International Nuclear Information System (INIS)
Ares, Alicia Esther; Gueijman, Sergio Fabian; Schvezov, Carlos E
2004-01-01
Previous studies determined that in directionally solidified lead-tin alloys, the position in which the transition occurs from columnar to equiaxial structure depending on the distribution of temperatures in the system, occurs when a minimum and critical thermal gradient value is attained in the liquid before the interphase that separates the (liquid) phase from the (solid + liquid) phase and this critical gradient value is independent from the solute concentration, natural convection, degree of overheating, the mold geometry and the number of columnar and equiaxial grains that form. The study now includes aluminum-copper alloys, for which the temperature gradient test values in the liquid before the (liquid)/(solid + liquid) interphase and the speeds of the (liquid)/(solid+liquid)/(solid) interphases are determined. The values of interphase gradients and velocities contrast with the values predicted by the Hunt model for the same alloy system. The velocities of the interphases are also compared with those calculated with the Lipton equation and used in the Wang and Beckermann model for dendritic equiaxial growth. The results are compared with those obtained previously in the lead-tin system (CW)
Acoustic beam control in biomimetic projector via velocity gradient
Energy Technology Data Exchange (ETDEWEB)
Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)
2016-07-04
A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.
Formulating viscous hydrodynamics for large velocity gradients
International Nuclear Information System (INIS)
Pratt, Scott
2008-01-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time
Directory of Open Access Journals (Sweden)
K. Ramachandran
2012-02-01
Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.
Experimental estimation of fluctuating velocity and scalar gradients in turbulence
Energy Technology Data Exchange (ETDEWEB)
Hearst, R.J.; Lavoie, P. [University of Toronto, Institute for Aerospace Studies, Toronto, ON (Canada); Buxton, O.R.H. [The University of Texas at Austin, Center for Aeromechanics Research, Austin, TX (United States); Ganapathisubramani, B. [University of Southampton, Aerodynamics and Flight Mechanics Research Group, Southampton (United Kingdom)
2012-10-15
The effect of numerical differentiation is investigated in the context of evaluating fluctuating velocity and scalar quantities in turbulent flows. In particular, 2-point forward-difference and 3-, 5-, 7-, and 9-point centred-difference schemes are investigated. The spectral technique introduced by Wyngaard (in J Sci Instr 1(2):1105-1108, 1968) for homogeneous turbulence is used to quantify the effects of the schemes. Numerical differentiation is shown to attenuate gradient spectra over a range of wavenumbers. The spectral attenuation, which varies with the order of the scheme, results in a reduction in the measured mean-squared gradients. High-order schemes (e.g. 7- or 9-point) are shown to significantly decrease the attenuation at all wavenumbers and as a result produce more accurate gradients. Hot-wire measurements and direct numerical simulations of decaying homogeneous, isotropic turbulence are found to be in good agreement with the predictions of the analysis, which suggests that high-order schemes can be used to improve empirical gradient estimates. The shape of the probability density functions is also found to be sensitive to the choice of numerical differentiation scheme. The effect of numerical differentiation is also discussed with respect to particle image velocimetry (PIV) measurements of a nominally two-dimensional planar mixing layer. It is found that the relatively low signal-to-noise ratio inherent in typical PIV measurements necessitates the use of low-order schemes to prevent excessive noise amplification, which increases with the order of the scheme. The results of the present work demonstrate that high-order numerical differentiation schemes can be employed to more accurately resolve gradients measured at a given resolution provided the measurements have an adequate signal-to-noise ratio. (orig.)
Dispersion of acoustic surface waves by velocity gradients
Kwon, S. D.; Kim, H. C.
1987-10-01
The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.
Instability of shallow open channel flow with lateral velocity gradients
Energy Technology Data Exchange (ETDEWEB)
Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)
2011-12-22
The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.
Application of velocity imaging and gradient-recalled echo in neuroimaging
International Nuclear Information System (INIS)
Boyko, O.B.; Pelc, N.J.; Shimakawa, A.
1990-01-01
This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients
International Nuclear Information System (INIS)
Oh, C.H.; Cho, Z.H.; California Univ., Irvine
1986-01-01
A new phase coding method using a selection gradient for high speed NMR flow velocity measurements is introduced and discussed. To establish a phase-velocity relationship of flow under the slice selection gradient and spin-echo RF pulse, the Bloch equation was numerically solved under the assumption that only one directional flow exists, i.e. in the direction of slice selection. Details of the numerical solution of the Bloch equation and techniques related to the numerical computations are also given. Finally, using the numerical calculation, high speed flow velocity measurement was attempted and found to be in good agreement with other complementary controlled measurements. (author)
Effects of flow gradients on directional radiation of human voice.
Pulkki, Ville; Lähivaara, Timo; Huhtakallio, Ilkka
2018-02-01
In voice communication in windy outdoor conditions, complex velocity gradients appear in the flow field around the source, the receiver, and also in the atmosphere. It is commonly known that voice emanates stronger towards the downstream direction when compared with the upstream direction. In literature, the atmospheric effects are used to explain the stronger emanation in the downstream direction. This work shows that the wind also has an effect to the directivity of voice also favouring the downstream direction. The effect is addressed by measurements and simulations. Laboratory measurements are conducted by using a large pendulum with a loudspeaker mimicking the human head, whereas practical measurements utilizing the human voice are realized by placing a subject through the roof window of a moving car. The measurements and a simulation indicate congruent results in the speech frequency range: When the source faces the downstream direction, stronger radiation coinciding with the wind direction is observed, and when it faces the upstream direction, radiation is not affected notably. The simulated flow gradients show a wake region in the downstream direction, and the simulated acoustic field in the flow show that the region causes a wave-guide effect focusing the sound in the direction.
New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers
Poroseva, Svetlana; Murman, Scott
2014-11-01
To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.
Gravitation is a Gradient in the Velocity of Light
Froedge, Dt
2017-01-01
It is well known that a photon moving in a gravitational field has a trajectory that can be defined by Fermat's principle with a variable speed of light and no other gravitational influence. If it can be shown that a particle composed of speed of light sub-particles has the same acceleration in a variable index of refraction as a particle in a gravitational field, then there is no need to ascribe any other mechanism to gravitation than a gradient in c. This makes gravitation an electromagnetic phenomenon, and if QFT can illustrate a gradient in c can be produced by the internal motion of lightspeed sub-particles then the unification of QM and gravitation becomes more straightforward. http://www.arxdtf.org/css/GravAPS.pdf.
Spectral Velocity Estimation in the Transverse Direction
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2013-01-01
A method for estimating the velocity spectrum for a fully transverse flow at a beam-to-flow angle of 90is described. The approach is based on the transverse oscillation (TO) method, where an oscillation across the ultrasound beam is made during receive processing. A fourth-order estimator based...... on the correlation of the received signal is derived. A Fourier transform of the correlation signal yields the velocity spectrum. Performing the estimation for short data segments gives the velocity spectrum as a function of time as for ordinary spectrograms, and it also works for a beam-to-flow angle of 90...... estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...
Alignment of stress, mean wind, and vertical gradient of the velocity vector
DEFF Research Database (Denmark)
Berg, Jacob; Mann, Jakob; Patton, E.G.
2012-01-01
In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....
Calculation of pressure gradients from MR velocity data in a laminar flow model
International Nuclear Information System (INIS)
Adler, R.S.; Chenevert, T.L.; Fowlkes, J.B.; Pipe, J.G.; Rubin, J.M.
1990-01-01
This paper reports on the ability of current imaging modalities to provide velocity-distribution data that offers the possibility of noninvasive pressure-gradient determination from an appropriate rheologic model of flow. A simple laminar flow model is considered at low Reynolds number, RE calc = 0.59 + (1.13 x (dp/dz) meas ), R 2 = .994, in units of dyne/cm 2 /cm for the range of flows considered. The authors' results indicate the potential usefulness of noninvasive pressure-gradient determinations from quantitative analysis of imaging-derived velocity data
Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS in Nitella Internodal Cells.
