WorldWideScience

Sample records for venom antigenic diversity

  1. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    Science.gov (United States)

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  2. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  3. Diversity of Micrurus Snake Species Related to Their Venom Toxic Effects and the Prospective of Antivenom Neutralization

    Science.gov (United States)

    Tanaka, Gabriela D.; Furtado, Maria de Fátima D.; Portaro, Fernanda C. V.; Sant'Anna, Osvaldo Augusto; Tambourgi, Denise V.

    2010-01-01

    Background Micrurus snake bites can cause death by muscle paralysis and respiratory arrest, few hours after envenomation. The specific treatment for coral snake envenomation is the intravenous application of heterologous antivenom and, in Brazil, it is produced by horse immunization with a mixture of M. corallinus and M. frontalis venoms, snakes that inhabit the South and Southeastern regions of the country. However, this antivenom might be inefficient, considering the existence of intra- and inter-specific variations in the composition of the venoms. Therefore, the aim of the present study was to investigate the toxic properties of venoms from nine species of Micrurus: eight present in different geographic regions of Brazil (M. frontalis, M. corallinus, M. hemprichii, M. spixii, M. altirostris, M. surinamensis, M. ibiboboca, M. lemniscatus) and one (M. fulvius) with large distribution in Southeastern United States and Mexico. This study also analyzed the antigenic cross-reactivity and the neutralizing potential of the Brazilian coral snake antivenom against these Micrurus venoms. Methodology/Principal Findings Analysis of protein composition and toxicity revealed a large diversity of venoms from the nine Micrurus species. ELISA and Western blot assays showed a varied capability of the therapeutic antivenom to recognize the diverse species venom components. In vivo and in vitro neutralization assays indicated that the antivenom is not able to fully neutralize the toxic activities of all venoms. Conclusion These results indicate the existence of a large range of both qualitative and quantitative variations in Micrurus venoms, probably reflecting the adaptation of the snakes from this genus to vastly dissimilar habitats. The data also show that the antivenom used for human therapy in Brazil is not fully able to neutralize the main toxic activities present in the venoms from all Micrurus species occurring in the country. It suggests that modifications in the

  4. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    Science.gov (United States)

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  5. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation

    Directory of Open Access Journals (Sweden)

    Ana M. Moura-da-Silva

    2016-06-01

    Full Text Available Snake venom metalloproteinases (SVMPs are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.

  6. Preparing and Characterizing Chitosan Nanoparticles Containing Hemiscorpius lepturus Scorpion Venom as an Antigen Delivery System

    Directory of Open Access Journals (Sweden)

    Mohammadpour Dounighi, N.

    2012-11-01

    Full Text Available In recent years, chitosan nanoparticles have been studied widely for protein delivery. In this study, Hemiscorpius lepturus (HL venom was encapsulated in chitosan nanoparticles. The aim of the present work was to carry out a systematic study for preparing biocompatible and biodegradable nanoparticles for loading HL scorpion venom and to evaluate their potential as an antigen delivery system. In this study, HL venom loaded chitosan nanoparticles fabricated by ionic gelation of chitosan and tripolyphosphate and the factors which may be influenced in the preparation of nanoparticles were analyzed. Also, their physicochemical properties and in vitro release behavior were studied. The optimum encapsulation efficiency and capacity were observed when the chitosan concentration and HL venom were 2mg/ml and 500µg/ml, respectively. The HL venom loaded nanoparticles were in the size range of 130-160nm (polydispersity index values of 0.423 and exhibited the positive zeta potential. Transmission electron microscope imaging showed spherical and smooth surface of nanoparticles. The profiles of the release exhibited a burst releases about 50% in the first 4 hr and then slowed down at a constant rate. The obtained results suggested that the chitosan nanoparticles prepared in this work had the potential for antigen delivery.

  7. Immunochemical studies of yellowjacket venom proteins.

    Science.gov (United States)

    King, T P; Alagon, A C; Kuan, J; Sobotka, A K; Lichtenstein, L M

    1983-03-01

    The major proteins of yellowjacket venoms have been isolated and characterized immuno-chemically. They consist of hyaluronidase, phospholipase, and antigen 5. Venoms from three species of yellowjacket were studied. Vespula germanica, V. maculifrons, and V. vulgaris. The phospholipases could be isolated in good yield only when affinity chromatography was used to minimize limited proteolysis. A kallikrein-like peptidase was found present in the yellowjacket venom. Phospholipases from these three species were immunochemically indistinguishable from each other, as were their antigen 5s. Sera from individuals sensitive to yellowjacket venom contained IgE and IgG specific for antigen 5 and phospholipase.

  8. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio

    2018-06-15

    Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Allergens in Hymenoptera venom. XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity.

    Science.gov (United States)

    Hoffman, D R

    1993-11-01

    The complete amino acid sequences have been determined by solid-phase protein sequencing for eight different vespid venom antigen 5 molecules. These include five species of yellow jackets, Vespula squamosa, V. flavopilosa, V. germanica, V. pensylvanica and V. vidua, representing all three species groups; two variants from the European hornet, Vespa crabro; and a species of paper wasp, Polistes fuscatus, from a second subgenus. The new sequences were compared with the seven previously published sequences from yellow jackets, hornets, and wasps, and to that of Solenopsis invicta 3 allergen from imported fire ant venom. These comparisons provided structural evidence to support the observed high degree of cross-reactivity among the antigens of the common group of yellow jackets and among those of the two common North American subgenera of paper wasps studied. The antigen 5 of V. squamosa and of V. vidua were significantly different from those of the vulgaris group. Common features that could generate immunologic cross-reactivity were seen among the antigen 5 molecules of hornets of both genera and among those of yellow jackets, hornets, and paper wasps. The imported fire ant allergen has only minimal conserved areas in common with the vespid allergens, which explains the lack of observed IgE cross-reactivity. These results provide the structural basis for the cross-reactivity patterns observed in clinical practice and suggest that the commercial extracts of yellow jacket and paper wasp could be prepared with fewer carefully selected species.

  12. Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region.

    Science.gov (United States)

    Furtado, Maria de Fátima D; Cardoso, Silvia Travaglia; Soares, Oscar Espellet; Pereira, Aparecida Pietro; Fernandes, Daniel Silva; Tambourgi, Denise Vilarinho; Sant'Anna, Osvaldo Augusto

    2010-04-01

    Snakebites are still a critical public health problem in developing countries or isolated areas. In Brazil, the North Region has a high distribution coefficient worsened by the significant number of eventually unreported cases, due to difficulties in access to health services, to the natural geographic barriers and the vast territory. In the Rio Negro area, the species Bothrops atrox, Bothrops brazili, Lachesis muta muta and Bothriopsis taeniata are thought to be the major species responsible for snakebites. The aim of this study was to qualitatively and quantitatively determine the antigenic cross-reactivity and expression of toxins and the immunogenicity of Bothrops venom species of the Amazon and to evaluate the general efficacy of the therapeutic sera. The in vivo assays demonstrated that the defibrinating activity of B. taeniata venom was absent but that the lethal and hemorrhagic properties were more intense than in the B. atrox venom. The results evidence venom variability among the two B. atrox populations from two distinct Amazonian regions, which may reveal a subjacent speciation process. The results point to new aspects that may guide the improvement of anti-Bothropic therapeutic serum. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin.

    Science.gov (United States)

    Seyedian, Ramin; Pipelzadeh, Mohammad Hassan; Jalali, Amir; Kim, Euikyung; Lee, Hyunkyoung; Kang, Changkeun; Cha, Mijin; Sohn, Eun-Tae; Jung, Eun-Sun; Rahmani, Ali Hassan; Mirakabady, Abbas Zare

    2010-09-15

    Hemiscorpius lepturus envenomation exhibits various pathological changes in the affected tissues, including skin, blood cells, cardiovascular and central nervous systems. The enzymatic activity and protein component of the venom have not been described previously. In the present study, the electrophoretic profile of H. lepturus venom was determined by SDS-PAGE (12 and 15%), resulting in major protein bands at 3.5-5, 30-35 and 50-60 kDa. The enzymatic activities of the venom was, for the first time, investigated using various zymography techniques, which showed the gelatinolytic, caseinolytic, and hyaluronidase activities mainly at around 50-60 kDa, 30-40 kDa, and 40-50 kDa, respectively. Among these, the proteolytic activities was almost completely disappeared in the presence of a matrix metalloproteinase inhibitor, 1, 10-phenanthroline. Antigen-antibody interactions between the venom and its Iranian antivenin was observed by Western blotting, and it showed several antigenic proteins in the range of 30-160 kDa. This strong antigen-antibody reaction was also demonstrated through an enzyme-linked immunosorbent assay (ELISA). The gelatinase activity of the venom was suppressed by Razi institute polyvalent antivenin, suggesting the inhibitory effect of the antivenin against H. lepturus venom protease activities. Prudently, more extensive clinical studies are necessary for validation of its use in envenomed patients. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5.

    Science.gov (United States)

    Van Vaerenbergh, M; Cardoen, D; Formesyn, E M; Brunain, M; Van Driessche, G; Blank, S; Spillner, E; Verleyen, P; Wenseleers, T; Schoofs, L; Devreese, B; de Graaf, D C

    2013-04-01

    Honey bee venom is a complex mixture of toxic proteins and peptides. In the present study we tried to extend our knowledge of the venom composition using two different approaches. First, worker venom was analysed by liquid chromatography-mass spectrometry and this revealed the antimicrobial peptide apidaecin for the first time in such samples. Its expression in the venom gland was confirmed by reverse transcription PCR and by a peptidomic analysis of the venom apparatus tissue. Second, genome mining revealed a list of proteins with resemblance to known insect allergens or venom toxins, one of which showed homology to proteins of the antigen 5 (Ag5)/Sol i 3 cluster. It was demonstrated that the honey bee Ag5-like gene is expressed by venom gland tissue of winter bees but not of summer bees. Besides this seasonal variation, it shows an interesting spatial expression pattern with additional production in the hypopharyngeal glands, the brains and the midgut. Finally, our immunoblot study revealed that both synthetic apidaecin and the Ag5-like recombinant from bacteria evoke no humoral activity in beekeepers. Also, no IgG4-based cross-reactivity was detected between the honey bee Ag5-like protein and its yellow jacket paralogue Ves v 5. © 2013 Royal Entomological Society.

  15. Wasp venom proteins: phospholipase A1 and B.

    Science.gov (United States)

    King, T P; Kochoumian, L; Joslyn, A

    1984-04-01

    Three major venom proteins from different species of wasps have been isolated and characterized. They are hyaluronidase, phospholipase, and antigen 5 of as yet unknown biochemical function. These three proteins are allergens in wasp venom-sensitive persons. The species of wasps studied, of the genus Polistes, were annularis, carolina, exclamans, fuscatus, and instabilis. Antigen 5 and phospholipase from wasp venoms were shown to be antigenically distinct from homologous proteins of yellowjacket venoms. The venom phospholipase from wasp, as well as that from yellowjacket (Vespula germanica), appears to have dual enzymatic specificities of the A1 and B types. That is, hydrolysis takes place at the 1-acyl residue of phosphatidylcholine and at the 1- or 2-acyl residue of lysophosphatidylcholine.

  16. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  17. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  18. The Venom of the Spine-Bellied Sea Snake (Hydrophis curtus): Proteome, Toxin Diversity and Intraspecific Variation.

    Science.gov (United States)

    Neale, Vanessa; Sotillo, Javier; Seymour, Jamie E; Wilson, David

    2017-12-12

    The spine-bellied sea snake ( Hydrophis curtus ) is known to cause human deaths, yet its venom composition has not yet been proteomically characterised. An indepth proteomic analysis was performed on H. curtus venom from two different seasons, January and June, corresponding to adults and subadults, respectively. Venoms from adult and subadult H. curtus individuals were compared using reversedphase high-performance liquid chromatography (RP-HPLC), matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry and liquid chromatography electrospray ionisation mass spectrometry (LC-ESI-MS) to detect intraspecific variation, and the molecular weight data obtained with ESIMS were used to assess toxin diversity. RPHPLC and LCESIMS/MS were used to characterise the venom proteome and estimate the relative abundances of protein families present. The most abundant protein family in January and June venoms is phospholipase A₂ (PLA₂: January 66.7%; June 54.5%), followed by threefinger toxins (3FTx: January 30.4%; June 40.4%) and a minor component of cysteine-rich secretory proteins (CRISP: January 2.5%; June 5%). Trace amounts of snake venom metalloproteinases (SVMP), C-type lectins and housekeeping and regulatory proteins were also found. Although the complexity of the venom is low by number of families present, each family contained a more diverse set of isoforms than previously reported, a finding that may have implications for the development of next-generation sea snake antivenoms. Intraspecific variability was shown to be minor with one obvious exception of a 14,157-Da protein that was present in some January (adult) venoms, but not at all in June (subadult) venoms. There is also a greater abundance of short-chain neurotoxins in June (subadult) venom compared with January (adult) venom. These differences potentially indicate the presence of seasonal, ontogenetic or sexual variation in H. curtus venom.

  19. Antigenic Cross-Reactivity Anti-Birtoxin Antibody against Androctonus crassicauda Venom

    Directory of Open Access Journals (Sweden)

    SuhandanAdigüzel Van-Zoelen

    2015-10-01

    Full Text Available Background: Antivenom is still widely used in the treatment of envenomation as there are no vaccines or other effective agents available against animal venoms. Recently, neurotoxins named birtoxin family have been described from Parabuthus transvaalicus and Androctonus crassicauda. The aim of the present study was to test the antibirtoxinantibodies for their ability to neutralize the lethal effects of A. crassicauda scorpion venom.Methods: SDS-PAGE and Western blotting used the presence of components from A. crassicauda and P.transvaalicus scorpion venoms and to determine the degree of cross-reactivity. The Minimum Lethal Dose (MLD of venom was assessed by subcutaneously (sc injections in mice.Results: The MLD of the A. crassicauda venom was 35 μg/ 20g mouse by sc injection route. Western blotting showed the presence of components from A. crassicauda and P. transvaalicus scorpion venoms strongly cross react with the A. crassicauda antivenom. However, Western blotting of the A. crassicauda scorpion venom using the Refik Saydam Public Health Agency (RSPHA generated antibody showed that not all the venom components cross reacted with the anti-birtoxin antibody. The antibodies only cross reacted with components falling under the 19 kDa protein size of A. crassicauda venom.Conclusion: The bioassays and Western blotting of A. crassicauda venom with the anti-birtoxin antibodies produced against a synthetic peptide showed that these antibodies cross reacted but did not neutralize the venom of A. crassicauda.

  20. Polymerized soluble venom--human serum albumin

    International Nuclear Information System (INIS)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  1. Polymerized soluble venom--human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  2. Immunology of Bee Venom.

    Science.gov (United States)

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2017-01-20

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  3. Peptidomics combined with cDNA library unravel the diversity of centipede venom

    DEFF Research Database (Denmark)

    Rong, Mingqiang; Yang, Shilong; Wen, Bo

    2015-01-01

    of centipede venom. In the present study, we use peptidomics combined with cDNA library to uncover the diversity of centipede Scolopendra subspinipes mutilans L. Koch. 192 peptides were identified by LC-MS/MS and 79 precursors were deduced by cDNA library. Surprisingly, the signal peptides of centipede toxins...

  4. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  5. The Biochemical Toxin Arsenal from Ant Venoms

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  6. Assessment of the toxicity level of gamma-irradiated snake (Naja naja oxiana) venom by photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Vidyasagar, P.B.; Pal, Saumen

    1991-01-01

    Immunization is the only answer to the challenge of the diseases for which it is extremely difficult to institute timely and proper treatment following the inset. Various antigenic agents responsible for such diseases are used for the purpose of immunization to overcome this difficulty. To make safe use of the antigens it is required to reduce their toxicity level keeping the antigenicity intact and develop a suitable way to detect it. To ensure this, toxoids are produced from the toxic antigens by using different physical and chemical methods. Snake venoms are some important antigens which deserve more attention to be used for immunization because bites by poisonous snakes require instant treatment which is difficult to install. Toxoids used in the present study were produced by irradiating oxus cobra (Naja naja oxiana) venom under cobalt-60 gamma-ray source. The toxocity level of thus produced venom toxoid was assessed by photoacoustic (PA) spectroscopy. In support of the PA observations, optical absorption and fluorescence spectra of the venom in solution were also studied. Percentile change in PA signal intensity was taken as the parameter for toxocity level which was then correlated to the percentile residual toxocity of the venom obtained by direct method of injecting the venom in mice. Efforts were also made to find out the possible effects of the radiation on the venom. (author). 29 refs., 7 figs

  7. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  8. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.

    Science.gov (United States)

    O'Leary, M A; Maduwage, K; Isbister, G K

    2013-01-01

    Immunoturbidimetry studies the phenomenon of immunoprecipitation of antigens and antibodies in solution, where there is the formation of large, polymeric insoluble immunocomplexes that increase the turbidity of the solution. We used immunoturbidimetry to investigate the interaction between commercial snake antivenoms and snake venoms, as well as cross-reactivity between different snake venoms. Serial dilutions of commercial snake antivenoms (100μl) in water were placed in the wells of a microtitre plate and 100μl of a venom solution (50μg/ml in water) was added. Absorbance readings were taken at 340nm every minute on a BioTek ELx808 plate reader at 37°C. Limits imposed were a 30minute cut-off and 0.004 as the lowest significant maximum increase. Reactions with rabbit antibodies were carried out similarly, except that antibody dilutions were in PBS. Mixing venom and antivenom/antibodies resulted in an immediate increase in turbidity, which either reached a maximum or continued to increase until a 30minute cut-off. There was a peak in absorbance readings for most Australian snake venoms mixed with the corresponding commercial antivenom, except for Pseudonaja textilis venom and brown snake antivenom. There was cross-reactivity between Naja naja venom from Sri Lanka and tiger snake antivenom indicated by turbidity when they were mixed. Mixing rabbit anti-snake antibodies with snake venoms resulted in increasing turbidity, but there was not a peak suggesting the antibodies were not sufficiently concentrated. The absorbance reading at pre-determined concentrations of rabbit antibodies mixed with different venoms was able to quantify the cross-reactivity between venoms. Indian antivenoms from two manufacturers were tested against four Sri Lankan snake venoms (Daboia russelli, N. naja, Echis carinatus and Bungarus caeruleus) and showed limited formation of immunocomplexes with antivenom from one manufacturer. The turbidity test provides an easy and rapid way to compare

  9. In-Depth Glyco-Peptidomics Approach Reveals Unexpected Diversity of Glycosylated Peptides and Atypical Post-Translational Modifications in Dendroaspis angusticeps Snake Venom.

    Science.gov (United States)

    Degueldre, Michel; Echterbille, Julien; Smargiasso, Nicolas; Damblon, Christian; Gouin, Charlotte; Mourier, Gilles; Gilles, Nicolas; De Pauw, Edwin; Quinton, Loïc

    2017-11-18

    Animal venoms represent a valuable source of bioactive peptides that can be derived into useful pharmacological tools, or even innovative drugs. In this way, the venom of Dendroaspis angusticeps (DA), the Eastern Green Mamba, has been intensively studied during recent years. It mainly contains hundreds of large toxins from 6 to 9 kDa, each displaying several disulfide bridges. These toxins are the main target of venom-based studies due to their valuable activities obtained by selectively targeting membrane receptors, such as ion channels or G-protein coupled receptors. This study aims to demonstrate that the knowledge of venom composition is still limited and that animal venoms contain unexpected diversity and surprises. A previous study has shown that Dendroaspis angusticeps venom contains not only a cocktail of classical toxins, but also small glycosylated peptides. Following this work, a deep exploration of DA glycopeptidome by a dual nano liquid chromatography coupled to electrospray ionization mass spectrometry (nanoLC-ESI-MS) and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) analyses was initiated. This study reveals unsuspected structural diversity of compounds such as 221 glycopeptides, displaying different glycan structures. Sequence alignments underline structural similarities with natriuretic peptides already characterized in Elapidae venoms. Finally, the presence of an S -cysteinylation and hydroxylation of proline on four glycopeptides, never described to date in snake venoms, is also revealed by proteomics and affined by nuclear magnetic resonance (NMR) experiments.

  10. In-Depth Glyco-Peptidomics Approach Reveals Unexpected Diversity of Glycosylated Peptides and Atypical Post-Translational Modifications in Dendroaspis angusticeps Snake Venom

    Directory of Open Access Journals (Sweden)

    Michel Degueldre

    2017-11-01

    Full Text Available Animal venoms represent a valuable source of bioactive peptides that can be derived into useful pharmacological tools, or even innovative drugs. In this way, the venom of Dendroaspis angusticeps (DA, the Eastern Green Mamba, has been intensively studied during recent years. It mainly contains hundreds of large toxins from 6 to 9 kDa, each displaying several disulfide bridges. These toxins are the main target of venom-based studies due to their valuable activities obtained by selectively targeting membrane receptors, such as ion channels or G-protein coupled receptors. This study aims to demonstrate that the knowledge of venom composition is still limited and that animal venoms contain unexpected diversity and surprises. A previous study has shown that Dendroaspis angusticeps venom contains not only a cocktail of classical toxins, but also small glycosylated peptides. Following this work, a deep exploration of DA glycopeptidome by a dual nano liquid chromatography coupled to electrospray ionization mass spectrometry (nanoLC-ESI-MS and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS analyses was initiated. This study reveals unsuspected structural diversity of compounds such as 221 glycopeptides, displaying different glycan structures. Sequence alignments underline structural similarities with natriuretic peptides already characterized in Elapidae venoms. Finally, the presence of an S-cysteinylation and hydroxylation of proline on four glycopeptides, never described to date in snake venoms, is also revealed by proteomics and affined by nuclear magnetic resonance (NMR experiments.

  11. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong

    2015-09-10

    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors

  12. Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis.

    Science.gov (United States)

    Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal

    2013-12-01

    Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

  13. Treating autoimmune disorders with venom-derived peptides.

    Science.gov (United States)

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  14. The comparison between the humoral response and the neutralizing capacity of sheep serum inoculated with natural venom and Co60 irradiated venom from Crotalus durissus terrificus (Laurenti, 1768)

    International Nuclear Information System (INIS)

    Netto, D.P.

    2000-01-01

    Crotalus durissus terrificus venom was irradiated with Co 60 to investigate the effects of antigen-irradiation on antivenom production in sheep. Twelve sheep were divided in two groups of 6. One group received irradiated, while the other received natural venom. Three doses of antigen were given at monthly intervals. The toxic activity of the venom was assessed by LD 50 in mice. Weekly blood samples were obtained to evaluate anti-crotalic serum titers by indirect ELISA, neutralization capacity, and serum potency. A complete blood count, plasma protein and fibrinogen concentration, and serum albumin and globulin were also determined. At end of the experiment, the animals were challenged with ovine LD 50 , without clinical abnormalities. (author)

  15. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Science.gov (United States)

    Walker, Andrew A.; Weirauch, Christiane; Fry, Bryan G.; King, Glenn F.

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  16. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits.

    Science.gov (United States)

    Walker, Andrew A; Weirauch, Christiane; Fry, Bryan G; King, Glenn F

    2016-02-12

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  17. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Directory of Open Access Journals (Sweden)

    Andrew A. Walker

    2016-02-01

    Full Text Available The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  18. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  19. Mast cells and IgE in defense against venoms: Possible “good side” of allergy?

    Directory of Open Access Journals (Sweden)

    Stephen J. Galli

    2016-01-01

    Full Text Available Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This ‘bad side’ of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells, can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as “misdirected” type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, as well as against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance to reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice which survive an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcɛRI, and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.

  20. The comparison between the humoral response and the neutralizing capacity of sheep serum inoculated with natural venom and Co{sup 60} irradiated venom from Crotalus durissus terrificus (Laurenti, 1768)

    Energy Technology Data Exchange (ETDEWEB)

    Netto, D.P. [Universidade Estadual de Londrina, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Medicina Veterinaria Preventiva]. E-mail: mnetto@uel.br

    2000-07-01

    Crotalus durissus terrificus venom was irradiated with Co{sup 60} to investigate the effects of antigen-irradiation on antivenom production in sheep. Twelve sheep were divided in two groups of 6. One group received irradiated, while the other received natural venom. Three doses of antigen were given at monthly intervals. The toxic activity of the venom was assessed by LD{sub 50} in mice. Weekly blood samples were obtained to evaluate anti-crotalic serum titers by indirect ELISA, neutralization capacity, and serum potency. A complete blood count, plasma protein and fibrinogen concentration, and serum albumin and globulin were also determined. At end of the experiment, the animals were challenged with ovine LD{sub 50}, without clinical abnormalities. (author)

  1. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms.

    Science.gov (United States)

    Smith, William Leo; Wheeler, Ward C

    2006-01-01

    Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.

  3. Hormone-like peptides in the venoms of marine cone snails

    Science.gov (United States)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T.; Purcell, Anthony W.; Norton, Raymond S.; Safavi-Hemami, Helena

    2015-01-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey’s nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. PMID:26301480

  4. Hormone-like peptides in the venoms of marine cone snails.

    Science.gov (United States)

    Robinson, Samuel D; Li, Qing; Bandyopadhyay, Pradip K; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T; Purcell, Anthony W; Norton, Raymond S; Safavi-Hemami, Helena

    2017-04-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.

    Science.gov (United States)

    von Reumont, Björn M; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A

    2014-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.

  6. An overview of Bothrops erythromelas venom

    OpenAIRE

    Nery,Neriane Monteiro; Luna,Karla Patrícia; Fernandes,Carla Freire Celedônio; Zuliani,Juliana Pavan

    2016-01-01

    Abstract This review discusses studies on the venom of Bothrops erythromelas published over the past 36 years. During this period, many contributions have been made to understand the venomous snake, its venom, and its experimental and clinical effects better. The following chronological overview is based on 29 articles that were published between 1979 and 2015, with emphasis on diverse areas. The complexity of this task demands an integration of multidisciplinary research tools to study toxin...

  7. Assessment of immunogenic characteristics of Hemiscorpius lepturus venom and its cross-reactivity with venoms from Androctonus crassicauda and Mesobuthus eupeus.

    Science.gov (United States)

    Khanbashi, Shahin; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Pipelzadeh, Mohammad Hassan; Vazirianzadeh, Babak; Hosseinzadeh, Mohsen; Rahmani, Ali Hassan; Asmar, Akbar

    2015-01-01

    Hemiscorpius lepturus (H. lepturus), one of the most venomous scorpions in tropical and sub-tropical areas, belongs to the Hemiscorpiidae family. Studies of antibodies in sera against the protein component of the venom from this organism can be of great use for the development of engineered variants of proteins for eventual use in the diagnosis/treatment of, and prevention of reactions to, stings. In the present in vitro study, the proteins of H. lepturus venom, which could specifically activate the production of immunoglobulin G (IgG) in victims accidently exposed to the venom from this scorpion, were evaluated and their cross-reactivity with venoms from two other important scorpion species including Androctonus crassicauda and Mesobuthus eupeus assessed. H. lepturus venom was analyzed with respect to its protein composition and its antigenic properties against antibodies found in sera collected from victims exposed to the venom of this scorpion within a previous 2-month period. The cross-reactivity of the H. lepturus venom with those from A. crassicauda and M. eupeus was assessed using ELISA and immunoblotting. Electrophoretic analysis of the venom of H. lepturus revealed several protein bands with weights of 8-116 KDa. The most frequent IgG-reactive bands in the test sera had weights of 34, 50, and 116 kDa. A weak cross-reactivity H. lepturus of venom with venoms from A. crassicauda and M. eupeus was detected. The results of immunoblotting and ELISA experiments revealed that H. lepturus venom activated the host immune response, leading to the production of a high titer of antibodies. Clearly, a determination of the major immunogenic components of H. lepturus venom could be valuable for future studies and ultimately of great importance for the potential production of recombinant or hypo-venom variants of these proteins.

  8. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake venom

    Directory of Open Access Journals (Sweden)

    Ho Paulo L

    2009-03-01

    Full Text Available Abstract Background Micrurus corallinus (coral snake is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. Results A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx (24% and phospholipases A2 (PLA2s (15%. However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA2 and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. Conclusion Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA

  9. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity.

    Science.gov (United States)

    Starkl, Philipp; Marichal, Thomas; Gaudenzio, Nicolas; Reber, Laurent Lionel; Sibilano, Riccardo; Tsai, Mindy; Galli, Stephen Joseph

    2016-01-01

    Type 2 cytokine-related immune responses associated with development of antigen-specific IgE antibodies can contribute to pathology in patients with allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE also can enhance defense against honeybee venom. We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local anaphylactic reaction to an unrelated antigen can enhance defense against Russell viper venom (RVV) and determined whether such responses can be influenced by immunization protocol or mouse strain. We compared the resistance of RVV-immunized wild-type, IgE-deficient, and Fcer1a-deficient mice after injection of a potentially lethal dose of RVV. A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we observed different effects on resistance to RVV or honeybee venom in BALB/c versus C57BL/6 mice that had received a second exposure to that venom before challenge with a high dose of that venom. These observations illustrate the potential benefit of IgE-dependent effector mechanisms in acquired host defense against venoms. The extent to which type 2 immune responses against venoms can decrease pathology associated with envenomation seems to be influenced by the type of venom, the frequency of venom exposure, and the genetic background of the host. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics.

    Science.gov (United States)

    Schiener, M; Eberlein, B; Moreno-Aguilar, C; Pietsch, G; Serrano, P; McIntyre, M; Schwarze, L; Russkamp, D; Biedermann, T; Spillner, E; Darsow, U; Ollert, M; Schmidt-Weber, C B; Blank, S

    2017-01-01

    Hymenoptera stings can cause severe anaphylaxis in untreated venom-allergic patients. A correct diagnosis regarding the relevant species for immunotherapy is often hampered by clinically irrelevant cross-reactivity. In vespid venom allergy, cross-reactivity between venoms of different species can be a diagnostic challenge. To address immunological IgE cross-reactivity on molecular level, seven recombinant antigens 5 of the most important Vespoidea groups were assessed by different diagnostic setups. The antigens 5 of yellow jackets, hornets, European and American paper wasps, fire ants, white-faced hornets, and Polybia wasps were recombinantly produced in insect cells, immunologically and structurally characterized, and their sIgE reactivity assessed by ImmunoCAP, ELISA, cross-inhibition, and basophil activation test (BAT) in patients with yellow jacket or Polistes venom allergy of two European geographical areas. All recombinant allergens were correctly folded and structural models and patient reactivity profiles suggested the presence of conserved and unique B-cell epitopes. All antigens 5 showed extensive cross-reactivity in sIgE analyses, inhibition assays, and BAT. This cross-reactivity was more pronounced in ImmunoCAP measurements with venom extracts than in sIgE analyses with recombinant antigens 5. Dose-response curves with the allergens in BAT allowed a differentiated individual dissection of relevant sensitization. Due to extensive cross-reactivity in various diagnostic settings, antigens 5 are inappropriate markers for differential sIgE diagnostics in vespid venom allergy. However, the newly available antigens 5 from further vespid species and the combination of recombinant allergen-based sIgE measurements with BAT represents a practicable way to diagnose clinically relevant sensitization in vespid venom allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hormone-like peptides in the venoms of marine cone snails

    DEFF Research Database (Denmark)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.

    2017-01-01

    , paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules...... but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers...

  12. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  13. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  14. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  15. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  16. Colubrid Venom Composition: An -Omics Perspective.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-07-23

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.

  17. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species

    OpenAIRE

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-01-01

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by u...

  18. Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon.

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E; Fry, Bryan G; Gutiérrez, José María; Gibbs, H Lisle; Sovic, Michael G; Calvete, Juan J

    2014-01-16

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across Agkistrodon and a ground for

  19. Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E.; Fry, Bryan G.; Gutiérrez, José María; Gibbs, H. Lisle; Sovic, Michael G.; Calvete, Juan J.

    2015-01-01

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. Biological significance A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across

  20. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    Science.gov (United States)

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Minor snake venom proteins: Structure, function and potential applications.

    Science.gov (United States)

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  2. Eastern brown snake (Pseudonaja textilis) envenomation in dogs and cats: Clinical signs, coagulation changes, brown snake venom antigen levels and treatment with a novel caprylic acid fractionated bivalent whole IgG equine antivenom.

