P.C.M.; Toes, G.J.; van der Wal, A.C.; von Birgelen, Clemens

    2011-01-01

    We present the case of a 75-year-old woman with a medical history of rheumatoid arthritis treated with hydroxychloroquine, who was admitted with acute left-sided heart failure due to a hydroxychloroquine-induced cardiomyopathy as supported by endomyocardial biopsy

  20. Acupuncture Induces Time-Dependent Remodelling Brain Network on the Stable Somatosensory First-Ever Stroke Patients: Combining Diffusion Tensor and Functional MR Imaging

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2014-01-01

    Full Text Available Different treatment interventions induce distinct remodelling of network architecture of entire motor system. Acupuncture has been proved to be of a promising efficacy in motor recovery. However, it is still unclear whether the reorganization of motor-related brain network underlying acupuncture is related with time since stroke and severity of deficit at baseline. The aim of study was to characterize the relation between motor-related brain organization following acupuncture and white matter microstructural changes at an interval of two weeks. We demonstrated that acupuncture induced differential reorganization of motor-related network for stroke patients as time-lapse since stroke. At the baseline, acupuncture can induce the increased functional connectivity between the left primary motor cortex (M1 and the right M1, premotor cortex, supplementary motor area (SMA, thalamus, and cerebellum. After two-week recovery, the increased functional connectivity of the left M1 was more widely distributed and primarily located in the insula, cerebellum, basal ganglia, and SMA. Furthermore, a significant negative relation existed between the FA value in the left M1 at the baseline scanning and node centrality of this region following acupuncture for both baseline and two-week recovery. Our findings may shed a new insight on understanding the reorganization of motor-related theory underlying motor impairments after brain lesions in stroke patients.

  1. The effects of doxycycline and micronized purified flavonoid fraction on human vein wall remodeling are not hypoxia-inducible factor pathway-dependent.

    Science.gov (United States)

    Lim, Chung Sim; Kiriakidis, Serafim; Paleolog, Ewa M; Davies, Alun H

    2012-10-01

    Doxycycline and micronized purified flavonoid fraction (MPFF) modulate vein wall remodeling that may be associated with hypoxia in varicose veins (VVs), vein graft stenosis, and deep venous thrombosis. We recently reported that in vitro exposure of non-VV (NVVs) and VVs to hypoxic conditions activates the hypoxia-inducible factor (HIF) pathway. This study investigated the in vitro effects of doxycycline and MPFF on the HIF pathway in hypoxic NVVs and VVs. Six NVVs and six VVs obtained from surgery were used to prepare vein organ cultures, which were exposed to hypoxia (1% O(2)), with and without MPFF (10(-5) mol/L) or doxycycline (5 μg/mL) for 16 hours. The veins were analyzed for HIF-1α, HIF-2α, and their target gene expression, with real-time polymerase chain reaction and Western blot. The differences between gene expressions were tested with one-way analysis of variance with repeated measures, followed by the Dunnett test for multiple comparisons. P factor, B-cell lymphoma 2/adenovirus E1B 19-kDa protein-interacting protein 3, prolyl hydroxylase domain-2, and prolyl hydroxylase domain-3, was not significantly altered in NVVs and VVs exposed to hypoxia and treated with doxycycline or MPFF compared with those untreated. Doxycycline and MPFF at a concentration corresponding to a therapeutic dose do not alter the activation of the HIF pathway in NVV and VV organ cultures exposed to hypoxia. Our findings suggest vein wall remodeling actions in NVVs and VVs are likely not HIF-dependent. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  2. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice.

    Science.gov (United States)

    Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki

    2014-06-01

    Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.

  3. Arrhythmogenic right ventricular dysplasia

    International Nuclear Information System (INIS)

    Vignolo Puglia, W.; Freire Colla, D.; Rivara Urrutia, D.; Lujambio Grene, M.; Arbiza Bruno, T.; Oliveira, G.; Cobas Rodriguez, J.

    1997-01-01

    The arrhythmogenic right ventricular dysplasia is a condition predominantly well defined with arrhythmic events. We analyze three cases diagnosed by the group. These cases were presented as ventricular tachycardia with a morphology of left bundle branch block, presenting one of them aborted sudden death in evolution. The baseline electrocardiogram and signal averaging were abnormal in two of the three cases, like the echocardiogram. The electrophysiological study was able to induce in the three patients with sustained monomorphic ventricular tachycardia morphology of left bundle branch block. The definitive diagnosis was made by right ventriculography in two cases and magnetic resonance imaging in the other. Treatment included antiarrhythmic drugs in the three cases and the placement of an automatic defibrillator which survived a sudden death (Author)

  4. Morphed and moving: TNFα-driven motility promotes cell dissemination through MAP4K4-induced cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Min Ma

    2014-04-01

    Full Text Available Cell dissemination from an initial site of growth is a highly coordinated and controlled process that depends on cell motility. The mechanistic principles that orchestrate cell motility, namely cell shape control, traction and force generation, are highly conserved between cells of different origins. Correspondingly, the molecular mechanisms that regulate these critical aspects of migrating cells are likely functionally conserved too. Thus, cell motility deregulation of unrelated pathogenesis could be caused and maintained by similar mechanistic principles. One such motility deregulation disorder is the leukoproliferative cattle disease Tropical Theileriosis, which is caused by the intracellular, protozoan parasite Theileria annulata. T. annulata transforms its host cell and promotes the dissemination of parasite-infected cells throughout the body of the host. An analogous condition with a fundamentally different pathogenesis is metastatic cancer, where oncogenically transformed cells disseminate from the primary tumor to form distant metastases. Common to both diseases is the dissemination of motile cells from the original site. However, unlike metastatic cancer, host cell transformation by Theileria parasites can be reverted by drug treatment and cell signaling be analyzed under transformed and non-transformed conditions. We have used this reversible transformation model and investigated parasite control of host cell motile properties in the context of inflammatory signaling in Ma M. et al. [PLoS Pathog (2014 10: e1004003]. We found that parasite infection promotes the production of the inflammatory cytokine TNFα in the host macrophage. We demonstrated that increased TNFα triggers motile and invasive properties by enhancing actin cytoskeleton remodeling and cell motility through the ser/thr kinase MAP4K4. We concluded that inflammatory conditions resulting in increased TNFα could facilitate cell dissemination by activating the actin

  5. Long-pulsed 1064-nm Nd: YAG laser ameliorates LL-37-induced rosacea-like skin lesions through promoting collagen remodeling in BALB/c mice.

    Science.gov (United States)

    Kim, Miri; Kim, Jongsic; Jeong, Seo-Won; Jo, Hyunmu; Park, Hyun Jeong

    2018-02-01

    Long-pulsed 1064-nm neodymium: yttrium-aluminum-garnet laser (LPND) effectively treats rosacea, although the underlying mechanism is unclear, to evaluate the histological effects and molecular mechanism of LPND on LL-37-induced rosacea-like skin lesions in mice. Intradermal injection of LL-37 was performed into the dorsal skin of BALB/c mice (n = 30) twice a day for 2 days. Fifteen mice were treated with LPND. After 48 h, the excised skin sample was stained for histology and type I collagen; transforming growth factor (TGF)-β, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP)-1, tumor necrosis factor (TNF)-α, and interleukin (IL)-1α mRNA levels were determined by real-time RT-PCR. Intradermal injection of LL-37 induced rosacea-like clinical features. LPND treatment significantly reduced erythema and increased dermal collagen production. Levels of Type I collagen, TGF-β, and MMP-1 mRNA were significantly higher in LPND-treated mice than in untreated mice. LPND may improve rosacea by ameliorating dermal connective tissue disorganization and elastosis through MMP-mediated dermal collagen remodeling.

  6. Deleting HDAC3 Rescues Long-Term Memory Impairments Induced by Disruption of the Neuron-Specific Chromatin Remodeling Subunit BAF53b

    Science.gov (United States)

    Shu, Guanhua; Kramár, Enikö A.; López, Alberto J.; Huynh, Grace; Wood, Marcelo A.; Kwapis, Janine L.

    2018-01-01

    Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific…

  7. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  8. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  9. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats

    Directory of Open Access Journals (Sweden)

    Jingchao Lu

    2016-06-01

    Full Text Available Background: MMPs/TIMPs system is well known to play important roles in pressure overload-induced cardiac remodeling, and Amlodipine and Atorvastatin have been showed to exert favourable protective effects on cardiovascular disease, however, it is not clear whether Amlodipine and Atorvastatin can improve hypertensive cardiac remodeling and whether the MMPs/TIMPs system is involved. The present study aims to answer these questions. Methods: 36 weeks old male spontaneous hypertension (SHR rats were randomly divided into four groups: 1. SHR control group, 2. Amlodipine alone (10 mg/kg/d group, 3. Atorvastatin alone (10 mg/kg/d group, 4.Combination of Amlodipine and Atorvastatin (10 mg/kg/d for each group. Same gender, weight and age of Wistar-Kyoto (WKY rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The blood pressure and left ventricle mass index were measured. Enzyme activity of MMP-2 and MMP-9 was assessed with Gelatin zymography. MMP-2, MMP-9, TIMP-1 and TIMP-2 mRNA and protein expression was studied by RT-PCR and Western blot. Single factor ANOVA and LSD-t test were used in statistical analysis. Results: Treatment with Amlodipine alone or combination with atorvastatin significantly decreased blood pressure, left ventricle mass index in SHR rats (P Conclusion: Amlodipine and Atorvastatin could improve ventricular remodeling in SHR rats through intervention with the imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 system.