Directory of Open Access Journals (Sweden)
Kenji Kikuchi
Full Text Available Cytoplasmic streaming (CPS is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion.
International Nuclear Information System (INIS)
Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar
2015-01-01
Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.
Energy Technology Data Exchange (ETDEWEB)
Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir
2015-11-15
Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.
Relationship between velocity gradients and magnetic turbulence in the solar wind
International Nuclear Information System (INIS)
Garrett, H.B.
1974-01-01
The correlations among the time derivative of the solar-wind velocity, the magnitude of the interplanetary magnetic field (IMF), and the IMF turbulence level are examined to test the idea that interaction between two colliding solar-wind streams can generate turbulence in the solar wind and the IMF. Data obtained by Explorer 33 on the solar wind and IMF are described, and the analysis techniques are outlined. The results indicate that the IMF turbulence level, as measured by the variance, is correlated with the existence of positive velocity gradients in the solar wind. It is noted that while the variance is an increasing function of the field magnitude, it is also independently correlated with the solar-wind velocity gradient
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
On the effect of velocity gradients on the depth of correlation in μPIV
Mustin, B.; Stoeber, B.
2016-03-01
The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used.
On the effect of velocity gradients on the depth of correlation in μPIV
International Nuclear Information System (INIS)
Mustin, B; Stoeber, B
2016-01-01
The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used. (paper)
Czech Academy of Sciences Publication Activity Database
Bubáková, Petra; Pivokonský, Martin
2012-01-01
Roč. 92, May (2012), s. 161-167 ISSN 1383-5866. [European Conference on Fluid-Particle Separation (FPS 2010). Lyon, 05.10.2010-07.10.2010] R&D Projects: GA ČR GAP105/11/0247 Institutional research plan: CEZ:AV0Z20600510 Keywords : aggregation * fractal dimension * filtration * particle size distribution * velocity gradient Subject RIV: BK - Fluid Dynamics Impact factor: 2.894, year: 2012
Velocity gradient induced line splitting in x-ray emission accompanying plasma-wall interaction
Czech Academy of Sciences Publication Activity Database
Šmíd, Michal; Renner, Oldřich; Liska, R.
2013-01-01
Roč. 125, Aug (2013), s. 38-44 ISSN 0022-4073 R&D Projects: GA ČR GAP205/10/0814; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser-produced plasmas * x-ray spectroscopy * plasma-wall interaction * spectral line profiles * Doppler shift * ion velocity gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.288, year: 2013
Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.
2017-12-01
The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.
Improved Vector Velocity Estimation using Directional Transverse Oscillation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2015-01-01
A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is selfcalibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal...... focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound beam. A lateral oscillation is obtained by having a receive apodization waveform with two separate peaks. The IQ data are obtained by making a Hilbert transform of the directional signal...... transducer with a focal point at 105.6 mm (F#=5) for Vector Flow Imaging (VFI). A 6 mm radius tube in a circulating flow rig was scanned and the parabolic volume flow of 112.7 l/h (peak velocity 0.55 m/s) measured by a Danfoss Magnetic flow meter for reference. Velocity estimates for DTO are found for 32...
Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.
Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen
2017-08-16
A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.
Gradient angle estimation by uniform directional simulation on a cone
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1997-01-01
approximation to a locally most central limit state point. Moreover, the estimated angle can be used to correct the geometric reliability index.\\bfseries Keywords: Directional simulation, effectivity factor, gradient angle estimation, maximum likelihood, model-correction-factor method, Monte Carlo simulation...
Directional velocity estimation using focusing along the flow direction - I: Theory and simulation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2003-01-01
A new method for directional velocity estimation is presented. The method uses beamformation along the flow direction to generate data in which the correct velocity magnitude can be directly estimated from the shift in position of the received consecutive signals. The shift is found by cross-corr...
Radar velocity determination using direction of arrival measurements
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker
2017-12-19
The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.
Least squares inversion of Stokes profiles in the presence of velocity gradients
International Nuclear Information System (INIS)
Skumanich, A.; Rees, D.E.; Lites, B.W.; Sacramento Peak Observatory, Sunspot, NM)
1985-01-01
The Auer, Heasley and House Stokes inversion procedure in use at High Altitude Observatory is based on the analytic solution of the equation of transfer for polarized light where the representation of the thermodynamic and magnetic structure of the atmosphere is assumed to have a high degree of invariance, namely, a Milne-Eddington (ME) structure with a constant magnetic field. In the presence of invariance breaking gradients the resultant Stokes profiles are represented only approximately, if at all, by analytic forms. The accuracy of the inversion parameters and their significance as measures of actual structure are explored for the ME and the Landman-Finn sunspot models under the effects of velocity gradients. The resulting field parameters are good to a few percent and prove to be insensitive to the errors committed by the use of a ME-representation, but the resulting ME parameters yield a less precise measure of thermal structure
DEFF Research Database (Denmark)
Jander, Nikolaus; Hochholzer, Willibald; Kaufmann, Beat A
2014-01-01
OBJECTIVE: To evaluate the usefulness of velocity ratio (VR) in patients with low gradient severe aortic stenosis (LGSAS) and preserved EF. BACKGROUND: LGSAS despite preserved EF represents a clinically challenging entity. Reliance on mean pressure gradient (MPG) may underestimate stenosis severity...... for severe stenosis. We hypothesised that VR may have conceptual advantages over MPG and AVA, predict clinical outcomes and thereby be useful in the management of patients with LGSAS. METHODS: Patients from the prospective Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study with an AVA...≤40 mm Hg and EF≥55% and asymptomatic at baseline were stratified according to VR with a cut-off value of 0.25. Outcomes were evaluated according to aortic valve-related events and cardiovascular death. RESULTS: Of 435 patients with LGSAS, 197 (45%) had VRVR≥0...
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial
Directed motion of a Brownian motor in a temperature gradient
Liu, Yibing; Nie, Wenjie; Lan, Yueheng
2017-05-01
Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.
Estimating Radar Velocity using Direction of Arrival Measurements
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.
A gradient activation method for direct methanol fuel cells
International Nuclear Information System (INIS)
Liu, Guicheng; Yang, Zhaoyi; Halim, Martin; Li, Xinyang; Wang, Manxiang; Kim, Ji Young; Mei, Qiwen; Wang, Xindong; Lee, Joong Kee
2017-01-01
Highlights: • A gradient activation method was reported firstly for direct methanol fuel cells. • The activity recovery of Pt-based catalyst was introduced into the novel activation process. • The new activation method led to prominent enhancement of DMFC performance. • DMFC performance was improved with the novel activation step by step within 7.5 h. - Abstract: To realize gradient activation effect and recover catalytic activity of catalyst in a short time, a gradient activation method has firstly been proposed for enhancing discharge performance and perfecting activation mechanism of the direct methanol fuel cell (DMFC). This method includes four steps, i.e. proton activation, activity recovery activation, H_2-O_2 mode activation and forced discharging activation. The results prove that the proposed method has gradually realized replenishment of water and protons, recovery of catalytic activity of catalyst, establishment of transfer channels for electrons, protons, and oxygen, and optimization of anode catalyst layer for methanol transfer in turn. Along with the novel activation process going on, the DMFC discharge performance has been improved, step by step, to more than 1.9 times higher than that of the original one within 7.5 h. This method provides a practicable activation way for the real application of single DMFCs and stacks.
Optimized velocity distributions for direct dark matter detection
Energy Technology Data Exchange (ETDEWEB)
Ibarra, Alejandro; Rappelt, Andreas, E-mail: ibarra@tum.de, E-mail: andreas.rappelt@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)
2017-08-01
We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) to assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.