    Science.gov (United States)

    Padula, A M; Leister, E

    2017-11-01

    This report describes the diagnosis and treatment of 16 confirmed cases of snakebite from the Australian eastern brown snake (Pseudonaja textilis) in dogs and cats. The clinical signs, brown snake venom antigen concentrations, coagulation parameters, and treatment outcomes following administration of an experimental caprylic acid fractionated bivalent whole IgG antivenom are documented. A brown snake venom antigen specific sandwich ELISA was used to retrospectively quantify venom levels in serum and urine. The characteristic clinical signs of envenomation in all cases were neurotoxicity to a variable extent and coagulation disturbances. The median serum venom concentration at presentation was 122 ng/mL and ranged from 1.9 to 3607 ng/mL. The median urine venom concentration at presentation was 55 ng/mL and ranged from 3.3 to 2604 ng/mL. Mechanical ventilation was used to successfully support respiration in three severely paralysed cases for 1-30 h. In four cases where serum samples were available post-antivenom treatment, venom was no longer detectable. Coagulation parameters measured on citrated plasma samples collected prior to antivenom from each case were abnormally prolonged to variable degrees in all cases. Three cases (2 dogs; 1 cat) were euthanized within four hours of presentation for either cost based reasons (2) or poor prognosis (1). One dog developed massive and potentially fatal pulmonary haemorrhage and was euthanazed. In vitro testing of the venom procoagulant neutralising efficacy of the experimental antivenom demonstrated it was 9.6-72 times more effective when compared to two other commercial veterinary antivenom products. This is the first detailed report of a case series of P. textilis envenomation in dogs and cats. The envenomation syndrome in dogs and cats differed to that reported humans, dominated by neurotoxicity and coagulopathy; unlike in humans, where coagulopathy is of primary clinical significance. Copyright © 2017 Elsevier Ltd

  3. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  4. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity.

    Science.gov (United States)

    Gendreau, Kerry L; Haney, Robert A; Schwager, Evelyn E; Wierschin, Torsten; Stanke, Mario; Richards, Stephen; Garb, Jessica E

    2017-02-16

    Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in

  5. Comparison of the venom immunogenicity of various species of yellow jackets (genus Vespula).

    Science.gov (United States)

    Wicher, K; Reisman, R E; Wypych, J; Elliott, W; Steger, R; Mathews, R S; Arbesman, C E

    1980-09-01

    Venoms from various yellow jacket species were examined by two-dimensional thin-layer chromatography (TDTLC), double-diffusion gel precipitation (DDGP) using rabbit antisera, and the radioallergosorbent test (RAST). Comparison of representative venoms by the TDTLC showed that the venoms of V. vulgaris and V. maculifrons have a larger number of Ninhydrin (triketohydrindene hydrate)-positive substances than the venom of V. squamosa. The results of the DDGP confirmed the differences; venoms of V. vulgaris, V. maculifrons, V. flavopilosa, and V. germanica have one or more major components with immunogenic identity. The venom of V. squamosa has a species-specific major component and some minor components immunologically identical to the other venoms examined. Sera from 21 patients with a history of anaphylaxis following yellow jacket stings were examined by the RAST. Using the venoms of V. maculifrons, V. vulgaris, V. flavopilosa, and V. germanica as coupling antigens, most sera reacted similarly. The sera did not react with V. squamosa. These results suggest that the major component in venom obtained from the four yellow jacket species has immunogenic identity. Venom of V. squamosa differs from the remaining venoms. As a practical corollary, with the exception of venom from V. squamosa, common sensitivity appears to exist among the yellow jacket venoms examined.

  6. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    Science.gov (United States)

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the

  7. Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology

    Directory of Open Access Journals (Sweden)

    Sina Jami

    2017-12-01

    Full Text Available Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or “algesic” venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain.

  8. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    Science.gov (United States)

    2013-01-01

    Background Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. Conclusions We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of

  9. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  10. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

    Directory of Open Access Journals (Sweden)

    Wu Yingliang

    2009-07-01

    Full Text Available Abstract Background The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. Results There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. Conclusion This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

  11. HYMENOPTERA ALLERGENS: FROM VENOM TO VENOME

    Directory of Open Access Journals (Sweden)

    Edzard eSpillner

    2014-02-01

    Full Text Available In Western Europe hymenoptera venom allergy primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of hymenoptera venom allergy research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire venome as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of IgE reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in hymenoptera venom allergy and may serve for monitoring, reevaluation and improvement of current therapeutic strategies.

  12. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy.

    Science.gov (United States)

    Yoshida, Naruo; Hirata, Hirokuni; Watanabe, Mineaki; Sugiyama, Kumiya; Arima, Masafumi; Fukushima, Yasutsugu; Ishii, Yoshiki

    2015-07-01

    Ves v 5 and Pol d 5, which constitute antigen 5, are recognized as the major, most potent allergens of family Vespidae. Several studies have reported the diagnostic sensitivity of the novel recombinant (r)Ves v 5 and rPol d 5 allergens in routine clinical laboratory settings by analyzing a group of Vespula and Polistes venom-allergic patients. In this study, we analyzed the sensitivity to venom specific (s)IgE by spiking with rVes v 5 and rPol d 5 in Japanese patients suspected of Hymenoptera venom allergy. Subjects were 41 patients who had experienced systemic reactions to hornet and/or paper wasp stings. Levels of serum sIgE against hornet and paper wasp venom by spiking with rVes v 5 and rPold d 5, respectively, as improvement testing, compared with hornet and paper wasp venom, as conventional testing, were measured by ImmunoCAP. Of the 41 patients, 33 (80.5%) were positive (≥0.35 UA/ml) for hornet and/or paper wasp venom in conventional sIgE testing. sIgE levels correlated significantly (P venom (R = 0.78) in improvement testing and conventional testing. To determine specificity, 20 volunteers who had never experienced a Hymenoptera sting were all negative for sIgE against these venoms in both improvement and conventional testing. Improved sensitivity was seen in 8 patients negative for sIgE against both venoms in conventional testing, while improvement testing revealed sIgE against hornet or paper wasp venom in 5 (total 38 (92.7%)) patients. The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  13. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Md Abdul Hakim

    2015-11-01

    Full Text Available Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  14. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes.

    Science.gov (United States)

    Touchard, Axel; Labrière, Nicolas; Roux, Olivier; Petitclerc, Frédéric; Orivel, Jérôme; Escoubas, Pierre; Koh, Jennifer M S; Nicholson, Graham M; Dejean, Alain

    2014-09-01

    We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmex penetrator and Pseudomyrmex gracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.

    Science.gov (United States)

    Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2017-01-16

    A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen

  16. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  17. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  18. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species.

    Science.gov (United States)

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-11-11

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees ( Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE) images of each species' venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS). We have identified 47 proteins for Bombus humilis , 32 for B. pascuorum , 60 for B. ruderarius , 39 for B. sylvarum , and 35 for B. zonatus . Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species' venom composition.

  19. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    International Nuclear Information System (INIS)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U.; Sakate, M.

    2007-01-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from 60 Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a 60 Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  20. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms.

  1. Effects of irradiated Bothropstoxin-1 and Bothrops jararacussu crude venom on the immune system

    International Nuclear Information System (INIS)

    Caproni, Priscila

    2009-01-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules and has been proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with 60 Co gamma rays, yielding toxoids with good immunogenicity, however, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. At the present work, we have evaluated the effects on immune system of B10.PL and BALB/c mice of Bothrops jararacussu crude venom and isolated bothropstoxin-1 (Bthx-1), before and after gamma radiation exposition. According to our data, irradiation process promoted structural modifications on both isolated toxin and crude venom, characterized by higher molecular weight protein (aggregates and oligomers) formation. Irradiated samples were immunogenic and the antibodies elicited by them were able to recognize the native toxin in ELISA. These results indicate that irradiation of toxic proteins can promote significant modifications in their structures, but still retain many of the original antigenic and immunological properties. Also, our data indicate that the irradiated protein induced higher titers of IgG2b, suggesting that Th1 cells were predominantly involved. Results from Western blot assay showed that antibodies raised against irradiated bothropstoxin-1 recognize both native isolated toxin or crude venom. Cytotoxicity assay showed that irradiated toxin and crude venom were less toxic than their native counterpart. Thus, the viability of the macrophages cultured in the presence of irradiated Bthx-1 or crude venom was higher if compared with their native forms. LDH Assay showed that irradiated Bthx-1 promotes less muscular damage than the native form. Our data confirm a potential use of ionizing

  2. Bee venom processes human skin lipids for presentation by CD1a.

    Science.gov (United States)

    Bourgeois, Elvire A; Subramaniam, Sumithra; Cheng, Tan-Yun; De Jong, Annemieke; Layre, Emilie; Ly, Dalam; Salimi, Maryam; Legaspi, Annaliza; Modlin, Robert L; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2015-02-09

    Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.

  3. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Science.gov (United States)

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  4. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus Species

    Directory of Open Access Journals (Sweden)

    Nezahat Pınar Barkan

    2017-11-01

    Full Text Available Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp. is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE images of each species’ venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS. We have identified 47 proteins for Bombus humilis, 32 for B. pascuorum, 60 for B. ruderarius, 39 for B. sylvarum, and 35 for B. zonatus. Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species’ venom composition.

  5. Humoral immune response against native or 60Co irradiated venom and mucus from stingray Paratrygon aiereba

    International Nuclear Information System (INIS)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Aires, Raquel da Silva; Turibio, Thompson de Oliveira; Rocha, Andre Moreira; Spencer, Patrick Jack; Nascimento, Nanci do; Seibert, Carla Simone

    2015-01-01

    Poisonings and traumas caused by poisonous freshwater fish such as rays are considered a major public health problem and draw attention because of accidents involving these animals cause serious local symptoms and are disabling, keeping the victim away from work. The therapy of these cases is based only on the symptoms of patients, which implies in its low efficiency, causing suffering for the victims. This study aims to evaluate and compare the humoral immune response in animals inoculated with native or 60 Co irradiated Paratrygon aiereba venom and mucus. Ionizing radiation has proven to be an excellent tool to decrease the toxicity of venoms and isolated toxins. The mucus and venom samples of P. aiereba were irradiated using gamma rays from a 60 Co source. Animals models were immunized with the native or irradiated mucus or venom. The assays were conducted to assess the production of antibodies by the immunized animals using enzyme immunoassay and western blotting. Preliminary results show the production of antibodies by the immunized animals. The resulting sera were also checked for antigenic cross- reactivity between venom and mucus, demonstrating the potential of mucus as an antigen for serum production for the specific treatment for accidents by stingrays. However, it is essential to carry out further tests in order to verify the neutralization of the toxin by antibodies formed by animals. (author)

  6. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    Science.gov (United States)

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  8. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    Energy Technology Data Exchange (ETDEWEB)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U. [Uberaba School of Veterinary Medicine (UNIUBE), MG (Brazil)]. E-mail: pedrolucaso@uol.com.br; Sakate, M. [UNESP, Botucatu, SP (Brazil). School of Veterinary Medicine and Animal Husbandry

    2007-07-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from {sup 60}Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a {sup 60}Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  9. Humoral response and neutralization capacity of sheep serum inoculated with natural and Cobalt 60-irradiated Crotalus durissus terrificus venom (Laurenti, 1768)

    International Nuclear Information System (INIS)

    Netto, D.P.; Alfieri, A.A.; Chiacchio, S.B.; Bicudo, P.L.; Nascimento, N.

    2002-01-01

    The aim of this work was to investigate antigen irradiation on crotalic antivenom and the capacity of sheep as serum producers. Twelve sheep in two groups of six were inoculated with Crotalus durissus terrificus venom. One group was inoculated with natural venom (N V) and the other with Cobalt 60 gamma-irradiated venom (Ir V). Three antigen doses were given to the animals at monthly intervals for immunization. The toxic activity of the venom was assessed by LD 50 determination in mice. Blood samples were collected weekly analyses of serum neutralization capacity and potency. At the end of the experiment, the animals were challenged with a LD 50 for sheep showed no signs of envenoming. These results showed that toxicity of the irradiated venom was 4.4 times less than the natural venom. The sera from the irradiated group neutralized LD 50 14.6 times, and the sera from the natural group 4.4 times. Sera from the irradiated group were five times more potent. The two groups did not present clinical alterations. The results of this study show the potential for using sheep in crotalic antivenom production. The use of irradiated venom in sheep immunization induces a powerful and lasting humoral immune response shown by both the in vitro neutralization and potency tests and by the indirect ELISA antibody level detection technique. (author)

  10. Humoral immune response against native or {sup 60}Co irradiated venom and mucus from stingray Paratrygon aiereba

    Energy Technology Data Exchange (ETDEWEB)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Aires, Raquel da Silva; Turibio, Thompson de Oliveira; Rocha, Andre Moreira; Spencer, Patrick Jack; Nascimento, Nanci do, E-mail: 0916@prof.itpacporto.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Seibert, Carla Simone, E-mail: carlaseibert@yahoo.com [Universidade Federal do Tocantins (UFT), Porto Nacional, TO (Brazil)

    2015-07-01

    Poisonings and traumas caused by poisonous freshwater fish such as rays are considered a major public health problem and draw attention because of accidents involving these animals cause serious local symptoms and are disabling, keeping the victim away from work. The therapy of these cases is based only on the symptoms of patients, which implies in its low efficiency, causing suffering for the victims. This study aims to evaluate and compare the humoral immune response in animals inoculated with native or {sup 60}Co irradiated Paratrygon aiereba venom and mucus. Ionizing radiation has proven to be an excellent tool to decrease the toxicity of venoms and isolated toxins. The mucus and venom samples of P. aiereba were irradiated using gamma rays from a {sup 60}Co source. Animals models were immunized with the native or irradiated mucus or venom. The assays were conducted to assess the production of antibodies by the immunized animals using enzyme immunoassay and western blotting. Preliminary results show the production of antibodies by the immunized animals. The resulting sera were also checked for antigenic cross- reactivity between venom and mucus, demonstrating the potential of mucus as an antigen for serum production for the specific treatment for accidents by stingrays. However, it is essential to carry out further tests in order to verify the neutralization of the toxin by antibodies formed by animals. (author)

  11. Haemotoxic snake venoms : their functional activity, impact on snakebite victims and pharmaceutical promise

    NARCIS (Netherlands)

    Slagboom, Julien; Kool, Jeroen; Harrison, Robert A.; Casewell, Nicholas R.

    2017-01-01

    Snake venoms are mixtures of numerous proteinacious components that exert diverse functional activities on a variety of physiological targets. Because the toxic constituents found in venom vary from species to species, snakebite victims can present with a variety of life-threatening pathologies

  12. Evaluation of the effects of photooxidized Echis carinatus venom on learning, memory and stress

    Directory of Open Access Journals (Sweden)

    C. M. Reddy

    2006-01-01

    Full Text Available Snake venoms are a mixture of complex proteins, which have many physical and pharmacological properties. Photochemical detoxification has been suggested to generate photooxidized Echis carinatus venom product (POECVP. Antigenically-active photooxidized species of Echis carinatus venom could be obtained by exposing the venom to ultraviolet radiation (UVR in the presence of methylene blue. The aim of the present study was to evaluate the effects of POECVP on learning, memory and stress in rats. Detoxification of the photooxidized venom was evident since the POECVP-treated group had longer survival time than the group of mice treated with Echis carinatus venom product (ECVP following intraperitoneal and intracerebral injections. Photooxidized Echis carinatus venom product showed antidepressant activity by prolonging sleep onset and shortening the duration of pentobarbitone-induced hypnosis in mice. In single and chronic dose studies with rats, we observed that POECVP significantly decreased the time needed to reach food in T-maze, shortened transfer latency in elevated plus-maze, and decreased immobility time in forced swim test. We concluded that although there is a possibility of employing POECVP in the treatment of depressive and chronic degenerative illnesses as a nonherbal and nonsynthetic alternative for patients not responding to the available therapy, further investigation is still needed.

  13. Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms

    Science.gov (United States)

    Jackson, Timothy N. W.; Koludarov, Ivan; Ali, Syed A.; Dobson, James; Zdenek, Christina N.; Dashevsky, Daniel; op den Brouw, Bianca; Masci, Paul P.; Nouwens, Amanda; Josh, Peter; Goldenberg, Jonathan; Cipriani, Vittoria; Hay, Chris; Hendrikx, Iwan; Dunstan, Nathan; Allen, Luke; Fry, Bryan G.

    2016-01-01

    Australia is the stronghold of the front-fanged venomous snake family Elapidae. The Australasian elapid snake radiation, which includes approximately 100 terrestrial species in Australia, as well as Melanesian species and all the world’s true sea snakes, may be less than 12 million years old. The incredible phenotypic and ecological diversity of the clade is matched by considerable diversity in venom composition. The clade’s evolutionary youth and dynamic evolution should make it of particular interest to toxinologists, however, the majority of species, which are small, typically inoffensive, and seldom encountered by non-herpetologists, have been almost completely neglected by researchers. The present study investigates the venom composition of 28 species proteomically, revealing several interesting trends in venom composition, and reports, for the first time in elapid snakes, the existence of an ontogenetic shift in the venom composition and activity of brown snakes (Pseudonaja sp.). Trends in venom composition are compared to the snakes’ feeding ecology and the paper concludes with an extended discussion of the selection pressures shaping the evolution of snake venom. PMID:27792190

  14. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    DEFF Research Database (Denmark)

    Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens....... In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high......-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes...

  15. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2.

    Science.gov (United States)

    Sivaramakrishnan, V; Ilamathi, M; Ghosh, K S; Sathish, S; Gowda, T V; Vishwanath, B S; Rangappa, K S; Dhananjaya, B L

    2016-01-01

    Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Marine snail venoms: use and trends in receptor and channel neuropharmacology.

    Science.gov (United States)

    Favreau, Philippe; Stöcklin, Reto

    2009-10-01

    Venoms are rich mixtures of mainly peptides and proteins evolved by nature to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, marine snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on marine snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.

  17. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Science.gov (United States)

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  18. Peptidomic and transcriptomic profiling of four distinct spider venoms.

    Directory of Open Access Journals (Sweden)

    Vera Oldrati

    Full Text Available Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae, Poecilotheria formosa (Theraphosidae, Viridasius fasciatus (Viridasiidae and Latrodectus mactans (Theridiidae. This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins, revealed the presence of 14

  19. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    Science.gov (United States)

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  20. Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates.

    Science.gov (United States)

    Rode-Margono, Johanna E; Nekaris, K Anne-Isola

    2015-07-17

    Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery.

  1. Limited Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from North America

    Science.gov (United States)

    Xu, Yifei; Bailey, Elizabeth; Spackman, Erica; Li, Tao; Wang, Hui; Long, Li-Ping; Baroch, John A.; Cunningham, Fred L.; Lin, Xiaoxu; Jarman, Richard G.; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976–2010], 7 from domestic poultry [1971–2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry. PMID:26858078

  2. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Mother-Newborn Pairs in Malawi Have Similar Antibody Repertoires to Diverse Malaria Antigens.

    Science.gov (United States)

    Boudová, Sarah; Walldorf, Jenny A; Bailey, Jason A; Divala, Titus; Mungwira, Randy; Mawindo, Patricia; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Ouattara, Amed; Adams, Matthew; Felgner, Philip L; Plowe, Christopher V; Travassos, Mark A; Laufer, Miriam K

    2017-10-01

    Maternal antibodies may play a role in protecting newborns against malaria disease. Plasmodium falciparum parasite surface antigens are diverse, and protection from infection requires allele-specific immunity. Although malaria-specific antibodies have been shown to cross the placenta, the extent to which antibodies that respond to the full repertoire of diverse antigens are transferred from the mother to the infant has not been explored. Understanding the breadth of maternal antibody responses and to what extent these antibodies are transferred to the child can inform vaccine design and evaluation. We probed plasma from cord blood and serum from mothers at delivery using a customized protein microarray that included variants of malaria vaccine target antigens to assess the intensity and breadth of seroreactivity to three malaria vaccine candidate antigens in mother-newborn pairs in Malawi. Among the 33 paired specimens that were assessed, mothers and newborns had similar intensity and repertoire of seroreactivity. Maternal antibody levels against vaccine candidate antigens were the strongest predictors of infant antibody levels. Placental malaria did not significantly impair transplacental antibody transfer. However, mothers with placental malaria had significantly higher antibody levels against these blood-stage antigens than mothers without placental malaria. The repertoire and levels of infant antibodies against a wide range of malaria vaccine candidate antigen variants closely mirror maternal levels in breadth and magnitude regardless of evidence of placental malaria. Vaccinating mothers with an effective malaria vaccine during pregnancy may induce high and potentially protective antibody repertoires in newborns. Copyright © 2017 American Society for Microbiology.

  4. Obtained and evaluation of antisera raised against irradiated crotalic whole venom or crotoxin in 60 Co source

    International Nuclear Information System (INIS)

    Paula, Regina A. de.

    1995-01-01

    Snake bite is a great Public Health problem in our country. The accidents with snakes from Crotalus genus are the most severe. About 1% of the victims die without seratherapy. The antivenons are obtained from hyper immune horse plasma. During the production these animals present signs of envenoming that result in a decrease of organic resistance besides the horses maintenance is very expensive and the producers are fewer, so the sera production is restrict. Many techniques which could reduce the venoms toxicity and increase the sera production using chemical and physical agents have been studied. The gamma rays are excellent tool to detoxify venoms and toxins. It is able to modify protein structures that decrease lethally, toxic and enzymatic activities without modifying the immunogenicity. So, it is important evaluate the sera production in rabbits using gamma rays detoxified venom and crotoxin as immunogen and their power as reagents in immuno assays. In order to obtain the antisera, Crotalus durissus terrificus whole venom or isolated crotoxin was irradiated with 2.000 Gy in 60 Co source, in a 150 mM NaCl solution, and inoculated in rabbits. The sera production were screened by immunoprecipitation, immuno enzymatic (ELISA) and immunoradiometric (IRMA) assays. The specificity was studied by immuno-electrophoresis, ELISA and western blot techniques. The neutralizing power was evaluated by neutralization of phospholipase A 2 activity of toxin in vitro. The antisera were used as reagents in antigen capture assays ELISA and IRMA immuno assays to detect circulant antigens in sera of mice experimentally inoculated with crotalic venom or crotoxin. The results showed that both detoxified venom or crotoxin were good immunogens, and they were able to induce antibodies that could recognize non-irradiated venom or isolated crotoxin. The data suggest that those antibodies present more specificity and higher in vitro neutralizing power, when compared with commercial

  5. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G's F(ab')2 extrusion mechanism from blood to tissues.

    Science.gov (United States)

    Sevcik, C; D'Suze, G; Díaz, P; Salazar, V; Hidalgo, C; Azpúrua, H; Bracho, N

    2004-12-01

    Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G's F(ab')(2) extrusion mechanism from blood to tissues. We measured pharmacokinetic parameters for T. discrepans venom in rams. Forty, 75 or 100 microg/kg venom were injected subcutaneously in the inner side of the thigh. Plasma venom content (venenemia) was determined by enzyme-linked immunosorbent assay (ELISA) from 0 to 300 min after injecting venom. Venenemia was fit to a three-compartment model (inoculation site, plasma and extra vascular extracellular space), it was assumed that the venom may also be irreversibly removed from plasma. Calculated time course of venom content shows that at any time no more that 30% of the venom is present in plasma. Venenemia peaks at 1h and decays afterwards. Fluorescently labelled antivenom [horse anti-TityusF(ab')(2) or fraction antigen binding, immuglobulin without Fc chain covalently bound to fluorescine or fluorescamine] pharmacokinetics was determined. Although F(ab')(2) molecular weight is >/=10 times bigger that toxin's, the rate of outflow of F(ab')(2) from blood to tissues was approximately 4 times faster than the venom's outflow. Venom content in the injection site decays exponentially for >6h, this prediction was confirmed immunohistochemically. Only approximately 5% of the venom is eliminated in 10h; approximately 80% of the venom is in the tissues after 2h and remains there for >10h.

  6. The venom optimization hypothesis revisited.

    Science.gov (United States)

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.

    Science.gov (United States)

    Zancolli, Giulia; Sanz, Libia; Calvete, Juan J; Wüster, Wolfgang

    2017-05-28

    Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in "-omics" technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.

  8. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Monotremes (echidna and platypus are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  9. Study of 60 Co gamma radiation effects on the biochemical, biological and immunological properties of the Bothrops jararaca venom

    International Nuclear Information System (INIS)

    Guarnieri, M.C.

    1992-01-01

    Gamma radiation, by including different modifications on the toxic, enzymatic and immunological activities of proteins, could be an useful implement for detoxification of snake venoms. The present work was done to study the mechanism of action and effects of gamma rays on the Bothrops jararaca venom, determining the radiation dose that attenuates the toxic and enzymatic activities maintaining the immunological properties of venom, and also the most important free radicals on this process. The results of immuno diffusion, immunoblotting, immunoprecipitation, immunization of mice and rabbits, and neutralization tests, showed the maintenance of antigenic and immunogenic properties and decrease of neutralizing capacity of antibodies induced by 3,000 and 4,000 Gy irradiated venom. Since the immunological properties were the most radioresistant, it was possible to determine the dose of 2,000 Gy, as the ideal radiation dose in the treatment of venoms aiming the improvement of the immunization schedule to obtain bothropic antisera. (author). 164 refs, 19 tabs, 54 figs

  10. Studies on Impact of Irradiation Treatment on Certain Pharmacological and Biochemical Responses of Naja nigricollis Snake Venom

    International Nuclear Information System (INIS)

    Abd El Hamid, F.Y.A.

    2015-01-01

    Snakebite is a serious medical problem worldwide, especially in the tropics. In Egypt, the Black-neck Spitting Cobra; Naja nigricollis is one of the most venomous snakes distributed in the south part of Egypt. The lethality as well as the immunological, biochemical and histological effects of Naja nigricollis venom at a sublethal dose has been investigated before and after exposure to gamma radiation (1.5 KGy and 3 KGy). The toxicity of irradiated venom decreased as compared to that of the native one. There was no change in the antigenic reactivity between both native and irradiated venom. The effect of ½ LD 50 of native or irradiated (1.5 KGy) was studied on the activities of heart enzymes: CPK, CK-MB, LDH and AST after (1, 2, 4, 24 hours) of envenomation. The present study showed that snake venom envenomation caused significant (p ≤ 0.05) elevation in serum CPK, CK-MB, LDH and AST levels. In contrast, the 1.5 KGy gamma-irradiated venom recorded no significant changes compared to that of normal rats. Histopathological study of heart confirmed these findings. The 1.5 KGy and 3 KGy gamma irradiation decrease the phospholipase activity of the venom. Anticoagulant activity was prominent when re calcification time was tested on human plasma using each venom (native, γ- irradiated venoms) as a test solution. Naja nigricollis venom detoxified by gamma irradiation (1.5 KGy or 3 KGy) was used as toxoid for active immunization of rabbits following a short schedule of immunization with complete Freund's adjuvant. Effective neutralization of venom toxin by immune sera of rabbits was observed.

  11. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  12. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies.

    Science.gov (United States)

    Romano, Joseph D; Tatonetti, Nicholas P

    2015-11-24

    Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood.

  13. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Borja

    2018-01-01

    Full Text Available Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s, such as Mojave toxin, and snake venom metalloproteinases (SVMPs. In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus are limited and little is known about the biological and proteolytic activities in this species. Tissue (34 and venom (29 samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR and protein (by ELISA levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28 and Hide Powder Azure proteolytic analysis (n = 27. Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II, with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I, without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.

  14. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.

    Science.gov (United States)

    Terrat, Yves; Biass, Daniel; Dutertre, Sébastien; Favreau, Philippe; Remm, Maido; Stöcklin, Reto; Piquemal, David; Ducancel, Frédéric

    2012-01-01

    Although cone snail venoms have been intensively investigated in the past few decades, little is known about the whole conopeptide and protein content in venom ducts, especially at the transcriptomic level. If most of the previous studies focusing on a limited number of sequences have contributed to a better understanding of conopeptide superfamilies, they did not give access to a complete panorama of a whole venom duct. Additionally, rare transcripts were usually not identified due to sampling effect. This work presents the data and analysis of a large number of sequences obtained from high throughput 454 sequencing technology using venom ducts of Conus consors, an Indo-Pacific living piscivorous cone snail. A total of 213,561 Expressed Sequence Tags (ESTs) with an average read length of 218 base pairs (bp) have been obtained. These reads were assembled into 65,536 contiguous DNA sequences (contigs) then into 5039 clusters. The data revealed 11 conopeptide superfamilies representing a total of 53 new isoforms (full length or nearly full-length sequences). Considerable isoform diversity and major differences in transcription level could be noted between superfamilies. A, O and M superfamilies are the most diverse. The A family isoforms account for more than 70% of the conopeptide cocktail (considering all ESTs before clustering step). In addition to traditional superfamilies and families, minor transcripts including both cysteine free and cysteine-rich peptides could be detected, some of them figuring new clades of conopeptides. Finally, several sets of transcripts corresponding to proteins commonly recruited in venom function could be identified for the first time in cone snail venom duct. This work provides one of the first large-scale EST project for a cone snail venom duct using next-generation sequencing, allowing a detailed overview of the venom duct transcripts. This leads to an expanded definition of the overall cone snail venom duct transcriptomic activity

  15. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom.

    Science.gov (United States)

    Collaço, Rita de Cássia O; Randazzo-Moura, Priscila; Tamascia, Mariana L; da Silva, Igor Rapp F; Rocha, Thalita; Cogo, José C; Hyslop, Stephen; Sanny, Charles G; Rodrigues-Simioni, Léa

    2017-01-01

    In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA 2 , proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA 2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai. Copyright © 2016. Published by Elsevier Inc.

  16. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa

    Directory of Open Access Journals (Sweden)

    Dalia Ponce

    2016-04-01

    Full Text Available Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.

  17. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

    Science.gov (United States)

    Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason

    2016-01-01

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558

  18. Kinins in ant venoms--a comparison with venoms of related Hymenoptera

    NARCIS (Netherlands)

    Piek, T.; Schmidt, J. O.; de Jong, J. M.; Mantel, P.

    1989-01-01

    1. Venom preparations have been made of six ant, one pompilid wasp, two mutillid wasp, and four social wasp species. 2. The venoms were analysed pharmacologically in order to detect kinin-like activity. 3. Due to the small amounts of venoms available only a cascade of smooth muscle preparation could

  19. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  20. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms.

    Science.gov (United States)

    Debono, Jordan; Cochran, Chip; Kuruppu, Sanjaya; Nouwens, Amanda; Rajapakse, Niwanthi W; Kawasaki, Minami; Wood, Kelly; Dobson, James; Baumann, Kate; Jouiaei, Mahdokht; Jackson, Timothy N W; Koludarov, Ivan; Low, Dolyce; Ali, Syed A; Smith, A Ian; Barnes, Andrew; Fry, Bryan G

    2016-07-08

    Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis) were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.

  1. Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses.

    Science.gov (United States)

    Yan, Zhichao; Fang, Qi; Wang, Lei; Liu, Jinding; Zhu, Yu; Wang, Fei; Li, Fei; Werren, John H; Ye, Gongyin

    2016-01-25

    Parasitoid wasps are abundant and diverse hymenopteran insects that lay their eggs into the internal body (endoparasitoid) or on the external surface (ectoparasitoid) of their hosts. To make a more conducive environment for the wasps' young, both ecto- and endoparasitoids inject venoms into the host to modulate host immunity, metabolism and development. Endoparasitoids have evolved from ectoparasitoids independently in different hymenopteran lineages. Pteromalus puparum, a pupal endoparasitoid of various butterflies, represents a relatively recent evolution of endoparasitism within pteromalids. Using a combination of transcriptomic and proteomic approaches, we have identified 70 putative venom proteins in P. puparum. Most of them show higher similarity to venom proteins from the related ectoparasitoid Nasonia vitripennis than from other more distantly related endoparasitoids. In addition, 13 venom proteins are similar to venoms of distantly related endoparasitoids but have no detectable venom matches in Nasonia. These venom proteins may have a role in adaptation to endoparasitism. Overall, these results lay the groundwork for more detailed studies of venom function and adaptation to the endoparasitic lifestyle.