  10. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    Science.gov (United States)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  11. Diastolic compliance and exercise-induced left ventricular diastolic volume changes in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Choi, W.; Varma, V.; Wasserman, A.; Katz, R.; Reba, R.; Ross, A.

    1983-01-01

    This study consists of 46 consecutive patients who had supine resting and exercise multigated (MUGA) blood pool studies. All patients had angio-graphically important coronary stenosis in at least one major vessel. Thirty-five out of 46 patients with coronary artery disease increased left ventricular end diastolic volume with a supine exercise. The remaining eleven patients dit not dilate the left ventricle. Those patients, who were able to increase their end diastolic volume during exercise, had better compliance of the left ventricle manifested by lower end diastolic pressures, whereas, patients with poor left ventricular compliance were unable to volume expand during supine exercise

  12. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Ko, Myunggon; Sohn, Dong H.; Chung, Heekyoung; Seong, Rho H.

    2008-01-01

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  13. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  14. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling.

    Science.gov (United States)

    Hu, L W; Benvenuti, L A; Liberti, E A; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2003-12-01

    The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 microg x 100 g BW(-1) x day(-1)) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the beta-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.

  15. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  16. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  17. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  18. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    OpenAIRE

    Almeida-Reis, Rafael; Theodoro-Junior, Osmar A.; Oliveira, Bruno T. M.; Oliva, Leandro V.; Toledo-Arruda, Alessandra C.; Bonturi, Camila R.; Brito, Marlon V.; Lopes, Fernanda D. T. Q. S.; Prado, Carla M.; Florencio, Ariana C.; Martins, Mílton A.; Owen, Caroline A.; Leick, Edna A.; Oliva, Maria L. V.; Tibério, Iolanda F. L. C.

    2017-01-01

    Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.??C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respirator...

  19. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling].

    Science.gov (United States)

    Gaoli, Xu; Lili, Wu; Zhiwu, Wu; Zhiyuan, Gu

    2016-12-01

    The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.

  20. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    Science.gov (United States)

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  1. Relation between exercise-induced ventricular arrhythmias and myocardial perfusion abnormalities in patients with intermediate pretest probability of coronary artery disease

    International Nuclear Information System (INIS)

    Elhendy, A.; Sozzi, F.B.; Van Domburg, R.T.; Bax, J.J.; Roelandt, J.R.T.C.

    2000-01-01

    We studied 302 patients (mean age 54±9 years, 152 men and 150 women) with intermediate pretest probability of CAD (range=0.25- 0.80, mean=0.43±0.20) by upright bicycle exercise stress test in conjunction with technetium-99m single-photon emission tomography (SPET) imaging. Exercise-induced VAs (frequent or complex premature ventricular contractions or ventricular tachycardia) occurred in 65 patients (22%). No significant difference was found between patients with and patient without VAs regarding the pretest probability of CAD (0.45±0.21 vs 0.43±0.20). Patients with exercise-induced VAs had a higher prevalence of perfusion abnormalities (52% vs 26%, P=0.002) and ischaemic electrocardiographic changes (31% vs 16%, P<0.05) compared to patients without VAs. A higher prevalence of perfusion abnormalities in patients with VAs was observed in both men (67% vs 35%, P<0.01) and women (38% vs 16%, P<0.05). However, the positive predictive value of exercise-induced VAs for the presence of myocardial perfusion abnormalities was higher in men than in women (67% vs 38%, P<0.05). The presence of abnormal myocardial perfusion was the only independent predictor of exercise-induced VAs (OR 2.2; 95% CI, 1.2-4.2) by multivariate analysis of clinical and stress test variables. It is concluded that in patients with intermediate pretest probability of CAD, exercise-induced VAs are predictive of a higher prevalence of myocardial perfusion abnormalities in both men and women. However, the positive predictive value of exercise-induced VAs for perfusion abnormalities is higher in men. Because of the underestimation of ischaemia by electrocardiographic changes, exercise-induced VAs should be interpreted as a marker of a higher probability of CAD. (orig./MG) (orig.)

  2. Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Santos, Mário; Rivero, Jose

    2017-01-01

    AIMS: Impaired left ventricular (LV) deformation despite preserved LV ejection fraction (LVEF) is common and predicts outcomes in heart failure with preserved LVEF. We hypothesized that impaired LV deformation at rest is a marker of impaired cardiac systolic and diastolic reserve, and aimed to de...

  3. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    Science.gov (United States)

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  4. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  5. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    Science.gov (United States)

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  6. Phase analysis of gated blood pool SPECT for multiple stress testing assessments of ventricular mechanical dyssynchrony in a tachycardia-induced dilated cardiomyopathy canine model.

    Science.gov (United States)

    Salimian, Samaneh; Thibault, Bernard; Finnerty, Vincent; Grégoire, Jean; Harel, François

    2017-02-01

    Stress-induced dyssynchrony has been shown to be independently correlated with clinical outcomes in patients with dilated cardiomyopathy (DCM) and narrow QRS complexes. However, the extent to which stress levels affect inter- and intraventricular dyssynchrony parameters remains unknown. Ten large dogs were submitted to tachycardia-induced DCM by pacing the right ventricular apex for 3-4 weeks to reach a target ejection fraction (EF) of 35% or less. Stress was then induced in DCM dogs by administering intravenous dobutamine up to a maximum of 20 μg·kg -1 ·min -1 . Hemodynamic and ventricular dyssynchrony data were analyzed by left ventricular (LV) pressure measurements and gated blood pool SPECT (GBPS) imaging. In order to assess mechanical dyssynchrony in DCM subjects and compare it with that of 8 normal counterparts, we extracted the following data: count-based indices of LV contraction homogeneity index (CHI), entropy and phase standard deviation, and interventricular dyssynchrony index. A significant LV intraventricular dyssynchrony (CHI: 96.4 ± 1.3% in control vs 78.6% ± 10.9% in DCM subjects) resulted in an intense LV dysfunction in DCM subjects (EF: 49.5% ± 8.4% in control vs 22.6% ± 6.0% in DCM), compared to control subjects. However, interventricular dyssynchrony did not vary significantly between the two groups. Under stress, DCM subjects showed a significant improvement in ventricular functional parameters at each level (EF: 22.6% ± 6.0% at rest vs 48.1% ± 5.8% at maximum stress). All intraventricular dyssynchrony indices showed a significant increase in magnitude of synchrony from baseline to stress levels of greater than or equal to 5 μg·kg -1 ·min -1 dobutamine. There were individual differences in the magnitude and pattern of change in interventricular dyssynchrony during the various levels of stress. Based on GBPS analyses, different levels of functional stress, even in close intervals, can have a significant impact on

  7. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer

    Science.gov (United States)

    Ader, Isabelle; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A.; Malavaud, Bernard; Cuvillier, Olivier

    2015-01-01

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  8. Benefits of lifelong exercise training on left ventricular function after myocardial infarction.

    Science.gov (United States)

    Maessen, Martijn Fh; Eijsvogels, Thijs Mh; Stevens, Guus; van Dijk, Arie Pj; Hopman, Maria Te

    2017-11-01

    Background Endurance exercise training induces cardio-protective effects, but athletes are not exempted from a myocardial infarction. Evidence from animal studies suggests that exercise training attenuates pathological left ventricular remodelling following myocardial infarction. We tested the hypothesis that lifelong exercise training is related to attenuated pathological left ventricular remodelling after myocardial infarction as evidenced by better left ventricular systolic function in veteran athletes compared to sedentary peers. Design This was a cross-sectional study. Methods Sixty-five males (60 ± 6 years) were included and allocated to four groups based on lifelong exercise training volumes: (a) athletes ( n = 18), (b) post-myocardial infarction athletes (athletes + myocardial infarction, n = 20), (c) sedentary controls ( n = 13), and (d) post-myocardial infarction controls (sedentary controls + myocardial infarction, n = 14). Athletes were lifelong (≥20 years) highly physically active (≥30 metabolic equivalent of task (MET)-h/week), whereas sedentary controls did not meet the exercise guidelines (creatine-kinase, creatinine, aspartate transaminase and lactate dehydrogenase) following myocardial infarction and infarct location did not differ between athletes + myocardial infarction and sedentary controls + myocardial infarction. Left ventricular ejection fraction was significantly higher in athletes (61% ± 4), athletes + myocardial infarction (58% ± 4) and sedentary controls (57% ± 6) compared to sedentary controls + myocardial infarction (51% ± 7; p athletes (-19% (-21% to -17%), athletes + myocardial infarction (-16% (-20% to -12%)), and sedentary controls (-15% (-18% to -14%) compared to sedentary controls + myocardial infarction (-13% (-15% to -8%), p athletes.

  9. Idiopathic ventricular tachycardia and fibrillation.

    Science.gov (United States)

    Belhassen, B; Viskin, S

    1993-06-01

    Important data have recently been added to our understanding of sustained ventricular tachyarrhythmias occurring in the absence of demonstrable heart disease. Idiopathic ventricular tachycardia (VT) is usually of monomorphic configuration and can be classified according to its site of origin as either right monomorphic (70% of all idiopathic VTs) or left monomorphic VT. Several physiopathological types of monomorphic VT can be presently individualized, according to their mode of presentation, their relationship to adrenergic stress, or their response to various drugs. The long-term prognosis is usually good. Idiopathic polymorphic VT is a much rarer type of arrhythmia with a less favorable prognosis. Idiopathic ventricular fibrillation may represent an underestimated cause of sudden cardiac death in ostensibly healty patients. A high incidence of inducibility of sustained polymorphic VT with programmed ventricular stimulation has been found by our group, but not by others. Long-term prognosis on Class IA antiarrhythmic medications that are highly effective at electrophysiologic study appears excellent.