Gradient metasurface for four-direction anomalous reflection in terahertz
Wang, Jiao; Jiang, Yannan
2018-06-01
In this paper, a four-direction anomalous reflection metasurface is proposed. The basic cells comprise of squares and circles, which are designed at various sizes and arranged in a super cell at regular spacing. Then, properly combining super cells molds a square phase gradient metasurface (PGM). It is mounted on an optical thickness gold mirror, which inhibits all light transmission. Markedly different from previously reported metasurfaces, the square PGM is characterized by four-direction reflection beams. It takes into consideration the normal incidence and the oblique incidence. For the normal incidence, that the degrees of the four reflection angles are identical is due to the x, - x, y and - y directional discontinuous phase gradients, and lies on the symmetric structure in the xoy plane, which is then revealed by the surface current distribution. Incident angles varying from -20° to 20°, the reflection angles are demonstrated in the oblique incidence. Moreover, the PGM is polarization-independent. The performance is attributed to the symmetry of structure, which is verified by Radar cross section. Simulated results prove that our method offers a simple and effective strategy for metasurface design in terahertz. The proposed PGM can aid in focused beams, steering beams, and shaped beams.
Dark matter direct detection with non-Maxwellian velocity structure
International Nuclear Information System (INIS)
Kuhlen, Michael; Weiner, Neal; Diemand, Jürg; Moore, Ben; Potter, Doug; Stadel, Joachim; Madau, Piero; Zemp, Marcel
2010-01-01
The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found
Direct measurement technique for shock wave velocity with irradiation drive
International Nuclear Information System (INIS)
Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun
2011-01-01
According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)
Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients
Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis
2017-02-01
Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
Zhu, Jian-Zhou
2018-03-01
The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.
Direct Investigation of Velocity Overshoot in the Femtosecond Regime
1990-01-25
by block nuinber) The experiental study ofsubpicsecond transport in GaAs and other semionductors is of fundmental inPortanoe for the understanding of...velocities, hence in principle this measurement can yield information about velocity 5 overshoot phenomenon. An electric field will modify photon absorption in...3.1.2 are the best fit of the theory assuming a constant electron velocity. The constant-velocity model cannot account for the data at 14 and 22kV/cm
The 2011 Tohoku-oki Earthquake related to a large velocity gradient within the Pacific plate
Matsubara, Makoto; Obara, Kazushige
2015-04-01
rays from the hypocenter around the coseismic region of the Tohoku-oki earthquake take off downward and pass through the Pacific plate. The landward low-V zone with a large anomaly corresponds to the western edge of the coseismic slip zone of the 2011 Tohoku-oki earthquake. The initial break point (hypocenter) is associated with the edge of a slightly low-V and low-Vp/Vs zone corresponding to the boundary of the low- and high-V zone. The trenchward low-V and low-Vp/Vs zone extending southwestward from the hypocenter may indicate the existence of a subducted seamount. The high-V zone and low-Vp/Vs zone might have accumulated the strain and resulted in the huge coseismic slip zone of the 2011 Tohoku earthquake. The low-V and low-Vp/Vs zone is a slight fluctuation within the high-V zone and might have acted as the initial break point of the 2011 Tohoku earthquake. Reference Matsubara, M. and K. Obara (2011) The 2011 Off the Pacific Coast of Tohoku earthquake related to a strong velocity gradient with the Pacific plate, Earth Planets Space, 63, 663-667. Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto (2004) Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-NET and KiK-net, Research News Earth Planets Space, 56, xv-xxviii.
International Nuclear Information System (INIS)
Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián
2016-01-01
Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)
Shimizu, Y; Uematsu, M; Shimizu, H; Nakamura, K; Yamagishi, M; Miyatake, K
1998-11-01
We sought to assess the clinical significance of peak negative myocardial velocity gradient (MVG) in early diastole as a noninvasive indicator of left ventricular (LV) diastolic function. Peak systolic MVG has been shown useful for the quantitative assessment of regional wall motion abnormalities, but limited data exist regarding the diastolic MVG as an indicator of LV diastolic function. Peak negative MVG was obtained from M-mode tissue Doppler imaging (TDI) in 43 subjects with or without impairment of systolic and diastolic performance: 12 normal subjects, 12 patients with hypertensive heart disease (HHD) with normal systolic performance and 19 patients with dilated cardiomyopathy (DCM), and was compared with standard Doppler transmitral flow velocity indices. In a subgroup of 30 patients, effects of preload increase on these indices were assessed by performing passive leg lifting. In an additional 11 patients with congestive heart failure at the initial examination, the measurements were repeated after 26+/-16 days of volume-reducing therapy. Peak negative MVG was significantly depressed both in HHD (-3.9+/-1.3/s, p indices failed to distinguish DCM from normal due to the pseudonormalization. Transmitral flow velocity indices were significantly altered (peak early/late diastolic filling velocity [E/A]=1.1+/-0.5 to 1.5+/-0.7, p indicator of LV diastolic function that is less affected by preload alterations than the transmitral flow velocity indices, and thereby could be used for the follow-up of patients with nonischemic LV dysfunction presenting congestive heart failure.
Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.
2017-10-01
A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
International Nuclear Information System (INIS)
Hattori, Hirofumi; Kono, Amane; Houra, Tomoya
2016-01-01
Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms
A direct-gradient multivariate index of biotic condition
Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.
2012-01-01
Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.
Iinuma, Takeshi
2018-04-01
A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi
Use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond.
Erb-Downward, John R; Sadighi Akha, Amir A; Wang, Juan; Shen, Ning; He, Bei; Martinez, Fernando J; Gyetko, Margaret R; Curtis, Jeffrey L; Huffnagle, Gary B
2012-01-01
This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.
Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas
DEFF Research Database (Denmark)
Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul
2005-01-01
The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...
International Nuclear Information System (INIS)
Pumir, Alain; Naso, Aurore
2010-01-01
A proper description of the velocity gradient tensor is crucial for understanding the dynamics of turbulent flows, in particular the energy transfer from large to small scales. Insight into the statistical properties of the velocity gradient tensor and into its coarse-grained generalization can be obtained with the help of a stochastic 'tetrad model' that describes the coarse-grained velocity gradient tensor based on the evolution of four points. Although the solution of the stochastic model can be formally expressed in terms of path integrals, its numerical determination in terms of the Monte-Carlo method is very challenging, as very few configurations contribute effectively to the statistical weight. Here, we discuss a strategy that allows us to solve the tetrad model numerically. The algorithm is based on the importance sampling method, which consists here of identifying and sampling preferentially the configurations that are likely to correspond to a large statistical weight, and selectively rejecting configurations with a small statistical weight. The algorithm leads to an efficient numerical determination of the solutions of the model and allows us to determine their qualitative behavior as a function of scale. We find that the moments of order n≤4 of the solutions of the model scale with the coarse-graining scale and that the scaling exponents are very close to the predictions of the Kolmogorov theory. The model qualitatively reproduces quite well the statistics concerning the local structure of the flow. However, we find that the model generally tends to predict an excess of strain compared to vorticity. Thus, our results show that while some physical aspects are not fully captured by the model, our approach leads to a very good description of several important qualitative properties of real turbulent flows.
Estimation of velocity vector angles using the directional cross-correlation method
DEFF Research Database (Denmark)
Kortbek, Jacob; Jensen, Jørgen Arendt
2006-01-01
and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and a circulating flow rig with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions...... transducer is used with a normal transmission of a focused ultrasound field. In the simulations the relative standard deviation of the velocity magnitude is between 0.7% and 7.7% for flow angles between 45 deg and 90 deg. The study showed that angle estimation by directional beamforming can be estimated...
Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen
2018-03-01
Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient
Determination of velocity vector angles using the directional cross-correlation method
DEFF Research Database (Denmark)
Kortbek, Jacob; Jensen, Jørgen Arendt
2005-01-01
and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array transducer is used......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions......-time ) between signals to correlate, and a proper choice varies with flow angle and flow velocity. One performance example is given with a fixed value of k tprf for all flow angles. The angle estimation on measured data for flow at 60 ◦ to 90 ◦ , yields a probability of valid estimates between 68% and 98...
International Nuclear Information System (INIS)
Jacoby, B.A.; York, T.M.