  2. Circus Venomous: an interactive tool for toxinology education.

    Science.gov (United States)

    Vohra, Rais; Spano, Susanne

    2013-07-01

    Clinical education about envenomations and their treatment may convey clinical and zoological details inadequately or flatly. In recent years, the widespread availability of models and videos of venomous species have created unique opportunities for toxinology education. We share our experiences using a new toolkit for educating a diverse array of clinicians, students, and wilderness medicine enthusiasts. We examined the cost, number of participants, and satisfaction data since the initiation of a portable workshop featuring high-fidelity exhibits of venomous species. Termed the "Circus Venomous," this educational toolkit consists of several boxes of props, such as plastic models, photos, and preserved specimens of injurious species. The workshop consists of three phases: 1.) participants view all exhibits and answer clinical questions regarding venomous injuries; 2.) short video clips from television, internet, and cinema are viewed together, and myths about envenomation injuries are debunked; 3.) debriefing session and wrap-up. We have utilized the Circus Venomous to teach medical students, residents, practicing community clinicians, nurses, PAs, national and regional parkmedics, and wilderness enthusiasts. The major cost (about $800) was spent on the purchase of highly durable, lifelike models and well preserved real reptile and arachnid specimens. When formal feedback was solicited, the participants expressed high levels of satisfaction, scoring an average of 4.3, 4.4, and 4.3 out of 5 points in the respective areas of content, presentation, and practical value of the activity. Since we have used this exhibit with approximately 250 participants over 2 years, we estimate the materials cost per participant is approximately $3. The Circus Venomous is a novel, interactive, flexible, and cost-effective teaching tool about envenomation emergencies. We hope that this concept will encourage other clinical educators toward further innovation. Future directions for our

  3. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    Science.gov (United States)

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  4. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  5. Alexander Mikhailovich Zakharov and his works on the venom apparatus and venoms of some poisonous snakes

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir Alexandrovich

    2013-10-01

    Full Text Available The article gives brief biographical information about a very talented herpetologist Alexander M. Zakharov, and describes the general results of his works on the structure and function of venom glands of some poisonous snakes and their venoms. In his studies, he got the results, which are fundamentally different from the conventional concept of 30s - 70s of the XX century. Unfortunately, among physicians this concept has not changed up today. At that time it was thought that the poisons of Viperidae snakes are almost completely hemotoxic, and poisons of Elapidae (cobra are almost neurotoxic. But A.M.Zaharov found out, that poisons of both types of snakes (Viperidae and Elapidae include three groups of substances: hemotoxins, neurotoxins and non-toxic component – hyaluronidase. Each of these groups of substances is produced by independent part of venom glands and has its own special effect. Neurotoxins act on the central nervous system (mainly the respiratory center, but are greatly destroyed by means of the blood antigen properties and cannot pass through the hematoencephalic barrier. Hyaluronidase , connecting with neurotoxins, has an important property – to "smuggle" neurotoxins through the hematoencephalic barrier exactly into the target organ – the respiratory center in the central nervous system. In this case, neurotoxin enters the respiratory center not through the blood and lymph vessels, but directly through the nerve channel, through synapsis. The main function of hemotoxins is not to kill the victim, but to protect neurotoxins and hyaluronidase from the destructive activity of the victim's blood. Therefore, the target of the poisons of Viperidae and Elapidae snakes is the central nervous system of victims, but Elapidae has almost no hemotoxins. That’s why their striking effect can be achieved only by a strong increase in the amount of neurotoxins and hyaluronidase. Hemotoxins of Viperidae venoms permits to reduce the amount of

  6. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra venom and its major toxins in experimentally envenomed rabbits.

    Directory of Open Access Journals (Sweden)

    Michelle Khai Khun Yap

    2014-06-01

    Full Text Available The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin, following intravenous and intramuscular administration into rabbits.The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h, terminal phase half-life (13.6 h and systemic bioavailability (41.9% of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax=2 h and 1 h, respectively. Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m.=81.5% compared to that of the phospholipase A2 (Fi.m.=68.6% or cardiotoxin (Fi.m.=45.6%. The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its

  7. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin

    Directory of Open Access Journals (Sweden)

    Bruno Lomonte

    2016-05-01

    Full Text Available Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a ‘venomics’ approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2% over phospholipase A2 (PLA2; 36.5%. Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, ‘intermediate’ type within the dichotomy between 3FTx- and PLA2-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA2 venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema.

  8. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics.

    Science.gov (United States)

    Haney, Robert A; Ayoub, Nadia A; Clarke, Thomas H; Hayashi, Cheryl Y; Garb, Jessica E

    2014-06-11

    Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.

  9. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  10. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    Science.gov (United States)

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  11. Effects of gamma radiation on Crotalus durissus terrificus venom

    International Nuclear Information System (INIS)

    Murata, Y.

    1988-01-01

    A poll of crotomine positive Crotalus durissus terrificus venom was dissolved in 0.15 M NaCl and the supernatant irradiated using 60 CO. Doses of 100,250,750,1000,1500 and 2000 Cy were used at a dose rate of 1.190Gy/h. The presence of free SH, casein hydrolytic degradation, SDS-PAGE and molecular exclusion chromatography analysis together with LD 50 determination in mice were studied. The antigenic properties of samples were investigated by immunodiffision and immunoprecipitation. (M.A.C.) [pt

  12. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive

  13. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    Directory of Open Access Journals (Sweden)

    Aida Verdes

    2016-04-01

    Full Text Available Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1 delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2 identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3 chemical and recombinant synthesis of promising peptide toxins; (4 structural characterization through experimental and computational methods; (5 determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6 optimization of peptide toxin affinity and selectivity to molecular target; and (7 development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  14. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    Science.gov (United States)

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

  15. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata.

    Science.gov (United States)

    Kawakami, Hiroko; Goto, Shin G; Murata, Kazuya; Matsuda, Hideaki; Shigeri, Yasushi; Imura, Tomohiro; Inagaki, Hidetoshi; Shinada, Tetsuro

    2017-01-01

    Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Three novel peptides with m / z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata . The peptide with m / z 16508 was characterized as a secretory phospholipase A 2 (PLA 2 ) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA 2 s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study.

  16. Evaluation of effects of photooxidized Vespa orientalis venom on memory and learning in rats

    Directory of Open Access Journals (Sweden)

    H Mukund

    2011-01-01

    Full Text Available Wasp venom is mixture of complex proteins that have several physical and pharmacological properties. The photochemical detoxification of Vespa orientalis venom is expected to generate photooxidized venom sac extract (PVSE. Antigenically active PVSE is obtained by exposing the venom sac extract (VSE of Vespa orientalis to ultraviolet radiation in the presence of methylene blue. The aim of the present work was to evaluate the effect of PVSE on learning and memory of rats. Detoxification of PVSE was evident since treated mice had longer survival time than the group of mice treated with VSE. Photooxidized VSE of V. orientalis revealed enhancement on learning and memory by shortening the time to reach food (TRF in T-maze. In a 28-day study with rats, we observed that PVSE significantly decreased transfer latency (TL in elevated plus maze (EPM, significantly increased step down latency (SDL, diminished step down errors (SDE and time spent in shock zone (TSS in step down avoidance test. Thus, we concluded that although there is a possibility of employing PVSE in the treatment of Alzheimer, dementia or neurodegenerative illness as a non-herbal and non-synthetic alternative for patients who do not respond to available therapy, further investigation is still required.

  17. Use of gamma irradiated viper venom as the toxoid against viper venom poisoning in mice and rabbits

    International Nuclear Information System (INIS)

    Hati, A.K.; Mandal, M.; Hati, R.N.; Das, S.

    1995-01-01

    The present paper deals with detoxification of the crude viper (Vipera russelli) venom by gamma irradiation and its effective immunogenic role in Balb/C mice, used as a toxoid. The successful immunization of rabbits with irradiated viper venom toxoid is also reported. Certain biochemical changes of the venom due to radiation exposure and neutralization capacity of the immune sera against phosphodiesterase and protease activity of the crude viper venom have also been studied. The neutralizing potency of Russell's viper venom (RVV) toxoid anti venom (anti venom raised in rabbits against γ-irradiated RVV toxoid adsorbed on aluminium phosphate), in comparison with a commercial bivalent anti venom (as a standard reference) with reference to haemorrhagic, necrotic and lethal effects of Russell's viper envenomation are reported. 25 refs

  18. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Joong chul An

    2006-12-01

    Full Text Available Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay and Thiobarbituric Acid Reactive Substances (TBARS assay were conducted. Results : 1. Antibacterial activity against gram negative E. coli was greater in the Sweet Bee Venom group than the Bee Venom group. 2. Antibacterial activity against gram positive St. aureus was similar between the Bee Venom and Sweet Bee Venom groups. 3. DPPH free radical scavenging activity of the Bee Venom group showed 2.8 times stronger than that of the Sweet Bee Venom group. 4. Inhibition of lipid peroxidation of the Bee Venom group showed 782 times greater than that of the Sweet Bee Venom group. Conclusions : The Bee Venom group showed outstanding antibacterial activity against gram positive St. aureus, and allergen-removed Sweet Bee Venom group showed outstanding antibacterial activity against both gram negative E. coli and gram positive St. aureus. For antioxidant effects, the Bee Venom was superior over the Sweet Bee Venom and the superiority was far more apparent for lipid peroxidation.

  19. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola

    Directory of Open Access Journals (Sweden)

    Kohei Kazuma

    2017-10-01

    Full Text Available Ants (hymenoptera: Formicidae have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  20. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies

    Directory of Open Access Journals (Sweden)

    Katherine E. Harris

    2018-04-01

    Full Text Available We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1. This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.

  1. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  2. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa.

    Science.gov (United States)

    Aird, Steven D; da Silva, Nelson Jorge; Qiu, Lijun; Villar-Briones, Alejandro; Saddi, Vera Aparecida; Pires de Campos Telles, Mariana; Grau, Miguel L; Mikheyev, Alexander S

    2017-06-08

    Venom gland transcriptomes and proteomes of six Micrurus taxa ( M. corallinus , M. lemniscatus carvalhoi , M. lemniscatus lemniscatus , M. paraensis , M. spixii spixii , and M. surinamensis ) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii . Other toxin families are present in all six venoms at trace levels (venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three

  3. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  4. Theileria parva antigens recognized by CD8+ T cells show varying degrees of diversity in buffalo-derived infected cell lines.

    Science.gov (United States)

    Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip

    2018-05-06

    The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.

  5. Cross-reactivity and neutralization of Indian King cobra (Ophiophagus hannah) venom by polyvalent and monovalent antivenoms.

    Science.gov (United States)

    Gowtham, Yashonandana J; Mahadeswaraswamy, Y H; Girish, K S; K, Kemparaju

    2014-07-01

    The venom of the largest venomous snake, the king cobra (Ophiophagus hannah), is still out of league for the production of therapeutic polyvalent antivenom nor it is characterized immunologically in the Indian subcontinent. In the present study, the king cobra venom is comparatively studied for the cross-reactivity/reactivity and toxicity neutralization by the locally available equine therapeutic polyvalent BSV and VB antivenoms, and monovalent antivenom (OH-IgG) prepared in rabbit. None of the two therapeutic antivenoms procured from two different firms showed any signs of cross-reactivity in terms of antigen-antibody precipitin lines in immunodouble diffusion assay; however, a weak and an insignificant cross-reactivity pattern was observed in ELISA and Western blot studies. Further, both BSV and VB antivenoms failed to neutralize proteolytic, hyaluronidase and phospholipase activities as well as toxic properties such as edema, myotoxicity and lethality of the venom. As expected, OH-IgG showed strong reactivity in immunodouble diffusion, ELISA and in Western blot analysis and also neutralized both enzyme activities as well as the toxic properties of the venom. Thus, the study provides insight into the likely measures that are to be taken in cases of accidental king cobra bites for which the Indian subcontinent is still not prepared for. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Venom Concentrations and Clotting Factor Levels in a Prospective Cohort of Russell's Viper Bites with Coagulopathy.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Isbister

    Full Text Available Russell's viper envenoming is a major problem in South Asia and causes venom induced consumption coagulopathy. This study aimed to investigate the kinetics and dynamics of venom and clotting function in Russell's viper envenoming.In a prospective cohort of 146 patients with Russell's viper envenoming, we measured venom concentrations, international normalised ratio [INR], prothrombin time (PT, activated partial thromboplastin time (aPTT, coagulation factors I, II, V, VII, VIII, IX and X, and von Willebrand factor antigen. The median age was 39 y (16-82 y and 111 were male. The median peak INR was 6.8 (interquartile range [IQR]: 3.7 to >13, associated with low fibrinogen [median,3 at 6 h post-antivenom but had reduced to <2, by 24 h. The aPTT had also returned to close to normal (<50 sec at 24 h. Factor VII, VIII and IX levels were unusually high pre-antivenom, median peak concentrations of 393%, 307% and 468% respectively. Pre-antivenom venom concentrations and the INR (r = 0.20, p = 0.02 and aPTT (r = 0.19, p = 0.03 were correlated (non-parametric Spearman analysis.Russell's viper coagulopathy results in prolonged aPTT, INR, low fibrinogen, factors V, VIII and X which recover over 48 h. Severity of clotting abnormalities was associated with venom concentrations.

  7. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.

    Science.gov (United States)

    Jesupret, Clémence; Baumann, Kate; Jackson, Timothy N W; Ali, Syed Abid; Yang, Daryl C; Greisman, Laura; Kern, Larissa; Steuten, Jessica; Jouiaei, Mahdokht; Casewell, Nicholas R; Undheim, Eivind A B; Koludarov, Ivan; Debono, Jordan; Low, Dolyce H W; Rossi, Sarah; Panagides, Nadya; Winter, Kelly; Ignjatovic, Vera; Summerhayes, Robyn; Jones, Alun; Nouwens, Amanda; Dunstan, Nathan; Hodgson, Wayne C; Winkel, Kenneth D; Monagle, Paul; Fry, Bryan Grieg

    2014-06-13

    For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as

  8. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa

    Directory of Open Access Journals (Sweden)

    Steven D. Aird

    2017-06-01

    Full Text Available Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs and phospholipases A2 (PLA2s comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0% are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%. Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen

  9. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.

    Science.gov (United States)

    Farias, Iasmim Baptista de; Morais-Zani, Karen de; Serino-Silva, Caroline; Sant'Anna, Sávio S; Rocha, Marisa M T da; Grego, Kathleen F; Andrade-Silva, Débora; Serrano, Solange M T; Tanaka-Azevedo, Anita M

    2018-03-01

    Snake venom is a variable phenotypic trait, whose plasticity and evolution are critical for effective antivenom production. A significant reduction of the number of snake donations to Butantan Institute (São Paulo, Brazil) occurred in recent years, and this fact may impair the production of the Brazilian Bothropic Reference Venom (BBRV). Nevertheless, in the last decades a high number of Bothrops jararaca specimens have been raised in captivity in the Laboratory of Herpetology of Butantan Institute. Considering these facts, we compared the biochemical and biological profiles of B. jararaca venom from captive specimens and BBRV in order to understand the potential effects of snake captivity upon the venom composition. Electrophoretic analysis and proteomic profiling revealed few differences in venom protein bands and some differentially abundant toxins. Comparison of enzymatic activities showed minor differences between the two venoms. Similar cross-reactivity recognition pattern of both venoms by the antibothropic antivenom produced by Butantan Institute was observed. Lethality and neutralization of lethality for B. jararaca venom from captive specimens and BBRV showed similar values. Considering these results we suggest that the inclusion of B. jararaca venom from captive specimens in the composition of BBRV would not interfere with the quality of this reference venom. Snakebite envenomation is a neglected tropical pathology whose treatment is based on the use of specific antivenoms. Bothrops jararaca is responsible for the majority of snakebites in South and Southeastern Brazil. Its venom shows individual, sexual, and ontogenetic variability, however, the effect of animal captivity upon venom composition is unknown. Considering the reduced number of wild-caught snakes donated to Butantan Institute in the last decades, and the increased life expectancy of the snakes raised in captivity in the Laboratory of Herpetology, this work focused on the comparative

  10. Anaphylaxis to Insect Venom Allergens

    DEFF Research Database (Denmark)

    Ollert, Markus; Blank, Simon

    2015-01-01

    available for diagnostic measurement of specific IgE in venom-allergic patients. These recombinant venom allergens offer several promising possibilities for an improved diagnostic algorithm. Reviewed here are the current status, recent developments, and future perspectives of molecular diagnostics of venom...

  11. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.

    Science.gov (United States)

    Sunagar, Kartik; Undheim, Eivind A B; Scheib, Holger; Gren, Eric C K; Cochran, Chip; Person, Carl E; Koludarov, Ivan; Kelln, Wayne; Hayes, William K; King, Glenn F; Antunes, Agosthino; Fry, Bryan Grieg

    2014-03-17

    Due to the extreme variation of venom, which consequently results in drastically variable degrees of neutralization by CroFab antivenom, the management and treatment of envenoming by Crotalus oreganus helleri (the Southern Pacific Rattlesnake), one of the most medically significant snake species in all of North America, has been a clinician's nightmare. This snake has also been the subject of sensational news stories regarding supposed rapid (within the last few decades) evolution of its venom. This research demonstrates for the first time that variable evolutionary selection pressures sculpt the intraspecific molecular diversity of venom components in C. o. helleri. We show that myotoxic β-defensin peptides (aka: crotamines/small basic myotoxic peptides) are secreted in large amounts by all populations. However, the mature toxin-encoding nucleotide regions evolve under the constraints of negative selection, likely as a result of their non-specific mode of action which doesn't enforce them to follow the regime of the classic predator-prey chemical arms race. The hemorrhagic and tissue destroying snake venom metalloproteinases (SVMPs) were secreted in larger amounts by the Catalina Island and Phelan rattlesnake populations, in moderate amounts in the Loma Linda population and in only trace levels by the Idyllwild population. Only the Idyllwild population in the San Jacinto Mountains contained potent presynaptic neurotoxic phospholipase A2 complex characteristic of Mohave Rattlesnake (Crotalus scutulatus) and Neotropical Rattlesnake (Crotalus durissus terrificus). The derived heterodimeric lectin toxins characteristic of viper venoms, which exhibit a diversity of biological activities, including anticoagulation, agonism/antagonism of platelet activation, or procoagulation, appear to have evolved under extremely variable selection pressures. While most lectin α- and β-chains evolved rapidly under the influence of positive Darwinian selection, the β-chain lectin of

  12. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation.

    Directory of Open Access Journals (Sweden)

    Juliana L Bernardoni

    Full Text Available Snake venom metalloproteinases (SVMPs are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.

  13. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    Science.gov (United States)

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  15. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    Science.gov (United States)

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  16. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: Optimization of antivenom therapy

    International Nuclear Information System (INIS)

    Hammoudi-Triki, D.; Lefort, J.; Rougeot, C.; Robbe-Vincent, A.; Bon, C.; Laraba-Djebari, F.; Choumet, V.

    2007-01-01

    This paper reports the simultaneous determination of toxicokinetic and toxicodynamic properties of Androctonus australis hector venom, in the absence and presence of antivenom (F(ab') 2 and Fab), in envenomed rats. After subcutaneous injection of the venom, toxins showed a complete absorption phase from the site of injection associated with a distribution into a large extravascular compartment. The injection of Fab and F(ab') 2 induced the neutralization of venom antigens in the blood compartment, as well as the redistribution of venom components from the extravascular compartment to the blood compartment. Interestingly, F(ab') 2 and Fab showed distinct efficiencies depending on their route of injection. F(ab') 2 induced a faster venom neutralization and redistribution than Fab when injected intravenously. Fab was more effective than F(ab') 2 by the intramuscular route. The hemodynamic effects of Aah venom were further investigated. Changes in mean arterial pressure and heart rate were observed in parallel with an upper airway obstruction. Fab was more effective than F(ab') 2 for preventing early symptoms of envenomation, whatever their route of administration. Intraperitoneal injection of F(ab') 2 and Fab was similar for the prevention of the delayed symptoms, even after a late administration. Fab was more effective than F(ab') 2 in the inhibition of airway resistance, independent of the route and time of administration. These results show that the treatment for scorpion stings might be improved by the intravascular injection of a mixture of Fab and F(ab') 2 . If antivenom cannot be administered intravenously, Fab might be an alternative as they are more effective than F(ab') 2 when injected intramuscularly

  17. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  18. Antigenic and genetic diversity of human enterovirus 71 from 2009 to 2012, Taiwan.

    Directory of Open Access Journals (Sweden)

    Yuan-Pin Huang

    Full Text Available Different subgenogroups of enterovirus 71 (EV-71 have caused numerous outbreaks of hand, foot, and mouth disease worldwide, especially in the Asia-Pacific region. During the development of a vaccine against EV-71, the genetic and antigenic diversities of EV-71 isolates from Taiwan were analyzed by phylogenetic analyses and neutralization tests. The results showed that the dominant genogroups had changed twice, from B to C and from C to B, between 2009 and 2012. The subgenogroup B5 (B5b cluster was dominant in 2008-2009 but was replaced by subgenogroup C4 in 2010-2011. From the end of 2011 to 2012, the re-emerging subgenogroup B5 (B5c cluster was identified as the dominant subgenogroup of EV-71 outbreaks, and subgenogroups C2 and C4 were detected in sporadic cases. Interestingly, the amino acid substitution at position 145 in the VP1 gene was observed in some strains isolated from patients with acute flaccid paralysis. Furthermore, thirty-five strains and their corresponding serum samples were used to analyze the cross-protections and antigenic diversities among different subgenogroups (C4a, C5, B4, B5b, B5c, and C2-like of EV-71. Evident antigenic diversity existed only for the C2-like subgenogroup, which was not effectively neutralized by other serum samples. In contrast, the anti-C2-like serum sample showed broad cross-reactivity against all other subgenogroups. Therefore, these results may provide valuable information for the selection of EV-71 vaccine candidates and the evolution of EV-71 subgenogroups in Taiwan from 2009 to 2012.

  19. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  20. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Sanz Libia

    2011-05-01

    Full Text Available Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27% were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements and class II (DNA transposons mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large

  1. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  2. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms...... by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy......, but was additionally used to create tools which enable the analysis of therapeutic venom extracts on a molecular level. Therefore, during the last decade the detailed knowledge of the allergen composition of hymenoptera venoms has substantially improved diagnosis and therapy of venom allergy. This review focuses...

  3. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  4. Immunochemistry of apamin-bee venom neurotoxin - 1. Radioimmunoassay with apamin and its derivatives

    International Nuclear Information System (INIS)

    Komissarenko, S.V.; Vasilenko, S.V.; Elyakova, E.G.; Surina, E.A.; Miroshnikov, A.I.

    1981-01-01

    Antibodies against apamin, a neurotoxic polypeptide from bee venom were raised in rabbits by immunization with apamin or apamin-BSA conjugates. 3 H-apamin or 125 I-apamin were used in radioimmunoassay with anti-apamin for the detection of the apamin antigenic site. The inhibitory activity toward the labelled apamin-anti-apamin binding was maximal with unlabelled apamin and decreased in the range: apamin > Cys 1 ,Lys 4 -disuccinilated apamin > Cys 1 , Lys 4 -diacetylated apamin > Cys 1 , Lys 4 -diacetylated apamin with carboxymethylated His 18 . Dipyrimidyl-Orn 13 , Orn 14 -apamin derivative almost had no inhibitory activity on labelled apamin binding emphasizing that Arg 13 ,Arg 14 are the most essential for the apamin topographic antigenic site. (author)

  5. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    Science.gov (United States)

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  7. Interrogating the Venom of the Viperid Snake Sistrurus catenatus edwardsii by a Combined Approach of Electrospray and MALDI Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Alex Chapeaurouge

    Full Text Available The complete sequence characterization of snake venom proteins by mass spectrometry is rather challenging due to the presence of multiple isoforms from different protein families. In the present study, we investigated the tryptic digest of the venom of the viperid snake Sistrurus catenatus edwardsii by a combined approach of liquid chromatography coupled to either electrospray (online or MALDI (offline mass spectrometry. These different ionization techniques proved to be complementary allowing the identification a great variety of isoforms of diverse snake venom protein families, as evidenced by the detection of the corresponding unique peptides. For example, ten out of eleven predicted isoforms of serine proteinases of the venom of S. c. edwardsii were distinguished using this approach. Moreover, snake venom protein families not encountered in a previous transcriptome study of the venom gland of this snake were identified. In essence, our results support the notion that complementary ionization techniques of mass spectrometry allow for the detection of even subtle sequence differences of snake venom proteins, which is fundamental for future structure-function relationship and possible drug design studies.

  8. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms.

    Science.gov (United States)

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J

    2016-06-07

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%), and 1-2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA₂-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA₂ dichotomy may be widely distributed among Elapidae venoms.

  9. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  10. Single venom-based immunotherapy effectively protects patients with double positive tests to honey bee and Vespula venom

    Science.gov (United States)

    2013-01-01

    Background Referring to individuals with reactivity to honey bee and Vespula venom in diagnostic tests, the umbrella terms “double sensitization” or “double positivity” cover patients with true clinical double allergy and those allergic to a single venom with asymptomatic sensitization to the other. There is no international consensus on whether immunotherapy regimens should generally include both venoms in double sensitized patients. Objective We investigated the long-term outcome of single venom-based immunotherapy with regard to potential risk factors for treatment failure and specifically compared the risk of relapse in mono sensitized and double sensitized patients. Methods Re-sting data were obtained from 635 patients who had completed at least 3 years of immunotherapy between 1988 and 2008. The adequate venom for immunotherapy was selected using an algorithm based on clinical details and the results of diagnostic tests. Results Of 635 patients, 351 (55.3%) were double sensitized to both venoms. The overall re-exposure rate to Hymenoptera stings during and after immunotherapy was 62.4%; the relapse rate was 7.1% (6.0% in mono sensitized, 7.8% in double sensitized patients). Recurring anaphylaxis was statistically less severe than the index sting reaction (P = 0.004). Double sensitization was not significantly related to relapsing anaphylaxis (P = 0.56), but there was a tendency towards an increased risk of relapse in a subgroup of patients with equal reactivity to both venoms in diagnostic tests (P = 0.15). Conclusions Single venom-based immunotherapy over 3 to 5 years effectively and long-lastingly protects the vast majority of both mono sensitized and double sensitized Hymenoptera venom allergic patients. Double venom immunotherapy is indicated in clinically double allergic patients reporting systemic reactions to stings of both Hymenoptera and in those with equal reactivity to both venoms in diagnostic tests who have not reliably identified the

  11. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters).

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N W; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G

    2014-12-22

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  12. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters)

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N. W.; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G.

    2014-01-01

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation. PMID:25533521

  13. Effects of irradiated Bothropstoxin-1 and Bothrops jararacussu crude venom on the immune system; Acao da Bothropstoxina-1 e do veneno total de Bothrops jararacussu irradiados sobre o sistema imune

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, Priscila

    2009-07-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules and has been proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with {sup 60}Co gamma rays, yielding toxoids with good immunogenicity, however, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. At the present work, we have evaluated the effects on immune system of B10.PL and BALB/c mice of Bothrops jararacussu crude venom and isolated bothropstoxin-1 (Bthx-1), before and after gamma radiation exposition. According to our data, irradiation process promoted structural modifications on both isolated toxin and crude venom, characterized by higher molecular weight protein (aggregates and oligomers) formation. Irradiated samples were immunogenic and the antibodies elicited by them were able to recognize the native toxin in ELISA. These results indicate that irradiation of toxic proteins can promote significant modifications in their structures, but still retain many of the original antigenic and immunological properties. Also, our data indicate that the irradiated protein induced higher titers of IgG2b, suggesting that Th1 cells were predominantly involved. Results from Western blot assay showed that antibodies raised against irradiated bothropstoxin-1 recognize both native isolated toxin or crude venom. Cytotoxicity assay showed that irradiated toxin and crude venom were less toxic than their native counterpart. Thus, the viability of the macrophages cultured in the presence of irradiated Bthx-1 or crude venom was higher if compared with their native forms. LDH Assay showed that irradiated Bthx-1 promotes less muscular damage than the native form. Our data confirm a potential use of

  14. In-vitro diagnostics of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Rueff, F.; Vos, B.; Przybilla, B.

    In-vitro diagnostics of Hymenoptera venom allergy Patients with a history of anaphylactic sting reactions require an allergological work-up (history, in-vitro tests, and skin tests) to clarify indications on venom immunotherapy and on the type of venom to be used. To demonstrate a venom

  15. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia).

    Science.gov (United States)

    Fry, Bryan G; Scheib, Holger; van der Weerd, Louise; Young, Bruce; McNaughtan, Judith; Ramjan, S F Ryan; Vidal, Nicolas; Poelmann, Robert E; Norman, Janette A

    2008-02-01

    Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom

  16. Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography.

    Science.gov (United States)

    Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Kecheng; Wang, Xueqin; Chen, Xiaolin; Li, Pengcheng

    2017-01-26

    Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii , through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N . nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14-18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.

  17. Mastocytosis and insect venom allergy.

    Science.gov (United States)

    Bonadonna, Patrizia; Zanotti, Roberta; Müller, Ulrich

    2010-08-01

    To analyse the association of systemic allergic hymenoptera sting reactions with mastocytosis and elevated baseline serum tryptase and to discuss diagnosis and treatment in patients with both diseases. In recent large studies on patients with mastocytosis a much higher incidence of severe anaphylaxis following hymenoptera stings than in the normal population was documented. In patients with hymenoptera venom allergy, elevated baseline tryptase is strongly associated with severe anaphylaxis. Fatal sting reactions were reported in patients with mastocytosis, notably after stopping venom immunotherapy. During venom immunotherapy most patients with mastocytosis are protected from further sting reactions. Based on these observations immunotherapy for life is recommended for patients with mastocytosis and venom allergy. The incidence of allergic side-effects is increased in patients with mastocytosis and elevated baseline tryptase, especially in those allergic to Vespula venom. Premedication with antihistamines, or omalizumab in cases with recurrent severe side-effects, can be helpful. In all patients with anaphylaxis following hymenoptera stings, baseline serum tryptase should be determined. A value above 11.4 microg/l is often due to mastocytosis and indicates a high risk of very severe anaphylaxis following re-stings. Venom immunotherapy is safe and effective in this situation.

  18. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    Science.gov (United States)

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  19. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

    Science.gov (United States)

    CHALMERS, IAIN W.; HOFFMANN, KARL F.

    2012-01-01

    SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members. PMID:22717097

  20. THE USE OF THE ANTI-VENOM SPECIFIC ANTIBODIES ISOLATED FROM DUCK EGGS FOR INACTIVATION OF THE VIPER VENOM

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2008-05-01

    Full Text Available The activity of specific anti-venom can be demonstrated using protection test in laboratory mice. Our study aimed to emphasize the possibility of viper venom inactivation by the antibodies produced and isolated from duck eggs and also to the activation concentration of these antibodies. The venom used for inoculation was harvested from two viper species (Vipera ammodytes and Vipera berus. The immunoglobulin extract had a better activity on the venom from Vipera berus compared to the venom from Vipera ammodytes. This could be the result of a better immunological response, as consequence of the immunization with this type of venom, compared to the response recorded when the Vipera ammodytes venom was used. Besides the advantages of low cost, high productivity and reduced risk of anaphylactic shock, the duck eggs also have high activity up to dilutions of 1/16, 1/32, respectively, with specific activity and 100 surviving in individuals which received 3 x DL50.