  10. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice.

    Science.gov (United States)

    Douglas, Robert M; Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B; Juliano, Joseph; Dalton, Nancy D; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L; Witztum, Joseph L; Haddad, Gabriel G; Li, Andrew C

    2013-12-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr(-/-)) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr(-/-) mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized.

  11. Deleterious acute and chronic effects of bradycardic right ventricular apex pacing : consequences for arrhythmic outcome

    NARCIS (Netherlands)

    Stams, Thom R G; Dunnink, A; van Everdingen, W M; Beekman, H D M; van der Nagel, R.; Kok, B.; Bierhuizen, M F A; Cramer, M J; Meine, M; Vos, M A

    In the chronic complete atrioventricular (AV) block dog (CAVB) model, both bradycardia and altered ventricular activation due to the uncontrolled idioventricular rhythm contribute to ventricular remodeling and the enhanced susceptibility to Torsade de Pointes (TdP) arrhythmias. We investigated the

  12. 4-Guanidino-n-butyl syringate (Leonurine, SCM 198) protects H9c2 rat ventricular cells from hypoxia-induced apoptosis.

    Science.gov (United States)

    Liu, Xin-hua; Chen, Pei-fang; Pan, Li-long; Silva, Ranil De; Zhu, Yi-zhun

    2009-11-01

    In the present study, we examined the ability of a chemically synthesized compound based on the structure of leonurine, a phytochemical component of Herba leonuri, to protect H9c2 rat ventricular cells from apoptosis induced by hypoxia and serum deprivation, as a model of ischemia. The results revealed a concentration-dependent increase in cell viability associated with leonurine treatment, accompanied by a consistent decline in lactate dehydrogenase leakage into the culture medium. The fraction of annexin V-fluorescein isothiocyanate-positive cells was increased by hypoxia but reduced by leonurine. These changes were associated with increased expression of the antiapoptotic gene, Bcl-2, and reduced expression of the proapoptotic gene, Bax. Leonurine also reduced the cytosolic Ca overload induced by hypoxia. These results suggest that leonurine elicits potent cardioprotective effects in H9c2 cells, and these effects may be mediated by inhibition of intracellular Ca overload and apoptosis during hypoxia.

  13. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    Science.gov (United States)

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Fibroblasts and the extracellular matrix in right ventricular disease.

    Science.gov (United States)

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  15. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  16. Left ventricular hypertrophy: virtuous intentions, malign consequences.

    Science.gov (United States)

    Pokharel, Saraswati; Sharma, Umesh C; Pinto, Yigal M

    2003-06-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there are structural changes in myofilaments, disorganization of the cytoskeletal framework and increased collagen synthesis. LVH is associated with progressive left ventricular remodeling that culminates to heart failure. The modern treatment of left ventricular hypertrophy is now largely based on the hypothesis that neuroendocrine activation is important in the progression of the disease and inhibition of neurohormones is likely to have long-term benefit with regard to morbidity and mortality. Drugs specifically designed to unload the left ventricle, such as diuretics and vasodilators, appears to be less effective in reducing LV mass and improving prognosis. Thus, the evolution of treatment for LVH itself has provided much enlightenment for our understanding of the fundamental biology of the disorder.

  17. Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.

    Science.gov (United States)

    Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R

    2017-09-01

    Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017

  18. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice

    Science.gov (United States)

    Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B.; Juliano, Joseph; Dalton, Nancy D.; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L.; Witztum, Joseph L.; Haddad, Gabriel G.; Li, Andrew C.

    2013-01-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr−/−) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr−/− mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized. PMID:23990245

  19. Exercise-induced intra-ventricular gradients as a frequent potential cause of myocardial ischemia in cardiac syndrome X patients

    Directory of Open Access Journals (Sweden)

    Almeida Ana G

    2008-01-01

    Full Text Available Abstract Background The development of intra-ventricular gradients (IVG during dobutamine or exercise stress is not infrequent, and can be associated to symptoms during stress. The purpose of this study was to assess the occurrence of IVG during exercise stress echocardiography in cardiac syndrome X patients. Methods We prospectively evaluated 91 patients (pts mean aged 51 ± 12 years (age ranged 20 to 75 years old, 44 of whom were women. All pts had angina, positive exercise ECG treadmill testing, normal rest echocardiogram and no coronary artery disease on coronary angiogram (cardiac X syndrome. After complete Doppler echocardiographic evaluation with determination of left ventricular outflow tract index (LVOTi, relative left ventricular wall thickness (RLVWT and left ventricular end-diastolic volume index (LVDVi, all patients underwent stress echocardiography with two-dimensional and Doppler echographic evaluation during and after treadmill exercise. Results For analysis purpose patients were divided in 2 groups, according to the development of IVG. Doppler evidence of IVG was found in 33 (36% of the patients (Group A, with mean age 47 ± 14 years old (age ranged 20 to 72 years and with a mean end-systolic peak gradient of 86 ± 34 mmHg (ranging from 30 to 165 mmHg. The IVG development was accompanied by SAM of the mitral valve in 23 pts. Three of these pts experienced symptomatic hypotension. Ten were women (30% pts. 58 pts in group B, 34 of whom were women (59% (p = 0,01 vs group A, mean aged 53,5 ± 10,9 years old (age ranged 34 to 75 years (p = 0,03 vs group A, did not develop IVG. LVOTi was 10,29 ± 0,9 mm/m2 in group A and 11,4 ± 1 mm/m2 in group B (p 2 in group A and 56 ± 11,6 ml/m2 in group B (p = 0,000. Conclusion 1. A significant number of patients with cardiac X syndrome developed IVG during upright exercise in treadmill. These pts (group A are mainly males and younger than those who did not develop IVG. 2. The development of IVG

  20. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    Science.gov (United States)

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    Science.gov (United States)

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  2. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  3. Callus remodelling model

    Science.gov (United States)

    Miodowska, Justyna; Bielski, Jan; Kromka-Szydek, Magdalena

    2018-01-01

    The objective of this paper is to investigate the healing process of the callus using bone remodelling approach. A new mathematical model of bone remodelling is proposed including both underload and overload resorption, as well as equilibrium and bone growth states. The created model is used to predict the stress-stimulated change in the callus density. The permanent and intermittent loading programs are considered. The analyses indicate that obtaining a sufficiently high values of the callus density (and hence the elasticity) modulus is only possible using time-varying load parameters. The model predictions also show that intermittent loading program causes delayed callus healing. Understanding how mechanical conditions influence callus remodelling process may be relevant in the bone fracture treatment and initial bone loading during rehabilitation.

  4. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian

    2010-01-01

    several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...... the biomechanical environment of the mechanosensitive nerve endings, therefore, the structure as well as the tension, stress and strain distribution in the GI wall is important for the sensory and motor function. Biomechanical remodeling of diabetic GI tract including alterations of residual strain and increase...

  5. Delayed recovery of right ventricular systolic function after repair of long-standing tricuspid regurgitation associated with severe right ventricular failure.

    Science.gov (United States)

    Kim, Jong Hun; Kim, Kyung Hwa; Choi, Jong Bum; Kuh, Ja Hong

    2016-03-01

    After tricuspid valve surgery for long-standing tricuspid regurgitation associated with right ventricular failure, reverse remodelling of the enlarged right ventricle, including recovery of right ventricular systolic function, is unpredictable. We present the case of a 31-year old man with early reduction of dilated right ventricular dimensions and delayed recovery of impaired right ventricular systolic function after valve repair for traumatic tricuspid regurgitation lasting 16 years. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Right ventricular strain in heart failure: Clinical perspective.

    Science.gov (United States)

    Tadic, Marijana; Pieske-Kraigher, Elisabeth; Cuspidi, Cesare; Morris, Daniel A; Burkhardt, Franziska; Baudisch, Ana; Haßfeld, Sabine; Tschöpe, Carsten; Pieske, Burket

    2017-10-01

    The number of studies demonstrating the importance of right ventricular remodelling in a wide range of cardiovascular diseases has increased in the past two decades. Speckle-tracking imaging provides new variables that give comprehensive information about right ventricular function and mechanics. In this review, we summarize current knowledge of right ventricular mechanics in heart failure with reduced ejection fraction and preserved ejection fraction. We searched PubMed, MEDLINE, Ovid and Embase databases for studies published from January 2000 to December 2016 in the English language using the following keywords: "right ventricle"; "strain"; "speckle tracking"; "heart failure with reduced ejection fraction"; and "heart failure with preserved ejection fraction". Investigations showed that right ventricular dysfunction is associated with higher cardiovascular and overall mortality in patients with heart failure, irrespective of ejection fraction. The number of studies investigating right ventricular strain in patients with heart failure with reduced ejection fraction is constantly increasing, whereas data on right ventricular mechanics in patients with heart failure with preserved ejection fraction are limited. Given the high feasibility, accuracy and clinical implications of right ventricular strain in the population with heart failure, it is of great importance to try to include the evaluation of right ventricular strain as a regular part of each echocardiographic examination in patients with heart failure. However, further investigations are necessary to establish right ventricular strain as a standard variable for decision-making. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    International Nuclear Information System (INIS)

    Sofia, Renato Rodrigues; Serra, Andrey Jorge; Silva, Jose Antonio Jr; Antonio, Ednei Luiz; Manchini, Martha Trindade; Oliveira, Fernanda Aparecida Alves de; Teixeira, Vicente Paulo Castro; Tucci, Paulo José Ferreira

    2014-01-01

    Gender can influence post-infarction cardiac remodeling. To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function