1979-02-01
With the presumption that a shifted Maxwellian velocity distribution adequately describes the electrons in a flowing plasma, the details of a method to measure their directed velocity are described. The system consists of a ruby laser source and two detectors set 180 0 from each other and both set at 90 0 with respect to the incident laser beam. The lowest velocity that can be determined by this method depends on the electron thermal velocity. The application of this diagnostic to the measurement of flow velocities in plasma being lost from the ends of theta-pinch devices is described
Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu
2013-01-01
Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998
International Nuclear Information System (INIS)
Wang Liangbi; Zhang Qiang; Li Xiaoxia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer
Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing
2018-01-30
In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.
Vector velocity estimation using directional beam forming and cross-correlation
DEFF Research Database (Denmark)
2000-01-01
The two-dimensional velocity vector using a pulsed ultrasound field can be determined with the invention. The method uses a focused ultrasound field along the velocity direction for probing the moving medium under investigation. Several pulses are emitted and the focused received fields along...
Sitt, Amit; Hess, Henry
2015-05-13
Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.
National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...
Hillesheim, Jon
2015-11-01
High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
International Nuclear Information System (INIS)
Aoki, P.E.
1983-01-01
A basic route determining velocity and direction of ground water flow by using radioactive tracers is presented. Emphasis has been given to hydrology and nuclear energy concepts, to the construction of some specific equipment, to the calibration of radiation detectors and to the practical applications in borehole. 82 Br and 51 Cr have been chosen as tracers for the Darcy's velocity and direction determinations, respectively. From the obtained value of Darcy's velocity, the laminar flow was confirmed according to the admitted hypothesis. Comparisons of the Darcy's velocity values and flow direction have been made with values obtained using pumping tests and survey of the equipotential curves, where it can be concluded that they are of the same largeness and then, from a practical view, approximate. (Author) [pt
The temporal distribution of directional gradients under selection for an optimum.
Chevin, Luis-Miguel; Haller, Benjamin C
2014-12-01
Temporal variation in phenotypic selection is often attributed to environmental change causing movements of the adaptive surface relating traits to fitness, but this connection is rarely established empirically. Fluctuating phenotypic selection can be measured by the variance and autocorrelation of directional selection gradients through time. However, the dynamics of these gradients depend not only on environmental changes altering the fitness surface, but also on evolution of the phenotypic distribution. Therefore, it is unclear to what extent variability in selection gradients can inform us about the underlying drivers of their fluctuations. To investigate this question, we derive the temporal distribution of directional gradients under selection for a phenotypic optimum that is either constant or fluctuates randomly in various ways in a finite population. Our analytical results, combined with population- and individual-based simulations, show that although some characteristic patterns can be distinguished, very different types of change in the optimum (including a constant optimum) can generate similar temporal distributions of selection gradients, making it difficult to infer the processes underlying apparent fluctuating selection. Analyzing changes in phenotype distributions together with changes in selection gradients should prove more useful for inferring the mechanisms underlying estimated fluctuating selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.
2018-03-01
To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.
An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery
Directory of Open Access Journals (Sweden)
Lizhang Zhou
2017-06-01
Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.
Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.
2013-10-01
Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.
International Nuclear Information System (INIS)
Md Shahid Ayub; Roslan Mohd Ali; Kamarudin Samuding
1996-01-01
The filtration velocity of the groundwater was determine by introducing I mCi Br-82 into a borehole. Br-82 was in the form of potassium bromide. The result showed that the filtration velocity varies from 2.3 to 4.5 cm/day depending on the soil matrix with the clayey layer posting more resistance to flow. Au-198 in the form of aurium chloride was introduce into two other boreholes to determine the direction of flow. The general trend of flow was in the direction between N140E and N160E
International Nuclear Information System (INIS)
Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing
2015-01-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)
Weaver, Timothy D; Gunz, Philipp
2018-04-01
Researchers studying extant and extinct taxa are often interested in identifying the evolutionary processes that have lead to the morphological differences among the taxa. Ideally, one could distinguish the influences of neutral evolutionary processes (genetic drift, mutation) from natural selection, and in situations for which selection is implicated, identify the targets of selection. The directional selection gradient is an effective tool for investigating evolutionary process, because it can relate form (size and shape) differences between taxa to the variation and covariation found within taxa. However, although most modern morphometric analyses use the tools of geometric morphometrics (GM) to analyze landmark data, to date, selection gradients have mainly been calculated from linear measurements. To address this methodological gap, here we present a GM approach for visualizing and comparing between-taxon selection gradients with each other, associated difference vectors, and "selection" gradients from neutral simulations. To exemplify our approach, we use a dataset of 347 three-dimensional landmarks and semilandmarks recorded on the crania of 260 primate specimens (112 humans, 67 common chimpanzees, 36 bonobos, 45 gorillas). Results on this example dataset show how incorporating geometric information can provide important insights into the evolution of the human braincase, and serve to demonstrate the utility of our approach for understanding morphological evolution. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
International Nuclear Information System (INIS)
Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.
1986-01-01
Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm
Czech Academy of Sciences Publication Activity Database
Polášek, Pavel
2011-01-01
Roč. 59, č. 2 (2011), s. 107-117 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : flocculation optimum * inline high density suspension (IHDS) formation process * properties of aggregates * intensity of agitation * velocity gradient G Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Directory of Open Access Journals (Sweden)
P. Guio
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.
Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Directory of Open Access Journals (Sweden)
P. Guio
1998-10-01
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Directory of Open Access Journals (Sweden)
P. De Gori
1997-06-01
Full Text Available High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf and secondary (pP,sP,PcP,PP,PKPbc,PKPab travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.
Fujieda, Ichiro; Iizuka, Naoki; Onishi, Yosuke
2015-03-01
Because charge transport in a single crystal is anisotropic in nature, directional growth of single crystals would enhance device performance and reduce its variation among devices. For an organic thin film, a method based on a temperature gradient would offer advantages in throughput and cleanliness. In experiments, a temperature gradient was established in a spin-coated film of 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) by two methods. First, a sample was placed on a metal plate bridging two heat stages. When one of the heat stages was cooled, the material started to solidify from the colder region. The melt-solid interface proceeded along the temperature gradient. Cracks were formed perpendicular to the solidification direction. Second, a line-shaped region on the film was continuously exposed to the light from a halogen lamp. After the heat stage was cooled, cracks similar to the first experiment were observed, indicating that the melt-solid interface moved laterally. We fabricated top-contact, bottom-gate transistors with these films. Despite the cracks, field-effect mobility of the transistors fabricated with these films was close to 6 cm2 /Vs and 4 cm2 /Vs in the first and second experiment, respectively. Elimination of cracks would improve charge transport and reduce performance variation among devices. It should be noted that the intense light from the halogen lamp did not damage the C8-BTBT films. The vast knowledge on laser annealing is now available for directional growth of this type of materials. The associated cost would be much smaller because an organic thin film melts at a low temperature.
Park, Suehyun; Joo, Heesun; Kim, Jun Soo
2018-01-31
Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Stuckenberg, Peter; Wenderdel, Christoph; Zauer, Mario
2018-06-01
Swelling velocity in dependence on the anatomical cutting direction of yew [Taxus baccata L.] and boxwood [Buxus sempervirens L.] was determined at temperature of 20 °C and at relative humidity of 10% and 100%. The investigations, conducted on a microtome section level, showed a similar behaviour for specimens of both wood species. It was possible to determine that the swelling velocity for yew and boxwood increases in its anatomical cutting directions. The longitudinal direction showed the lowest value, the tangential direction, by distinction, the highest value. Furthermore, a significant influence of early wood and late wood content on the swelling velocity for yew was detected.
Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions
Gordon, Dan; Gordon, Rachel; Turkel, Eli
2015-09-01
We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.
Deng, Guoqing; Yao, Aiguo
2017-04-01
Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.
International Nuclear Information System (INIS)
Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article
International Nuclear Information System (INIS)
Becker, M.; Dilger, H.