  1. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-08

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  2. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Sasa, Mahmood; Acevedo, Manuel E; Dwyer, Quetzal; Durban, Jordi; Pérez, Alicia; Rodriguez, Yania; Lomonte, Bruno; Calvete, Juan J

    2017-01-30

    -rich venom, whereas in B. schlegelii the age-dependent compositional shift generates a PLA 2 -rich venom. Overall, genus-wide venomics illustrate the high evolvability of palm-pitviper venoms. The integration of the pattern of venom variation across Bothriechis into a phylogenetic and biogeographic framework may lay the foundation for assessing, in future studies, the evolutionary path that led to the present-day variability of the venoms of palm-pitvipers. Bothriechis represents a monophyletic basal genus of eleven arboreal palm-pitvipers that range from southern Mexico to northern South America. Despite palm-pitvipers' putative status as diet generalists, previous proteomic analyses have revealed remarkable divergence between the venoms of Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. Our current proteomic study of Guatemalan species, B. thalassinus, B. aurifer, and B. bicolor, Honduran B. marchi, and neonate B. lateralis and B. schlegelii from Costa Rica was undertaken to deepen our understanding of the evolutionary pattern of venom proteome diversity across Bothriechis. Ancestral characters are often, but not always, preserved in an organism's development. Venoms of neonate B. lateralis and B. schlegelii are more similar to each other than to adults of their respective species, suggesting that the high evolvability of palm-pitviper venoms may represent an inherent feature of Bothriechis common ancestor. Our genus-wide data identified four nodes of venom phenotype differentiation across the phylogeny of Bothriechis. Integrated into a phylogenetic and biogeographic framework, the pattern of venom variation across Bothriechis may lay the groundwork to establish whether divergence was driven by selection for efficient resource exploitation in arboreal 'islands', thereby contributing to the ecological speciation of the genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of Fang Puncture Wound Patterns in Isfahan Province’s, Iran, Venomous and Non-Venomous Snakes

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2015-01-01

    Full Text Available Aims Venomous snake bites are public health problems in different parts of the world. The most specific mainstay in the treatment of envenomation is anti-venom. To treat the envenomation, it is very important to identify the offending species. This study was designed to determine the penetrating pattern of fangs and teeth of some viper snakes. Materials & Methods This descriptive study was performed on live venomous and nonvenomous snakes from 2010 till 2011. All 47 sample snakes were collected from different regions of Isfahan province such as Kashan City, Ghamsar, Niasar, Mashhad Ardehal, Taher- Abad and Khozagh. Their mouths were inspected every two weeks and development of their fangs and teeth were recorded by taking clear digital photos. Fangs and teeth patterns of samples were drawn and the results were compared. Findings One or two wounds appeared as typical fang marks at the bite site of venomous snakes while non-venomous snakes had two carved rows of small teeth. Three different teeth and fang patterns were recognized in venomous snakes which were completely different. Conclusion The fang marks of venomous snakes do not always have a common and classic pattern and there are at least 3 different patterns in Isfahan province, Iran.

  4. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    Directory of Open Access Journals (Sweden)

    Khin Than Yee

    2016-12-01

    Full Text Available Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs: RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation.

  5. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    Science.gov (United States)

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  6. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia.

    Science.gov (United States)

    Tan, Kae Yi; Tan, Choo Hock; Fung, Shin Yee; Tan, Nget Hong

    2015-04-29

    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to

  7. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?

    Science.gov (United States)

    Hayes, William K; Mackessy, Stephen P

    2010-03-01

    Recent reports in the lay press have suggested that bites by rattlesnakes in the last several years have been more severe than those in the past. The explanation, often citing physicians, is that rattlesnakes are evolving more toxic venom, perhaps in response to anthropogenic causes. We suggest that other explanations are more parsimonious, including factors dependent on the snake and factors associated with the bite victim's response to envenomation. Although bites could become more severe from an increased proportion of bites from larger or more provoked snakes (ie, more venom injected), the venom itself evolves much too slowly to explain the severe symptoms occasionally seen. Increased snakebite severity could also result from a number of demographic changes in the victim profile, including age and body size, behavior toward the snake (provocation), anatomical site of bite, clothing, and general health including asthma prevalence and sensitivity to foreign antigens. Clinical management of bites also changes perpetually, rendering comparisons of snakebite severity over time tenuous. Clearly, careful study taking into consideration many factors will be essential to document temporal changes in snakebite severity or venom toxicity. Presently, no published evidence for these changes exists. The sensationalistic coverage of these atypical bites and accompanying speculation is highly misleading and can produce many detrimental results, such as inappropriate fear of the outdoors and snakes, and distraction from proven snakebite management needs, including a consistent supply of antivenom, adequate health care, and training. We urge healthcare providers to avoid propagating misinformation about snakes and snakebites. Copyright (c) 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Snake venom instability | Willemse | African Zoology

    African Journals Online (AJOL)

    Egyptian cobra Naja haje haje) and puffadder (Bills arietans). Considerable differences in electrophoretic characteristics were found between fresh venom and commercial venom samples from the same species of snake. These differences could be attributed partly to the instability of snake venom under conditions of drying ...

  9. Radiating sterilization of the venom of snake

    International Nuclear Information System (INIS)

    Abiyev, H.A.; Topchiyeva, Sh.A.; Rustamov, V.R.

    2006-01-01

    Full text: Water solutions of venoms are unstable and they lose toxicity in some day. Snake venoms inactivate under action of some physical factors: the UV-irradiation, x-rays beams. The purpose of the present work was sterilization of venom Vipera lebetina obtusa under influence of small dozes γ-radiations. Object of research was integral venom of adult individuals. Transcaucasian viper, and also the water solutions of venom irradiated with small dozes scale of radiation. An irradiation of venom carried out to radioisotope installation 60NI. For experiment tests of dry venom, and also their water solutions have been taken. Water solutions of venom have been subjected -radiation up to dozes 1.35, 2.7, 4.05, 5.4 kGr simultaneously dry venom of vipers was exposed -radiation before absorption of a doze 5.4 kGr. In comparative aspect action scale of radiation on ultra-violet spectra of absorption of venom was studied. Ultra-violet spectra venom have been taken off on device Specord UV-VIS. In 12 months after an irradiation spectra of absorption of venom have been repeatedly taken off. In spectra irradiated dry and solutions of venom new maxima of absorption have been revealed in the field of 285 nm and 800 nm describing change of toxicity. It is shown, that the increase in absorption of a doze of radiation occurs decrease of intensity of strips of absorption reduction of intensity of absorption.It is revealed at 260 and 300 nm testifying to course of biochemical reactions of separate enzymes zootoxins. It is necessary to note, that at comparison of intensity of absorption of control samples of poison with irradiated up to dozes 1.35 kGr it has not been revealed essential changes. The subsequent increase in a doze scale of radiation up to 2.7, 4.05, 5.4 kGr promotes proportional reduction of intensity of the absorption, describing toxicity of snake venom. At repeated (later 12 months) measurement of the irradiated water solutions of venom are not revealed changes in

  10. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].

    Science.gov (United States)

    Calvete, Juan J; Pérez, Alicia; Lomonte, Bruno; Sánchez, Elda E; Sanz, Libia

    2012-02-03

    We report the proteomic and antivenomic characterization of Crotalus tigris venom. This venom exhibits the highest lethality for mice among rattlesnakes and the simplest toxin proteome reported to date. The venom proteome of C. tigris comprises 7-8 gene products from 6 toxin families; the presynaptic β-neurotoxic heterodimeric PLA(2), Mojave toxin, and two serine proteinases comprise, respectively, 66 and 27% of the C. tigris toxin arsenal, whereas a VEGF-like protein, a CRISP molecule, a medium-sized disintegrin, and 1-2 PIII-SVMPs each represent 0.1-5% of the total venom proteome. This toxin profile really explains the systemic neuro- and myotoxic effects observed in envenomated animals. In addition, we found that venom lethality of C. tigris and other North American rattlesnake type II venoms correlates with the concentration of Mojave toxin A-subunit, supporting the view that the neurotoxic venom phenotype of crotalid type II venoms may be described as a single-allele adaptation. Our data suggest that the evolutionary trend toward neurotoxicity, which has been also reported for the South American rattlesnakes, may have resulted by pedomorphism. The ability of an experimental antivenom to effectively immunodeplete proteins from the type II venoms of C. tigris, Crotalus horridus , Crotalus oreganus helleri, Crotalus scutulatus scutulatus, and Sistrurus catenatus catenatus indicated the feasibility of generating a pan-American anti-Crotalus type II antivenom, suggested by the identification of shared evolutionary trends among South and North American Crotalus species.

  11. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Porcine reproductive and respiratory syndrome virus: antigenic and molecular diversity of British isolates and implications for diagnosis.

    Science.gov (United States)

    Frossard, Jean-Pierre; Fearnley, Catherine; Naidu, Brindha; Errington, Jane; Westcott, David G; Drew, Trevor W

    2012-08-17

    Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease of pigs, caused by PRRS virus, a member of the Arteriviridae family. First seen in Britain in 1991, the disease continues to be a significant economic and welfare problem for pig producers. To date, only PRRSV genotype 1 has been found in Britain. At the genetic level, a considerable increase has been reported in the diversity of PRRS viruses isolated in Britain between 2003 and 2007, versus the early 1990 s. In this study, the diversity has been shown to extend to the antigenic level too, with potential consequences for diagnostic methods. Antigenic diversity was assessed using a panel of twelve monoclonal antibodies, only one of which reacted with all isolates tested. Nine diverse viruses were compared as potential antigens in immunoperoxidase monolayer assays, where each one produced quite different results for a common panel of sera. As a single virus is used in each diagnostic assay, results must therefore be interpreted cautiously. For a real-time RT-PCR assay, published oligonucleotide primer and probe sequences were evaluated against available genetic sequences of British and European viruses, and were re-designed where considerable mismatches were found. The multiplex assay incorporating these modified primers to detect genotype 1 and 2 PRRS viruses was then validated for use with diagnostic sera and tissues. As the increasing degree of diversity exhibited by British strains is mirrored in other countries, PRRSV will continue to provide an ongoing challenge to diagnosis at a global, as well as national level. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model.

    Science.gov (United States)

    Bénard-Valle, Melisa; Carbajal-Saucedo, Alejandro; de Roodt, Adolfo; López-Vera, Estuardo; Alagón, Alejandro

    2014-01-01

    The objective of this study was to identify the venom components that could play a relevant role during envenomation caused by the coral snake Micrurus tener, through its biochemical characterization as well as the analysis of its effects on a murine model. Furthermore, it aimed to evaluate crude venom, in addition to its components, for possible specificity of action on a natural prey model (Conopsis lineata). The toxicity of the crude venom (delivered subcutaneously) showed a significant difference between the Median Lethal Dose (LD₅₀) in mice (4.4 μg/g) and in Conopsis lineata (12.1 μg/g) that was not observed when comparing the Median Paralyzing Dose (PD₅₀) values (mice = 4.7 μg/g; snakes = 4.1 μg/g). These results are evidence that the choice of study model strongly influences the apparent effects of crude venom. Moreover, based on the observed physical signs in the animal models, it was concluded that the most important physical effect caused by the venom is flaccid paralysis, which facilitates capture and subduing of prey regardless of whether it is alive; death is a logical consequence of the lack of oxygenation. Venom fractionation using a C18 reverse phase column yielded 35 fractions from which 16.6% caused paralysis and/or death to both animal models, 21.9% caused paralysis and/or death only to C. lineata and 1.6% were murine specific. Surprisingly, the diversity of snake-specific fractions did not reflect a difference between the PD₅₀s of the crude venom in mice and snakes, making it impossible to assume some type of specificity for either of the study models. Finally, the great diversity and abundance of fractions with no observable effect in snakes or mice (42.7%) suggested that the observed lethal fractions are not the only relevant toxic fractions within the venom and emphasized the possible relevance of interaction between components to generate the syndrome caused by the venom as a whole. Copyright © 2013 Elsevier Ltd. All rights

  14. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity

    Directory of Open Access Journals (Sweden)

    Arinaminpathy Nimalan

    2008-01-01

    Full Text Available Abstract Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1. It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.

  16. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-05-01

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  18. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  19. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained...... their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating...

  20. Comparison of Vespula germanica venoms obtained from different sources.

    Science.gov (United States)

    Sanchez, F; Blanca, M; Miranda, A; Carmona, M J; Garcia, J; Fernandez, J; Torres, M J; Rondon, M C; Juarez, C

    1994-08-01

    This study was carried out to compare the allergenic potency of Vespula germanica (VG) venoms extracted by different methods and commercially available venoms from Vespula species currently used for in vivo and in vitro studies including immunotherapy. Pure VG venom was used as the reference material. Protein content and enzymatic and allergenic properties of all venoms studied were determined by dye stain reagent, hyaluronidase and phospholipase A1B enzyme activities, and radioallergosorbent test inhibition studies, respectively. Radioallergosorbent test discs sensitized with commercial and pure VG venom were compared using specific IgE antibodies from subjects allergic to VG venom. The data obtained indicate that there were important differences in the allergenic potency between the Vespula species venoms employed for in vivo and/or in vitro assays, VG venom obtained by sac dissection, and pure VG venom. These results indicate that venoms from Vespula species used for in vitro and in vivo tests have a lower concentration of allergens and contain nonvenom proteins. These data should be taken into account when these vespid venoms are used for diagnostic purposes and also when evaluating immunotherapy studies.

  1. Bioinformatics-Aided Venomics

    Directory of Open Access Journals (Sweden)

    Quentin Kaas

    2015-06-01

    Full Text Available Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.

  2. Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation

    Science.gov (United States)

    Skejić, Jure; Hodgson, Wayne C.

    2013-01-01

    This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD) venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality) and Queensland (Mackay locality) populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver. PMID:23691135

  3. Inorganic elements in blood of mice immunized with snake venom using NAA and XRF techniques

    International Nuclear Information System (INIS)

    Metairon, S.; Zamboni, C.B.; Suzuki, M.F.; Lopes da Silva, L.F.F.; Rizzutto, M.A.

    2016-01-01

    Brazil has the greatest diversity of snakes in the world and a large portion of them are venomous. Nowadays, Instituto Butantan (research center, at Brazil) produces various types of antivenom to meet the large number of incidences. In this investigation, mice were immunized with different species of Bothrops snake venom to evaluate the inorganic elements concentration in their blood by using NAA and XRF techniques. The results were compared with the control group (mice not immunized) and with human estimative. The data allows to evaluate the toxicity of these elements, important for clinical screening of patients submitted to immunological therapy. (author)

  4. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle.

    Science.gov (United States)

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2013-05-20

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  6. Characterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus.

    Science.gov (United States)

    Ul-Hasan, Sabah; Burgess, Daniel M; Gajewiak, Joanna; Li, Qing; Hu, Hao; Yandell, Mark; Olivera, Baldomero M; Bandyopadhyay, Pradip K

    2013-11-01

    Cone snails, genus Conus, are predatory marine snails that use venom to capture their prey. This venom contains a diverse array of peptide toxins, known as conotoxins, which undergo a diverse set of posttranslational modifications. Amidating enzymes modify peptides and proteins containing a C-terminal glycine residue, resulting in loss of the glycine residue and amidation of the preceding residue. A significant fraction of peptides present in the venom of cone snails contain C-terminal amidated residues, which are important for optimizing biological activity. This study describes the characterization of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), present in the venom duct of cone snails, Conus bullatus and Conus geographus. PAM is known to carry out two functions, peptidyl α-hydroxylating monooxygenase (PHM) and peptidylamido-glycolate lyase (PAL). In some animals, such as Drosophila melanogaster, these two functions are present in separate polypeptides, working as individual enzymes. In other animals, such as mammals and in Aplysia californica, PAM activity resides in a single, bifunctional polypeptide. Using specific oligonucleotide primers and reverse transcription-polymerase chain reaction we have identified and cloned from the venom duct cDNA library, a cDNA with 49% homology to PAM from A. californica. We have determined that both the PHM and PAL activities are encoded in one mRNA polynucleotide in both C. bullatus and C. geographus. We have directly demonstrated enzymatic activity catalyzing the conversion of dansyl-YVG-COOH to dansyl-YV-NH2 in cloned cDNA expressed in Drosophila S2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez.

    Science.gov (United States)

    Fox, Jay W; Gutiérrez, José María

    2017-01-16

    Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic "Snake Venom Metalloproteinases" in Toxins . The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms.

  8. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  9. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy...

  10. Optimization of antiscorpion venom production

    Directory of Open Access Journals (Sweden)

    O. Ozkan

    2006-01-01

    Full Text Available The present study was carried out to produce highly efficient antivenom from a small number of telsons in a short time. Venom solution was prepared through maceration of telsons from Androctonus crassicauda (Olivier, 1807 collected in the Southeastern Anatolia Region, Turkey. Lethal dose 50% (LD50 of the venom solution injected into mice was 1 ml/kg (95% confidence interval; 0.8-1.3, according to probit analysis. Different adjuvants (Freund's Complete Adjuvant, Freund's Incomplete Adjuvant, and 0.4% aluminium phosphate, at increasing doses and combined with venom, were subcutaneously injected into horses on days 0, 14, 21, 28, 35, and 42 of the experiment. Antivenom was collected from the immunized horses on days 45, 48, and 51 using the pepsin digestive method. The antivenom effective dose 50% (ED50 in mice was 0.5 ml (95% confidence interval; 0.40-0.58, according to probit analysis. It was concluded that 0.5 ml antivenom neutralized a venom dose 35-fold higher than the venom LD50. Thus, highly potent antivenom could be produced from about 238 telsons in 51 days.

  11. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  12. Structural and antigenic variation among diverse clade 2 H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    David A Shore

    Full Text Available Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1, A/Hubei/1/2010 (Hubei10, clade 2.3.2.1 and A/Anhui/1/2005 (Anhui05, clade 2.3.4]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.

  13. Tracing Monotreme Venom Evolution in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Camilla M. Whittington

    2014-04-01

    Full Text Available The monotremes (platypuses and echidnas represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  14. Tracing monotreme venom evolution in the genomics era.

    Science.gov (United States)

    Whittington, Camilla M; Belov, Katherine

    2014-04-02

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  15. Combined Proteomic and Transcriptomic Interrogation of the Venom Gland of Conus geographus Uncovers Novel Components and Functional Compartmentalization*

    Science.gov (United States)

    Safavi-Hemami, Helena; Hu, Hao; Gorasia, Dhana G.; Bandyopadhyay, Pradip K.; Veith, Paul D.; Young, Neil D.; Reynolds, Eric C.; Yandell, Mark; Olivera, Baldomero M.; Purcell, Anthony W.

    2014-01-01

    Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities

  16. Tc 99m - scorpion venom: labelling, biodistribution and scintiimaging

    International Nuclear Information System (INIS)

    Murugesan, S.; Noronha, O.P.D.; Samuel, A.M.; Murthy, K. Radha Krishna

    1999-01-01

    Labelling of scorpion (Mesobuthus tamulus concanesis Pocock) venom was successfully achieved with Tc 99m using direct tin reduction procedure. Biodistribution studies were carried out in Wistar rats at different time intervals after i.v. administration of the labelled venom. Scintiimages were obtained after scorpion envenoming using a large field of view gamma camera to ascertain the pharmacological action of venom in the body. Within 5 min of administration, labelled venom was found in the blood (27.7%), muscle (30.11%), bone (13.3%), kidneys (11.5%), liver (10.4%) and other organs. The level of venom in the kidneys was higher than in the liver. The labelled venom was excreted through renal and hepatobiliary pathways. An immunoreactivity study was carried out in rabbits after i.v. injection of labelled scorpion venom followed by the injection of the species specific antivenom. A threefold increase in uptake by the kidneys ss was observed compared with that seen with scorpion venom alone. the neutralisation of the venom in the kidneys was higher than in the liver. (author)

  17. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.

    Science.gov (United States)

    Smith, Cara Francesca; Mackessy, Stephen P

    2016-09-15

    Hybridization between divergent species can be analyzed to elucidate expression patterns of distinct parental characteristics, as well as to provide information about the extent of reproductive isolation between species. A known hybrid cross between two rattlesnakes with highly divergent venom phenotypes provided the opportunity to examine occurrence of parental venom characteristics in the F1 hybrids as well as ontogenetic shifts in the expression of these characters as the hybrids aged. Although venom phenotypes of adult rattlesnake venoms are known for many species, the effect of hybridization on phenotype inheritance is not well understood, and effects of hybridization on venom ontogeny have not yet been investigated. The current study investigates both phenomena resulting from the hybridization of a male snake with type I degradative venom, Crotalus oreganus helleri (Southern Pacific Rattlesnake), and a female snake with type II highly toxic venom, Crotalus scutulatus scutulatus (Mojave Rattlesnake). SDS-PAGE, enzymology, Western blot and reversed phase HPLC (RP-HPLC) were used to characterize the venom of the C. o. helleri male, the C. s. scutulatus female and their two hybrid offspring as they aged. In general, Crotalus o. helleri × C. s. scutulatus hybrid venoms appeared to exhibit overlapping parental venom profiles, and several different enzyme activity patterns. Both hybrids expressed C. o. helleri father-specific myotoxins as well as C. s. scutulatus mother-specific Mojave toxin. Snake venom metalloprotease activity displayed apparent sex-influenced expression patterns, while hybrid serine protease activities were intermediate to parental activities. The C. s. scutulatus × C. o. helleri hybrid male's venom profile provided the strongest evidence that type I and type II venom characteristics are expressed simultaneously in hybrid venoms, as this snake contained distinctive characteristics of both parental species. However, the possibility of

  18. Population divergence in venom bioactivities of elapid snake Pseudonaja textilis: role of procoagulant proteins in rapid rodent prey incapacitation.

    Directory of Open Access Journals (Sweden)

    Jure Skejić

    Full Text Available This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality and Queensland (Mackay locality populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver.

  19. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  20. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  1. Autolysis at the disintegrin domain of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom.

    Science.gov (United States)

    Peichoto, María E; Paes Leme, Adriana F; Pauletti, Bianca A; Batista, Isabel Correia; Mackessy, Stephen P; Acosta, Ofelia; Santoro, Marcelo L

    2010-09-01

    Patagonfibrase is a 57.5-kDa hemorrhagic metalloproteinase isolated from the venom of Philodryas patagoniensis (Patagonia Green Racer), a South American rear-fanged snake. Herein we demonstrate that patagonfibrase undergoes autolysis at its pH optimum (7.5) and at 37 degrees C, primarily producing a approximately 32.6 kDa fragment composed of disintegrin-like and cysteine-rich domains, as identified by mass spectrometry and N-terminal sequencing. The autolysis site for production of this fragment is similar to that observed for metalloproteinases from front-fanged Viperidae snake venoms. In the presence of Ca(2+), patagonfibrase was only partially autolysed, giving rise mainly to one fragment of approximately 52.2 kDa. In addition, calcium markedly enhanced the azocaseinolytic activity of patagonfibrase. Our findings contribute to the understanding of the structural and mechanistic bases of this family of metalloenzymes that are widely distributed among snake venoms, demonstrating that important post-translational modifications such as proteolysis can also contribute to the diversity and complexity of proteins found in rear-fanged snake venoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Tityus serrulatus venom--A lethal cocktail.

    Science.gov (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms.

    Science.gov (United States)

    Ainsworth, Stuart; Petras, Daniel; Engmark, Mikael; Süssmuth, Roderich D; Whiteley, Gareth; Albulescu, Laura-Oana; Kazandjian, Taline D; Wagstaff, Simon C; Rowley, Paul; Wüster, Wolfgang; Dorrestein, Pieter C; Arias, Ana Silvia; Gutiérrez, José M; Harrison, Robert A; Casewell, Nicholas R; Calvete, Juan J

    2018-02-10

    Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation. The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including

  4. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  5. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  6. Snake antivenom for snake venom induced consumption coagulopathy

    OpenAIRE

    Maduwage, Kalana; Buckley, Nick A.; Janaka de Silva, H.; Lalloo, David; Isbister, Geoffrey K.

    2015-01-01

    Background\\ud \\ud Snake venom induced consumption coagulopathy is a major systemic effect of envenoming. Observational studies suggest that antivenom improves outcomes for venom induced consumption coagulopathy in some snakebites and not others. However, the effectiveness of snake antivenom in all cases of venom induced consumption coagulopathy is controversial.\\ud \\ud Objectives\\ud \\ud To assess the effect of snake antivenom as a treatment for venom induced consumption coagulopathy in people...

  7. Analyses of venom spitting in African cobras (Elapidae: Serpentes ...

    African Journals Online (AJOL)

    ... all four species. The low levels of variation in venom volume, coupled with the variation in venom dispersal pattern, suggests a complexity to the regulation of venom flow in spitting cobras beyond simply neuromuscular control of the extrinsic venom gland. Keywords: defensive behaviour, snake, teeth, Naja, Hemachatus ...

  8. Identification and characterization of B-cell epitopes of 3FTx and PLA(2) toxins from Micrurus corallinus snake venom.

    Science.gov (United States)

    Castro, K L; Duarte, C G; Ramos, H R; Machado de Avila, R A; Schneider, F S; Oliveira, D; Freitas, C F; Kalapothakis, E; Ho, P L; Chávez-Olortegui, C

    2015-01-01

    The main goal of this work was to develop a strategy to identify B-cell epitopes on four different three finger toxins (3FTX) and one phospholipase A2 (PLA2) from Micrurus corallinus snake venom. 3FTx and PLA2 are highly abundant components in Elapidic venoms and are the major responsibles for the toxicity observed in envenomation by coral snakes. Overlapping peptides from the sequence of each toxin were prepared by SPOT method and three different anti-elapidic sera were used to map the epitopes. After immunogenicity analysis of the spot-reactive peptides by EPITOPIA, a computational method, nine sequences from the five toxins were chemically synthesized and antigenically and immunogenically characterized. All the peptides were used together as immunogens in rabbits, delivered with Freund's adjuvant for a first cycle of immunization and Montanide in the second. A good antibody response against individual synthetic peptides and M. corallinus venom was achieved. Anti-peptide IgGs were also cross-reactive against Micrurus frontalis and Micrurus lemniscatus crude venoms. In addition, anti-peptide IgGs inhibits the lethal and phospholipasic activities of M. corallinus crude venom. Our results provide a rational basis to the identification of neutralizing epitopes on coral snake toxins and show that their corresponding synthetic peptides could improve the generation of immuno-therapeutics. The use of synthetic peptide for immunization is a reasonable approach, since it enables poly-specificity, low risk of toxic effects and large scale production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Radioactive elements definition in composition of snake venom

    International Nuclear Information System (INIS)

    Mekhrabova, M.A.; Topchieva, Sh.F.; Abiev, G.A.; Nagiev, Dj.A.

    2010-11-01

    Full text: The given article presents questions concerned to usage of snake venom in medicine and pharmacy for medicinal drugs production, zootoxin base antidotes, thorough treatment of many deseases, especially onkological, also have a widespread in biology as a specific test-material for biological sistem analises. It is experimentally proved that certain amount of snake venom can replace morphine drugs, taking into acount that snake venom solutions make longer prolonged influence than other drugs, vithout causing an accustoming. It is also marked about possibility of usage of snake venom for cancer treatment. Many expeditions had been conducted with the purpose to research snake venom crytals on the territory of Azerbaijan. During these expeditions snakes capturing had been made with the purpose of taking the venom and also soil samples had been taken in order to research the quantity of radioactive elements. Measurements made with the help of electronic microscope C anberra . Revealed uranium activity in spectrum of venom as a result of radiation background, which appears under influence of ionizing radiation on the environment. On the base of analises data it can be ascertained that snake venom can be used for production of medicinal and also other necessary drugs. [ru

  10. Guillain-Barré syndrome following bee venom acupuncture.

    Science.gov (United States)

    Lee, Hyun Jo; Park, In Seok; Lee, Jon-In; Kim, Joong-Seok

    2015-01-01

    Bee venom acupuncture has been widely used in Oriental medicine with limited evidence of effectiveness. Most of the complications due to bee venom acupuncture are local or systemic allergic reactions. However, serious medical and neurological complications have also been reported. We herein describe the treatment of a 68-year-old woman who developed progressive quadriplegia 10 days after receiving multiple honeybee venom sting acupuncture treatments. The electrophysiological findings were consistent with Guillain-Barré syndrome (GBS). The temporal relationship between the development of GBS and honeybee venom sting acupuncture is suggestive of a cause-and-effect relationship, although the precise pathophysiology and causative components in honeybee venom need to be verified.

  11. Intraspecific venom variation in southern African scorpion species of the genera Parabuthus, Uroplectes and Opistophthalmus (Scorpiones: Buthidae, Scorpionidae).

    Science.gov (United States)

    Schaffrath, Stephan; Prendini, Lorenzo; Predel, Reinhard

    2018-03-15

    Scorpion venoms comprise cocktails of proteins, peptides, and other molecules used for immobilizing prey and deterring predators. The composition and efficacy of scorpion venoms appears to be taxon-specific due to a coevolutionary arms race with prey and predators that adapt at the molecular level. The taxon-specific components of scorpion venoms can be used as barcodes for species identification if the amount of intraspecific variation is low and the analytical method is fast, inexpensive and reliable. The present study assessed the extent of intraspecific variation in newly regenerated venom collected in the field from geographically separated populations of four southern African scorpion species: three buthids, Parabuthus granulatus (Ehrenberg, 1831), Uroplectes otjimbinguensis (Karsch, 1879), and Uroplectes planimanus (Karsch, 1879), and one scorpionid, Opistophthalmus carinatus (Peters, 1861). Although ion signal patterns were generally similar among venom samples of conspecific individuals from different populations, MALDI-TOF mass spectra in the mass range m/z 700-10,000 revealed only a few ion signals that were identical suggesting that species identification based on simple venom mass fingerprints (MFPs) will be more reliable if databases contain data from multiple populations. In general, hierarchical cluster analysis (HCA) of the ion signals in mass spectra was more reliable for species identification than counts of mass-identical substances in MFPs. The statistical approach revealed conclusive information about intraspecific diversity. In combination with a comprehensive database of MALDI-TOF mass spectra in reflectron mode, HCA may offer a method for rapid species identification based on venom MFPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism.

    Science.gov (United States)

    Núñez, Vitelbina; Cid, Pedro; Sanz, Libia; De La Torre, Pilar; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2009-11-02

    The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA(2) molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA(2) molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil.

  13. Simplification of intradermal skin testing in Hymenoptera venom allergic children.

    Science.gov (United States)

    Cichocka-Jarosz, Ewa; Stobiecki, Marcin; Brzyski, Piotr; Rogatko, Iwona; Nittner-Marszalska, Marita; Sztefko, Krystyna; Czarnobilska, Ewa; Lis, Grzegorz; Nowak-Węgrzyn, Anna

    2017-03-01

    The direct comparison between children and adults with Hymenoptera venom anaphylaxis (HVA) has never been extensively reported. Severe HVA with IgE-documented mechanism is the recommendation for venom immunotherapy, regardless of age. To determine the differences in the basic diagnostic profile between children and adults with severe HVA and its practical implications. We reviewed the medical records of 91 children and 121 adults. Bee venom allergy was exposure dependent, regardless of age (P bee venom allergic group, specific IgE levels were significantly higher in children (29.5 kU A /L; interquartile range, 11.30-66.30 kU A /L) compared with adults (5.10 kU A /L; interquartile range, 2.03-8.30 kU A /L) (P venom were higher in bee venom allergic children compared with the wasp venom allergic children (P venom. At concentrations lower than 0.1 μg/mL, 16% of wasp venom allergic children and 39% of bee venom allergic children had positive intradermal test results. The median tryptase level was significantly higher in adults than in children for the entire study group (P = .002), as well as in bee (P = .002) and wasp venom allergic groups (P = .049). The basic diagnostic profile in severe HVA reactors is age dependent. Lower skin test reactivity to culprit venom in children may have practical application in starting the intradermal test procedure with higher venom concentrations. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Cysteine-free peptides in scorpion venom: geographical distribution ...

    African Journals Online (AJOL)

    GRACE

    2006-12-29

    Dec 29, 2006 ... In 1993, the first cysteine-free peptide was isolated from scorpion venom. ..... Venom is produced by 2 venom glands in the tail and stored in 2 ... The resistance of a variety of bacterial micro-organisms .... Biopolymers 55: 4-30.

  15. Connectivity maps for biosimilar drug discovery in venoms: the case of Gila monster venom and the anti-diabetes drug Byetta®.