  8. Atrial antitachycardia pacing and atrial remodeling: A substudy of the international, randomized MINERVA trial.

    Science.gov (United States)

    Boriani, Giuseppe; Tukkie, Raymond; Biffi, Mauro; Mont, Lluis; Ricci, Renato; Pürerfellner, Helmut; Botto, Giovanni Luca; Manolis, Antonis S; Landolina, Maurizio; Gulizia, Michele; Hudnall, J Harrison; Mangoni, Lorenza; Grammatico, Andrea; Padeletti, Luigi

    2017-10-01

    Atrial tachycardia (AT) and atrial fibrillation (AF) are common in pacemaker patients and are associated with bad prognoses. The purpose of this study was to evaluate atrial antitachycardia pacing impact on AT/AF-induced atrial remodeling, measured by early recurrence of AT/AF (ERAF) and by change in left atrial diameter (LAD), and to evaluate the impact of AT/AF duration on ERAF incidence. Pacemaker patients were randomized to dual-chamber pacing (Control DDDR: 385 patients), managed ventricular pacing (MVP: 398 patients), or atrial antitachycardia pacing plus MVP (DDDRP+MVP: 383 patients). LAD change, estimated by echocardiography, was considered significant if the relative difference between baseline and 24-month measurements was >10%. At median follow-up of 34 months, ERAF incidence was significantly lower in the DDDRP+MVP arm for all AT/AF durations, in particular, ERAF followed AT/AF longer than 3 hours in 53% cases in Control DDDR, in 51% cases in MVP, and in 39% cases in DDDRP+MVP (P MVP, and 70% in DDDRP+MVP (P MVP, DDDRP+MVP reduces ERAF and favors LAD reduction, suggesting that atrial antitachycardia pacing may reverse electrical and mechanical remodeling. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. New strict left bundle branch block criteria reflect left ventricular activation differences

    DEFF Research Database (Denmark)

    Emerek, Kasper Janus Grønn; Risum, Niels; Hjortshøj, Søren Pihlkjær

    2015-01-01

    AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left ven....... CONCLUSION: Interventricular electrical delay predicts left ventricular remodeling after CRT and new, strict ECG criteria of LBBB are superior in predicting remodeling.......AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left...... ventricular electrical delay (RV-LV-IED) was measured. Response to CRT was defined as ≥15% decrease in left ventricular end-systolic volume. RESULTS: Eighteen of 20 (90%) patients with non-ischemic dilated cardiomyopathy (DCM) and 18 of 29 (62%) with ischemic heart disease (IHD) responded to CRT, p

  10. Effect of beta-blockade on low-dose dobutamine-induced changes in left ventricular function in healthy volunteers: assessment by gated SPET myocardial perfusion scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Everaert, H.; Vanhove, C.; Franken, P.R. [Division of Nuclear Medicine, University Hospital, Free University of Brussels (AZ VUB), Brussels (Belgium)

    2000-04-01

    Viability studies are often performed in patients receiving beta-blocking agents. However, the intake of beta-blocking agents could influence the identification of viable myocardium when low-dose dobutamine is used to demonstrate inotropic reserve. The aim of this study was to quantify the effect of beta-blockade on global and regional left ventricular function in healthy volunteers using low-dose dobutamine gated single-photon emission tomographic (SPET) myocardial perfusion scintigraphy. Ten subjects were studied once ''on'' and once ''off'' beta-blocker therapy (metoprolol succinate, 100 mg day{sup -1}). On each occasion four consecutive gated SPET acquisitions (of 7 min duration) were recorded after injection of 925 MBq technetium-99m tetrofosmin on a triple-headed camera equipped with focussing (Cardiofocal) collimators. Acquisitions were made at rest (baseline 1 and 2) and 5 min after the beginning of the infusion of 5 and 10 {mu}g kg{sup -1} min{sup -1} dobutamine. Wall thickening (WT) was quantified using a method based on circumferential profile analysis. Left ventricular ejection fraction (LVEF) was obtained using the Cedars-Sinai algorithm. Blood pressure (BP) and heart rate (HR) were recorded at the end of each acquisition. At baseline LVEF, WT and systolic BP values under beta-blockade were not significantly different from those obtained in the non-beta-blocked state. The mean HR and diastolic BP at baseline were lower under beta-blockade. Dobutamine administration (at 5 and 10 {mu}g kg{sup -1} min{sup -1}) induced a significant increase in WT, LVEF and systolic BP in all subjects both on and off beta-blockade. The increases in WT, LVEF and systolic BP in the beta-blocked state were less pronounced but not significantly different. HR increased significantly at 10 {mu}g kg{sup -1} min{sup -1} dobutamine without beta-blocker administration, while no increase in HR was observed in the beta-blocked state. Beta

  11. Salbutamol Abuse is Associated with Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Emin UYSAL

    2015-06-01

    Full Text Available SUMMARY: Salbutamol-induced cardiac complications are well-established. Herein, we describe a case of a 24-year female who was admitted to the emergency department because of a suicide attempt with salbutamol (76 mg. Salbutamol abuse induced the development of supraventricular tachycardia and ventricular fibrillation. Regular sinus rhythm was restored with defibrillation. The hypokalemic patient who stayed in the intensive care unit was discharged after 48 hours of hospitalization. Key words: Salbutamol, suicide, ventricular fibrillation

  12. Diffuse interstitial fibrosis assessed by cardiac magnetic resonance is associated with dispersion of ventricular repolarization in patients with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    David Hurtado-de-Mendoza, MD

    2017-06-01

    Conclusion: Diffuse interstitial fibrosis is associated with increased dispersion of ventricular repolarization in leads, reflecting electrical activity in the hypertrophied septum. Interstitial fibrosis combined with ion channel/gap junction remodeling in the septum could lead to inhomogeneity of ventricular refractoriness, resulting in increased QTc dispersion in leads V1–V4.

  13. Expression of PDGF-beta receptor in broilers with pulmonary hypertension induced by cold temperature and its association with pulmonary vascular remodeling.

    Science.gov (United States)

    Li, Jin-Chun; Pan, Jia-Qiang; Huang, Guo-Qing; Tan, Xun; Sun, Wei-Dong; Liu, Yan-Juan; Wang, Xiao-Long

    2010-02-01

    The purpose of the present study was to characterize the relationship between platelet-derived growth factor beta receptor (PDGF-beta receptor) expression and pulmonary vascular remodeling found in broilers subjected to cold temperature beginning at 14 days of age. One hundred and sixty-one-day-old mixed-sex Avian-2000 commercial broilers were randomly divided into a normal temperature group (control) and a cold temperature group (cold). All the birds were brooded in normal temperature up to day 14, with the lighting schedule at 24 h per day. Starting at day 14, birds in the cold group were moved to a pen in the cold house and subjected to low temperature, while birds in the control group were still brooded at normal temperature. On days 14, 23, 30, 37 and 44, the right/total ventricle weight ratio (RV/TV), packed cell volume (PCV), the vessel wall area to vessel total area ratio (WA/TA), mean media thickness in pulmonary arterioles (mMTPA) and the expression of PDGF-beta receptor in pulmonary arterioles were measured, respectively. Cumulative pulmonary hypertension syndrome (PHS) morbidity was recorded in each group. Cool ambient temperature increased PHS morbidity of broilers. The values of WA/TA and mMTPA were also increased significantly compared with control group. PCV values in the cold temperature group were elevated from days 30 to 44, and RV/TV ratios were increased on days 37 and 44. Cold exposure enhanced PDGF-beta receptor expression in pulmonary arterioles, and the PDGF-beta receptor expression was significantly correlated with pulmonary vascular remodeling that was dedicated by increased WA/TA and mMTPA. The results indicated that PDGF-beta and its receptor were involved in the underlying mechanisms of pulmonary vascular remodeling in pulmonary hypertensive broilers. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Ventricular Fibrillation-Induced Cardiac Arrest Results in Regional Cardiac Injury Preferentially in Left Anterior Descending Coronary Artery Territory in Piglet Model

    Directory of Open Access Journals (Sweden)

    Giridhar Kaliki Venkata

    2016-01-01

    Full Text Available Objective. Decreased cardiac function after resuscitation from cardiac arrest (CA results from global ischemia of the myocardium. In the evolution of postarrest myocardial dysfunction, preferential involvement of any coronary arterial territory is not known. We hypothesized that there is no preferential involvement of any coronary artery during electrical induced ventricular fibrillation (VF in piglet model. Design. Prospective, randomized controlled study. Methods. 12 piglets were randomized to baseline and electrical induced VF. After 5 min, the animals were resuscitated according to AHA PALS guidelines. After return of spontaneous circulation (ROSC, animals were observed for an additional 4 hours prior to cardiac MRI. Data (mean ± SD was analyzed using unpaired t-test; p value ≤ 0.05 was considered statistically significant. Results. Segmental wall motion (mm; baseline versus postarrest group in segment 7 (left anterior descending (LAD was 4.68±0.54 versus 3.31±0.64, p=0.0026. In segment 13, it was 3.82±0.96 versus 2.58±0.82, p=0.02. In segment 14, it was 2.42±0.44 versus 1.29±0.99, p=0.028. Conclusion. Postarrest myocardial dysfunction resulted in segmental wall motion defects in the LAD territory. There were no perfusion defects in the involved segments.

  15. Dyssynchronous ventricular contraction in Wolff-Parkinson-White syndrome: a risk factor for the development of dilated cardiomyopathy.