1979-06-01
The measurements of wind direction and wind velocity performed at 60 m and 200 m height were evaluated for one year each and frequency distributions of the measured values were established. The velocity was divided into 1 m/s steps and the direction into 10 0 sectors. The frequency distribution of the wind direction reveals three maxima located in the southwest, northeast and north, respectively. The maximum of the frequency distribution of the wind velocity occurs between 4 and 5 m/s at 200 m height and between 3 and 4 m/s at 60 m height. (orig.) [de
Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R
2016-05-17
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.
Directory of Open Access Journals (Sweden)
Mainak J. Patel
2018-06-01
Full Text Available Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells. TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation and velocity (through synchrony of the TC population spikes of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the
de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz
2007-02-01
Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.
Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges
2013-10-01
Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.
International Nuclear Information System (INIS)
Fox, Patrick J.; Kribs, Graham D.; Tait, Tim M. P.
2011-01-01
We demonstrate precisely what particle physics information can be extracted from a single direct detection observation of dark matter while making absolutely no assumptions about the local velocity distribution and local density of dark matter. Our central conclusions follow from a very simple observation: the velocity distribution of dark matter is positive definite, f(v)≥0. We demonstrate the utility of this result in several ways. First, we show a falling deconvoluted recoil spectrum (deconvoluted of the nuclear form factor), such as from ordinary elastic scattering, can be 'mocked up' by any mass of dark matter above a kinematic minimum. As an example, we show that dark matter much heavier than previously considered can explain the CoGeNT excess. Specifically, m χ Ge can be in just as good agreement as light dark matter, while m χ >m Ge depends on understanding the sensitivity of xenon to dark matter at very low recoil energies, E R < or approx. 6 keVnr. Second, we show that any rise in the deconvoluted recoil spectrum represents distinct particle physics information that cannot be faked by an arbitrary f(v). As examples of resulting nontrivial particle physics, we show that inelastic dark matter and dark matter with a form factor can both yield such a rise.
Peaked signals from dark matter velocity structures in direct detection experiments
Lang, Rafael F.; Weiner, Neal
2010-06-01
In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.
Peaked signals from dark matter velocity structures in direct detection experiments
International Nuclear Information System (INIS)
Lang, Rafael F.; Weiner, Neal
2010-01-01
In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape
Sunarya, I. Made Gede; Yuniarno, Eko Mulyanto; Purnomo, Mauridhi Hery; Sardjono, Tri Arief; Sunu, Ismoyo; Purnama, I. Ketut Eddy
2017-06-01
Carotid Artery (CA) is one of the vital organs in the human body. CA features that can be used are position, size and volume. Position feature can used to determine the preliminary initialization of the tracking. Examination of the CA features can use Ultrasound. Ultrasound imaging can be operated dependently by an skilled operator, hence there could be some differences in the images result obtained by two or more different operators. This can affect the process of determining of CA. To reduce the level of subjectivity among operators, it can determine the position of the CA automatically. In this study, the proposed method is to segment CA in B-Mode Ultrasound Image based on morphology, geometry and gradient direction. This study consists of three steps, the data collection, preprocessing and artery segmentation. The data used in this study were taken directly by the researchers and taken from the Brno university's signal processing lab database. Each data set contains 100 carotid artery B-Mode ultrasound image. Artery is modeled using ellipse with center c, major axis a and minor axis b. The proposed method has a high value on each data set, 97% (data set 1), 73 % (data set 2), 87% (data set 3). This segmentation results will then be used in the process of tracking the CA.
Analysis of vertical wind direction and speed gradients for data from the met. mast at Høvsøre
DEFF Research Database (Denmark)
Cariou, Nicolas; Wagner, Rozenn; Gottschall, Julia
The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Høvsøre test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted...... at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal...... variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between...
Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum
International Nuclear Information System (INIS)
Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L.
2008-01-01
The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)
Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab
2012-01-01
In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.
Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng
2015-08-07
Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.
Directory of Open Access Journals (Sweden)
Muhamad Lindu
2010-06-01
Full Text Available The treatment of deep well water of Trisakti University by coagulation and flocculation using baffle channel system has been conducted. The detention time of hydrolic were varied. The coagulant dose was varied as 50, 100, 150, 200, 300, 350, 400, 450 and 500 ppm. Water of well sampel was added by coagulant with rotation velocity 200 rpm for 1 minute. The optimal coagulant dose was determined by measuring turbidity, colour, total suspended solids and organic compound. The result showed that the organic compound and colour of deep well water of Trisakti University could be reduced by coagulation and flocculation process by hydrolyc system. The optimal dose of the coagulant was 250 ppm. The removal efficiency of colour and organic compound using optimal dose for continuous flow reactor reached after water flow passed the reactor for 3 - 5 times detention time in the reactor. The optimal gradient velocity (G was 30 - 35 sec-1 and collision energy (GT was 65.000 - 79.000 to get optimal flocculation. With this condition, the removal efficiency of turbidity, colour and organic was more than 90%. Keywords: coagulation, flocculation, colour, organic compound, deep well
Determination of velocity and flow direction of ground water by using nuclear techniques
International Nuclear Information System (INIS)
Santos Ferreira, L. dos.
1976-06-01
The dynamics of water in an aquifer with the purpose of determining the filtration velocity and the direction of groundwater flow with radioactive tracers was studied. Field equipment for the purposes of the study was built in the Laboratory of Tracers in Hydrology in collaboration with the Institute of Nuclear Engineering (IEN/NUCLEBRAS). The equipment was designed to minimize the possible vertical flows, loss and molecular diffusion of the tracer out of the studied region. The performance of the nuclear detectors and the constructional details of the field equipament were examined. The selection of the radioactive tracers was made taking into account its availibility and radiation facilities, cost of the inactive material and their physical and chemical properties. The tracers used were 82 Br and 198 Au. The results are discussed with the help of auxiliary informations such as plots of water levels in time and space, profiles and grain analysis. In order to obtain a physical explanation of the results, a qualitative model of the flow in the aquifer is also presented. (Author) [pt
Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum
Energy Technology Data Exchange (ETDEWEB)
Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L. [David Geffen School of Medicine at UCLA, Department of Radiology, 200 UCLA Medical Plaza, Suite 165-59, Box 956952, Los Angeles, CA (United States)
2008-01-15
The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p < 0.05). Subdividing the labrum, GRE was significantly more sensitive for the posterior labrum (75% versus 25%; p < 0.05) with a trend toward greater sensitivity at the anterior labrum (78% versus 56%; p = 0.157) but not significantly different for the superior labrum (50% versus 57%; p > 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)
High temperature high velocity direct power extraction using an open-cycle oxy-combustion system
Energy Technology Data Exchange (ETDEWEB)
Love, Norman [Univ. of Texas, El Paso, TX (United States)
2017-09-29
The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent
Directory of Open Access Journals (Sweden)
Laura M Langan
Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and
Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi
2014-01-01
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.
International Nuclear Information System (INIS)
1983-01-01
Under the direction of the Cinematography and Photography Standards Committee, a British Standard method has been prepared for determining ISO speed and average gradient of direct-exposure medical and dental radiographic film/film-process combinations. The method determines the speed and gradient, i.e. contrast, of the X-ray films processed according to their manufacturer's recommendations. (U.K.)
International Nuclear Information System (INIS)
Kari, R.E.; Mezey, P.G.; Csizmadia, I.G.