    Science.gov (United States)

    Aramadhaka, Lavakumar Reddy; Prorock, Alyson; Dragulev, Bojan; Bao, Yongde; Fox, Jay W

    2013-07-01

    Like most natural product libraries animal venoms have long been recognized as potentially rich source of biologically active molecules with the potential to be mined for the discovery of drugs, drug leads and/or biosimilars. In this work we demonstrate as a proof of concept a novel approach to explore venoms for potential biosimilarity to other drugs based on their ability to alter the transcriptomes of test cell lines followed by informatic searches and Connectivity Mapping to match the action of the venom on the cell gene expression to that of other drugs in the Connectivity Map (C-Map) database. As our test animal venom we chose Heloderma suspectum venom (Gila monster) since exendin-4, a glucagon-like peptide 1 receptor agonist, isolated from the venom is currently on the market to treat type 2 diabetes. The action of Byetta(®) (exentide, synthetic exendin-4), was also used in transcriptome studies. Analysis of transcriptomes from cells treated with the venom or the drug showed similarities as well as differences. The former case was primarily attributed to the fact that Gila monster venom likely contains a variety of biologically active molecules that could alter the MCF7 cell transcriptome compared to that of the single perturbant Byetta(®). Using Ingenuity Pathway Analysis software, insulin-like growth factor 1 signaling was identified in the category of "Top Canonical Pathways" for both the venom and Byetta(®). In the category of "Top Molecules" up-regulated, both venom and Byetta(®) shared IL-8, cyclic AMP-dependent transcription factor 3 (ATF-3), neuron-derived orphan receptor 1 (NR4A3), dexamethasone-induced Ras-related protein 1 (RASD1) and early growth response protein 1, (EGR-1) all with potential relevance in diabetes. Using Connectivity Mapping, Gila monster venom showed positive correlation with 1732 instances and negative correlation with 793 instances in the Connectivity database whereas Byetta(®) showed positive correlation with 1692

  16. Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals.

    Science.gov (United States)

    Himaya, S W A; Marí, Frank; Lewis, Richard J

    2018-01-10

    Cone snail venoms have separately evolved for predation and defense. Despite remarkable inter- and intra-species variability, defined sets of synergistic venom peptides (cabals) are considered essential for prey capture by cone snails. To better understand the role of predatory cabals in cone snails, we used a high-throughput proteomic data mining and visualisation approach. Using this approach, the relationship between the predatory venom peptides from nine C. purpurascens was systematically analysed. Surprisingly, potentially synergistic levels of κ-PVIIA and δ-PVIA were only identified in five of nine specimens. In contrast, the remaining four specimens lacked significant levels of these known excitotoxins and instead contained high levels of the muscle nAChR blockers ψ-PIIIE and αA-PIVA. Interestingly, one of nine specimens expressed both cabals, suggesting that these sub-groups might represent inter-breeding sub-species of C. purpurascens. High throughput cluster analysis also revealed these two cabals clustered with distinct groups of venom peptides that are presently uncharacterised. This is the first report showing that the cone snails of the same species can deploy two separate and distinct predatory cabals for prey capture and shows that the cabals deployed by this species can be more complex than presently realized. Our semi-automated proteomic analysis facilitates the deconvolution of complex venoms to identify co-evolved families of peptides and help unravel their evolutionary relationships in complex venoms.

  17. Effects of gamma radiation on bee venom: preliminary studies

    International Nuclear Information System (INIS)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R.

    1999-01-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a 60 Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D 50 ) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author)

  18. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  19. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  20. Irradiated cobra (Naja naja) venom for biomedical applications

    International Nuclear Information System (INIS)

    Kankonkar, S.R.; Kankonkar, R.C.; Gaitonde, B.B.

    1975-01-01

    Ionizing radiation is known to cause damage to proteins in aqueous solutions in a selective manner, thereby producing remarkable changes in their properties. Since venoms are very rich in proteins, it was felt that they would also show such changes upon irradiation. It was of interest to know if one could get rid of the toxicity and retain the immunogenicity of the venom by suitable choice of radiation dose and strength of venom solution. If so, the method could be profitably exploited for the rapid preparation of venom toxoid and this could be expected to have many applications in the biological sciences. Accordingly, laboratory investigations were undertaken on the effect of gamma radiation on cobra (Naja naja) venom. To avoid drastic changes, solutions of cobra venom having low protein content were irradiated with gamma radiation from a cobalt-60 source. The results obtained with 0.01 to 1.0% venom solutions are found to be encouraging. The solutions did not manifest any toxicity in mice. For the immunogenicity test, guinea pigs were immunized with varying doses of the irradiated cobra venom and the immunized guinea pigs were found to survive when challenged with as big a dose as 10 MLD (i.e. minimum lethal dose, approximately 1 mg). The paper describes the experimental details and the results of the observations. (author)

  1. Snake oil and venoms for medical research

    Science.gov (United States)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  2. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  3. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi.

    Science.gov (United States)

    Campos, Pollyanna Fernandes; Andrade-Silva, Débora; Zelanis, André; Paes Leme, Adriana Franco; Rocha, Marisa Maria Teixeira; Menezes, Milene Cristina; Serrano, Solange M T; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2016-08-16

    Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Role of the inflammasome in defense against venoms

    Science.gov (United States)

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  5. Important biological activities induced by Thalassophryne maculosa fish venom.

    Science.gov (United States)

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  6. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Venom ophthalmia caused by venoms of spitting elapid and other snakes: Report of ten cases with review of epidemiology, clinical features, pathophysiology and management.

    Science.gov (United States)

    Chu, Edward R; Weinstein, Scott A; White, Julian; Warrell, David A

    2010-09-01

    Venom ophthalmia caused by venoms of spitting elapid and other snakes: report of ten cases with review of epidemiology, clinical features, pathophysiology and management. Chu, ER, Weinstein, SA, White, J and Warrell, DA. Toxicon XX:xxx-xxx. We present ten cases of ocular injury following instillation into the eye of snake venoms or toxins by spitting elapids and other snakes. The natural history of spitting elapids and the toxinology of their venoms are reviewed together with the medical effects and management of venom ophthalmia in humans and domestic animals including both direct and allergic effects of venoms. Although the clinical features and management of envenoming following bites by spitting elapids (genera Naja and Hemachatus) are well documented, these snakes are also capable of "spraying" venom towards the eyes of predators, a defensive strategy that causes painful and potentially blinding ocular envenoming (venom ophthalmia). Little attention has been given to the detailed clinical description, clinical evolution and efficacy of treatment of venom ophthalmia and no clear management guidelines have been formulated. Knowledge of the pathophysiology of ocular envenoming is based largely on animal studies and a limited body of clinical information. A few cases of ocular exposure to venoms from crotaline viperids have also been described. Venom ophthalmia often presents with pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Delay or lack of treatment may result in corneal opacity, hypopyon and/or blindness. When venom is "spat" into the eye, cranial nerve VII may be affected by local spread of venom but systemic envenoming has not been documented in human patients. Management of venom ophthalmia consists of: 1) urgent decontamination by copious irrigation 2) analgesia by vasoconstrictors with weak mydriatic activity (e.g. epinephrine) and limited topical administration of local anesthetics (e.g. tetracaine) 3) exclusion of corneal abrasions

  8. In vitro neutralization of the scorpion, Buthus tamulus venom toxicity.

    Science.gov (United States)

    Venkateswarlu, Y; Janakiram, B; Reddy, G R

    1988-01-01

    Scorpion (Buthus tamulus) venom was subjected to neutralization by treating the venom with various chemicals such as hydrochloric acid, sodium hydroxide, thiourea, formaldehyde, zinc sulphate, acetic acid and trichloroacetic acid. The venom was also subjected to heat treatment. The levels of total protein, free amino acids and protease activity in neutralized venom decreased significantly. The decrease in venom protein and free amino acids was in proportion to the duration of the heat treatment and the concentration of chemicals used except zinc sulphate, sodium hydroxide and thiourea. Protease activity of neutralized venom samples also showed a decrease except with zinc sulphate which enhanced the enzyme activity. Intramuscular injection of formaldehyde, trichlcroacetic acid and heat treated venoms into albino rats produced low mortality while thiourea and zinc sulphate were not effective in reducing the mortality. Hydrochloric acid and acetic acid treated venoms reduced the mortality by 50% with a decrease in the symptoms of envenomation. The changes were attributed to the denaturing of venom protein by chemical and heat treatments.

  9. Cross reactivity between European hornet and yellow jacket venoms.

    Science.gov (United States)

    Severino, M G; Caruso, B; Bonadonna, P; Labardi, D; Macchia, D; Campi, P; Passalacqua, G

    2010-08-01

    Cross-reactions between venoms may be responsible for multiple diagnostic positivities in hymenoptera allergy. There is limited data on the cross-reactivity between Vespula spp and Vespa crabro, which is an important cause of severe reactions in some parts of Europe. We studied by CAP-inhibition assays and immunoblotting the cross-reactivity between the two venoms. Sera from patients with non discriminative skin/CAP positivity to both Vespula and Vespa crabro were collected for the analyses. Inhibition assays were carried out with a CAP method, incubating the sera separately with both venoms and subsequently measuring the specific IgE to venoms themselves. Immunoblotting was performed on sera with ambiguous results at the CAP-inhibition. Seventeen patients had a severe reaction after Vespa crabro sting and proved skin and CAP positive also to vespula. In 11/17 patients, Vespula venom completely inhibited IgE binding to VC venom, whereas VC venom inhibited binding to Vespula venom only partially (Vespula germanica, thus indicating a true sensitisation to crabro. In the case of multiple positivities to Vespa crabro and Vespula spp the CAP inhibition is helpful in detecting the cross-reactivities.

  10. Effects of gamma radiation on bee venom: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia

    1999-11-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a {sup 60} Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D{sub 50}) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author) 23 refs., 3 figs., 1 tab.

  11. Snake Venom As An Effective Tool Against Colorectal Cancer.

    Science.gov (United States)

    Uzair, Bushra; Atlas, Nagina; Malik, Sidra Batool; Jamil, Nazia; Salaam, Temitope Ojuolape; Rehman, Mujaddad Ur; Khan, Barkat Ali

    2018-06-13

    Cancer is considered one of the most predominant causes of morbidity and mortality all over the world and colorectal cancer is the most common fatal cancers, triggering the second cancer related death. Despite progress in understanding carcinogenesis and development in chemotherapeutics, there is an essential need to search for improved treatment. More than the half a century, cytotoxic and cytostatic agents have been examined as a potential treatment of cancer, among these agents; remarkable progresses have been reported by the use of the snake venom. Snake venoms are secreting materials of lethal snakes are store in venomous glands. Venoms are composite combinations of various protein, peptides, enzymes, toxins and non proteinaceous secretions. Snake venom possesses immense valuable mixtures of proteins and enzymes. Venoms have potential to combat with the cancerous cells and produce positive effect. Besides the toxicological effects of venoms, several proteins of snake venom e.g. disintegrins, phospholipases A2, metalloproteinases, and L-amino acid oxidases and peptides e.g. bradykinin potentiators, natriuretic, and analgesic peptides have shown potential as pharmaceutical agents, including areas of diagnosis and cancer treatment. In this review we have discussed recent remarkable research that has involved the dynamic snake venoms compounds, having anticancer bustle especially in case of colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Pharmacological Aspects of Vipera xantina palestinae Venom

    Science.gov (United States)

    Momic, Tatjana; Arlinghaus, Franziska T.; Arien-Zakay, Hadar; Katzhendler, Jeoshua; Eble, Johannes A.; Marcinkiewicz, Cezary; Lazarovici, Philip

    2011-01-01

    In Israel, Vipera xantina palestinae (V.x.p.) is the most common venomous snake, accounting for several hundred cases of envenomation in humans and domestic animals every year, with a mortality rate of 0.5 to 2%. In this review we will briefly address the research developments relevant to our present understanding of the structure and function of V.x.p. venom with emphasis on venom disintegrins. Venom proteomics indicated the presence of four families of pharmacologically active compounds: (i) neurotoxins; (ii) hemorrhagins; (iii) angioneurin growth factors; and (iv) different types of integrin inhibitors. Viperistatin, a α1β1selective KTS disintegrin and VP12, a α2β1 selective C-type lectin were discovered. These snake venom proteins represent promising tools for research and development of novel collagen receptor selective drugs. These discoveries are also relevant for future improvement of antivenom therapy towards V.x.p. envenomation. PMID:22174978

  13. Hymenoptera venom review focusing on Apis mellifera

    Directory of Open Access Journals (Sweden)

    P. R. de Lima

    2003-01-01

    Full Text Available Hymenoptera venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements. Several of these components have been isolated and characterized, and their primary structures determined by biochemical techniques. These compounds are responsible for many toxic or allergic reactions in different organisms, such as local pain, inflammation, itching, irritation, and moderate or severe allergic reactions. The most extensively characterized Hymenoptera venoms are bee venoms, mainly from the Apis genus and also from social wasps and ant species. However, there is little information about other Hymenoptera groups. The Apis venom presents high molecular weight molecules - enzymes with a molecular weight higher than 10.0 kDa - and peptides. The best studied enzymes are phospholipase A2, responsible for cleaving the membrane phospholipids, hyaluronidase, which degrades the matrix component hyaluronic acid into non-viscous segments and acid phosphatase acting on organic phosphates. The main peptide compounds of bee venom are lytic peptide melittin, apamin (neurotoxic, and mastocyte degranulating peptide (MCD.

  14. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  15. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management

    OpenAIRE

    Calvete, Juan J.; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M.; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M.; Mourão, Rosa H.V.; Furtado, María de Fátima; Moura Da Silva, Ana M.

    2011-01-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled cont...

  16. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Moving pieces in a venomic puzzle

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Dutra, Alexandre A A; León, Ileana R

    2013-01-01

    Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteo...

  18. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    Science.gov (United States)

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    Directory of Open Access Journals (Sweden)

    Sebastián Estrada-Gómez

    2014-07-01

    Full Text Available We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation.

  20. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects.

    Science.gov (United States)

    Walker, Andrew Allan; Rosenthal, Max; Undheim, Eivind E A; King, Glenn F

    2018-04-21

    Heteropteran insects such as assassin bugs (Reduviidae) and giant water bugs (Belostomatidae) descended from a common predaceous and venomous ancestor, and the majority of extant heteropterans retain this trophic strategy. Some heteropterans have transitioned to feeding on vertebrate blood (such as the kissing bugs, Triatominae; and bed bugs, Cimicidae) while others have reverted to feeding on plants (most Pentatomomorpha). However, with the exception of saliva used by kissing bugs to facilitate blood-feeding, little is known about heteropteran venoms compared to the venoms of spiders, scorpions and snakes. One obstacle to the characterization of heteropteran venom toxins is the structure and function of the venom/labial glands, which are both morphologically complex and perform multiple biological roles (defense, prey capture, and extra-oral digestion). In this article, we describe three methods we have successfully used to collect heteropteran venoms. First, we present electrostimulation as a convenient way to collect venom that is often lethal when injected into prey animals, and which obviates contamination by glandular tissue. Second, we show that gentle harassment of animals is sufficient to produce venom extrusion from the proboscis and/or venom spitting in some groups of heteropterans. Third, we describe methods to harvest venom toxins by dissection of anaesthetized animals to obtain the venom glands. This method is complementary to other methods, as it may allow harvesting of toxins from taxa in which electrostimulation and harassment are ineffective. These protocols will enable researchers to harvest toxins from heteropteran insects for structure-function characterization and possible applications in medicine and agriculture.

  1. MHC class II DRB diversity predicts antigen recognition and is associated with disease severity in California sea lions naturally infected with Leptospira interrogans

    Science.gov (United States)

    Acevedo-Whitehouse, Karina; Gulland, Frances; Bowen, Lizabeth

    2018-01-01

    We examined the associations between California sea lion MHC class II DRB (Zaca-DRB) configuration and diversity, and leptospirosis. As Zaca-DRB gene sequences are involved with antigen presentation of bacteria and other extracellular pathogens, we predicted that they would play a role in determining responses to these pathogenic spirochaetes. Specifically, we investigated whether Zaca-DRB diversity (number of genes) and configuration (presence of specific genes) explained differences in disease severity, and whether higher levels of Zaca-DRB diversity predicted the number of specific Leptospira interrogans serovars that a sea lion's serum would react against. We found that serum from diseased sea lions with more Zaca-DRB loci reacted against a wider array of serovars. Specific Zaca-DRB loci were linked to reactions with particular serovars. Interestingly, sea lions with clinical manifestation of leptospirosis that had higher numbers of Zaca-DRB loci were less likely to recover from disease than those with lower diversity, and those that harboured Zaca-DRB.C or –G were 4.5 to 5.3 times more likely to die from leptospirosis, regardless of the infective serovars. We propose that for leptospirosis, a disadvantage of having a wider range of antigen presentation might be increased disease severity due to immunopathology. Ours is the first study to examine the importance of Zaca-DRB diversity for antigen detection and disease severity following natural exposure to infective leptospires.

  2. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms.

    Science.gov (United States)

    Lopes-Ferreira, Mônica; Sosa-Rosales, Ines; Bruni, Fernanda M; Ramos, Anderson D; Vieira Portaro, Fernanda Calheta; Conceição, Katia; Lima, Carla

    2016-06-01

    Gender related variation in the molecular composition of venoms and secretions have been described for some animal species, and there are some evidences that the difference in the toxin (s) profile among males and females may be related to different physiopathological effects caused by the envenomation by either gender. In order to investigate whether this same phenomenon occurs to the toadfish Thalassophryne maculosa, we have compared some biological and biochemical properties of female and male venoms. Twenty females and males were collected in deep waters of the La Restinga lagoon (Venezuela) and, after protein concentration assessed, the induction of toxic activities in mice and the biochemical properties were analyzed. Protein content is higher in males than in females, which may be associated to a higher size and weight of the male body. In vivo studies showed that mice injected with male venoms presented higher nociception when compared to those injected with female venoms, and both venoms induced migration of macrophages into the paw of mice. On the other hand, mice injected with female venoms had more paw edema and extravasation of Evans blue in peritoneal cavity than mice injected with male venoms. We observed that the female venoms had more capacity for necrosis induction when compared with male venoms. The female samples present a higher proteolytic activity then the male venom when gelatin, casein and FRETs were used as substrates. Evaluation of the venoms of females and males by SDS-PAGE and chromatographic profile showed that, at least three components (present in two peaks) are only present in males. Although the severity of the lesion, characterized by necrosis development, is related with the poisoning by female specimens, the presence of exclusive toxins in the male venoms could be associated with the largest capacity of nociception induction by this sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  4. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

    Science.gov (United States)

    Gonçalves-Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B; Leitão-De-Araújo, Moema; Alves, Maria Lúcia M; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais-Zani, Karen; Fernandes, Wilson; Tanaka-Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B; Gutiérrez, José María; Corrêa-Netto, Carlos; Calvete, Juan J

    2016-03-01

    Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil

  5. Anti-arthritic effects of microneedling with bee venom gel

    OpenAIRE

    Mengdi Zhao; Jie Bai; Yang Lu; Shouying Du; Kexin Shang; Pengyue Li; Liu Yang; Boyu Dong; Ning Tan

    2016-01-01

    Objective: To combine with transdermal drug delivery using microneedle to simulate the bee venom therapy to evaluate the permeation of bee venom gel. Methods: In this study, the sodium urate and LPS were used on rats and mice to construct the model. Bee venom gel–microneedle combination effect on the model is to determine the role of microneedle gel permeation by observing inflammation factors. Results: Compared with the model group, the bee venom gel–microneedle combination group can r...

  6. Analysis of Brazilian snake venoms by neutron activation analysis

    International Nuclear Information System (INIS)

    Saiki, M.; Vasconcellos, M.B.A.; Rogero, J.R.; Cruz, M.C.G.

    1991-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 10 11 to 10 13 n · cm -2 · s -1 . The reference materials NIST Bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms. (author) 9 refs.; 2 tabs

  7. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management.

    Science.gov (United States)

    Calvete, Juan J; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M; Mourão, Rosa H V; Furtado, M Fatima D; Moura-Da-Silva, Ana M

    2011-04-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through São Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom.

    Directory of Open Access Journals (Sweden)

    Simon C Wagstaff

    2006-06-01

    Full Text Available Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom.We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string. We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains or antiserum raised by conventional (whole venom immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms.These data provide valuable sequence and structure

  9. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  10. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian

    2015-01-01

    /cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential...

  11. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens

    Directory of Open Access Journals (Sweden)

    Kristensen Peter

    2009-01-01

    Full Text Available Abstract Background Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide. Results Here we report the simplest and highly efficient method for the construction of a highly useful human single chain variable fragment (scFv library. The least number of oligonucleotide primers, electroporations and ligation reactions were used to generate a library of 1.5 × 108 individual clones, without generation of sub-libraries. All possible combinations of heavy and light chains, among all immunoglobulin isotypes, were included by using a mixture of primers and overlapping extension PCR. The key difference from other similar libraries was the highest diversity of variable gene repertoires, which was derived from 140 non-immunized human donors. A wide variety of antigens were successfully used to affinity select specific binders. These included pure recombinant proteins, a hapten and complex antigens such as viral coat proteins, crude snake venom and cancer cell surface antigens. In particular, we were able to use standard bio-panning method to isolate antibody that can bind to soluble Aflatoxin B1, when using BSA-conjugated toxin as a target, as demonstrated by inhibition ELISA. Conclusion These results suggested that by using an optimized protocol and very high repertoire diversity, a compact and efficient phage antibody library can be generated. This advanced method could be adopted by any molecular biology laboratory to generate both naïve or immunized libraries for particular targets as well as for high-throughput applications.

  12. Mechanisms of bee venom-induced acute renal failure.

    Science.gov (United States)

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, pbee venom-induced ARF that may occur even without hemolysis or hypotension.

  13. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    Science.gov (United States)

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  14. The Comparison of Effectiveness between Bee Venom and Sweet Bee Venom Therapy on Low back pain with Radiating pain

    OpenAIRE

    Lee Tae-ho; Hwang Hee-sang; Chang So-young; Cha Jung-ho; Jung Ki-hoon; Lee Eun-young; Roh Jeongdu

    2007-01-01

    Objective : The aim of this study is to investigate if Sweet Bee Venom therapy has the equal effect in comparison with Bee Venom Therapy on Low back pain with Radiation pain. Methods : Clinical studies were done 24 patients who were treated low back pain with radiation pain to Dept. of Acupuncture & Moxibusition, of Oriental Medicine Se-Myung University from April 1, 2007 to September 30, 2007. Subjects were randomly divided into two groups ; Bee Venom treated group(Group A, n=10), Sweet B...

  15. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens.

    Science.gov (United States)

    Dias, Gabriela S; Kitano, Eduardo S; Pagotto, Ana H; Sant'anna, Sávio S; Rocha, Marisa M T; Zelanis, André; Serrano, Solange M T

    2013-10-04

    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.

  16. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus.

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Whiteley, Gareth; Wagstaff, Simon C; Harrison, Robert A; Casewell, Nicholas R; Calvete, Juan J

    2017-04-01

    Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A 2 (PLA 2 ); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  18. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  19. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  20. Hemolytic potency and phospholipase activity of some bee and wasp venoms.

    Science.gov (United States)

    Watala, C; Kowalczyk, J K

    1990-01-01

    1. The action of crude venoms of four aculeate species: Apis mellifera, Vespa crabro, Vespula germanica and Vespula vulgaris on human erythrocytes was investigated in order to determine the lytic and phospholipase activity of different aculeate venoms and their ability to induce red blood cell hemolysis. 2. Bee venom was the only extract to completely lyse red blood cells at the concentration of 2-3 micrograms/ml. 3. Phospholipase activity in all of the examined vespid venoms was similar and the highest value was recorded in V. germanica. 4. Vespid venoms exhibited phospholipase B activity, which is lacking in honeybee venom. 5. In all membrane phospholipids but lecithin, lysophospholipase activity of vespid venoms was 2-6 times lower than the relevant phospholipase activity. 6. The incubation of red blood cells with purified bee venom phospholipase A2 was not accompanied by lysis and, when supplemented with purified melittin, the increase of red blood cell lysis was approximately 30%.

  1. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    Science.gov (United States)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  2. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy

    Directory of Open Access Journals (Sweden)

    Naruo Yoshida

    2015-07-01

    Conclusions: The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan.

  3. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome.

    Science.gov (United States)

    Sanggaard, Kristian W; Dyrlund, Thomas F; Thomsen, Line R; Nielsen, Tania A; Brøndum, Lars; Wang, Tobias; Thøgersen, Ida B; Enghild, Jan J

    2015-03-18

    The archetypical venomous lizard species are the helodermatids, the gila monsters (Heloderma suspectum) and the beaded lizards (Heloderma horridum). In the present study, the gila monster venom proteome was characterized using 2D-gel electrophoresis and tandem mass spectrometry-based de novo peptide sequencing followed by protein identification based on sequence homology. A total of 39 different proteins were identified out of the 58 selected spots that represent the major constituents of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview of the helodermatid venom composition. The helodermatid lizards are the classical venomous lizards, and the pharmacological potential of the venom from these species has been known for years; best illustrated by the identification of exendin-4, which is now used in the treatment of type 2 diabetes. Despite the potential, no global analyses of the protein components in the venom exist. A hindrance is the lack of a genome sequence because it prevents protein identification using a conventional approach where MS data are searched against predicted protein sequences based on the genome sequence

  4. Some Neuropharmacological Effects of the Crude Venom Extract of ...

    African Journals Online (AJOL)

    This study reports some neuropharmacological effects of the crude venom extract of Conus musicus (family Conidae) in mice using various experimental models. The crude venom was found to significantly increase tail flick reaction time in mice. The effects of the venom on the central nervous system were studied by ...

  5. Humoral Responses to Diverse Autoimmune Disease-Associated Antigens in Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Kishore Malyavantham

    Full Text Available To compare frequencies of autoreactive antibody responses to endogenous disease-associated antigens in healthy controls (HC, relapsing and progressive MS and to assess their associations with clinical and MRI measures of MS disease progression.The study analyzed 969 serum samples from 315 HC, 411 relapsing remitting MS (RR-MS, 128 secondary progressive MS (SP-MS, 33 primary progressive MS (PP-MS and 82 patients with other neurological diseases for autoantibodies against two putative MS antigens CSF114(Glc and KIR4.1a and KIR4.1b and against 24 key endogenous antigens linked to diseases such as vasculitis, systemic sclerosis, rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythematosus, polymyositis, scleroderma, polymyositis, dermatomyositis, mixed connective tissue disease and primary biliary cirrhosis. Associations with disability and MRI measures of lesional injury and neurodegeneration were assessed.The frequencies of anti-KIR4.1a and anti-KIR4.1b peptide IgG positivity were 9.8% and 11.4% in HC compared to 4.9% and 7.5% in RR-MS, 8.6% for both peptides in SP-MS and 6.1% for both peptides in PP-MS (p = 0.13 for KIR4.1a and p = 0.34 for KIR4.1b, respectively. Antibodies against CSF114(Glc, KIR4.1a and KIR4.1b peptides were not associated with MS compared to HC, or with MS disease progression. HLA DRB1*15:01 positivity and anti-Epstein Barr virus antibodies, which are MS risk factors, were not associated with these putative MS antibodies.Antibody responses to KIR4.1a and KIR4.1b peptides are not increased in MS compared to HC nor associated with MS disease progression. The frequencies of the diverse autoreactive antibodies investigated are similar in MS and HC.

  6. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    Science.gov (United States)

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  7. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

    Science.gov (United States)

    McCleary, Ryan J R; Sridharan, Sindhuja; Dunstan, Nathan L; Mirtschin, Peter J; Kini, R Manjunatha

    2016-07-20

    Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Utility of laboratory testing for the diagnosis of Hymenoptera venom allergy.

    Science.gov (United States)

    Vachová, Martina; Panzner, Petr; Malkusová, Ivana; Hanzlíková, Jana; Vlas, Tomáš

    2016-05-01

    A diagnosis of Hymenoptera venom allergy is based on clinical history and the results of skin tests and/or laboratory methods. To analyze the utility of available laboratory tests in diagnosing Hymenoptera venom allergy. Ninety-five patients with Hymenoptera venom allergy with a history of bee (35) or wasp (60) anaphylactic sting reaction and positive skin test with bee or wasp venom were included in this analysis. Specific immunoglobulin E (to bee venom extract, wasp venom extract, available recombinant molecules, and a basophil activation test with venom extracts were assessed in all the patients. Test sensitivity and specificity were calculated by using standard threshold values; then, receiver operating characteristic curve analysis was performed to compute optimal threshold values. Also, statistical analysis of the utility of different combinations of laboratory tests was performed. The optimal threshold values were revealed to be the following: 1.0 kIU/L for bee venom extract (sensitivity, 97.14%; specificity, 100%), 0.35 kIU/L for rApi m 1 (sensitivity, 68.57%; specificity, 100%), 1.22 kIU/L for wasp venom extract (sensitivity, 88.33%; specificity, 95.45%), 0.7 kIU/L for rVes v 5 (sensitivity, 86.67%; specificity, 95.45%), 1.0 kIU/L for rVes v 1 (sensitivity, 56.67%; specificity, 95.45%), 6.5% for basophil activation test with bee venom extract (sensitivity, 80%; specificity, 95.45%), and 4.5% for basophil activation test with wasp venom extract (sensitivity, 91.53%; specificity, 95.45%). The best test combinations were found to be the following: bee venom extract plus rApi m 1 (sensitivity, 97.14%; specificity, 95.45%) in bee and either wasp venom extract plus rVes v 5, or rVes v 5 plus rVes v 1 (both sensitivity, 98.33%; specificity, 95.45%) in patients with wasp venom allergy. Our analysis confirmed that currently used laboratory tests represent effective tools in diagnosing Hymenoptera venom allergy. Moreover, our probabilistic approach offered another

  9. The protective effect of Mucuna pruriens seeds against snake venom poisoning.

    Science.gov (United States)

    Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui; Marinello, Enrico; Guerranti, Roberto; Aguiyi, John C

    2009-06-22

    The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite. To study the protective effects of Mucuna pruriens seed extract against the lethalities of various snake venoms. Rats were pre-treated with Mucuna pruriens seed extract and challenged with various snake venoms. The effectiveness of anti-Mucuna pruriens (anti-MPE) antibody to neutralize the lethalities of snake venoms was investigated by in vitro neutralization. In rats, MPE pre-treatment conferred effective protection against lethality of Naja sputatrix venom and moderate protection against Calloselasma rhodostoma venom. Indirect ELISA and immunoblotting studies showed that there were extensive cross-reactions between anti-MPE IgG and venoms from many different genera of poisonous snakes, suggesting the involvement of immunological neutralization in the protective effect of MPE pre-treatment against snake venom poisoning. In vitro neutralization experiments showed that the anti-MPE antibodies effectively neutralized the lethalities of Asiatic cobra (Naja) venoms, but were not very effective against other venoms tested. The anti-MPE antibodies could be used in the antiserum therapy of Asiatic cobra (Naja) bites.

  10. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles.

    Science.gov (United States)

    Fry, Bryan G; Undheim, Eivind A B; Ali, Syed A; Jackson, Timothy N W; Debono, Jordan; Scheib, Holger; Ruder, Tim; Morgenstern, David; Cadwallader, Luke; Whitehead, Darryl; Nabuurs, Rob; van der Weerd, Louise; Vidal, Nicolas; Roelants, Kim; Hendrikx, Iwan; Gonzalez, Sandy Pineda; Koludarov, Ivan; Jones, Alun; King, Glenn F; Antunes, Agostinho; Sunagar, Kartik

    2013-07-01

    Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.

  11. Squeezers and Leaf-cutters: Differential Diversification and Degeneration of the Venom System in Toxicoferan Reptiles*

    Science.gov (United States)

    Fry, Bryan G.; Undheim, Eivind A.B.; Ali, Syed A.; Jackson, Timothy N. W.; Debono, Jordan; Scheib, Holger; Ruder, Tim; Morgenstern, David; Cadwallader, Luke; Whitehead, Darryl; Nabuurs, Rob; van der Weerd, Louise; Vidal, Nicolas; Roelants, Kim; Hendrikx, Iwan; Gonzalez, Sandy Pineda; Koludarov, Ivan; Jones, Alun; King, Glenn F.; Antunes, Agostinho; Sunagar, Kartik

    2013-01-01

    Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, l-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery. PMID:23547263

  12. Venom-derived peptides inhibiting Kir channels: Past, present, and future.

    Science.gov (United States)

    Doupnik, Craig A

    2017-12-01

    Inwardly rectifying K + (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K + ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K + -selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca 2+ -activated and voltage-gated K + channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Embriotoxic effects of maternal exposure to Tityus serrulatus scorpion venom

    Directory of Open Access Journals (Sweden)

    A. A. S. Barão

    2008-01-01

    Full Text Available Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg. The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10. The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.

  14. [Influence of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom].