    Science.gov (United States)

    Dai, Chen-Cheng; Guo, Bao-Jing; Li, Wen-Xiu; Xiao, Yan-Yan; Jin, Mei; Han, Lin; Sun, Jing-Ping; Yu, Cheuk-Man; Dong, Jian-Zeng

    2013-11-01

    Emerging evidence suggests that significant left ventricular dysfunction may arise in right-sided septal or paraseptal accessory pathways (APs) with Wolff-Parkinson-White syndrome, even in the absence of recurrent or incessant tachycardia. During 1 year and 9 months, we identified four consecutive female children with median age of 8 years diagnosed as having dilated cardiomyopathy (DCM) combined with overt right-sided APs several years ago. Incessant or recurrent tachycardia as the cause of DCM could be excluded. Anti-heart failure chemotherapy did not produce satisfactory effects. The patients underwent radiofrequency ablations (RFCAs). This report describes the clinical and echocardiographic characteristics of the cases before and after the ablation. Dyssynchronous ventricular contraction was observed in all patients. The locations of the APs were the right-sided anteroseptum and the free wall (n = 2 each). All patients received successful RFCAs. Their physical activities and growth improved greatly, and the echocardiographic data demonstrated that their left ventricular (LV) contraction recovered to synchrony shortly after the ablation and that their LV function recovered to normal gradually during the follow-up. A causal relationship between overt ventricular preexcitation and the development of DCM is supported by the complete recovery of LV function and reversed LV remodeling after the loss of ventricular preexcitation. Preexcitation-related dyssynchrony was probably the crucial mechanism. Not only right-sided septal or paraseptal but also free wall overt APs may induce LV dysfunction and even DCM. AP-induced DCM is an indication for ablation with a good prognosis.

  16. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  17. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    Science.gov (United States)

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along

  18. Arrhythmogenesis in the remodeled heart : the role of spatially dispersed Cx43 expression

    NARCIS (Netherlands)

    Boulaksil, M.

    2010-01-01

    The heart is able to adapt to new, often pathologic, conditions, so-called cardiac remodeling. Although initially adequate, these adaptations could can become maladaptive over time. One of the adaptations of the heart during pathology is ventricular hypertrophy, which may go hand in hand with an

  19. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  20. Alpha1A-adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies to the alpha(1-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A-adrenergic receptor and maintained them for one year. Alpha(1A-adrenergic antibodies (alpha(1A-AR-AB were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min. Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A-AR-AB could contribute to cardiovascular endorgan damage.

  1. Impairment of Excitation-Contraction Coupling in Right Ventricular Hypertrophied Muscle with Fibrosis Induced by Pulmonary Artery Banding.

    Directory of Open Access Journals (Sweden)

    Yoichiro Kusakari

    Full Text Available Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling has not yet been clarified. We developed an animal model of right ventricular (RV hypertrophy with fibrosis by pulmonary artery (PA banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33. The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1 the decrease in Ca2+ responsiveness and 2 the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.

  2. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report.

    Science.gov (United States)

    Hwang, Hui-Jeong; Yoon, Kyung Lim; Sohn, Il Suk

    2016-03-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans.

  3. Impact of hypertension on left ventricular structure in patients with asymptomatic aortic valve stenosis (a SEAS substudy)

    DEFF Research Database (Denmark)

    Rieck, Ashild E; Cramariuc, Dana; Staal, Eva M

    2010-01-01

    Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis.......Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis....

  4. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression.

    Science.gov (United States)

    Wang, Feng-Wei; Cai, Mu-Yan; Mai, Shi-Juan; Chen, Jie-Wei; Bai, Hai-Yan; Li, Yan; Liao, Yi-Ji; Li, Chang-Peng; Tian, Xiao-Peng; Kung, Hsiang-Fu; Guan, Xin-Yuan; Xie, Dan

    2014-08-30

    Hepatocellular carcinoma (HCC) is a highly vascularized tumor with poor clinical outcome. Our previous work has shown that eukaryotic initiation factor 5A2 (EIF5A2) over-expression enhances HCC cell metastasis. In this study, EIF5A2 was identified to be an independent risk factor for poor disease-specific survival among HCC patients. Both in vitro and in vivo assays indicated that ablation of endogenous EIF5A2 inhibited tumor angiogenesis by reducing matrix metalloproteinase 2 (MMP-2) expression. Given that MMP-2 degrades collagen IV, a main component of the vascular basement membrane (BM), we subsequently investigated the effect of EIF5A2 on tumor vasculature remodeling using complementary approaches, including fluorescent immunostaining, transmission electron microscopy, tumor perfusion assays and tumor hypoxia assays. Taken together, our results indicate that EIF5A2 silencing increases tumor vessel wall continuity, increases blood perfusion and improves tumor oxygenation. Additionally, we found that ablation of EIF5A2 enhanced the chemosensitivity of HCC cells to 5-Fluorouracil (5-FU). Finally, we demonstrated that EIF5A2 might exert these functions by enhancing MMP-2 activity via activation of p38 MAPK and JNK/c-Jun pathways. This study highlights an important role of EIF5A2 in HCC tumor vessel remodeling and indicates that EIF5A2 represents a potential therapeutic target in the treatment of HCC.

  6. Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia.

    Science.gov (United States)

    Zhao, Yin; Zheng, YanFang; Liu, XiaoXia; Luo, QingQing; Wu, Di; Liu, XiaoPing; Zou, Li

    2018-03-01

    Is it possible to improve vascular remodeling by inhibiting the excessive expression of protease-activated receptor 1 (PAR-1) in trophoblast of abnormal placenta? Inhibition of trophoblast PAR-1 overexpression may promote placental angiogenesis and vascular remodeling, offering an alternative therapeutic approach for preeclampsia. PAR-1 is high-affinity receptor of thrombin. Thrombin increases sFlt-1 secretion in trophoblast via the activation of PAR-1. It is reported that the expression of both thrombin and PAR-1 expression are increased in placentas of preeclampsia patients compared with normal placentas. Trophoblast cells were transfected with PAR-1 short hairpin RNA (shRNA) or PAR-1 overexpression plasmids in vitro. Tube formation assays and a villus-decidua co-culture system were used to study the effect of PAR-1 inhibition on placental angiogenesis and vascular remodeling, respectively. Placentas from rats with preeclampsia were transfected with PAR-1 shRNA to confirm the effect of inhibiting PAR-1 overexpression in placenta. The trophoblast cell line HTR-8/SVneo was transfected with PAR-1 shRNA or PAR-1 overexpression plasmids. After 48 h, supernatant was collected and the level of sFlt-1 secretion was measured by ELISA. Human umbilical cord epithelial cells and a villus-decidua co-culture system were treated with conditioned media to study the effect of PAR-1 inhibition on tube formation and villi vascular remodeling. A preeclampsia rat model was established by intraperitoneal injection of L-NAME. Plasmids were injected into the placenta of the preeclampsia rats and systolic blood pressure was measured on Days 15 and 19. The effect of different treatments was evaluated by proteinuria, placental weights, fetal weights and fetal numbers in study and control groups. The level of serum sFlt-1 in rats with preeclampsia was also measured. Changes in the placenta microvessels were studied by histopathological staining. PAR-1 shRNA inhibited PAR-1 expression and

  7. Treatment of ethanol-induced acute pulmonary hypertension and right ventricular dysfunction in pigs, by sildenafil analogue (UK343-664 or nitroglycerin

    Directory of Open Access Journals (Sweden)

    Sidi Avner

    2008-01-01

    Full Text Available In patients at risk for sudden ethanol (ETOH intravascular absorption, prompt treatment of pulmonary hypertension (PHTN will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664 and nitroglycerin (NTG during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT, as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP, and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7 normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8, or NTG 1 μg/kg ( n = 8; each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP, and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR. Within 2 minutes after treatment with either drug, CVP, heart rate (HR, and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241±579 and 1224±494 dyne · cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672±308 and 538±203 dyne · cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from

  8. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  9. Long-term pretreatment with desethylamiodarone (DEA) or amiodarone (AMIO) protects against coronary artery occlusion induced ventricular arrhythmias in conscious rats.

    Science.gov (United States)

    Morvay, Nikolett; Baczkó, István; Sztojkov-Ivanov, Anita; Falkay, György; Papp, Julius Gy; Varró, András; Leprán, István

    2015-09-01

    The aim of this investigation was to compare the effectiveness of long-term pretreatment with amiodarone (AMIO) and its active metabolite desethylamiodarone (DEA) on arrhythmias induced by acute myocardial infarction in rats. Acute myocardial infarction was induced in conscious, male, Sprague-Dawley rats by pulling a previously inserted loose silk loop around the left main coronary artery. Long-term oral pretreatment with AMIO (30 or 100 mg·(kg body mass)(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days) or DEA (15 or 50 mg·kg(-1)·day(-1), loading dose 100 or 300 mg·kg(-1) for 3 days), was applied for 1 month before the coronary artery occlusion. Chronic oral treatment with DEA (50 mg·kg(-1)·day(-1)) resulted in a similar myocardial DEA concentration as chronic AMIO treatment (100 mg·kg(-1)·day(-1)) in rats (7.4 ± 0.7 μg·g(-1) and 8.9 ± 2.2 μg·g(-1)). Both pretreatments in the larger doses significantly improved the survival rate during the acute phase of experimental myocardial infarction (82% and 64% by AMIO and DEA, respectively, vs. 31% in controls). Our results demonstrate that chronic oral treatment with DEA resulted in similar cardiac tissue levels to that of chronic AMIO treatment, and offered an equivalent degree of antiarrhythmic effect against acute coronary artery ligation induced ventricular arrhythmias in conscious rats.