1975-01-01
Expressions are given for calculating the energy gradient vector in the exponent space of Gaussian basis sets and a technique to optimize orbital exponents using the method of conjugate gradients is described. The method is tested on the (9/sups/5/supp/) Gaussian basis space and optimum exponents are determined for the carbon atom. The analysis of the results shows that the calculated one-electron properties converge more slowly to their optimum values than the total energy converges to its optimum value. In addition, basis sets approximating the optimum total energy very well can still be markedly improved for the prediction of one-electron properties. For smaller basis sets, this improvement does not warrant the necessary expense
Hwang, Seonhong; Lin, Yen-Sheng; Hogaboom, Nathan S; Wang, Lin-Hwa; Koontz, Alicia M
2017-08-28
Wheelchair propulsion is a major cause of upper limb pain and injuries for manual wheelchair users with spinal cord injuries (SCIs). Few studies have investigated wheelchair turning biomechanics on natural ground surfaces. The purpose of this study was to investigate the relationship between tangential push force and linear velocity of the wheelchair during the turning portions of propulsion. Using an instrumented handrim, velocity and push force data were recorded for 25 subjects while they propel their own wheelchairs on a concrete floor along a figure-eight-shaped course at a maximum velocity. The braking force (1.03 N) of the inside wheel while turning was the largest of all other push forces (p<0.05). Larger changes in squared velocity while turning were significantly correlated with higher propulsive and braking forces used at the pre-turning, turning, and post-turning phases (p<0.05). Subjects with less change of velocity while turning needed less braking force to maneuver themselves successfully and safely around the turns. Considering the magnitude and direction of tangential force applied to the wheel, it seems that there are higher risks of injury and instability for upper limb joints when braking the inside wheel to turn. The results provide insight into wheelchair setup and mobility skills training for wheelchair users.
International Nuclear Information System (INIS)
Reinink, Shawn K.; Yaras, Metin I.
2015-01-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between
Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
Khosla, Sid; Oren, Liran; Ying, Jun; Gutmark, Ephraim
2014-04-01
Current theories regarding the mechanisms of phonation are based on assumptions about the aerodynamics between the vocal folds during the closing phase of vocal fold vibration. However, many of these fundamental assumptions have never been validated in a tissue model. In this study, the main objective was to determine the aerodynamics (velocity fields) and the geometry of the medial surface of the vocal folds during the closing phase of vibration. The main hypothesis is that intraglottal vortices are produced during vocal fold closing when the glottal duct has a divergent shape and that these vortices are associated with negative pressures. Experiments using seven excised canine larynges. The particle imaging velocimetry (PIV) method was used to determine the velocity fields at low, mid-, and high subglottal pressures for each larynx. Modifications were made to previously described PIV methodology to allow the measurement of both the intraglottal velocity fields and the position of the medial aspects of the vocal fold. At relatively low subglottal pressures, little to no intraglottal vortices were seen. At mid- and high subglottal pressures, the flow separation vortices occurred and produced maximum negative pressures, relative to atmospheric, of -2.6 to -14.6 cm H2 O. Possible physiological and surgical implications are discussed. Intraglottal vortices produce significant negative pressures at mid- and high subglottal pressures. These vortices may be important in increasing maximum flow declination rate and acoustic intensity. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
International Nuclear Information System (INIS)
Blum, A.S.; Mancebo, L.
1976-01-01
Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element
Saccone, Patrick; Pagès, Jean-Philippe; Girel, Jacky; Brun, Jean-Jacques; Michalet, Richard
2010-08-01
*Here, we analysed the role of direct and indirect plant interactions in the invasion process of Acer negundo along a natural successional gradient in the Middle Rhone floodplain (France). We addressed two questions: What are the responses of the invasive Acer seedlings to native communities' effects along the successional gradient? What are the effects of the invasive Acer adult trees on the native communities? *In the three communities (Salix, Acer and Fraxinus stands) we transplanted juveniles of the invasive and juveniles of the natives within the forest and in experimental gaps, and with and without the herb layer. We also quantified changes in understory functional composition, light, nitrogen and moisture among treatments. *Acer seedlings were directly facilitated for survival in the Salix and Acer communities and indirectly facilitated for growth by adult Acer through the reduction of the abundance of highly competitive herbaceous competitors. *We conclude that direct facilitation by the tree canopy of the native pioneer Salix is very likely the main biotic process that induced colonization of the invasive Acer in the floodplain and that indirect facilitation by adult conspecifics contributed to population establishment.
Role of the vertical pressure gradient in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna
2014-01-01
By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....
Jönsthövel, T.B.; Van Gijzen, M.B.; MacLachlan, S.; Vuik, C.; Scarpas, A.
2011-01-01
The demand for large FE meshes increases as parallel computing becomes the standard in FE simulations. Direct and iterative solution methods are used to solve the resulting linear systems. Many applications concern composite materials, which are characterized by large discontinuities in the material
International Nuclear Information System (INIS)
Muellerleile, K.; Baholli, L.; Groth, M.
2011-01-01
Purpose: The preoperative assessment of mechanical dyssynchrony can help to improve patient selection in candidates for cardiac resynchronization therapy (CRT). The present study compared the performance of velocity-encoded (VENC) MRI to cine-magnetic resonance imaging (MRI) for quantifying mechanical ventricular dyssynchrony. Materials and Methods: VENC-MRI and cine-MRI were performed in 20 patients with heart failure NYHA class III and reduced ejection fraction (median: 24 %, interquartile range: 18 - 28 %) before CRT device implantation. The interventricular mechanical delay (IVMD) was assessed by VENC-MRI as the temporal difference between the onset of aortic and pulmonary flow. Intraventricular dyssynchrony was quantified by cine-MRI, using the standard deviation of time to maximal wall thickening in sixteen left ventricular segments (SDt-16). The response to CRT was assessed in a six-month follow-up. Results: 14 patients (70 %) clinically responded to CRT. A similar accuracy was found to predict the response to CRT by measurements of the IVMD and SDt-16 (75 vs. 70 %; p = ns). The time needed for data analysis was significantly shorter for the IVMD at 1.69 min (interquartile range: 1.66 - 1.88 min) compared to 9.63 min (interquartile range: 8.92 - 11.63 min) for the SDt-16 (p < 0.0001). Conclusion: Measurements of the IVMD by VENC-MRI and the SDt-16 by cine-MRI provide a similar accuracy to identify clinical responders to CRT. However, data analysis of the IVMD is significantly less time-consuming compared to data analysis of the SDt-16. (orig.)
Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity
Directory of Open Access Journals (Sweden)
Yongbing Wang
2014-01-01
Full Text Available Different from phased-array radar, frequency diverse array (FDA radar offers range-dependent beampattern and thus provides new application potentials. But there is a fundamental question: what estimation performance can achieve for an FDA radar? In this paper, we derive FDA radar Cramér-Rao lower bounds (CRLBs for estimating direction, range (time delay, and velocity (Doppler shift. Two different data models including pre- and postmatched filtering are investigated separately. As the FDA radar has range-angle coupling, we use a simple transmit subaperturing strategy which divides the whole array into two subarrays, each uses a distinct frequency increment. Assuming temporally white Gaussian noise and linear frequency modulated transmit signal, extensive simulation examples are performed. When compared to conventional phased-array radar, FDA can yield better CRLBs for estimating the direction, range, and velocity. Moreover, the impacts of the element number and frequency increment are also analyzed. Simulation results show that the CRLBs decrease with the increase of the elements number and frequency increment.
International Nuclear Information System (INIS)
Fouillet, C.
2003-01-01
In this work, we simulate a nucleate boiling problem using direct numerical simulation. The numerical method used is the second gradient method based on a diffuse interface model which represents interfaces as volumetric regions of finite thickness across which the physical properties of the fluid vary continuously. First, this method is successfully applied to nucleate boiling of a pure fluid. Then, the model is extended to dilute binary mixtures. After studying its validity and its limits in simple configurations, it is then applied to nucleate boiling of a dilute mixture. These simulations show a strong decrease of the heat transfer coefficient as the concentration increases, in agreement with the numerous experimental studies published in this domain. (author) [fr
Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.