    Science.gov (United States)

    Abiev, G A; Babaev, E I; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G

    2009-11-01

    The aim of the article was to study the effect of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom. It was found that mice intoxicated with snake venom, with moderate to high exposure to electromagnetic radiation and mice intoxicated with venom, which had not been exposed to the radiation showed the same symptoms of intoxication and death. At the same time, the longevity of mice intoxicated with venom exposed to electromagnetic radiation was higher. The longevity of mice in control group was 25+/-5 min. The longevity of mice intoxicated with exposed to electromagnetic radiation snake venom was from 29 to 60 min. The research showed that the longevity of mice intoxicated with snake venom rose with the level of electromagnetic radiation intensity the snake was exposed to. Accordingly, snake venom, with exposure to high intensity electromagnetic radiation is less toxic.

  15. Neutralization of Apis mellifera bee venom activities by suramin.

    Science.gov (United States)

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  17. Hematological changes in sheep inoculated with natural and Cobalt60-irradiated Crotalus durissus terrificus venom (Laurenti, 1768)

    International Nuclear Information System (INIS)

    Netto, D.P.; Alfieri, A.A.; Balarim, M.R.S.; Chiacchio, S.B.; Bicudo, P.L.; Nascimento, N.

    2004-01-01

    Natural (NV) and Cobalt 60 -irradiated (IrV) Crotalus durissus terrificus venom were used to evaluate serum production capacity of sheep and possible hematological and biochemical effects. Freeze-dried venom aliquots were diluted in acidified saline solution (NaCl 150 m M, p H 3.0) and irradiated by a Cobalt 60 source at a dose of 5.54 x 102 Gy/h and a concentration of 2.000 Gy. Twelve sheep were divided into two groups of six animals. One group received irradiated venom (IrV) and the other natural venom (NV). Three antigen doses (venom) were administered at monthly intervals. Blood samples were collected weekly for analysis of serum neutralization potency and capacity, complete blood count, total plasma protein, fibrinogen, albumin, and globulin. At the end of the experiment, the animals were challenged with a LD 50 for sheep and showed no signs of envenoming. The two groups did not present clinical alterations. Results of the total leukocyte count did not present interaction or time factor effect for both groups, but there was a different action between them, with the NV group presenting more cells than the IrV group. The leukocyte increase to 13,000/μl indicates that slight leucocytosis occurred in the week after the first inoculation in the NV group. There was no statistically significant difference between groups in the absolute count of segmented neutrophils, eosinophils, and lymphocytes but there were statistically significant oscillations in values at the different collecting times. The NV group presented an increase in the absolute neutrophil count after the first inoculation that persisted for 5 weeks. In the IrV group, the increase in neutrophils occurred only in the first week returning to normal in the following weeks. The alterations in the neutrophil count are indicative of systemic inflammatory response related to cytokine release; response was more marked in the N V group, showing its greater toxicity. (author)

  18. Hematological changes in sheep inoculated with natural and Cobalt60-irradiated Crotalus durissus terrificus venom (Laurenti, 1768

    Directory of Open Access Journals (Sweden)

    D. P. Netto

    2004-01-01

    Full Text Available Natural (NV and Cobalto60-irradiated (IrV Crotalus durissus terrificus venom were used to evaluate serum production capacity of sheep and possible hematological and biochemical effects. Freeze-dried venom aliquots were diluted in acidified saline solution (NaCl 150 mM, pH 3.0 and irradiated by a Cobalt 60 source at a dose of 5.54 x 102 Gy/h and a concentration of 2.000 Gy. Twelve sheep were divided into two groups of six animals. One group received irradiated venom (IrV and the other natural venom (NV. Three antigen doses (venom were administered at monthly intervals. Blood samples were collected weekly for analysis of serum neutralization potency and capacity, complete blood count (CBC, total plasma protein, fibrinogen, albumin, and globulin. At the end of the experiment, the animals were challenged with a LD50 for sheep and showed no signs of envenoming. The two groups did not present clinical alterations. Results of the total leukocyte count did not present interaction or time factor effect for both groups, but there was a different action between them, with the NV group presenting more cells than the IrV group. The leukocyte increase to 13,000/ml indicates that slight leukocytosis occurred in the week after the first inoculation in the NV group. There was no statistically significant difference between groups in the absolute count of segmented neutrophils, eosinophils, and lymphocytes but there were statistically significant oscillations in values at the different collecting times. The NV group presented an increase in the absolute neutrophil count after the first inoculation that persisted for 5 weeks. In the IrV group, the increase in neutrophils occurred only in the first week returning to normal in the following weeks. The alterations in the neutrophil count are indicative of systemic inflammatory response related to cytokine release; response was more marked in the NV group, showing its greater toxicity.

  19. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting.

    Science.gov (United States)

    Hu, Yujing; Yang, Liming; Yang, Haiwei; He, Shaoheng; Wei, Ji-Fu

    2017-01-01

    This allergic reaction to snake venom was described to occur in patients after recurrent exposure through bites in amateur and professional snake handlers, which might be underestimated and contribute to fatal snakebites in victim, independently from the toxicity of the venom itself. Few allergens were identified from snake venoms by normal SDS-PAGE, which cannot separate the snake venom completely. In the present study, we identified nine potential allergens by two-dimensional (2D) electrophoresis followed by immunoblotting (named as allergenomics) in Protobothrops mucrosquamatus venom. By multidimensional liquid chromatography-ion trap mass spectrometry (MDLC-ESI-LTQ-MS/MS) analysis, six allergens showed sequence similarity to snake venom serine proteinases. Other allergens showed sequence similarity to snake venom metalloproteinase. These allergic reactions to snake venom allergens might contribute to fatal snakebites in victim, independently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Insect venom allergies : Update 2016 for otorhinolaryngologists].

    Science.gov (United States)

    Klimek, L; Dippold, N; Sperl, A

    2016-12-01

    Due to the increasing incidence of hymenoptera venom allergies and the potentially life-threatening reactions, it is important for otolaryngologists working in allergology to have an understanding of modern diagnostic and treatment standards for this allergic disease. Molecular diagnosis with recombinant single allergens from bee and wasp venom components improves the diagnostics of insect venom allergies, particularly in patients with double-positive extract-based test results. Detection of specific sensitizations to bee or wasp venom enables double sensitizations to be better distinguished from cross-reactivity. Based on patient history and test results, the patient is initially advised on avoidance strategies and prescribed an emergency medication kit. Then, the indication for allergen-specific immunotherapy (AIT) is evaluated. The dose-increase phase can be performed using conventional, cluster, rush, or ultra-rush schedules, whereby rapid desensitization (rush AIT) performed in the clinic seems to be particularly effective as initial treatment.

  1. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  2. Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5.

    Science.gov (United States)

    Müller, U R; Johansen, N; Petersen, A B; Fromberg-Nielsen, J; Haeberli, G

    2009-04-01

    In patients with hymenoptera venom allergy diagnostic tests are often positive with honey bee and Vespula venom causing problems in selection of venoms for immunotherapy. 100 patients each with allergic reactions to Vespula or honey bee stings and positive i.e. skin tests to the respective venom, were analysed for serum IgE to bee venom, Vespula venom and crossreacting carbohydrate determinants (CCDs) by UNICAP (CAP) and ADVIA Centaur (ADVIA). IgE-antibodies to species specific recombinant major allergens (SSMA) Api m1 for bee venom and Ves v5 for Vespula venom, were determined by ADVIA. 30 history and skin test negative patients served as controls. By CAP sensitivity was 1.0 for bee and 0.91 for Vespula venom, by ADVIA 0.99 for bee and 0.91 for Vespula venom. None of the controls were positive with either test. Double positivity was observed in 59% of allergic patients by CAP, in 32% by ADVIA. slgE to Api m1 was detected in 97% of bee and 17% of Vespula venom allergic patients, slgE to Ves v5 in 87% of Vespula and 17% of bee venom allergic patients. slgE to CCDs were present in 37% of all allergic patients and in 56% of those with double positivity and were more frequent in bee than in Vespula venom allergic patients. Double positivity of IgE to bee and Vespula venom is often caused by crossreactions, especially to CCDs. IgE to both Api m1 and Ves v5 indicates true double sensitization and immunotherapy with both venoms.

  3. Coral snake venoms: mode of action and pathophysiology of experimental envenomation

    Directory of Open Access Journals (Sweden)

    Oswald Vital Brazil

    1987-06-01

    Full Text Available Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins, M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect. The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.

  4. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies.

    Science.gov (United States)

    Castro, Edgar Neri; Lomonte, Bruno; del Carmen Gutiérrez, María; Alagón, Alejandro; Gutiérrez, José María

    2013-07-11

    The composition and toxicological profile of the venom of the rattlesnake Crotalus simus in Mexico was analyzed at the subspecies and individual levels. Venoms of the subspecies C. s. simus, C. s. culminatus and C. s. tzabcan greatly differ in the expression of the heterodimeric neurotoxin complex 'crotoxin', with highest concentrations in C. s. simus, followed by C. s. tzabcan, whereas the venom of C. s. culminatus is almost devoid of this neurotoxic PLA2. This explains the large variation in lethality (highest in C. s. simus, which also exerts higher myotoxicity). Coagulant activity on plasma and fibrinogen occurs with the venoms of C. s. simus and C. s. tzabcan, being absent in C. s. culminatus which, in turn, presents higher crotamine-like activity. Proteomic analysis closely correlates with toxicological profiles, since the venom of C. s. simus has high amounts of crotoxin and of serine proteinases, whereas the venom of C. s. culminatus presents higher amounts of metalloproteinases and crotamine. This complex pattern of intraspecies venom variation provides valuable information for the diagnosis and clinical management of envenoming by this species in Mexico, as well as for the preparation of venom pools for the production and quality control of antivenoms. This study describes the variation in venom composition and activities of the three subspecies of Crotalus simus from Mexico. Results demonstrate that there is a notorious difference in these venoms, particularly regarding the content of the potent neurotoxic phospholipase A2 complex 'crotoxin'. In addition, other differences were observed regarding myotoxic and coagulant activities, and expression of the myotoxin 'crotamine'. These findings have implications in, at least, three levels: (a) the adaptive role of variations in venom composition; (b) the possible differences in the clinical manifestations of envenomings by these subspecies in Mexico; and (c) the design of venom mixtures for the preparation of

  5. Addiction to Snake Venom.

    Science.gov (United States)

    Das, Saibal; Barnwal, Preeti; Maiti, Tanay; Ramasamy, Anand; Mondal, Somnath; Babu, Dinesh

    2017-07-03

    The nature of addiction depends on various factors. The tendency to have already used several addictive substances and to seek high sensation experiences as a result of specific personality traits may lead to extreme and peculiar forms of addictions. Even belonging to specific social and cultural background may lead to such forms of addiction such as intentional snake bite and willful envenomation. In this article, we have discussed the peculiarities and practical insight of such addiction to snake venom. The possible molecular mechanism behind such venom-mediated reinforcement has also been highlighted. Finally, we have stressed upon the treatment and de-addiction measures.

  6. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  7. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    Directory of Open Access Journals (Sweden)

    Kim Chaeweon

    2013-12-01

    Full Text Available Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300 or sexual difference (P = 0.163. Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference.

  9. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  10. Anti-arthritic effects of microneedling with bee venom gel

    Directory of Open Access Journals (Sweden)

    Mengdi Zhao

    2016-10-01

    Conclusions: Bee venom can significantly suppress the occurrence of gouty arthritis inflammation in rats and mice LPS inflammatory reaction. Choose the 750 μm microneedle with 10N force on skin about 3 minutes, bee venom can play the optimal role, and the anti-inflammatory effect is obvious. Microneedles can promote the percutaneous absorption of the active macromolecules bee venom gel.

  11. A Study on the Stability of Diluted Bee Venom Solution

    Directory of Open Access Journals (Sweden)

    Mi-Suk Kang

    2003-06-01

    Full Text Available Objective : The purpose of this study was to investigate the stability of bee venom according to the keeping method and period. Method : The author observed microbial contamination of bee venom in nutrient agar, broth, YPD agar and YPD media and antibacterial activity for S. aureus, E. coli manufactured 12, 6 and 3 months ago as the two type of room temperature and 4℃ cold storage. Result : 1. 1:3,000 and 1:4,000 diluted bee venom solution did not show microbial contamination both room temperature and cold storage within twelve months. 2. There was antibacterial activity of diluted bee venom for S. aureus in cold storage within twelve months and there was no antibacterial activity of diluted bee venom for S. aureus in twelve months, room temperature storage. 3. We could not observe the zone of inhibition around paper disc of all for E.coli. in 1:3,000, 1:30,000 and 1:3,000,000 diluted bee venom solution, respectively. According to results, we expect that diluted bee venom solution is stable both cold and room temperature storage within twelve months.

  12. Factors underlying the natural resistance of animals against snake venoms

    Directory of Open Access Journals (Sweden)

    H. Moussatché

    1989-01-01

    Full Text Available The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

  13. Functional Morphology of Venom Apparatus of Euscorpius mingrelicus(Scorpiones: Euscorpiidae)

    OpenAIRE

    YİĞİT, Nazife; BAYRAM, Abdullah; DANIŞMAN, Tarık

    2007-01-01

    The objective of the present study is to describe the functional morphology of venom apparatus of Euscorpius mingrelicus (Kessler, 1874) by using light microscope and scanning electron microscope (SEM). The venom apparatus, situates in the last segment of metasoma (telson), is composed of a pair of venom glands and sting. Telson is covered by cuticular exoskeleton as well as all body, and there are cuticular setae and pits on it as serve sensory organ. The general organization of the venom ap...

  14. Molecular barcoding, DNA from snake venom, and toxinological research: Considerations and concerns.

    Science.gov (United States)

    Powell, Randy L; Reyes, Steven R; Lannutti, Dominic I

    2006-12-15

    The problem of species identification in toxinological research and solutions such as molecular barcoding and DNA extraction from venom samples are addressed. Molecular barcoding is controversial with both perceived advantages and inherent problems. A method of species identification utilizing mitochondrial DNA from venom has been identified. This method could result in deemphasizing the importance of obtaining detailed information on the venom source prior to analysis. Additional concerns include; a cost prohibitive factor, intraspecific venom variation, and venom processing issues. As researchers demand more stringent records and verification, venom suppliers may be prompted to implement improved methods and controls.

  15. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    International Nuclear Information System (INIS)

    Ferreira, Camila G.; Avalloni, Tania M.; Oshima-Franco, Yoko; Oliveira, Sara de J; Oliveira, Jose M. Jr. de; Cogo, Jose C.

    2011-01-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7x10 9 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  16. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    Science.gov (United States)

    Ferreira, Camila G.; Avalloni, Tânia M.; Oshima-Franco, Yoko; de J. Oliveira, Sara; de Oliveira, José M.; Cogo, José C.

    2011-08-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7×109 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  17. Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.

    Science.gov (United States)

    Weinstein, Scott A

    2015-09-01

    The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. [Effects of venom from Sclerodermus sichuanensis Xiao on pupa of Tenebrio molitor].

    Science.gov (United States)

    Zhuo, Zhi-Hang; Yang, Wei; Qin, Huan; Yang, Chun-Ping; Yang, Hua; Xu, Dan-Ping

    2013-11-01

    To explore the regulatory mechanisms of parasitism of Sclerodermus sichuanensis on Tenebrio molitor, the methods of natural parasitism and venom injection were adopted to investigate the effects of the venom from S. sichuanensis on the pupa of T. molitor in the parasitic process. Under venom injection, the paralytic degree of the pupa had a positive correlation with the concentration of injected venom, and the number of recovered pupa had a negative correlation with the injected venom concentration. The T. molitor pupa was in slight and reversible paralysis when injected with 0.01 VRE (venom reservoir equivalent) of venom, and in non-reversible and complete paralysis when 0.2 VRE was injected. The pupa died massively and appeared a wide range of melanization when injected with soil bacterial suspension alone, but the melanization delayed and the mortality declined significantly when the mixed liquor of bacterium and venom was injected. The bacteriostasis of the venom on Staphylococcus aureus was significantly stronger than that on Escherichia coli. Within a definite range of temperature, the paralytic activity decreased significantly with increasing temperature, the bacteriostasis on S. aureus increased significantly, while that on E. coli was opposite. This study showed that the venom from S. sichuanensis had the effects of paralysis, bacteriostasis, inhibiting exuviations, and delaying melanization.

  19. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  20. [Therapy control of specific hymenoptera venom allergy].

    Science.gov (United States)

    Aust, W; Wichmann, G; Dietz, A

    2010-12-01

    In Germany anaphylactic reactions after insect stings are mostly caused by honey bee (Apis mellifera) and wasp (Vespula vulgaris, Vespula germanica). In the majority of cases venom immunotherapy is a successful therapy and protects patients from recurrent systemic anaphylactic reaction. In some patients persistent severe reactions after insect sting can even occur in spite of venom therapy, as a sign of therapy failure. It is important to identify these patients, who do not benefit from venom immunotherapy, in an early stage of therapy. In this case dose rate of venom immunotherapy must be adjusted for a successful therapy outcome. Up to now skin prick tests, specific IgE-antibodies and in vitro diagnostics are not suitable for detecting therapy failure. Patients with treatment failure can be diagnosed by insect sting test and almost all of them will become fully protected by increasing the maintenance dose. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt Ant Venom (Formicidae: Ponerinae

    Directory of Open Access Journals (Sweden)

    Diana Aline Morais Ferreira Nôga

    2016-12-01

    Full Text Available Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt protects mice against bicuculline (BIC-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC resulting in six fractions referred to as DqTx1–DqTx6. A liquid chromatography-mass spectrometry (LC/MS analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM, DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.

  2. Effect of gamma irradiation on toxicity and immunogenicity of Androctonus australis hector venom

    International Nuclear Information System (INIS)

    Abib, L.; Laraba-Djebari, F.

    2003-01-01

    An investigation was made of the radiosensitivity of the toxic and immunological properties of Androctonus australis hector venom. This venom was irradiated with two doses of gamma rays (1 and 2 kGy) from a 60 Co source. The results showed that venom toxicity was abolished for the two radiation doses (1 and 2 kGy) with, respectively, 10 and 25 times its initial LD50 value. However, irradiated venoms were immunogenic, and the antibodies elicited by them were able to recognize the native venom by enzyme-linked immunosorbent assay. Antisera raised against these toxoids (1 and 2 kGy) had a higher neutralizing capacity and immunoreactivity against all components of native venom than did the antiserum produced against the native venom. The antiserum of rabbits immunized with 2-kGy-irradiated venom was more efficient than 1-kGy-irradiated toxoid antiserum. Indeed, in vivo protection assays showed that the mice immunized with 2-kGy-irradiated venom resisted lethal doses (i.p.) of A. australis hector venom. (author)

  3. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.

    Science.gov (United States)

    Sequeira, Ana Filipa; Turchetto, Jeremy; Saez, Natalie J; Peysson, Fanny; Ramond, Laurie; Duhoo, Yoan; Blémont, Marilyne; Fernandes, Vânia O; Gama, Luís T; Ferreira, Luís M A; Guerreiro, Catarina I P I; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.

  4. Structural aspects of crotalic venom proteins modified by ionizing radiation

    International Nuclear Information System (INIS)

    Oliveira, Karina Corleto de

    2010-01-01

    Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the Ministry of Health notified around 26 000 accidents in 2008. The genus Crotalus (rattlesnakes) accounts for approximately 7% of the total, with a high mortality rate of 72% when untreated with the specific serum, the only effective treatment in case of snake bites. In Brazil, the serum is produced in horses which, despite the large size, have a reduced lifespan due to the high toxicity of the antigen. Ionizing radiation has proven to be an excellent tool for reducing the toxicity of venoms and isolated toxins, resulting in better immunogens for serum production, and contributing to the welfare of serum producing animals. Since the action of gamma radiation on venoms and toxins has not been yet fully clarified from the structural point of view, we proposed in this paper, to characterize two toxins of the species Crotalus durissus terrificus: crotoxin and crotamine. After isolation of the toxins of interest by chromatographic techniques, they were subjected to structural analysis with the application of the following methods: Fluorescence, Circular Dichroism, Differential Calorimetry and Infrared Spectroscopy. These tests showed that both crotamine as crotoxin when subjected to gamma radiation, showed changes in their structural conformation compared with the samples in the native state. Such changes probably occur in the secondary and tertiary structure and may explain the changes on the biological activity of these toxins. (author)

  5. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  6. SNAKE VENOM INSTABILITY • Department of Physiology, Medical ...

    African Journals Online (AJOL)

    preferable to desiccated samples for use in snake venom research (Bjork ... experimental results suggest that dried venom samples may be influenced by different ..... true for the commercial samples, as these are collectively pooled before ...

  7. Changes in gene expression caused by insect venom immunotherapy responsible for the long-term protection of insect venom-allergic patients

    NARCIS (Netherlands)

    Niedoszytko, Marek; Bruinenberg, Marcel; de Monchy, Jan; Weersma, Rinse K.; Wijmenga, Cisca; Jassem, Ewa; Oude Elberink, Joanne N. G.

    Background: Insect venom immunotherapy (VIT) is the only causative treatment of insect venom allergy (IVA). The immunological mechanism(s) responsible for long-term protection achieved by VIT are largely unknown. A better understanding is relevant for improving the diagnosis, prediction of

  8. Antioxidant activity and irritation property of venoms from Apis species.

    Science.gov (United States)

    Somwongin, Suvimol; Chantawannakul, Panuwan; Chaiyana, Wantida

    2018-04-01

    Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC 1 ) of 0.35 ± 0.02 mM FeSO 4 /mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using

  9. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  10. Hematological changes in sheep inoculated with natural and Cobalt{sub 60}-irradiated Crotalus durissus terrificus venom (Laurenti, 1768)

    Energy Technology Data Exchange (ETDEWEB)

    Netto, D.P.; Alfieri, A.A.; Balarim, M.R.S. [Universidade Estadual de Londrina, PR (Brazil). Faculdade de Medicina Veterinaria e Zootecnia. Dept. de Medicina Veterinaria Preventiva]. E-mail: rnetto@uel.br; Chiacchio, S.B.; Bicudo, P.L. [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia; Nascimento, N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radiobiologia

    2004-07-01

    Natural (NV) and Cobalt{sub 60}-irradiated (IrV) Crotalus durissus terrificus venom were used to evaluate serum production capacity of sheep and possible hematological and biochemical effects. Freeze-dried venom aliquots were diluted in acidified saline solution (NaCl 150 m M, p H 3.0) and irradiated by a Cobalt 60 source at a dose of 5.54 x 102 Gy/h and a concentration of 2.000 Gy. Twelve sheep were divided into two groups of six animals. One group received irradiated venom (IrV) and the other natural venom (NV). Three antigen doses (venom) were administered at monthly intervals. Blood samples were collected weekly for analysis of serum neutralization potency and capacity, complete blood count, total plasma protein, fibrinogen, albumin, and globulin. At the end of the experiment, the animals were challenged with a LD{sub 50} for sheep and showed no signs of envenoming. The two groups did not present clinical alterations. Results of the total leukocyte count did not present interaction or time factor effect for both groups, but there was a different action between them, with the NV group presenting more cells than the IrV group. The leukocyte increase to 13,000/{mu}l indicates that slight leucocytosis occurred in the week after the first inoculation in the NV group. There was no statistically significant difference between groups in the absolute count of segmented neutrophils, eosinophils, and lymphocytes but there were statistically significant oscillations in values at the different collecting times. The NV group presented an increase in the absolute neutrophil count after the first inoculation that persisted for 5 weeks. In the IrV group, the increase in neutrophils occurred only in the first week returning to normal in the following weeks. The alterations in the neutrophil count are indicative of systemic inflammatory response related to cytokine release; response was more marked in the N V group, showing its greater toxicity. (author)

  11. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  12. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  13. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.

    Science.gov (United States)

    Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara

    2017-12-19

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.

  14. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  15. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan.

    Science.gov (United States)

    Oyama, Etsuko; Takahashi, Hidenobu

    2017-08-04

    Snake venom metalloproteinases (SVMP) are widely distributed among the venoms of Crotalinae and Viperidae, and are organized into three classes (P-I, P-II and P-III) according to their size and domain structure. P-I SVMP are the smallest SVMP, as they only have a metalloproteinase (M) domain. P-II SVMP contain a disintegrin-like (D) domain, which is connected by a short spacer region to the carboxyl terminus of the M domain. P-III SVMP contain a cysteine-rich (C) domain, which is attached to the carboxyl terminus of the D domain. Some SVMP exhibit hemorrhagic activity, whereas others do not. In addition, SVMP display fibrinolytic/fibrinogenolytic (FL) activity, and the physiological functions of SVMP are controlled by their structures. Furthermore, these proteinases also demonstrate fibrinogenolytic and proteolytic activity against synthetic substrates for matrix metalloproteinases and ADAM (a disintegrin and metalloproteinase). This article describes the structures and FL, hemorrhagic, and platelet aggregation-inhibiting activity of SVMP derived from Protobothrops snake venom that was collected in Japan.

  16. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Lomonte, Bruno; Lohse, Brian

    2015-01-01

    The venom proteome of the black mamba, Dendroaspis polylepis, from Eastern Africa, was, for the first time, characterized. Forty- different proteins and one nucleoside were identified or assigned to protein families. The most abundant proteins were Kunitz-type proteinase inhibitors, which include...... the unique mamba venom components ‘dendrotoxins’, and α-neurotoxins and other representatives of the three-finger toxin family. In addition, the venom contains lower percentages of proteins from other families, including metalloproteinase, hyaluronidase, prokineticin, nerve growth factor, vascular...... to toxicity by influencing the toxin biodistribution. ELISA immunoprofiling and preclinical assessment of neutralization showed that polyspecific antivenoms manufactured in South Africa and India were effective in the neutralization of D. polylepis venom, albeit showing different potencies. Antivenoms had...

  17. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms.

    Science.gov (United States)

    Casewell, Nicholas R; Wagstaff, Simon C; Wüster, Wolfgang; Cook, Darren A N; Bolton, Fiona M S; King, Sarah I; Pla, Davinia; Sanz, Libia; Calvete, Juan J; Harrison, Robert A

    2014-06-24

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.

  18. Component Analysis of Bee Venom from lune to September

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : The aim of this study was to observe variation of Bee Venom content from the collection period. Methods : Content analysis of Bee Venom was rendered using HPLC method by standard melittin Results : Analyzing melittin content using HPLC, 478.97mg/g at june , 493.89mg/g at july, 468.18mg/g at August and 482.15mg/g was containing in Bee Venom at september. So the change of melittin contents was no significance from June to September. Conclusion : Above these results, we concluded carefully that collecting time was not important factor for the quality control of Bee Venom, restricted the period from June to September.

  19. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome

    DEFF Research Database (Denmark)

    Sanggaard, Kristian Wejse; Dyrlund, Thomas Franck; Thomsen, Line Rold

    2015-01-01

    of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome...... analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins...... into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview...

  20. Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa.

    Science.gov (United States)

    Moore, Eugene L; Arvidson, Ryan; Banks, Christopher; Urenda, Jean Paul; Duong, Elizabeth; Mohammed, Haroun; Adams, Michael E

    2018-03-27

    The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).

  1. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N W; Casewell, Nicholas R; Undheim, Eivind A B; Vidal, Nicolas; Ali, Syed A; King, Glenn F; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  2. Comparison of Treatment Effects and Allergic responses to stiff neck between Sweet Bee Venom and Bee Venom Pharmacopuncture (A pilot study, Double blind, Randomized Controlled Clinical Trail

    Directory of Open Access Journals (Sweden)

    Kyoung-hee Lee

    2008-12-01

    Full Text Available Objective : The purpose of this study is to investigate the difference of treatment effects and allergic responses to stiff neck between Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture. Methods : Forty one patients who felt stiff neck were randomly divided into two groups, a Bee Venom Pharmacopuncture group(group Ⅰ and a Sweet Bee Venom Pharmacopuncture group(group Ⅱ. Evaluations of the treatment effects were made before and after a treatment using Visual Analog Scale(VAS, Neck Disability Index(NDI, Clinical Evaluation Grade(CEG. The comparison of allergic responses was measured with VAS. The obtained data were analyzed and compared with SPSS. Results : The group Ⅰ and group Ⅱ showed significant improvement(p<0.05 according to the VAS, NDI, CEG. And the differences between the two groups were insignificant according to VAS, NDI, CEG. But allergic responses such as localized edema, localized itching were significantly lower in group Ⅱ than group Ⅰ. Conclusions : It seems that there are no big different treatment effects between the two groups. Sweet Bee Venom Pharmacopuncture appears to be more effective measurement against allergic reactions than the Bee Venom Pharmacopuncture. Further studies are needed for the comparison of Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture.

  3. Sequence diversity and natural selection at domain I of the apical membrane antigen 1 among Indian Plasmodium falciparum populations

    Directory of Open Access Journals (Sweden)

    Kumar Ashwani

    2007-11-01

    Full Text Available Abstract Background The Plasmodium falciparum apical membrane antigen 1 (AMA1 is a leading malaria vaccine candidate antigen. The complete AMA1 protein is comprised of three domains where domain I exhibits high sequence polymorphism and is thus named as the hyper-variable region (HVR. The present study describes the extent of genetic polymorphism and natural selection at domain I of the ama1 gene among Indian P. falciparum isolates. Methods The part of the ama1 gene covering domain I was PCR amplified and sequenced from 157 P. falciparum isolates collected from five different geographical regions of India. Statistical and phylogenetic analyses of the sequences were done using DnaSP ver. 4. 10. 9 and MEGA version 3.0 packages. Results A total of 57 AMA1 haplotypes were observed among 157 isolates sequenced. Forty-six of these 57 haplotypes are being reported here for the first time. The parasites collected from the high malaria transmission areas (Assam, Orissa, and Andaman and Nicobar Islands showed more haplotypes (H and nucleotide diversity π as compared to low malaria transmission areas (Uttar Pradesh and Goa. The comparison of all five Indian P. falciparum subpopulations indicated moderate level of genetic differentiation and limited gene flow (Fixation index ranging from 0.048 to 0.13 between populations. The difference between rates of non-synonymous and synonymous mutations, Tajima's D and McDonald-Kreitman test statistics suggested that the diversity at domain I of the AMA1 antigen is due to positive natural selection. The minimum recombination events were also high indicating the possible role of recombination in generating AMA1 allelic diversity. Conclusion The level of genetic diversity and diversifying selection were higher in Assam, Orissa, and Andaman and Nicobar Islands populations as compared to Uttar Pradesh and Goa. The amounts of gene flow among these populations were moderate. The data reported here will be valuable for the

  4. Mycobacterium chelonae infections associated with bee venom acupuncture.

    Science.gov (United States)

    Cho, Sun Young; Peck, Kyong Ran; Kim, Jungok; Ha, Young Eun; Kang, Cheol-In; Chung, Doo Ryeon; Lee, Nam Yong; Song, Jae-Hoon

    2014-03-01

    We report 3 cases of Mycobacterium chelonae infections after bee venom acupuncture. All were treated with antibiotics and surgery. Mycobacterium chelonae infections should be included in the differential diagnosis of chronic skin and soft tissue infections following bee venom acupuncture.

  5. Immunological assessment of mice hyperimmunized with native and Cobalt-60-irradiated Bothrops venoms

    International Nuclear Information System (INIS)

    Ferreira Junior, R.S.; Meira, D.A.; Martinez, J.C.

    2005-01-01

    ELISA was used to evaluate, accompany, and compare the humoral immune response of Swiss mice during hyperimmunization with native and Cobalt-60-irradiated ( 60 Co) venoms of Bothrops jararaca, Bothrops jararacussu and Bothrops moojeni. Potency and neutralization were evaluated by in vitro challenges. After hyperimmunization, immunity was observed by in vivo challenge, and the side effects were assessed. The animals immunization with one LD50 of each venom occurred on days 1, 15, 21, 30, and 45, when blood samples were collected; challenges happened on the 60th day. Results showed that ELISA was efficient in evaluating, accompanying and comparing mouse immune response during hyperimmunization. Serum titers produced with natural venom were similar to those produced with irradiated venom. Immunogenic capacity was maintained after 60 Co-irradiation. The sera produced with native venom showed neutralizing potency and capacity similar to those of the sera produced with irradiated venom. All antibodies were able to neutralize five LD50 from these venoms. Clinical alterations were minimum during hyperimmunization with irradiated venom, however, necrosis and death occurred in animals inoculated with native venom. (author)

  6. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. 2. LD50 of ICR mice with Sweet Bee Venom was more than 20mg/kg in subcutaneous injection and intravenous injection, between 15mg/kg and 20mg/kg in muscular injection. 3. LD50 of ICR mice with Bee Venom was between 6 and 9mg/kg in subcutaneous injection and intravenous injection, and more than 9mg/kg in muscular injection. Conclusion : Above results indicate that Sweet Bee Venom was more safe than Bee Venom and the process of removing enzymes was well rendered in Sweet Bee Venom.