  10. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Kenichiro Hanawa

    Full Text Available Although a significant progress has been made in the management of ischemic heart disease (IHD, the number of severe IHD patients is increasing. Thus, it is crucial to develop new, non-invasive therapeutic strategies. In the present study, we aimed to develop low-intensity pulsed ultrasound (LIPUS therapy for the treatment of IHD.We first confirmed that in cultured human endothelial cells, LIPUS significantly up-regulated mRNA expression of vascular endothelial growth factor (VEGF with a peak at 32-cycle (P<0.05. Then, we examined the in vivo effects of LIPUS in a porcine model of chronic myocardial ischemia with reduced left ventricular ejection fraction (LVEF (n = 28. The heart was treated with either sham (n = 14 or LIPUS (32-cycle with 193 mW/cm2 for 20 min, n = 14 at 3 different short axis levels. Four weeks after the treatment, LVEF was significantly improved in the LIPUS group (46±4 to 57±5%, P<0.05 without any adverse effects, whereas it remained unchanged in the sham group (46±5 to 47±6%, P = 0.33. Capillary density in the ischemic region was significantly increased in the LIPUS group compared with the control group (1084±175 vs. 858±151/mm2, P<0.05. Regional myocardial blood flow was also significantly improved in the LIPUS group (0.78±0.2 to 1.39±0.4 ml/min/g, P<0.05, but not in the control group (0.84±0.3 to 0.97±0.4 ml/min/g. Western blot analysis showed that VEGF, eNOS and bFGF were all significantly up-regulated only in the LIPUS group.These results suggest that the LIPUS therapy is promising as a new, non-invasive therapy for IHD.

  11. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction.

    Science.gov (United States)

    Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong

    2017-12-01

    Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of amiodarone-induced hyperthyroidism on left ventricular outflow obstruction after septal myectomy for hypertrophic cardiomyopathy.

    Science.gov (United States)

    Pokorney, Sean D; Stone, Neil J; Passman, Rod; Oyer, David; Rigolin, Vera H; Bonow, Robert O

    2010-12-01

    Patients with obstructive hypertrophic cardiomyopathy who undergo septal myectomy are at risk for developing postoperative atrial fibrillation. Amiodarone is effective in treating this arrhythmia but is associated with multiple adverse effects, often with delayed onset. A novel case is described of a patient who developed type 2 amiodarone-induced hyperthyroidism that presented as recurrence of outflow obstruction after septal myectomy. The patient's symptoms and echocardiographic findings of outflow obstruction resolved substantially with the treatment of the amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism of delayed onset can be a subtle diagnosis, requiring a high index of suspicion. In conclusion, recognition of this diagnosis in patients with recurrence of outflow obstruction by symptoms and cardiac imaging after septal myectomy may avoid unnecessary repeat surgical intervention. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Vascular remodeling and mineralocorticoids.

    Science.gov (United States)

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K

    1995-01-01

    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  14. Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling

    Science.gov (United States)

    Silpanisong, Jinjutha; Pearce, William J.

    2015-01-01

    Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation. PMID:24063376

  15. [The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Evstiukhina, T A; Alekseeva, E A; Fedorov, D V; Peshekhonov, V T; Korolev, V G

    2017-02-01

    Chromatin remodulators are special multiprotein machines capable of transforming the structure, constitution, and positioning of nucleosomes on DNA. Biochemical activities of remodeling complexes CHD1 and ISWI from the SWI2/SNF2 family are well established. They ensure correct positioning of nucleosomes along the genome, which is probably critical for genome stability, in particular, after action of polymerases, repair enzymes, and transcription. In this paper, we show that single mutations in genes ISW1, ISW2, and CHD1 weakly affect repair and mutagenic processes in yeast cells. At the same time, there are differences in the effect of these mutations on spontaneous mutation levels, which indicates certain specificity of action of protein complexes ISW1, ISW2, and CHD1 on expression of different genes that control repair and mutation processes in yeast.

  16. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  17. Common Variation in the NOS1AP Gene Is Associated With Drug-Induced QT Prolongation and Ventricular Arrhythmia

    NARCIS (Netherlands)

    Jamshidi, Yalda; Nolte, Ilja M.; Dalageorgou, Chrysoula; Zheng, Dongling; Johnson, Toby; Bastiaenen, Rachel; Ruddy, Suzanne; Talbott, Daniel; Norris, Kris J.; Snieder, Harold; George, Alfred L.; Marshall, Vanessa; Shakir, Saad; Kannankeril, Prince J.; Munroe, Patricia B.; Camm, A. John; Jeffery, Steve; Roden, Dan M.; Behr, Elijah R.

    2012-01-01

    Objectives This study sought to determine whether variations in NOS1AP affect drug-induced long QT syndrome (LQTS). Background Use of antiarrhythmic drugs is limited by the high incidence of serious adverse events including QT prolongation and torsades de pointes. NOS1AP gene variants play a role in

  18. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.

    Science.gov (United States)

    Nivala, Michael; Song, Zhen; Weiss, James N; Qu, Zhilin

    2015-02-01

    In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure.

    Science.gov (United States)

    Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y

    2007-03-13

    Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.

  20. The importance of capillary density-stroke work mismatch for right ventricular adaptation to chronic pressure overload.

    Science.gov (United States)

    Noly, Pierre-Emmanuel; Haddad, François; Arthur-Ataam, Jennifer; Langer, Nathaniel; Dorfmüller, Peter; Loisel, Fanny; Guihaire, Julien; Decante, Benoit; Lamrani, Lilia; Fadel, Elie; Mercier, Olaf

    2017-12-01

    Mechanisms of right ventricular (RV) adaptation to chronic pressure overload are not well understood. We hypothesized that a lower capillary density (CD) to stroke work ratio would be associated with more fibrosis and RV maladaptive remodeling. We induced RV chronic pressure overload over a 20-week period in 2 piglet models of pulmonary hypertension; that is, a shunt model (n = 5) and a chronic thromboembolic pulmonary hypertension model (n = 5). We assessed hemodynamic parameters and RV remodeling as well as RV CD, fibrosis, and angiogenic factors expression. Although RV was similarly hypertrophied in both models, maladapted RV remodeling with impaired systolic function was only seen in chronic thromboembolic pulmonary hypertension group members who had lower CD (484 ± 99 vs 1213 ± 74 cap/mm 2 ; P work ratio (0.29 ± 0.07 vs 0.82 ± 0.16; P = .02), higher myocardial fibrosis (15.4% ± 3.8% vs 8.0% ± 2.5%; P work ratio) was associated with greater degree of myocardial fibrosis and RV dysfunction and could be a promising index of RV maladaptation. Further studies are needed to understand the underlying mechanisms. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Androgenic anabolic steroids also impair right ventricular function.

    Science.gov (United States)

    Kasikcioglu, Erdem; Oflaz, Huseyin; Umman, Berrin; Bugra, Zehra

    2009-05-01

    Chronic anabolic steroid use suppresses left ventricular functions. However, there is no information regarding the chronic effects of anabolic steroids on right ventricular function which also plays a key role in global cardiac function. The main objective of the present study was to investigate the effects of androgenic anabolic steroids usage among athletes on remodeling the right part of the heart. Androgenic-anabolic steroids-using bodybuilders had smaller diastolic velocities of both ventricles than drug-free bodybuilders and sedentary counterparts. This study shows that androgenic anabolic steroids-using bodybuilders exhibited depressed diastolic functions of both ventricles.

  2. pH dependence of the isoproterenol-induced /sup 45/Ca net uptake into the ventricular myocardium of rats

    Energy Technology Data Exchange (ETDEWEB)

    Haag, R

    1975-01-01

    Infarction-like or disseminated myocardial necroses can be produced in rats by high doses of isoprotenerol which stimulates the decomposition of energy-rich phosphates to a maximum. The paper shows that acidoses of different genesis (peroral administration of NH/sub 4/Cl, artificial respiration with CO/sub 2/) induced experimentally can inhibit the isoproterenol-induced /sup 45/Ca net uptake and the production of necroses. The findings suggest that Ca/sup + +/ ions play a key role in the production of myocardial necroses which has not been recognized until now - that increased Ca/sup + +/ uptake into damaged myocardial fibres is a result or, at the most, an accompanying symptom of necrosis production - should therefore be discarded.

  3. HDL mimetic peptide CER-522 treatment regresses left ventricular diastolic dysfunction in cholesterol-fed rabbits.

    Science.gov (United States)

    Merlet, Nolwenn; Busseuil, David; Mihalache-Avram, Teodora; Mecteau, Melanie; Shi, Yanfen; Nachar, Walid; Brand, Genevieve; Brodeur, Mathieu R; Charpentier, Daniel; Rhainds, David; Sy, Gavin; Schwendeman, Anna; Lalwani, Narendra; Dasseux, Jean-Louis; Rhéaume, Eric; Tardif, Jean-Claude

    2016-07-15

    High-density lipoprotein (HDL) infusions induce rapid improvement of experimental atherosclerosis in rabbits but their effect on ventricular function remains unknown. We aimed to evaluate the effects of the HDL mimetic peptide CER-522 on left ventricular diastolic dysfunction (LVDD). Rabbits were fed with a cholesterol- and vitamin D2-enriched diet until mild aortic valve stenosis and hypercholesterolemia-induced LV hypertrophy and LVDD developed. Animals then received saline or 10 or 30mg/kg CER-522 infusions 6 times over 2weeks. We performed serial echocardiograms and LV histology to evaluate the effects of CER-522 therapy on LVDD. LVDD was reduced by CER-522 as shown by multiple parameters including early filling mitral deceleration time, deceleration rate, Em/Am ratio, E/Em ratio, pulmonary venous velocities, and LVDD score. These findings were associated with reduced macrophages (RAM-11 positive cells) in the pericoronary area and LV, and decreased levels of apoptotic cardiomyocytes in CER-522-treated rabbits. CER-522 treatment also resulted in decreased atheromatous plaques and internal elastic lamina area in coronary arteries. CER-522 improves LVDD in rabbits, with reductions of LV macrophage accumulation, cardiomyocyte apoptosis, coronary atherosclerosis and remodelling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Left ventricular dilatation and pulmonary thallium uptake after single-photon emission computer tomography using thallium-201 during adenosine-induced coronary hyperemia

    International Nuclear Information System (INIS)

    Iskandrian, A.S.; Heo, J.; Nguyen, T.; Lyons, E.; Paugh, E.