2018-01-01
Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage
Direct method of design and stress analysis of rotating disks with temperature gradient
Manson, S S
1950-01-01
A method is presented for the determination of the contour of disks, typified by those of aircraft gas turbines, to incorporate arbitrary elastic-stress distributions resulting from either centrifugal or combined centrifugal and thermal effects. The specified stress may be radial, tangential, or any combination of the two. Use is made of the finite-difference approach in solving the stress equations, the amount of computation necessary in the evolution of a design being greatly reduced by the judicious selection of point stations by the aid of a design chart. Use of the charts and of a preselected schedule of point stations is also applied to the direct problem of finding the elastic and plastic stress distribution in disks of a given design, thereby effecting a great reduction in the amount of calculation. Illustrative examples are presented to show computational procedures in the determination of a new design and in analyzing an existing design for elastic stress and for stresses resulting from plastic flow.
International Nuclear Information System (INIS)
Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Duk Young; Kim, Dongmin
2013-01-01
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm
Energy Technology Data Exchange (ETDEWEB)
Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)
2013-12-15
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.
Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of
Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
2013-01-01
We explore the connection between the local escape velocity, V-esc, and the stellar population properties in the ATLAS(3D) survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses
Waterhouse, Matthew D.; Erb, Liesl P.; Beever, Erik; Russello, Michael A.
2018-01-01
The American pika is a thermally sensitive, alpine lagomorph species. Recent climate-associated population extirpations and genetic signatures of reduced population sizes range-wide indicate the viability of this species is sensitive to climate change. To test for potential adaptive responses to climate stress, we sampled pikas along two elevational gradients (each ~470 to 1640 m) and employed three outlier detection methods, BAYESCAN, LFMM, and BAYPASS, to scan for genotype-environment associations in samples genotyped at 30,763 SNP loci. We resolved 173 loci with robust evidence of natural selection detected by either two independent analyses or replicated in both transects. A BLASTN search of these outlier loci revealed several genes associated with metabolic function and oxygen transport, indicating natural selection from thermal stress and hypoxia. We also found evidence of directional gene flow primarily downslope from large high-elevation populations and reduced gene flow at outlier loci, a pattern suggesting potential impediments to the upward elevational movement of adaptive alleles in response to contemporary climate change. Finally, we documented evidence of reduced genetic diversity associated the south-facing transect and an increase in corticosterone stress levels associated with inbreeding. This study suggests the American pika is already undergoing climate-associated natural selection at multiple genomic regions. Further analysis is needed to determine if the rate of climate adaptation in the American pika and other thermally sensitive species will be able to keep pace with rapidly changing climate conditions.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
International Nuclear Information System (INIS)
Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin; Yu, Tong Gang
2015-01-01
To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.
Energy Technology Data Exchange (ETDEWEB)
Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)
2015-04-15
To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.
Energy Technology Data Exchange (ETDEWEB)
Hoffman, Ian M., E-mail: ihoffman@wittenberg.edu [Physics Department Wittenberg University, Springfield, OH 45501 (United States)
2012-11-01
We present the first astronomical detection of the {sup 14}NH{sub 3} (J, K) = (10, 6) line: nonthermal emission at several velocities in the Galactic star-forming region NGC 7538. Using the Very Large Array we have imaged the (10,6) and (9,6) ammonia masers at several positions within NGC 7538 IRS 1. The individual sources have angular sizes {approx}< 0.1 arcsec corresponding to brightness temperatures T{sub B} {approx}> 10{sup 6} K. We apply the pumping model of Brown and Cragg, confirming the conjecture that multiple ortho-ammonia masers can occur with the same value of K. The positions and velocities of the (10,6) and (9,6) masers are modeled as motion in a possible disk or torus and are discussed in the context of recent models of the region.
Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona
2015-01-01
Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (Pjoints compensated for both increasing displacement and velocity in all directions (Pjoint deflections were particularly sensitive to increasing displacement in the sagittal (Pjoint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061
Waterhouse, Matthew D; P Erb, Liesl; Beever, Erik A; Russello, Michael A
2018-04-25
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally-restricted, thermally-sensitive species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou
2018-05-01
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin
2017-08-01
Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D
2011-01-01
Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1 -integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor
DEFF Research Database (Denmark)
Havsteen, Inger; Ovesen, Christian; Willer, Lasse
2017-01-01
Objective: Diffusion tensor imaging may aid brain ischemia assessment but is more time consuming than conventional diffusion-weighted imaging (DWI). We compared 3-gradient direction DWI (3DWI) and 20-gradient direction DWI (20DWI) standard vendor protocols in a hospital-based prospective cohort...... of patients with transient ischemic attack (TIA) for lesion detection, lesion brightness, predictability of persisting infarction, and final infarct size. Methods: We performed 3T-magnetic resonance imaging including diffusion and T2-fluid attenuated inversion recovery (FLAIR) within 72 h and 8 weeks after...... uniquely 20DWI positive. 3DWI was visually brightest for 34 lesions. 12 lesions were brightest on 20DWI. The median 3DWI lesion area was larger for lesions equally bright, or brightest on 20DWI [median (IQR) 39 (18-95) versus 18 (10-34) mm2, P = 0.007]. 3DWI showed highest measured relative lesion signal...
Directory of Open Access Journals (Sweden)
Kathrin Freyler
Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb
DEFF Research Database (Denmark)
Ploug, H.; Iversen, M.H.; Koski, Marja
2008-01-01
sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d...
Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction
Guangping Han; Qinglin Wu; Xiping Wang
2006-01-01
The effect of moisture on longitudinal stress-wave velocity (SWV), bending stiffness. and bending strength of commercial oriented strandboard, plywood. particleboard. and southern pine lumber was evaluated. It was shown that the stress-wave verocity decreased in general with increases in panel moisture content (MC). At a given MC level. SWV varied with panel type and...
Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong
2018-04-01
In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about ±2°, showing its good directionality accuracy.
Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl
2010-12-14
A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.
Measurement bias of fluid velocity in molecular simulations
International Nuclear Information System (INIS)
Tysanner, Martin W.; Garcia, Alejandro L.
2004-01-01
In molecular simulations of fluid flow, the measurement of mean fluid velocity is considered to be a straightforward computation, yet there is some ambiguity in its definition. We show that in systems far from equilibrium, such as those with large temperature or velocity gradients, two commonly used definitions give slightly different results. Specifically, a bias can arise when computing the mean fluid velocity by measuring the mean particle velocity in a cell and averaging this mean over samples. We show that this bias comes from the correlation of momentum and density fluctuations in non-equilibrium fluids, obtain an analytical expression for predicting it, and discuss what system characteristics (e.g., number of particles per cell, temperature gradients) reduce or magnify the error. The bias has a physical origin so although we demonstrate it by direct simulation Monte Carlo (DSMC) computations, the same effect will be observed with other particle-based simulation methods, such as molecular dynamics and lattice gases
DETECTION OF CA II ABSORPTION BY A HIGH-VELOCITY CLOUD IN THE DIRECTION OF THE QUASAR PKS 0837-120
ROBERTSON, JG; SCHWARZ, UJ; VANWOERDEN, H; MURRAY, JD; MORTON, DC; HULSBOSCH, ANM
1991-01-01
We present optical absorption spectroscopy of the Ca II K and H lines along the sight line to the quasar PKS 0837-120, which lies in the direction of a high-velocity cloud (HVC) detected in H I 21-cm emission at V(LSR) = + 105 km s-1. Our data show Ca II absorption due to the HVC as well as a lower
Gradient computation for VTI acoustic wavefield tomography
Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Diaz, Esteban; Alkhalifah, Tariq Ali
2016-01-01
-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space
Warsitzka, M.; Kukowski, N.; Kley, J.