  7. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases inc...

  8. The protective effect of bee venom on fibrosis causing inflammatory diseases.

    Science.gov (United States)

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-11-16

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient's skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  9. First extensive characterization of the venom gland from an egg parasitoid

    NARCIS (Netherlands)

    Cusumano, Antonino; Duvic, Bernard; Jouan, Véronique; Ravallec, Marc; Legeai, Fabrice; Peri, Ezio; Colazza, Stefano; Volkoff, Anne Nathalie

    2018-01-01

    The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been

  10. Bee venom treatment for refractory postherpetic neuralgia: a case report.

    Science.gov (United States)

    Lee, Seung Min; Lim, Jinwoong; Lee, Jae-Dong; Choi, Do-Young; Lee, Sanghoon

    2014-03-01

    Bee venom has been reported to have antinociceptive and anti-inflammatory effects in experimental studies. However, questions still remain regarding the clinical use of bee venom. This report describes the successful outcome of bee venom treatment for refractory postherpetic neuralgia. A 72-year-old Korean man had severe pain and hypersensitivity in the region where he had developed a herpes zoster rash 2 years earlier. He was treated with antivirals, painkillers, steroids, and analgesic patches, all to no effect. The patient visited the East-West Pain Clinic, Kyung Hee University Medical Center, to receive collaborative treatment. After being evaluated for bee venom compatibility, he was treated with bee venom injections. A 1:30,000 diluted solution of bee venom was injected subcutaneously along the margins of the rash once per week for 4 weeks. Pain levels were evaluated before every treatment, and by his fifth visit, his pain had decreased from 8 to 2 on a 10-point numerical rating scale. He experienced no adverse effects, and this improvement was maintained at the 3-month, 6-month, and 1-year phone follow-up evaluations. Bee venom treatment demonstrates the potential to become an effective treatment for postherpetic neuralgia. Further large-sample clinical trials should be conducted to evaluate the overall safety and efficacy of this treatment.

  11. Snake venom poisoning in the Plovdiv region from 2004 to 2012.

    Science.gov (United States)

    Iliev, Yanko T; Tufkova, Stoilka G; Zagorov, Marin Y; Nikolova, Stanka M

    2014-01-01

    Envenomation by poisons of biological origin is very common globally in the tropical and subtropical areas mainly, where the biological diversity of the species clearly leads to evolution of highly toxic species. The weather warming trend in Bulgaria, whether cyclic or permanent, allows for a change in the biological response of reptiles and insects inhabiting the temperate zone by a possible migration of biological species from the subtropical zone towards the temperate zone because of the new environmental conditions. There are very few studies on snake bite envenoming in Bulgaria. The AIM of the study was to find the incidence of the acute accidental intoxication (AAI) caused by snake venom in adult individuals in a large region of Bulgaria between 2004 and 2012 and characterises it by number, type, main clinical features, course and socio-demographic parameters of the victims so that preventive measures can be taken, wherever necessary. We studied retrospectively all 68 cases of AAI caused by snake venom in adult individuals (> 18 years old) hospitalized in the Clinic of Toxicology in St. George University Hospital, Plovdiv over the period from 2004 to 2012 by 23 quantitative and qualitative parameters. We found that the average annual incidence of snake venom AAI in adult population in the region of Plovdiv was relatively low for the specified period (9.5 per 100000 residents); the snake venom AAI increases or decreases every other year, with no clearly delineated trend for now. The prevalence of envenomation by poisons of biological origin increased from 2.3% in 1990-1998 to 9.5-10.33% between 2007 and 2012. The main sociodemographic characteristics of snake bite victims are similar to those in other Balkan and Central European countries. The clinical response to poisons of biological origin is generally identical with the response to the viper (Vipera ammodytes)--mild to medium intensity with predominantly local toxic syndrome. The algorithm of Clinical

  12. Lack of Correlation between Severity of Clinical Symptoms, Skin Test Reactivity, and Radioallergosorbent Test Results in Venom-Allergic Patients

    Directory of Open Access Journals (Sweden)

    Warrington RJ

    2006-06-01

    Full Text Available Abstract Purpose To retrospectively examine the relation between skin test reactivity, venom-specific immunoglobulin E (IgE antibody levels, and severity of clinical reaction in patients with insect venom allergy. Method Thirty-six patients (including 15 females who presented with a history of allergic reactions to insect stings were assessed. The mean age at the time of the reactions was 33.4 ± 15.1 years (range, 4-76 years, and patients were evaluated 43.6 ± 90 months (range, 1-300 months after the reactions. Clinical reactions were scored according to severity, from 1 (cutaneous manifestations only to 3 (anaphylaxis with shock. These scores were compared to scores for skin test reactivity (0 to 5, indicating the log increase in sensitivity from 1 μg/mL to 0.0001 μg/mL and radioallergosorbent test (RAST levels (0 to 4, indicating venom-specific IgE levels, from undetectable to >17.5 kilounits of antigen per litre [kUA/L]. Results No correlation was found between skin test reactivity (Spearman's coefficient = 0.15, p = .377 or RAST level (Spearman's coefficient = 0.32, p = .061 and the severity of reaction. Skin test and RAST scores both differed significantly from clinical severity (p p = .042. There was no correlation between skin test reactivity and time since reaction (Spearman's coefficient = 0.18, p = .294 nor between RAST and time since reaction (r = 0.1353, p = .438. Elimination of patients tested more than 12 months after their reaction still produced no correlation between skin test reactivity (p = .681 or RAST score (p = .183 and the severity of the clinical reaction. Conclusion In venom-allergic patients (in contrast to reported findings in cases of inhalant IgE-mediated allergy, there appears to be no significant correlation between the degree of skin test reactivity or levels of venom-specific IgE (determined by RAST and the severity of the clinical reaction.

  13. The dielectric properties of neutron irradiated snake venom and its pathological impact

    International Nuclear Information System (INIS)

    Hanafy, M.S.; Rahmy, N.A.; Abd El-Khalek, M.M.

    1999-01-01

    The changes in the dielectric properties of a saline solution of Cerastes cerastes snake venom after irradiation with low-level doses of fast neutrons from a Cf-252 source, were investigated. The pathological changes in the internal organs such as liver, kidney spleen, lung and heart of the rats injected with unirradiated and irradiated venom were also studied. The changes in the molecular structure of a diluted saline solution of snake venom were measured through dielectric relaxation studies in the frequency range 0.1-10 MHz at 4±0.5 deg C. The absorption spectra of the venom solution were measured in the wavelength range 200 to 600 nm. The results indicated remarkable changes in the molecular radii, shape, relaxation time and dielectric increment of the venom molecules as a result of irradiation. Also, the intensities of the absorption bands of the venom solution decreased as a result of the irradiation process. Furthermore, the pathological examination results indicated that the toxicity of the irradiated venom decreased as compared with that of unirradiated venom, hence increasing the chance of repair of the affected organs. (author)

  14. Bee venom suppresses methamphetamine-induced conditioned place preference in mice.

    Science.gov (United States)

    Kwon, Young Bae; Li, Jing; Kook, Ji Ae; Kim, Tae Wan; Jeong, Young Chan; Son, Ji Seon; Lee, Hyejung; Kim, Kee Won; Lee, Jang Hern

    2010-02-01

    Although acupuncture is most commonly used for its analgesic effect, it has also been used to treat various drug addictions including cocaine and morphine in humans. This study was designed to investigate the effect of bee venom injection on methamphetamine-induced addictive behaviors including conditioned place preference and hyperlocomotion in mice. Methamphetamine (1 mg/kg) was subcutaneously treated on days 1, 3 and 5 and the acquisition of addictive behaviors was assessed on day 7. After confirming extinction of addictive behaviors on day 17, addictive behaviors reinstated by priming dose of methamphetamine (0.1 mg/kg) was evaluated on day 18. Bee venom (20 microl of 1 mg/ml in saline) was injected to the acupuncture point ST36 on days 1, 3 and 5. Repeated bee venom injections completely blocked development of methamphetamine-induced acquisition and subsequent reinstatement. Single bee venom acupuncture 30 minutes before acquisition and reinstatement test completely inhibited methamphetamine-induced acquisition and reinstatement. Repeated bee venom acupunctures from day 8 to day 12 after methamphetamine-induced acquisition partially but significantly suppressed reinstatement. These findings suggest that bee venom acupuncture has a preventive and therapeutic effect on methamphetamine-induced addiction.

  15. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R.

    1995-01-01

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A 2 , an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A 2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  16. Application of bee venom and its main constituent melittin for cancer treatment.

    Science.gov (United States)

    Liu, Cui-Cui; Hao, Ding-Jun; Zhang, Qian; An, Jing; Zhao, Jing-Jing; Chen, Bo; Zhang, Ling-Ling; Yang, Hao

    2016-12-01

    Bee venom and its main constituent melittin (MEL) have been extensively studied in the treatment of tumors. However, the non-specific cytotoxicity and hemolytic activity have hampered the clinical application. Currently, a number of research groups have reported a series of optimization strategies, including gene therapy, recombinant immunotoxin incorporating MEL or MEL nanoparticles, targeting tumor cells to attenuate the cytotoxicity and improve its antitumor efficiency and therapeutic capabilities, which have shown very promising in overcoming some of these obstacles. In this review, we summarize the current knowledge regarding anticancer effects of bee venom and its main compound MEL on different kinds of tumor cells as well as elucidate their possible anticancer mechanisms. It could be concluded that MEL exerts multiple effects on cellular functions of cancerous cells such as proliferation, apoptosis, metastasis, angiogenesis as well as cell cycle, and the anticancer processes involve diverse signal molecules and regulatory pathways. We also highlight the recent research progress for efficient delivery of MEL peptide, thus providing new ideas and hopeful strategies for the in vivo application of MEL.

  17. Therapeutic potential of snake venom in cancer therapy: current perspectives

    Science.gov (United States)

    Vyas, Vivek Kumar; Brahmbhatt, Keyur; Bhatt, Hardik; Parmar, Utsav

    2013-01-01

    Many active secretions produced by animals have been employed in the development of new drugs to treat diseases such as hypertension and cancer. Snake venom toxins contributed significantly to the treatment of many medical conditions. There are many published studies describing and elucidating the anti-cancer potential of snake venom. Cancer therapy is one of the main areas for the use of protein peptides and enzymes originating from animals of different species. Some of these proteins or peptides and enzymes from snake venom when isolated and evaluated may bind specifically to cancer cell membranes, affecting the migration and proliferation of these cells. Some of substances found in the snake venom present a great potential as anti-tumor agent. In this review, we presented the main results of recent years of research involving the active compounds of snake venom that have anticancer activity. PMID:23593597

  18. Neutralization of toxicological activities of medically-relevant Bothrops snake venoms and relevant toxins by two polyvalent bothropic antivenoms produced in Peru and Brazil.

    Science.gov (United States)

    Estevao-Costa, Maria I; Gontijo, Silea S; Correia, Barbara L; Yarleque, Armando; Vivas-Ruiz, Dan; Rodrigues, Edith; Chávez-Olortegui, Carlos; Oliveira, Luciana S; Sanchez, Eladio F

    2016-11-01

    Snakebite envenoming is a neglected public pathology, affecting especially rural communities or isolated areas of tropical and subtropical Latin American countries. The parenteral administration of antivenom is the mainstay and the only validated treatment of snake bite envenoming. Here, we assess the efficacy of polyspecific anti-Bothrops serum (α-BS) produced in the Instituto Nacional de Salud (INS, Peru) and at the Fundação Ezequiel Dias (FUNED, Brazil), to neutralize the main toxic activities induced by five medically-relevant venoms of: Bothrops atrox, B. barnetti, and B. pictus from Peru, and the Brazilian B. jararaca and B. leucurus, all of them inhabiting different geographical locations. Protein electrophoretic patterns of these venoms showed significant differences in composition, number and intensity of bands. Another goal was to evaluate the efficacy and safety of lyophilized α-BS developed at INS to neutralize the detrimental effects of these venoms using in vivo and in vitro assays. The availability of lyophilized α-BS has relevant significance in its distribution to distant rural communities where the access to antivenom in health facilities is more difficult. Despite the fact that different antigen mixtures were used for immunization during antivenom production, our data showed high toxin-neutralizing activity of α-BS raised against Bothrops venoms. Moreover, the antivenom cross-reacted even against venoms not included in the immunization mixture. Furthermore, we have evaluated the efficacy of both α-BS to neutralize key toxic compounds belonging to the predominant protein families of Bothrops snakes. Most significantly, both α-BS cross-specifically neutralized the main toxicological activities e.g. lethality and hemorrhage induced by these venoms. Thus, our data indicate that both α-BS are equally effective to treat snake bite victims inflicted by Bothrops snakes particularly B. atrox, responsible for the largest numbers of human

  19. The Antinociceptive Effects of Iranian Cobra Snake Venom using Formalin Test

    Directory of Open Access Journals (Sweden)

    Zahra Hadi Chegeni

    2015-06-01

    Full Text Available Abstract Background: There have been numerous reports of snake venoms being employed as analgesics in attempts to relieve severe pain associated with cancer, immune dysfunction and viral infections. This study investigates the antinociceptive effects of iranian cobra snake venom (Naja naja oxiana in comparison with morphine and lidocain on laboratorial femal mice. Materials and Methods: This study has been done on 48 NMRI female mice of 18-20 g in weight. Antinociceptive activeity of snake venom was evaluated by formalin test. In this test, the animals were divided into 6 groups (each group consisting of 8 mice: Sham, positive Control (receiving morphine at dose of 5 mg/kg, and receiving lidocain at dose of 20 mg/kg, and experimental groups receiving venom at doses of 1, 3 and 4/5 µg/mice. In all groups, the formalin test was recorded for 60 min after administration of venom and drugs in mice. Data were analyzed using one-way ANOVA and Tukey test. Results: The results showed that the venom of Naja naja oxiana decreased nociception meaningfully in both acute and chronic phases. We also showed that this venom revealed even a better analgesic activity in comparison with morphine and lidocain. Conclusion: This study showed that the antinociceptive effect of the venom was mediated through central nervous system and peripheral mechanisms. Although details of the mechanism remain unclear, and further studies should be considered to demonstrate its therapeutic effects.

  20. Design of a new therapy to treat snake envenomation

    Directory of Open Access Journals (Sweden)

    Shahidi Bonjar L

    2014-06-01

    Full Text Available Leyla Shahidi BonjarDepartment of Pharmacology, College of Pharmacy, Kerman University of Medical Sciences, International Campus, Kerman, IranAbstract: The prospective removal of snake venoms from the blood of snake-bitten patients is discussed here. Opportune neutralization of killer antigens from the blood of poisoned victims is a vital treatment step. Delays may lead to death, or cripple the patient permanently. The present procedure describes the elimination of venom antigens of a wide range of snakes from the blood of such patients. Compared to conventional treatments, the treatment is administrable in the lack of proper antivenoms, expected to be more effective with less side effects, covers a vast range of snake venoms, minimizes contact of venoms with internal tissues and organs, is applicable in patients sensitive to serum injections, has a high chance of effectiveness because there is no need to identity the snake involved to administer its specific antibody, and is capable of universal application. The principal component to this approach is a “polyvalent venom antibody column” (PVAC, which selectively traps venom antigens from blood in an extracorporeal circuit while detoxified blood returns back to the patient's body. The PVAC is intended for removal of numerous snake venom antigens in a relatively simple procedure. Detoxification is performed under the supervision of trained personnel using simple blood-circulating machines in which blood circulates from patient to PVAC and back to the patient aseptically. The device acts as a biological filter that selectively immobilizes harmful venom antigens from poisoned blood. For effective neutralization, the PVAC provides a large contact surface area with blood. The PVAC’s reactive sites would consist of carbon nanotubes, on which a vast spectra of venoms' antibodies are bonded to. In this extracorporeal detoxification process, nocent antigens conjugate with their antibodies and

  1. Longitudinal evaluation of humoral immune response and merozoite surface antigen diversity in calves naturally infected with Babesia bovis, in São Paulo, Brazil.

    Science.gov (United States)

    Matos, Carlos António; Gonçalves, Luiz Ricardo; Alvarez, Dasiel Obregón; Freschi, Carla Roberta; Silva, Jenevaldo Barbosa da; Val-Moraes, Silvana Pompeia; Mendes, Natalia Serra; André, Marcos Rogério; Machado, Rosangela Zacarias

    2017-01-01

    Babesiosis is an economically important infectious disease affecting cattle worldwide. In order to longitudinally evaluate the humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis among naturally infected calves in Taiaçu, Brazil, serum and DNA samples from 15 calves were obtained quarterly, from their birth to 12 months of age. Anti-B. bovis IgG antibodies were detected by means of the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) was used to investigate the genetic diversity of B. bovis, based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 2, 4 and 5 sequences of the genes msa-1, msa-2b and msa-2c were obtained. The present study demonstrated that the msa-1 and msa-2b genes sequences amplified from blood DNA of calves positive to B. bovis from Taiaçu were genetically distinct, and that msa-2c was conserved. All animals were serologically positive to ELISA and IFAT, which used full repertoire of parasite antigens in despite of the genetic diversity of MSAs.

  2. 21 CFR 864.8950 - Russell viper venom reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper venom...

  3. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    Full Text Available Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF, brain-derived neurotrophic factors (BDNF and neurotrophin-3 (NT-3, which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74% and on the molecular surface of the protein (92%, while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  4. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N. W.; Casewell, Nicholas R.; Undheim, Eivind A. B.; Vidal, Nicolas; Ali, Syed A.; King, Glenn F.; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363

  5. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia

    Science.gov (United States)

    Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.

    2017-01-01

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537

  6. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

    Science.gov (United States)

    Fry, Bryan G; Roelants, Kim; Champagne, Donald E; Scheib, Holger; Tyndall, Joel D A; King, Glenn F; Nevalainen, Timo J; Norman, Janette A; Lewis, Richard J; Norton, Raymond S; Renjifo, Camila; de la Vega, Ricardo C Rodríguez

    2009-01-01

    Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.

  7. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  8. Biochemical and immunological alterations of 60 Co irradiated Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.

    1995-01-01

    Proteins irradiation leads to structural alterations resulting in activity and function loss. This process has been useful to detoxify animal venoms and toxins, resulting in low toxicity products which increased immunogenicity. The Bothrops jararacussu venom behaves as a weak immunogen and its lethal activity in not neutralized by either autologous, heterologous or bothropic polyvalent antisera. This venom is markedly myotoxic and and the commercial bothropic antiserum does not neutralize this activity, because of this low immunogenicity of the myotoxins. This present work was done in order to evaluate the possibility of irradiating Bothrops jararacussu, intending to increase the immunogenicity of the myotoxic components, leading to productions of myotoxins neutralizing antibodies. Bothrops jararacussu venom samples were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. A 2.3 folds decrease of toxicity was observed for the 1000 Gy irradiated samples while the 2000 Gy irradiated sample was at least 3.7 folds attenuated. On the other hand, the 500 Gy did not promote any detoxification. Electrophoresis and HPLC data indicate that the irradiation lead to the formation of high molecular weight products (aggregates). The proteolytic and phospholipasic activities decreased in a dose dependent manner, the phospholipases being more resistant than the proteases. Both the animals (rabbit) immunized with either native or 2000 Gy irradiated venom produced native venom binding antibodies, a slightly higher titer being obtained in the serum of the rabbit immunized with the irradiated samples. Western blot data indicate that the anti-irradiated venom Ig Gs recognised a greater amount of either autologous or heterologous venom bands, both sera behaving as genus specific. The anti-native serum did not neutralize the myotoxic activity of native venom, while the anti-irradiated one was able to neutralize this activity. (author)

  9. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    Directory of Open Access Journals (Sweden)

    Jeong Sun-Hee

    2000-07-01

    Full Text Available Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of the mice which were derived pain by injecting acetic acid into the abdomen, after stimulating Bee Venom aqua-acupuncture on Chungwan(CV12 and non acupuncture point on the backside were measured. Results:1. It showed that the writhing reflex were appeared on the groups which injected acetic acid only, and saline-acetic acid group(sample I, but not on the group bee venom-saline group(sample II. 2. The change of writhing reflex by Chungwan(CV12 Bee Venom aqua-acupuncture showed significant decrease in the order of Chungwan(CV12 Bee Venom aqua-acupuncture group III(2.5×10-3g/kg, II(2.5×10-4g/kg, and I(2.5×10-5g/kg, compared with control group. There were significant decrease of number of writhing reflex in 5~10, 10~15 and 15~20 minutes intervals of Chung wan(CV12 Bee Venom aqua-acupuncture group I, and in 0~5, 5~10, 10~15 and 15~20 minutes intervals of II and III, compared with control group. 3. The change of writhing reflex by non acupuncture point Bee Venom aqua-acupuncture showed significant decrease in the 0~5 and 5~10 minutes intervals and the total number of writhing reflex in 2.5×10-4g/kg group, compared with control group 4. The effects of writhing reflex of Chungwan(CV12 Bee Venom aqua-acupuncture group showed significant decrease, compared with non acupuncture point Bee Venom aqua-acupuncture group. Conclusion:This study shows that the Bee Venom aqua-acupuncture on Chungwan(CV12 decreases the numbers of writhing reflex. As the

  10. Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom

    Directory of Open Access Journals (Sweden)

    Cinthya Kimori Okamoto

    2017-03-01

    Full Text Available Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP. Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.

  11. Safety and efficacy of venom immunotherapy: a real life study.

    Science.gov (United States)

    Kołaczek, Agnieszka; Skorupa, Dawid; Antczak-Marczak, Monika; Kuna, Piotr; Kupczyk, Maciej

    2017-04-01

    Venom immunotherapy (VIT) is recommended as the first-line treatment for patients allergic to Hymenoptera venom. To analyze the safety and efficacy of VIT in a real life setting. One hundred and eighty patients undergoing VIT were studied to evaluate the safety, efficacy, incidence and nature of symptoms after field stings and adverse reactions to VIT. Significantly more patients were allergic to wasp than bee venom (146 vs. 34, p bees, and were not associated with angiotensin convertase inhibitors (ACEi) or β-adrenergic antagonists use. Systemic reactions were observed in 4 individuals on wasp VIT (2.7%) and in 6 patients allergic to bees (17.65%). The VIT was efficacious as most patients reported no reactions (50%) or reported only mild local reactions (43.75%) to field stings. The decrease in sIgE at completion of VIT correlated with the dose of vaccine received ( r = 0.53, p = 0.004). Beekeeping (RR = 29.54, p venom allergy. Venom immunotherapy is highly efficacious and safe as most of the adverse events during the induction and maintenance phase are mild and local. Side effects of VIT are more common in subjects on bee VIT. Beekeeping and female sex are associated with a higher risk of allergy to Hymenoptera venom.

  12. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

    Science.gov (United States)

    Freitas-de-Sousa, L A; Amazonas, D R; Sousa, L F; Sant'Anna, S S; Nishiyama, M Y; Serrano, S M T; Junqueira-de-Azevedo, I L M; Chalkidis, H M; Moura-da-Silva, A M; Mourão, R H V

    2015-11-01

    Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  14. Bee Venom (Apis Mellifera an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains Bee Venom an Effective Potential for Bacteria

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2016-09-01

    Full Text Available Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera, is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has bee

  15. Histology of the venom gland of the puff-adder (Bitis arietans)

    African Journals Online (AJOL)

    state. No accessory venom gland was found to be associated with the main venom gland or duct in the same position as has been reported for other snakes. In the resting state the parenchyma of the venom gland was found to consist of tubules lined by a single layer of tall columnar secretory cells. After being stimulated to ...

  16. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    OpenAIRE

    Joong chul An; Ki Rok Kwon; Eun Hee Lee; Bae Chun Cha

    2006-01-01

    Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay and Thiobarbituric Ac...

  17. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  18. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification. Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  19. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  20. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy

    DEFF Research Database (Denmark)

    Blank, Simon; Etzold, Stefanie; Darsow, Ulf

    2017-01-01

    Allergen-specific immunotherapy is the only curative treatment of honeybee venom (HBV) allergy, which is able to protect against further anaphylactic sting reactions. Recent analyses on a molecular level have demonstrated that HBV represents a complex allergen source that contains more relevant...... major allergens than formerly anticipated. Moreover, allergic patients show very diverse sensitization profiles with the different allergens. HBV-specific immunotherapy is conducted with HBV extracts which are derived from pure venom. The allergen content of these therapeutic extracts might differ due...... to natural variations of the source material or different down-stream processing strategies of the manufacturers. Since variations of the allergen content of therapeutic HBV extracts might be associated with therapeutic failure, we adressed the component-resolved allergen composition of different therapeutic...

  1. Local and hematological alterations induced by Philodryas olfersii snake venom in mice.

    Science.gov (United States)

    Oliveira, Juliana S; Sant'Anna, Luciana B; Oliveira Junior, Manoel C; Souza, Pamella R M; Andrade Souza, Adilson S; Ribeiro, Wellington; Vieira, Rodolfo P; Hyslop, Stephen; Cogo, José C

    2017-06-15

    Envenomation by the South American opisthoglyphous snake Philodryas olfersii causes local pain, edema, erythema and ecchymosis; systemic envenomation is rare. In this work, we examined the inflammatory activity of P. olfersii venom (10, 30 and 60 μg) in mouse gastrocnemius muscle 6 h after venom injection. Intramuscular injection of venom did not affect hematological parameters such as red cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The venom caused thrombocytopenia (at all three doses), leukopenia and lymphopenia (both at the two highest doses), as well as neutrophilia (30 μg), monocytosis (30 μg) and basophilia (10 μg). Of the cytokines that were screened [IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, IFN-γ, MIP-2 and KC] and IGF-1, only IGF-1 showed a significant increase in its circulating concentration, seen with 60 μg of venom; there were no significant changes in the cytokines compared to control mice. Histological analysis revealed the presence of edema, an inflammatory infiltrate and progressive myonecrosis. Edema and myonecrosis were greatest with 60 μg of venom, while the inflammatory infiltrate was greatest with 10 μg of venom. All venom doses caused the migration of polymorphonuclear and mononuclear leukocytes into muscle, but with no significant dose-dependence in the response. These findings show that, at the doses tested, P. olfersii venom does not cause hematological alterations and has limited effect on circulating cytokine concentrations. These data also confirm that the principal effects of the venom in mice are local edema, inflammatory cell infiltration and myonecrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Risk associated with bee venom therapy: a systematic review and meta-analysis.

    Science.gov (United States)

    Park, Jeong Hwan; Yim, Bo Kyung; Lee, Jun-Hwan; Lee, Sanghun; Kim, Tae-Hun

    2015-01-01

    The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threating severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy. We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported. A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57-39.74) in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20) in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies. Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner's education and qualifications regarding the use of bee venom therapy should be ensured.

  3. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  4. Risk associated with bee venom therapy: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jeong Hwan Park

    Full Text Available The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threating severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy.We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported.A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57-39.74 in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20 in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies.Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner's education and qualifications regarding the use of bee venom therapy should be ensured.

  5. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  6. Preparation of cobra (Naja naja) venom toxoid using gamma-radiations. Part I

    International Nuclear Information System (INIS)

    Gaitonde, B.B.; Kankonkar, S.R.

    1975-01-01

    Detoxification of venom by radiation was investigated. Two concentrations i.e. 0.01% of venom solution were irradiated with different doses of gamma-radiations from cobalt-60 source. The results obtained indicate that the toxicity of venom is markedly attenuated by gamma-radiation. (author)

  7. Keeping venomous snakes in the Netherlands: a harmless hobby or a public health threat?

    Science.gov (United States)

    van Genderen, P J J; Slobbe, L; Koene, H; Mastenbroek, R D L; Overbosch, D

    2013-10-01

    To describe the incidence of venomous snakebites and the hospital treatment thereof (if any) amongst private individuals who keep venomous snakes as a hobby. Descriptive study. Private keepers of venomous snakes were invited via the social media Facebook, Hyves, Twitter, Google Plus, Linked In and two large discussion forums to fill in an online questionnaire on a purely voluntary and anonymous basis. In the period from 1 September 2012 to 31 December 2012, 86 questionnaires were completed by individuals who keep venomous snakes as a hobby. One-third of the venomous snake keepers stated that they had at some point been bitten by a venomous snake. Out of those, two-thirds needed hospital treatment and one-third of those bitten required at least one, sometimes more, doses of antiserum. The chances of being bitten increased the more venomous snakes a person kept. An inventory of the collections of venomous snakes being kept further revealed that no antiserum exists for 16 of the species, including for the most commonly held venomous snake, the coral cobra. Keeping venomous snakes as a hobby is not without danger. Although in the majority of snakebite cases no antiserum had to be administered, there is nevertheless a significant risk of morbidity and sequelae. Preventing snakebites in the first place remains the most important safety measure since there are no antiserums available for a substantial number of venomous snakes.

  8. Genetic diversity, anti-microbial resistance, plasmid profile and frequency of the Vi antigen in Salmonella Dublin strains isolated in Brazil.

    Science.gov (United States)

    Vilela, F P; Frazão, M R; Rodrigues, D P; Costa, R G; Casas, M R T; Fernandes, S A; Falcão, J P; Campioni, F

    2018-02-01

    Salmonella Dublin is strongly adapted to cattle causing enteritis and/or systemic disease with high rates of mortality. However, it can be sporadically isolated from humans, usually causing serious disease, especially in patients with underlying chronic diseases. The aim of this study was to molecularly type S. Dublin strains isolated from humans and animals in Brazil to verify the diversity of these strains as well as to ascertain possible differences between strains isolated from humans and animals. Moreover, the presence of the capsular antigen Vi and the plasmid profile was characterized in addition to the anti-microbial resistance against 15 drugs. For this reason, 113 S. Dublin strains isolated between 1983 and 2016 from humans (83) and animals (30) in Brazil were typed by PFGE and MLVA. The presence of the capsular antigen Vi was verified by PCR, and the phenotypic expression of the capsular antigen was determined serologically. Also, a plasmid analysis for each strain was carried out. The strains studied were divided into 35 different PFGE types and 89 MLVA-types with a similarity of ≥80% and ≥17.5%, respectively. The plasmid sizes found ranged from 2 to >150 kb and none of the strains studied presented the capsular antigen Vi. Resistance or intermediate resistance was found in 23 strains (20.3%) that were resistant to ampicillin, ciprofloxacin, chloramphenicol, imipenem, nalidixic acid, piperacillin, streptomycin and/or tetracycline. The majority of the S. Dublin strains studied and isolated over a 33-year period may descend from a common subtype that has been contaminating humans and animals in Brazil and able to cause invasive disease even in the absence of the capsular antigen. The higher diversity of resistance phenotypes in human isolates, as compared with animal strains, may be a reflection of the different anti-microbial treatments used to control S. Dublin infections in humans in Brazil. © 2017 Blackwell Verlag GmbH.

  9. Contrasting modes and tempos of venom expression evolution in two snake species.

    Science.gov (United States)

    Margres, Mark J; McGivern, James J; Seavy, Margaret; Wray, Kenneth P; Facente, Jack; Rokyta, Darin R

    2015-01-01

    Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species. Copyright © 2015 by the Genetics Society of America.

  10. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom.

    Science.gov (United States)

    Soni, Pranay; Bodakhe, Surendra H

    2014-05-01

    To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.

  11. Allergies to Insect Venom

    Science.gov (United States)

    ... insects (as might be the case when a nest is disturbed, or when Africanized honeybees are involved); ... test with the five commercially available venoms; honey bee, paper wasp, yellow jacket, yellow hornet and white- ...