    1990-01-01

    This study examined the implications of left ventricular (LV) dilatation and increased pulmonary thallium uptake during adenosine-induced coronary hyperemia. The lung-to-heart thallium ratio in the initial images was significantly higher in patients with coronary artery disease (CAD) than normal subjects; 0.48 +/- 0.16 in 3-vessel disease (n = 16), 0.43 +/- 0.10 in 2-vessel disease (n = 20), 0.43 +/- 0.08 in 1-vessel disease (n = 16) and 0.36 +/- 0.05 in normal subjects (n = 7) (p less than 0.001, 0.09 and 0.06, respectively). There was a significant correlation between the severity and the extent of the perfusion abnormality (determined from the polar maps) and the lung-to-heart thallium ratio (r = 0.51 and 0.52, respectively, p less than 0.0002). There was also a significant correlation between lung thallium washout and lung-to-heart thallium ratio (r = 0.42, p = 0.0009) and peak heart rate (r = -0.49, p less than 0.0001). The LV dilatation was mostly due to an increase in cavity dimension (30% increase) and to a lesser extent (6% increase) due to increase in LV size. (The cavity dimensions were measured from the short-axis slices at the midventricular level in the initial and delayed images). The dilation was seen in patients with CAD but not in the normal subjects. These changes correlated with the extent and severity of the thallium perfusion abnormality. Thus, adenosine-induced coronary hyperemia may cause LV dilation and increased lung thallium uptake on the basis of subendocardial ischemia

  5. Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia.

    Directory of Open Access Journals (Sweden)

    Kenichi Sasaki

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs. The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT, which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies.We generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05. Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05. Pre-incubation with 10 μM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05.We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.

  6. Association of plasma angiotensin-(1-7 level and left ventricular function in patients with type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Pan-Pan Hao

    Full Text Available We recently found that overexpression of angiotensin (Ang-converting enzyme 2, which metabolizes Ang-II to Ang-(1-7 and Ang-I to Ang-(1-9, may prevent diabetes-induced left ventricular remodeling and dysfunction in rats. Our objective was to evaluate the association of plasma Ang-(1-7 level and left ventricular function in patients with type 2 diabetes mellitus.We measured the left ventricular ejection fraction (EF, ratio of early to late left ventricular filling velocity (E/A and ratio of early diastolic mitral inflow to annular velocity (E/Ea by ultrasonography in 110 patients with type 2 diabetes mellitus for more than 5 years. Anthropometric and fasting blood values were obtained from medical records. The plasma Ang-(1-7 level in patients with a poor EF (15 was significantly lower than that in patients with E/Ea ≤15. Ang-(1-7 level was negatively correlated with E/Ea and Log-N-terminal pro-B-type natriuretic peptide and positively with EF and E/A. Stepwise multiple regression analysis revealed that Ang-(1-7, hemoglobin A1c and Ang-II levels as well as duration of diabetes predicted EF; Ang-(1-7 level, fasting blood glucose, low-density lipoprotein cholesterol level and duration of diabetes predicted E/A; and Ang-(1-7 and hemoglobin A1c levels predicted E/Ea.Plasma Ang-(1-7 level is independently associated with left ventricular function in patients with type 2 diabetes mellitus and may be a biomarker for assessing cardiac function in such patients.

  7. The 4th Report of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy

    DEFF Research Database (Denmark)

    Bacharova, Ljuba; Estes, Harvey E; Schocken, Douglas D

    2016-01-01

    The 4th Report provides a brief review of publications focused on the electrocardiographic diagnosis of left ventricular hypertrophy published during the period of 2010 to 2016 by the members of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy. The Working Group recommended...... that ECG research and clinical attention be redirected from the estimation of LVM to the identification of electrical remodeling, to better understanding the sequence of events connecting electrical remodeling to outcomes. The need for a re-definition of terms and for a new paradigm is also stressed....

  8. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Directory of Open Access Journals (Sweden)

    Andrea Guala

    Full Text Available The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  9. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2015-01-01

    The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  10. Early postoperative remodelling following repair of tetralogy of Fallot utilising unsedated cardiac magnetic resonance: a pilot study.

    Science.gov (United States)

    DiLorenzo, Michael P; Goldmuntz, Elizabeth; Nicolson, Susan C; Fogel, Mark A; Mercer-Rosa, Laura

    2018-05-01

    IntroductionThe right ventricular adaptations early after surgery in infants with tetralogy of Fallot are important to understand the changes that occur later on in life; this physiology has not been fully delineated. We sought to assess early postoperative right ventricular remodelling in patients with tetralogy of Fallot by cardiac MRI.Materials and methodSubjects with tetralogy of Fallot under 1 year of age were recruited following complete surgical repair for tetralogy of Fallot. Protocol-based cardiac MRI to assess anatomy, function, and flows was performed before hospital discharge using the feed and sleep technique, an unsedated imaging technique. MRI was completed in 16 subjects at a median age of 77 days (interquartile range 114). There was normal ventricular ejection fraction and indexed right ventricular end-diastolic volume (48±13 cc/m2), but elevated right ventricular mass (z score 6.2±2.4). Subjects requiring a transannular patch or right ventricle to pulmonary artery conduit had moderate pulmonary insufficiency (regurgitant fraction 27±16%).DiscussionEarly right ventricular remodelling after surgical repair for tetralogy of Fallot is characterised by significant pulmonary regurgitation, right ventricular hypertrophy, and lack of dilation. Performing cardiac MRI using the feed and sleep technique is feasible in infants younger than 5 months. These results might open new avenues to study longitudinal right ventricular changes in tetralogy of Fallot and to further explore the utility of unsedated MRI in patients with other types of CHDs.

  11. No-Regrets Remodeling, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  12. El aumento de la expresión del ARNm de la enzima convertidora de angiotensina I homóloga (ECA-2 inducido por atorvastatina se asocia a menor fibrosis e hipertrofia ventricular izquierda en un modelo de cardiomiopatía diabética Atorvastatin induced increase in homologous angiotensin i converting enzyme (ACE2 mRNA is associated to decreased fibrosis and decreased left ventricular hypertrophy in a rat model of diabetic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Cristian Aguilar

    2011-06-01

    Full Text Available Objetivos. Evaluar el efecto de atorvastatina sobre la progresión del remodelado cardiaco y la expresión de ECA-2 en el miocardio de ratas diabéticas. Materiales y métodos. La diabetes fue inducida en ratas Holtzman con una inyección intraperitoneal de estreptozotocina. Los animales fueron divididos en tres grupos: (1 ratas control, (2 ratas diabéticas y (3 ratas diabéticas tratadas con atorvastatina (50 mg/kg/día. Después de ocho semanas de tratamiento, los corazones fueron extraídos para el análisis morfométrico, la cuantificación de colágeno y la determinación de los niveles de ARNm de ECA y ECA-2. Resultados. El índice de hipertrofia ventricular y el depósito de colágeno se incrementaron significativamente en las ratas diabéticas. La administración de atorvastatina previno estos cambios sin modificar los niveles de colesterol. La hiperglicemia produjo un incremento significativo en los niveles del ARNm de ECA y una marcada disminución en la expresión de ECA-2 en el miocardio de ratas diabéticas. La administración de atorvastatina indujo la expresión del ARNm de ECA-2 e inhibió la sobreexpresión del ARNm de ECA en el miocardio de las ratas diabéticas. Conclusiones. Nuestros resultados indican que la atorvastatina, independientemente de su capacidad para disminuir el colesterol, normaliza la relación de la expresión de ECA/ECA-2 y atenúa el desarrollo del remodelado adverso en el corazón diabético.Objectives. This study has investigated the effect of atorvastatin on the progression of cardiac remodelling and ACE- 2 expression in diabetic myocardium in rats. Materials and Methods. Diabetes was induced in Holtzman rats with an intraperitoneal injection of streptozotocin. The animals were divided into 3 groups: (1 normal control rats, (2 diabetic rats and (3 diabetic rats treated orally with atorvastatin (50 mg/kg/day. After eight weeks of treatment, the hearts were removed for morphometric studies, collagen

  13. Alternative right ventricular pacing sites.

    Science.gov (United States)

    Łuciuk, Dariusz; Łuciuk, Marek; Gajek, Jacek

    2015-01-01

    The main adverse effect of chronic stimulation is stimulation-induced heart failure in case of ventricular contraction dyssynchrony. Because of this fact, new techniques of stimulation should be considered to optimize electrotherapy. One of these methods is pacing from alternative right ventricular sites. The purpose of this article is to review currently accumulated data about alternative sites of cardiac pacing. Medline and PubMed bases were used to search English and Polish reports published recently. Recent studies report a deleterious effect of long term apical pacing. It is suggested that permanent apical stimulation, by omitting physiological conduction pattern with His-Purkinie network, may lead to electrical and mechanical dyssynchrony of heart muscle contraction. In the long term this pathological situation can lead to severe heart failure and death. Because of this, scientists began to search for some alternative sites of cardiac pacing to reduce the deleterious effect of stimulation. Based on current accumulated data, it is suggested that the right ventricular outflow tract, right ventricular septum, direct His-bundle or biventricular pacing are better alternatives due to more physiological electrical impulse propagation within the heart and the reduction of the dyssynchrony effect. These methods should preserve a better left ventricular function and prevent the development of heart failure in permanent paced patients. As there is still not enough, long-term, randomized, prospective, cross-over and multicenter studies, further research is required to validate the benefits of using this kind of therapy. The article should pay attention to new sites of cardiac stimulation as a better and safer method of treatment.