  12. Diversity of Babesia bovis merozoite surface antigen genes in the Philippines.

    Science.gov (United States)

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Ybanez, Adrian Patalinghug; Ybanez, Rochelle Haidee Daclan; Perez, Zandro Obligado; Guswanto, Azirwan; Igarashi, Ikuo; Yokoyama, Naoaki

    2014-02-01

    Babesia bovis is the causative agent of fatal babesiosis in cattle. In the present study, we investigated the genetic diversity of B. bovis among Philippine cattle, based on the genes that encode merozoite surface antigens (MSAs). Forty-one B. bovis-positive blood DNA samples from cattle were used to amplify the msa-1, msa-2b, and msa-2c genes. In phylogenetic analyses, the msa-1, msa-2b, and msa-2c gene sequences generated from Philippine B. bovis-positive DNA samples were found in six, three, and four different clades, respectively. All of the msa-1 and most of the msa-2b sequences were found in clades that were formed only by Philippine msa sequences in the respective phylograms. While all the msa-1 sequences from the Philippines showed similarity to those formed by Australian msa-1 sequences, the msa-2b sequences showed similarity to either Australian or Mexican msa-2b sequences. In contrast, msa-2c sequences from the Philippines were distributed across all the clades of the phylogram, although one clade was formed exclusively by Philippine msa-2c sequences. Similarities among the deduced amino acid sequences of MSA-1, MSA-2b, and MSA-2c from the Philippines were 62.2-100, 73.1-100, and 67.3-100%, respectively. The present findings demonstrate that B. bovis populations are genetically diverse in the Philippines. This information will provide a good foundation for the future design and implementation of improved immunological preventive methodologies against bovine babesiosis in the Philippines. The study has also generated a set of data that will be useful for futher understanding of the global genetic diversity of this important parasite. © 2013.

  13. Spider genomes provide insight into composition and evolution of venom and silk

    Science.gov (United States)

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  14. Hyaluronidase and hyaluronan in insect venom allergy.

    Science.gov (United States)

    King, Te Piao; Wittkowski, Knut M

    2011-01-01

    Insect venoms contain an allergen hyaluronidase that catalyzes the hydrolysis of hyaluronan (HA), a polymer of disaccharide GlcUA-GlcNAc in skin. HAs depending on their size have variable function in inflammation and immunity. This paper reports on whether hyaluronidase, HA polymers and oligomers can promote antibody response in mice. HA oligomers (8- to 50-mer; 3-20 kDa) were obtained by bee venom hyaluronidase digestion of HA polymers (750- to 5,000-mer; 300-2,000 kDa). Antibody responses in mice were compared following 3 biweekly subcutaneous injection of ovalbumin (OVA) with or without test adjuvant. OVA-specific IgG1 levels were approximately 2 times higher in BALB/c and C3H/HeJ mice receiving OVA and HA oligomer or polymer than those treated with OVA alone, and no increase in total IgE level was observed. In C57Bl/6 mice, observed increases in IgG1 and IgE were 3.5- and 1.7-fold, respectively, for the oligomer and 16- and 5-fold (p Insect venoms also have cytolytic peptides and phospholipases with inflammatory roles. These activities found in mice may contribute to venom allergenicity in susceptible people. Copyright © 2011 S. Karger AG, Basel.

  15. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  16. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  17. Effects of ionizing radiation on crotoxin (toxin of Crotalus durissus terrificus venom): molecular studies

    International Nuclear Information System (INIS)

    Souza Filho, J.N. de.

    1988-01-01

    It is know that the ionizing radiation is able to change significantly the biological and antigenic response of a toxin depending of the dose and irradiation's conditions, probable by structural alterations caused by radiation. In this work, the crotoxin, principal neurotoxin of the South American rattlesnake venom, was isolated using molecular exclusion chromatography with Sephadex G-75 and follwed by precipitation on the isoelectric point. Fractions in the concentration of 2 mg of protein/m1 0.85% NaCl were irradiated in a source of sup(60)Co GAMMACELL with dose rate of 1100 Gy/h using doses of 250, 500, 1000, 1500 and 2000 Gy. It was determinated for these samples, the proteic concentration (Lowry's method), the content sulphydryl (Ellman's method), the profile electrophoretic (SDS-PAGE), the toxicity by lethal dose 50% in mice and the antigenic response using crotalic antiserum by the diffusion imunoassay (Ouchterlony's method). The results showed the formation of aggregates and loss of protein in solution by precipitation. In the dose of 1000 Gy and higher it was possible to observe the presence of sulphydryl groups indicating the breakage of S-S bridges. The lethal dose 50% increased 2 times for the dose of 1000 Gy and 3.5 times for 1500 Gy shoding a detoxication. By the other hand, the antigenic response seems to be still intact at doses up to 1000 Gy. (author)

  18. Epidemiology, diagnosis, and treatment of Hymenoptera venom allergy in mastocytosis patients.

    Science.gov (United States)

    Niedoszytko, Marek; Bonadonna, Patrizia; Oude Elberink, Joanne N G; Golden, David B K

    2014-05-01

    Hymenoptera venom allergy is a typical IgE-mediated reaction caused by sensitization to 1 or more allergens of the venom, and accounts for 1.5% to 34% of all cases of anaphylaxis. Patients suffering from mastocytosis are more susceptible to the anaphylactic reactions to an insect sting. This article aims to answer the most important clinical questions raised by the diagnosis and treatment of insect venom allergy in mastocytosis patients. Total avoidance of Hymenoptera is not feasible, and there is no preventive pharmacologic treatment available, although venom immunotherapy reduces the risk of subsequent systemic reactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Tan, Nget Hong

    2016-07-20

    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom. A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the

  20. A Review and Database of Snake Venom Proteomes.

    Science.gov (United States)

    Tasoulis, Theo; Isbister, Geoffrey K

    2017-09-18

    Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A₂s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A₂s and viper venoms metalloproteases, phospholipase A₂s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.

  1. Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population.

    Science.gov (United States)

    Lau, Audrey O T; Cereceres, Karla; Palmer, Guy H; Fretwell, Debbie L; Pedroni, Monica J; Mosqueda, Juan; McElwain, Terry F

    2010-08-01

    Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.

  2. Distribution of 131 I- labeled Bothrops erythromelas venom in mice

    International Nuclear Information System (INIS)

    Vasconcelos, C.M.L.; Valenca, R.C.; Araujo, E.A.; Modesto, J.C.A.; Pontes, M.M.; Guarnieri, M.C.; Brazil, T.K.

    1998-01-01

    Bothrops erythromelas is responsible for many snake bites in northeastern Brazil. In the present study we determined the in vivo distribution of the venom following its subcutaneous injection into mice. B. erythromelas venom and albumin were labeled individually with 131 I by the chloramine T method, and separated in a Sephacryl S-200 column. The efficiency of labeling was 68%.Male Swiss mice (40-45 g), which had been provided with drinking water containing 0.05% KI over a period of 10 days prior to the experiment, were inoculated dorsally (sc) with 0.3 ml (2.35 x 10 5 cpm/mouse) of 131 I-venom (N = 42), 131 -albumin or 131 I (controls, N = 28 each). Thirty minutes and 1,3, 6, 12, 18 and 24 h after inoculation, the animals were perfused with 0.85% Na Cl and skin and various organs were collected in order to determine radioactivity content. There was a high rate of venom absorption int he skin (51%) within the first 30 min compared to albumin (20.1%) and free iodine (8.2%). Up to the third hour after injection there was a tendency for venom and albumin to concentrate in the stomach ( 3 rd h),small intestine (3 rd h) and large intestine (6th h). Both control groups had more radioactivity in the digestive tract, especially in the stomach, but these levels decreased essentially to baseline by 12-18 h postinjection. In the kidneys, the distribution profiles of venom, albumin and iodine were similar. Counts at 30 min postinjection were low in all three groups (1.37, 1.86 and 0.77, respectively), and diminished to essentially 0% by 12-18 h. Albumin tended to concentrate in muscle until the 3 rd h postinjection (1.98%).There was a low binding of labeled venom in the liver (B. erythromelas venom does not specifically target most internal organs. That is, the systemic effects of envenomation ar mainly due to an indirect action. (author)

  3. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Directory of Open Access Journals (Sweden)

    Miriéle Cristina Ferraz

    2015-01-01

    Full Text Available We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL, but only partial blockade (~30% in EPSTA (3.6 mg/kg, i.m. after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations. Preincubation of venom with betulin (200 μg/mL markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

  4. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Science.gov (United States)

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  5. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons.

    Directory of Open Access Journals (Sweden)

    Gareth Whiteley

    2016-06-01

    Full Text Available Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications.Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C for a range of durations (0-48 hours, followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity to those found in the venom gland.The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide

  6. Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory.

    Science.gov (United States)

    Claunch, Natalie M; Holding, Matthew L; Escallón, Camilo; Vernasco, Ben; Moore, Ignacio T; Taylor, Emily N

    2017-07-01

    Phenotypic plasticity contributes to intraspecific variation in traits of many animal species. Venom is an integral trait to the success and survival of many snake species, and potential plasticity in venom composition is important to account for in the context of basic research as well as in human medicine for treating the various symptoms of snakebite and producing effective anti-venoms. Researchers may unknowingly induce changes in venom variation by subjecting snakes to novel disturbances and potential stressors. We explored phenotypic plasticity in snake venom composition over time in captive Pacific rattlesnakes (Crotalus oreganus) exposed to vibration treatment, compared to an undisturbed control group. Venom composition did not change significantly in response to vibration, nor was there a detectable effect of overall time in captivity, even though snakes re-synthesized venom stores while subjected to novel disturbance in the laboratory. This result indicates that venom composition is a highly repeatable phenotype over short time spans and that the composition of venom within adult individuals may be resistant to or unaffected by researcher-induced disturbance. On the other hand, the change in venom composition, measured as movement along the first principle component of venom phenotype space, was associated with baseline corticosterone (CORT) levels in the snakes. While differential forms of researcher-induced disturbance may not affect venom composition, significant changes in baseline CORT, or chronic stress, may affect the venom phenotype, and further investigations will be necessary to assess the nature of the relationship between CORT and venom protein expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    Science.gov (United States)

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of the venom have not been studied, but venom peptides from other organisms have been identified ...

  8. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    OpenAIRE

    Ki Rok Kwon; Ching Seng Chu; Hee Soo Park; Min Ki Kim; Bae Chun Cha; Eun Lee

    2007-01-01

    Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. ...

  9. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom.

    Science.gov (United States)

    Gowda, Raghavendra; Rajaiah, Rajesh; Angaswamy, Nataraj; Krishna, Sharath; Bannikuppe Sannanayak, Vishwanath

    2018-03-12

    Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A 2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models. © 2018 Wiley Periodicals, Inc.

  10. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Irina Borodina

    Full Text Available Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A. All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST. Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy.

  11. Mastocytosis and insect venom allergy : diagnosis, safety and efficacy of venom immunotherapy

    NARCIS (Netherlands)

    Niedoszytko, M.; de Monchy, J.; van Doormaal, J. J.; Jassem, E.; Oude Elberink, J. N. G.

    The most important causative factor for anaphylaxis in mastocytosis are insect stings. The purpose of this review is to analyse the available data concerning prevalence, diagnosis, safety and effectiveness of venom immunotherapy (VIT) in mastocytosis patients. If data were unclear, authors were

  12. Standardization of anti-lethal toxin potency test of antivenoms prepared from two different Agkistrodon halys venoms

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2006-01-01

    Full Text Available In Korea, antivenoms for the treatment of patients bitten by venomous snakes have been imported from Japan or China. Although there is cross-reactivity between these antibodies and venoms from snakes indigenous to Korea (e.g. Agkistrodon genus, protection is not optimal. Antivenoms specifically prepared to neutralize Korean snake venoms could be more effective, with fewer side effects. To this end, we established an infrastructure to develop national standards and created a standardized method to evaluate the efficacy of two horse-derived antivenoms using mouse lethal toxin test. Additionally, we determined the antivenoms neutralizing activity against lethal doses (LD50 of Agkistrodon halys (from Japan and Jiangzhe Agkistrodon halys (from China venoms. We also performed cross-neutralization tests using probit analysis on each pairing of venom and antivenom in order to check the possibility of using Jiangzhe A. halys venom as a substitute for A. halys venom, the current standard. Slope of A. halys venom with A. halys antivenom was 10.2 and that of A. halys venom with Jiangzhe A. halys antivenom was 9.6. However, Slope of Jiangzhe A. halys venom with A. halys antivenom was 4.7 while that of Jiangzhe A. halys venom with Jiangzhe A. halys antivenom was 11.5. Therefore, the significant difference in slope patterns suggests that Jiangzhe A. halys venom cannot be used as a substitute for the standard venom to test the anti-lethal toxin activity of antivenoms (p<0.05.

  13. Labeling of scorpion venom with 99mTc and its biodistribution

    International Nuclear Information System (INIS)

    Amin, A.M.

    2013-01-01

    Labeling of scorpion venom (SV) was successfully achieved with 99m Tc using direct chelating method. Venom was labeled with 99m Tc using stannous chloride as reducing agent. Preliminary studies were done to establish the optimum conditions for obtaining the highest yield of the labeled venom. The labeling technique is effective, as a maximum labeling yield (97 %) was obtained after 30-min reaction time by using 80 μg SV in phosphate buffer of pH 7 and 25 μg Sncl 2 ·2H 2 O at room temperature. Venom was injected into normal mice to determine the excretion pathway. Biodistribution studies in normal mice with SV shows rapid clearance of the venom from blood and tissue except for kidneys. The improvement of the immunotherapeutic treatment of envenomation requires a better knowledge of the biological actions of the SV since tissue distribution studies are very important for clinical purpose. (author)

  14. Cytotoxicity of Cerastes cerastes snake venom: Involvement of imbalanced redox status.

    Science.gov (United States)

    Kebir-Chelghoum, Hayet; Laraba-Djebari, Fatima

    2017-09-01

    Envenomation caused by Cerastes cerastes snake venom is characterized by a local and a systemic tissue damage due to myonecrosis, hemorrhage, edema and acute muscle damage. The present study aimed to evaluate the relationship between the pro/anti-oxidants status and the cytotoxicity of C. cerastes snake venom. The in vivo cytotoxicity analysis was undertaken by the injection of C. cerastes venom (48μg/20g body weight) by i.p. route, mice were then sacrificed at 3, 24 and 48h post injection, organs were collected for further analysis. In vitro cytotoxicity analysis was investigated on cultured PBMC, hepatocytes and isolated liver. The obtained results showed a significant cell infiltration characterized by a significant increase of myeloperoxidase (MPO) and eosinoperoxidase (EPO) activities. These results showed also a potent oxidative activity of C. cerastes venom characterized by increased levels of residual nitrites and lipid peroxidation associated with a significant decrease of glutathione and catalase activity in sera and tissues (heart, lungs, liver and kidneys). The in vitro cytotoxicity of C. cerastes venom on PBMC seems to be dose-dependent (IC50 of 21μg/ml/10 6 cells) and correlated with an imbalanced redox status at high doses of venom. However, in the case of cultured hepatocytes, the LDH release and oxidative stress were observed only at high doses of the venom. The obtained results of in vivo study were confirmed by the culture of isolated liver. Therefore, these results suggest that the venom induces a direct cytotoxic effect which alters the membrane integrity causing a leakage of the cellular contents. This cytotoxic effect can lead indirectly to inflammatory response and oxidative stress. These data suggest that an early anti-inflammatory and antioxidant treatment could be useful in the management of envenomed victims. Copyright © 2017. Published by Elsevier B.V.

  15. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials.

    Science.gov (United States)

    Voss, Robert S; Jansa, Sharon A

    2012-11-01

    Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A(2) myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research. © 2012 The Authors. Biological Reviews © 2012 Cambridge

  16. Snake evolution and prospecting of snake venom

    OpenAIRE

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is much more flexible than previously thought. But it also underscores the potential use of the many different types of snake venom toxins that could be screened for use against human disorders. And most...

  17. The anti snake venom crisis in Africa: a suggested manufacturers product guide.

    Science.gov (United States)

    Simpson, Ian D; Blaylock, Roger S M

    2009-01-01

    Considerable attention has been given to the shortage of anti snake venom in Africa. The current supply is reported to rest at crisis levels, and considerable attention has been given to reporting the crisis. What has been absent is a recommended list of anti snake venoms that suppliers can produce in order to alleviate the problem. Suppliers who may want to enter the market and provide new anti snake venoms are hampered by a lack of knowledge of which to provide, where to source the venoms necessary for production, and the likely volume levels required. Snakebite epidemiology is recognized as being poor, particularly in estimating the number of envenomations. Snakebite authorities and organizations such as the World Health Organisation have provided lists of medically significant species, but these are inadequate as a guide to production. This paper proposes a list of anti snake venoms that could be produced by suppliers and crucially lists relevant species by geographical area, venom sources for the target species, and likely production volumes to enable suppliers to develop a confident forecast of demand to ensure sustainability.

  18. Ontogenesis, gender, and molting influence the venom yield in the spider Coremiocnemis tropix (Araneae, Theraphosidae)

    OpenAIRE

    Herzig, Volker

    2010-01-01

    The demand for spider venom increases along with the growing popularity of venoms-based research. A deeper understanding of factors that influence the venom yield in spiders would therefore be of interest to both commercial venom suppliers and research facilities. The present study addresses the influence of several factors on the venom yield by systematically analyzing the data obtained from 1773 electrical milkings of the Australian theraphosid spider Coremiocnemis tropix. Gender and ontoge...

  19. Technetium-99m labeling of tityustoxin and venom from the scorpion Tityus serrulatus

    International Nuclear Information System (INIS)

    Nunan, E.A.; Cardoso, V.N.; Moraes-Santos, T.

    2002-01-01

    The tityustoxin, the most toxic fraction from scorpion Tityus serrulatus venom, has been used as a tool in several neurochemical and neuropharmacological studies. Biological activities of labeled and unlabeled tityustoxin and venom were compared. The samples were labeled in the presence of stannous chloride and sodium borohydride with a yield of 60-70% for the venom and 75-85% for tityustoxin and then chromatographed in Sephadex G-10. Biological activities of tityustoxin and venom were preserved after labeling

  20. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    Directory of Open Access Journals (Sweden)

    Eleonora Savi

    Full Text Available Venom immunotherapy (VIT is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal.We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP.The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8% compared with inhibition by mAP venom (64.2% and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1% and by mAP venom (73.6%. Instead, the clinical protection from stings was not statistically different between the two kinds of venom.The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  1. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    Science.gov (United States)

    Savi, Eleonora; Incorvaia, Cristoforo; Boni, Elisa; Mauro, Marina; Peveri, Silvia; Pravettoni, Valerio; Quercia, Oliviero; Reccardini, Federico; Montagni, Marcello; Pessina, Laura; Ridolo, Erminia

    2017-01-01

    Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  2. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    Directory of Open Access Journals (Sweden)

    Syafiq Asnawi Zainal Abidin

    2016-10-01

    Full Text Available Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, ʟ-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  3. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin.

    Science.gov (United States)

    Meng, Qiong; Yau, Lee-Fong; Lu, Jing-Guang; Wu, Zhen-Zhen; Zhang, Bao-Xian; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-07-01

    Toad venom and toad skin have been widely used for treating various cancers in China. Bufadienolides are regarded as the main anticancer components of toad venom, but the difference on composition and anticancer activities of bufadienolides between toad venom and toad skin remains unclear. Fractions enriched with free and conjugated bufadienolides were prepared from toad venom and toad skin. Bufadienolides in each fraction were comprehensively profiled by using a versatile UHPLC-TOF-MS method. Relative contents of major bufadienolides were determined by using three bufogenins and one bufotoxin as marker compounds with validated UHPLC-TOF-MS method. Furthermore, cytotoxicity of the fractions was examined by MTT assay. Two fractions, i.e., bufogenin and bufotoxin fractions (TV-F and TV-C) were isolated from toad venom, and one bufotoxin fraction (TS-C) was isolated from toad skin. Totally 56 bufadienolides in these three fractions were identified, and 29 were quantified or semi-quantified. Bufotoxins were identified in both toad venom and toad skin, whereas bufogenins exist only in toad venom. Bufalin-3-conjugated bufotoxins are major components in toad venom, whereas cinobufotalin and cinobufagin-3-conjugated bufotoxins are main bufotoxins in toad skin. MTT assay revealed potent cytotoxicity of all the fractions in an order of TV-F>TV-C>TS-C. Our study represents the most comprehensive investigation on the chemical profiles of toad venom and toad skin from both qualitative and quantitative aspects. Eight bufotoxins were identified in toad skin responsible for the cytotoxicity for the first time. Our research provides valuable chemical evidence for the appropriate processing method, quality control and rational exploration of toad skin and toad venom for the development of anticancer medicines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms

    DEFF Research Database (Denmark)

    Ainsworth, Stuart; Petras, Daniel; Engmark, Mikael

    2018-01-01

    Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongsid...

  5. Proteomic analysis of africanized bee venom: a comparison of protein extraction methods

    Directory of Open Access Journals (Sweden)

    Yessica Pineda Guerra

    2016-09-01

    Full Text Available The Africanised bee is the most common type of bee in Colombia, and therapeutic properties for different diseases have been attributed to its venom, without much scientific support. A literature search of reports on the proteomic analysis of honeybee venom yielded four different methods for extracting proteins from bee venom. The first method consists in resuspending the venom in 7 M Urea, followed by precipitation with acetone and finally resuspending the pellet in 7 M Urea and 4 % CHAPS. For the second method, the venom is resuspended in lysis buffer, precipitated with trichloroacetic acid, and then resuspended in 7 M Urea and 4 % CHAPS. The third method is similar to the previous one, except that the precipitation step is performed with acetone instead of trichloroacetic acid. Finally, the fourth method is to resuspend the venom in distilled water, precipitate with acetone and resuspend in 7 M Urea and 4 % CHAPS. This work focused on comparing the performance of these four extraction methods, in order to determine the method with the best results in terms of concentration and integrity of the proteins obtained. Of the four methods evaluated, the best results in terms of protein concentration and yield were obtained by resuspending the bee venom in lysis buffer followed by precipitation with acetone (method 3, and by resuspending in distilled water followed by precipitation with acetone (method 4. Of these, the method that maintained protein integrity and yielded the best proteomic profile was that in which the bee venom was resuspended in lysis buffer followed by precipitation with acetone (method 3.

  6. BmajPLA2-II, a basic Lys49-phospholipase A2 homologue from Bothrops marajoensis snake venom with parasiticidal potential.

    Science.gov (United States)

    Grabner, Amy N; Alfonso, Jorge; Kayano, Anderson M; Moreira-Dill, Leandro S; Dos Santos, Ana Paula de A; Caldeira, Cleópatra A S; Sobrinho, Juliana C; Gómez, Ana; Grabner, Fernando P; Cardoso, Fabio F; Zuliani, Juliana Pavan; Fontes, Marcos R M; Pimenta, Daniel C; Gómez, Celeste Vega; Teles, Carolina B G; Soares, Andreimar M; Calderon, Leonardo A

    2017-09-01

    Snake venoms contain various proteins, especially phospholipases A 2 (PLA 2 s), which present potential applications in diverse areas of health and medicine. In this study, a new basic PLA 2 from Bothrops marajoensis with parasiticidal activity was purified and characterized biochemically and biologically. B. marajoensis venom was fractionated through cation exchange followed by reverse phase chromatographies. The isolated toxin, BmajPLA 2 -II, was structurally characterized with MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by two-dimensional electrophoresis, partial amino acid sequencing, an enzymatic activity assay, circular dichroism, and dynamic light scattering assays. These structural characterization tests presented BmajPLA 2 -II as a basic Lys49 PLA 2 homologue, compatible with other basic snake venom PLA 2 s (svPLA 2 ), with a tendency to form aggregations. The in vitro anti-parasitic potential of B. marajoensis venom and of BmajPLA 2 -II was evaluated against Leishmania infantum promastigotes and Trypanosoma cruzi epimastigotes, showing significant activity at a concentration of 100μg/mL. The venom and BmajPLA 2 -II presented IC 50 of 0.14±0.08 and 6.41±0.64μg/mL, respectively, against intraerythrocytic forms of Plasmodium falciparum with CC 50 cytotoxicity values against HepG2 cells of 43.64±7.94 and >150μg/mL, respectively. The biotechnological potential of these substances in relation to leishmaniasis, Chagas disease and malaria should be more deeply investigated. Copyright © 2017. Published by Elsevier B.V.

  7. A study of ribonuclease activity in venom of vietnam cobra

    Directory of Open Access Journals (Sweden)

    Thiet Van Nguyen

    2017-09-01

    Full Text Available Abstract Background Ribonuclease (RNase is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. Methods Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. Results RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1–4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12–15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. Conclusions RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35 and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV.

  8. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom.

    Science.gov (United States)

    Sivaraman, Thulasi; Sreedevi, N S; Meenatchisundaram, S; Vadivelan, R

    2017-01-01

    Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. The in vivo calculation of venom toxicity (LD 50 ) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED 50 ) remained to be 7.24 mg/3LD 50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja .

  9. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  10. Consequences of Androctonus mauretanicus and Buthus occitanus scorpion venoms on electrolyte levels in rabbits

    Directory of Open Access Journals (Sweden)

    Khadija Daoudi

    2017-01-01

    Full Text Available Androctonus mauretanicus (A. mauretanicus and Buthus occitanus (B. occitanus scorpions, which belong to the Buthidae family, are the most venomous scorpions in Morocco. For the first time, we investigated the effects of such scorpion venoms on serum electrolytes in subcutaneously injected rabbits. For this purpose, 3 groups of 6 albinos adult male rabbits (New Zealand were used in this experiment. Two of the groups were given a single subcutaneous injection of either crude Am venom (5 μg/kg or Bo venom (8 μg/kg whereas the third group (control group only received physiological saline solution (NaCl 0.9%. The blood samples were collected from injected rabbits via the marginal vein at time intervals of 30 min, 1 h, 2 h, 4 h, 6 h and 24 h after venom injection. The concentrations of electrolytes in the serum samples were measured. Our study indicates that scorpion envenomation in vivo, rabbit animal model, caused severe and persistent hypomagnesaemia and hypochloremia, which are accompanied of hypernatremia, hyperkalemia and hypercalcaemia. The intensity of electrolytes imbalance was clearly superior in the case of A. mauretanicus scorpion venom (although a lower quantity of venom was injected. This is coherent with the experimental data which indicate that A. mauretanicus venom is more toxic than B. occitanus venom.

  11. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    Science.gov (United States)

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  12. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Report on the changes of LD50 of Bee venom Herbal Acupuncture

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-02-01

    Full Text Available Objectives : This experiment was conducted to reevaluate LD50 of Korean bee venom acupuncture as many changes have occurred over the years. Methods : ICR mice were used as the experiment animals and bee venom acupuncture was manufactured under the protocols of Korean Institute of herbal Acupuncture. Based on the previous reports, experiment was divided into pre and main sections. Results : 1. Presumed LD50 value is at 5.25mg/kg. 2. Deaths of experiment animals occurred within 48 hours. 3. Reduced toxicity of the bee venom acupuncture is likely to be the results of more refined manufacturing process and production. Conclusion : Comparing with the values of the previous results, toxicity of the bee venom acupuncture showed significant changes and more accurate findings on LD50 value must be accomplished to lead further studies on the bee venom acupuncture.

  14. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    S. F. Barros

    1998-01-01

    Full Text Available We have provided evidence that: (a lethality of mice to crude Bothrops venom varies according the isogenic strain (A/J > C57Bl/6 > A/Sn > BALB/c > C3H/ HePas > DBA/2 > C3H/He; (bBALB/c mice (LD50=100.0 μg were injected i.p. with 50 μg of venom produced IL-6, IL-10, INF-γ, TNF-α and NO in the serum. In vitro the cells from the mice injected and challenged with the venom only released IL-10 while peritoneal macrophages released IL-10, INF-γ and less amounts of IL-6; (c establishment of local inflammation and necrosis induced by the venom, coincides with the peaks of TNF-α, IFN-γ and NO and the damage was neutralized when the venom was incubated with a monoclonal antibody against a 60 kDa haemorrhagic factor. These results suggest that susceptibility to Bothrops a trox venom is genetically dependent but MHC independent; that IL-6, IL10, TNF-α, IFN-γ and NO can be involved in the mediation of tissue damage; and that the major venom component inducers of the lesions are haemorrhagins.

  15. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom.

    Science.gov (United States)

    Church, Jarrod E; Hodgson, Wayne C

    2002-06-01

    The aim of the present study was to further investigate the cardiovascular activity of Pterois volitans crude venom. Venom (0.6-18 microg protein/ml) produced dose- and endothelium-dependent relaxation in porcine coronary arteries that was potentiated by atropine (10nM), but significantly attenuated by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (NOLA; 0.1mM), by prior exposure of the tissue to stonefish antivenom (SFAV, 3 units/ml, 10 min), or by removal of extracellular Ca(2+). In rat paced left atria, venom (10 microg protein/ml) produced a decrease, followed by an increase, in contractile force. Atropine (0.5 microM) abolished the decrease in force and potentiated the increase. Propranolol (5 microM) did not affect the decrease in force but significantly attenuated the increase. In spontaneously beating right atria, venom (10 microg protein/ml) produced an increase in rate that was significantly attenuated by propranolol (5 microM). Prior incubation with SFAV (0.3 units/microg protein, 10 min) abolished both the inotropic and chronotropic responses to venom. In the anaesthetised rat, venom (100 micro protein/kg, i.v.) produced a pressor response, followed by a sustained depressor response. Atropine (1mg/kg, i.v.) potentiated the pressor response. The further addition of prazosin (50 microg/kg, i.v.) restored the original response to venom. Prior administration of SFAV (100 units/kg, i.v., 10 min) significantly attenuated the in vivo response to venom. It is concluded that P. volitans venom produces its cardiovascular effects primarily by acting on muscarinic cholinergic receptors and adrenoceptors. As SFAV neutralised many of the effects of P. volitans venom, we suggest that the two venoms share a similar component(s). Copright 2002 Elsevier Science Ltd.

  16. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    OpenAIRE

    Jeong Sun-Hee; Koh Hyung-kyun; Park Dong-Suk

    2000-01-01

    Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of ...

  17. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  18. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts.

    Science.gov (United States)

    Alam, M I; Gomes, A

    2003-05-01

    The methanolic root extracts of Vitex negundo Linn. and Emblica officinalis Gaertn. were explored for the first time for antisnake venom activity. The plant (V. negundo and E. officinalis) extracts significantly antagonized the Vipera russellii and Naja kaouthia venom induced lethal activity both in in vitro and in vivo studies. V. russellii venom-induced haemorrhage, coagulant, defibrinogenating and inflammatory activity was significantly neutralized by both plant extracts. No precipitating bands were observed between the plant extract and snake venom. The above observations confirmed that the plant extracts possess potent snake venom neutralizing capacity and need further investigation.

  19. Comparative studies of the venom of a new Taipan species, Oxyuranus temporalis, with other members of its genus.

    Science.gov (United States)

    Barber, Carmel M; Madaras, Frank; Turnbull, Richard K; Morley, Terry; Dunstan, Nathan; Allen, Luke; Kuchel, Tim; Mirtschin, Peter; Hodgson, Wayne C

    2014-07-02

    Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. temporalis venom and seeks to characterise and compare the neurotoxicity, lethality and biochemical properties of O. temporalis venom with other taipan venoms. Analysis of O. temporalis venom using size-exclusion and reverse-phase HPLC indicated a markedly simplified "profile" compared to other taipan venoms. SDS-PAGE and agarose gel electrophoresis analysis also indicated a relatively simple composition. Murine LD50 studies showed that O. temporalis venom is less lethal than O. microlepidotus venom. Venoms were tested in vitro, using the chick biventer cervicis nerve-muscle preparation. Based on t90 values, O. temporalis venom is highly neurotoxic abolishing indirect twitches far more rapidly than other taipan venoms. O. temporalis venom also abolished responses to exogenous acetylcholine and carbachol, indicating the presence of postsynaptic neurotoxins. Prior administration of CSL Taipan antivenom (CSL Limited) neutralised the inhibitory effects of all taipan venoms. The results of this study suggest that the venom of the O. temporalis is highly neurotoxic in vitro and may contain procoagulant toxins, making this snake potentially dangerous to humans.

  20. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.

    Science.gov (United States)

    Saviola, Anthony J; Pla, Davinia; Sanz, Libia; Castoe, Todd A; Calvete, Juan J; Mackessy, Stephen P

    2015-05-21

    Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s