  14. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Tanya M Holloway

    Full Text Available There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05, and promoted a 20% (P<0.05 increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05, and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05. In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05 and a 20% decrease in cross sectional area (P<0.05. HIIT also increased brain natriuretic peptide by 50% (P<0.05, in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

  15. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  16. Lone ventricular cardiomyopathy,

    African Journals Online (AJOL)

    ... (I) cardiac catheterisation, including coronary arteriography and pulmonary ... described existence of lone ventricular idiopathic ... spectrum of classic idiopathic dilated cardiomyopathy. ... endomyocardial fibrosis, and from discussions at an.

  17. l-2-Oxothiazolidine-4-Carboxylic Acid or α-Lipoic Acid Attenuates Airway Remodeling: Involvement of Nuclear Factor-κB (NF-κB, Nuclear Factor Erythroid 2p45-Related Factor-2 (Nrf2, and Hypoxia-Inducible Factor (HIF

    Directory of Open Access Journals (Sweden)

    Heung Bum Lee

    2012-06-01

    Full Text Available Reactive oxygen species (ROS play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, l-2-oxothiazolidine-4-carboxylic acid (OTC or α-lipoic acid (LA on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor-β1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB, nuclear factor erythroid 2p45-related factor-2 (Nrf2, hypoxia-inducible factor (HIF-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling.

  18. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    DEFF Research Database (Denmark)

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe

    2006-01-01

    a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma m...

  19. Penyekat Beta sebagai Terapi Anti-Remodeling pada Gagal Jantung

    Directory of Open Access Journals (Sweden)

    Hilman Zulkifli Amin

    2015-09-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Penyakit kardiovaskular merupakan penyebab kematian utama dan setiap tahunnya terjadi 50 juta kematian di seluruh dunia. Gagal jantung tercatat sebagai salah satu penyakit kardiovaskularyang sering terjadi. Pada gagal jantung, terjadi remodelling sel yang mengakibatkan penurunanfungsi pompa jantung. Seiring dengan kemajuan penelitian di bidang kardiovaskuler, penyekatbeta telah diteliti penggunaannya sebagai terapi anti-remodelling. Sampai sekarang, penelitian danstudi terkait hal tersebut masih terus dilakukan. Tujuan penulisan makalah ini untuk menjelaskanperan penyekat beta sebagai terapi anti-remodelling pada gagal jantung. Pencarian terstrukturmelalui PubMed mendapatkan 93 artikel, setelah disesuaikan dengan kriteria eksklusi dan inklusididapatkan 25 artikel. Setelah membaca artikel secara lengkap, didapatkan 11 artikel yang sesuai.Kemudian artikel tersebut ditelaah dalam menentukan validitas, relevansi, dan aplikabilitas. Dari 11artikel yang ditelaah kritis, didapatkan bahwa beta-blocker dapat berperan sebagai anti-remodellingmelalui peningkatan fungsi jantung sebagaimana terlihat pada kenaikan ejection fraction (EF,penurunan left ventricular end systolic volume (LVESV dan left ventricular end diastolic volume(LVEDV pada pasien gagal jantung. Kata Kunci: penyekat beta, anti-remodelling, gagal jantung Beta-Blocker as Anti-Remodeling Therapy in Heart Failure Abstract Cardiovascular diseases still become the leading cause of death in the world. All over the world, there are approximately 50 million deaths every year caused by cardiovascular diseases.Heart failure is known as one of cardiovascular diseases that frequently happened. In heart failurestate, there is a cell remodeling condition that implicated to lowering heart pump function. As thedevelopment progress of cardiovascular researches, beta-blocker has also been studied for its useas anti-remodeling therapy. Up to

  20. [Bone remodeling and modeling/mini-modeling.

    Science.gov (United States)

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  1. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Cardiac remodeling indicators in adolescent athletes

    Directory of Open Access Journals (Sweden)

    Joaquim Castanheira

    Full Text Available Summary Objective: The idea that different sports and physical training type results in different cardiac adaptations has been widely accepted. However, this remodelling process among different sport modalities is still not fully understood. Thus, the current study aims to investigate the heart morphology variation associated with a set of different modalities characterized by distinct models of preparation and different methods and demands of training and completion. Method: The sample comprises 42 basketball players, 73 roller hockey players, 28 judo athletes and 21 swimmers. Anthropometry was assessed by a single and experienced anthropometrist and the same technician performed the echocardiographic exams. Analysis of variance was used to study age, body size and echocardiograph parameters as well as different sport athlete's comparison. Results: Basketball players are taller (F=23.448; p<0.001; ES-r=0.553, heavier (F=6.702; p<0.001; ES-r=0.334 and have a greater body surface area (F=11.896; p<0.001; ES-r=0.427. Basketball and hockey players have larger left auricle diameters compared with judo athletes (F=3.865; p=0.011; ES-r=0.316. Interventricular end-diastolic septal thickness (F=7.287; p<0.001; ES-r=0.347 and left ventricular posterior wall thickness (F=8.038; p<0.001; ES-r=0.362 of the judokas are smaller compared to the mean values of other sports participants. In addition, relative left parietal ventricular wall thickness is lower among swimmers compared with judokas (F=4.127; p=0.008; ES-r=0.268. Conclusion: The major contributors to changes in heart morphology are for the most part associated with sport-specific training and competition and the specific dynamics and adaptive mechanisms imposed by each sport.

  3. Normal left ventricular function does not protect against propafenone ...

    African Journals Online (AJOL)

    Normal left ventricular function does not protect against propafenone-induced incessant ventricular tachycardia. R. N. Scott Millar, J. B. Lawrenson, D.A. Milne. Abstract. Propafenone is a class Ic anti-arrhythmic agent with mild B-blocking properties which has recently become available in South Africa. We have used the ...

  4. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    Science.gov (United States)

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization.

  5. Left and right ventricle late remodeling following myocardial infarction in rats.

    Science.gov (United States)

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S; Lahera, Vicente; Vassallo, Paula F; Cachofeiro, Victoria

    2013-01-01

    The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.

  6. Left and right ventricle late remodeling following myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Ivanita Stefanon

    Full Text Available BACKGROUND: The mechanisms involved in cardiac remodeling in left (LV and right ventricles (RV after myocardial infarction (MI are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP or not (INF-HF or INF, respectively. METHODS: MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF, transforming growth factor β (TGF-β and lysyl oxidase (LOX, metalloproteinase-2 (MMP2 and tissue inhibitor metalloproteinase-2 (TIMP2 as well as cardiac hemodynamic in both ventricles were evaluated. RESULTS: Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. CONCLUSIONS: INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.

  7. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.

    Science.gov (United States)

    Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni

    2017-01-01

    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post

  8. Patterns of left ventricular geometry and the transition to congestive heart failure with preserved versus depressed ejection fraction (Patrones de geometría ventricular izquierda y la transición a la insuficiencia cardíaca congestiva con fracción de eyección conservada versus deprimida)

    OpenAIRE

    José H. Donis Hernández; Francisco Sanchez; Bárbara das Neves; Carmen A. Mazzei de Dávila, Lisett Aranguibel, Maite González; Lisett Aranguibel; Maite González

    2014-01-01

    Abstract (english) Analysis of cross-sectional and follow up clinical studies, of hypertensive patients with the different left ventricular geometric patterns, provide plausible explanations for the transition from hypertensive heart disease to the two distinct phenotypes of systolic and diastolic congestive heart failure. According to the LIFE study treated-uncomplicated patients, with normal ventricular geometry (12%), concentric remodeling ...

  9. State of Left Ventricular Systolic and Diastolic Function in Patients with Postinfarction Cardiosclerosis and Obesity

    Directory of Open Access Journals (Sweden)

    P.P. Kravchun

    2014-09-01

    Conclusions. Comorbidity of obesity and postinfarction remodeling potentiate the increase of the heart size, dilatation of the heart cavities on the background of inotropic myocardial function reduction. In most patients with postinfarction cardiosclerosis and obesity, left ventricular diastolic dysfunction manifested by a type of relaxation disturbance.

  10. Rapid pacing results in changes in atrial but not in ventricular refractoriness

    NARCIS (Netherlands)

    Schoonderwoerd, BA; Van Gelder, IC; Tieleman, RG; Bel, KJ; Crijns, HJGM

    It is well known that atrial tachycardia causes atrial electrical remodeling, characterized by shortening of atrial effective refractory periods (AERPs) and loss of physiological adaptation of AERP to rate. However, the nature and time course of changes in ventricular effective refractory periods

  11. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    International Nuclear Information System (INIS)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-01-01

    Highlights: ► L-Arginine treatment reduced the metabolic disturbances in diabetic animals. ► Antioxidant marker proteins were found high in myocardium by L-arginine treatment. ► Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. ► L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. ► Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg −1 body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-κB. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be

  12. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India); Selvam, Govindan Sadasivam, E-mail: drselvamgsbiochem@rediffmail.com [Molecular Cardiology Unit, Department of Biochemistry, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu (India)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  13. Cardiac