2018-04-01
Salt flow induced by subsalt normal faulting is mainly controlled by tilting of the salt layer, the amount of differential loading due to syn-kinematic deposition, and tectonic shearing at the top or the base of the salt layer. Our study addresses the first two mechanisms and aims to examine salt flow patterns above a continuously moving subsalt normal fault and beneath a syn-kinematic minibasin. In such a setting, salt either tends to flow down towards the basin centre driven by its own weight or is squeezed up towards the footwall side owing to loading differences between the minibasin and the region above the footwall block. Applying isostatic balancing in analytical models, we calculated the steady-state flow velocity in a salt layer. This procedure gives insights into (1) the minimum vertical offset required for upward flow to occur, (2) the magnitude of the flow velocity, and (3) the average density of the supra-salt cover layer at the point at which upward flow starts. In a sensitivity study, we examined how the point of flow reversal and the velocity patterns are influenced by changes of the salt and cover layer thickness, the geometry of the cover flexure, the dip of the subsalt fault, compaction parameters of the supra-salt cover, the salt viscosity and the salt density. Our model results reveal that in most geological scenarios, salt flow above a continuously displacing subsalt normal fault goes through an early phase of downward flow. At sufficiently high fault offset in the range of 700-2600 m, salt is later squeezed upward towards the footwall side. This flow reversal occurs at smaller vertical fault displacement, if the thickness of the pre-kinematic layer is larger, the sedimentation rate of the syn-kinematic cover is higher, the compaction coefficient of cover sediments (i.e. the density increase with depth) is larger or the average density of the salt is lower. Other geometrical parameters such as the width of the cover monocline, the dip of the
The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes
DEFF Research Database (Denmark)
Linderstrøm-Lang, C.U.
1971-01-01
The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...... physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate...
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
International Nuclear Information System (INIS)
Whitten, J.E.; Young, C.E.; Pellin, M.J.; Gruen, D.M.; Jones, P.L.
1994-01-01
Electron-stimulated desorption of neutral aluminum from the system CH 3 O/Al(111) has been directly monitored via quasiresonant photoionization with 193 nm excimer laser light and confirmed by two-step resonant ionization, utilizing the Al 3d 2 D manifold. Velocity distribution measurements for the neutral Al peak at ∼ 800 m/s for 1 keV incident electron energy. An absolute yield of 3.2 x 10 -6 Al atoms/electron was determined by comparison with sputtering measurements in the same apparatus. This is the first observation of electron-stimulated metal desorption from adsorbate-covered metallic surfaces
International Nuclear Information System (INIS)
Ledo P, L.M.; Guibert G, R.; Dominguez L, O.; Alonso A, D.; Ramos V, E.O.
2006-01-01
The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)
Bakker, M.; Caljé, R.; Schaars, F.; Van der Made, K.J.; De Haas, S.
2015-01-01
A new approach is developed to insert fiber optic cables vertically into the ground with direct push equipment. Groundwater temperatures may be measured along the cables with high spatial and temporal resolution using a Distributed Temperature Sensing system. The cables may be inserted up to depths
Color gradients in elliptical galaxies
International Nuclear Information System (INIS)
Franx, M.; Illingworth, G.
1990-01-01
The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs
Energy Technology Data Exchange (ETDEWEB)
John H. Bradford; Stephen Holbrook; Scott B. Smithson
2004-12-09
The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.
International Nuclear Information System (INIS)
Kawanishi, M.; Miyakawa, K.; Hirata, Y.
2001-01-01
For the confirmation of safety for the geological disposal of radioactive wastes, it is very important to demonstrate the groundwater flow by in-situ investigation in the deep underground. We have developed a groundwater flow meter to measure simultaneously the velocity and direction of groundwater flow by means of detecting the electric potential difference between the groundwater to evaluate and the distilled water as a tracer in a single well. In this paper, we describe the outline of the groundwater flow meter system developed by CRIEPI and Taisei-Kiso-Sekkei Co. Ltd. and the evaluation methodology for observed data by using it in fractured rocks. Furthermore, applied results to in-situ tests at the Tounou mine of Japan Nuclear Fuel Cycle Development Institute (JNC) and the Aespoe Hard Rock Laboratory (HRL) of Swedish Nuclear Fuel and Waste Management Co. (SK) are described. Both sites are different type of fractured rock formations of granite. From these results, it was made clear that this flow meter system can be practically used to measure the groundwater flow direction and velocity as low as order of 1x10 -3 ∼10 -7 cm/sec. (author)
Hepatic venous pressure gradients measured by duplex ultrasound
International Nuclear Information System (INIS)
Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.
2002-01-01
AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)
Hepatic venous pressure gradients measured by duplex ultrasound
Energy Technology Data Exchange (ETDEWEB)
Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M
2002-08-01
AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)
Development of vortex model with realistic axial velocity distribution
International Nuclear Information System (INIS)
Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki
2014-01-01
A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)
Examples of Vector Velocity Imaging
DEFF Research Database (Denmark)
Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.
2011-01-01
To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...
LES of the adverse-pressure gradient turbulent boundary layer
International Nuclear Information System (INIS)
Inoue, M.; Pullin, D.I.; Harun, Z.; Marusic, I.
2013-01-01
Highlights: • The adverse-pressure gradient turbulent boundary layer at high Re is studied. • Wall-model LES works well for nonequilibrium turbulent boundary layer. • Relationship of skin-friction to Re and Clauser pressure parameter is explored. • Self-similarity is observed in the velocity statistics over a wide range of Re. -- Abstract: We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse
Directory of Open Access Journals (Sweden)
YAN Shi
2017-12-01
Full Text Available The low-velocity impact and compression after impact (CAI properties of three-dimensional (3D five-directional carbon fiber/epoxy resin braided composites were experimentally investigated. Specimens prepared with different braiding angles were tested at the same impact energy level. Residual post-impact mechanical properties of the different configurations were characterized by compression after impact tests. Results show that the specimens with bigger braiding angle sustain higher peak loads, and smaller impact damage area, mainly attributes to a more compact space construction. The CAI strength and damage mechanism are found to be mainly dependent on the axial support of the braiding fiber tows. With the increase of braiding angle, the CAI strength decreases, and the damage mode of the composites is changed from transverse fracture to shear failure.
Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.
2010-01-01
It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
Measurement of carotid bifurcation pressure gradients using the Bernoulli principle.
Illig, K A; Ouriel, K; DeWeese, J A; Holen, J; Green, R M
1996-04-01
Current randomized prospective studies suggest that the degree of carotid stenosis is a critical element in deciding whether surgical or medical treatment is appropriate. Of potential interest is the actual pressure drop caused by the blockage, but no direct non-invasive means of quantifying the hemodynamic consequences of carotid artery stenoses currently exists. The present prospective study examined whether preoperative pulsed-Doppler duplex ultrasonographic velocity (v) measurements could be used to predict pressure gradients (delta P) caused by carotid artery stenoses, and whether such measurements could be used to predict angiographic percent diameter reduction. Preoperative Doppler velocity and intraoperative direct pressure measurements were obtained, and per cent diameter angiographic stenosis measured in 76 consecutive patients who underwent 77 elective carotid endarterectomies. Using the Bernoulli principle (delta P = 4v(2), pressure gradients across the stenoses were calculated. The predicted delta P, as well as absolute velocities and internal carotid artery/common carotid velocity ratios were compared with the actual delta P measured intraoperatively and with preoperative angiography and oculopneumoplethysmography (OPG) results. An end-diastolic velocity of > or = 1 m/s and an end-diastolic internal carotid artery/common carotid artery velocity ratio of > or = 10 predicted a 50% diameter angiographic stenosis with 100% specificity. Although statistical significance was reached, preoperative pressure gradients derived from the Bernoulli equation could not predict actual individual intraoperative pressure gradients with enough accuracy to allow decision making on an individual basis. Velocity measurements were as specific and more sensitive than OPG results. Delta P as predicted by the Bernoulli equation is not sufficiently accurate at the carotid bifurcation to be useful for clinical decision making on an individual basis. However, end
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
International Nuclear Information System (INIS)
Montero, N.; Belzunce-Segarra, M.J.; Gonzalez, J.-L.; Larreta, J.; Franco, J.
2012-01-01
Highlights: ► DGTs provided reliable average labile metal concentrations in estuaries. ► DGT results were useful to determine potential environmental impact of estuaries. ► DGT measurements were consistent with the historical contamination of each estuary. ► The sampling strategy was cost-effective for trace metals evaluation in estuaries. ► DGTs seem to be a suitable tool for water chemical evaluation within the WFD. - Abstract: In this contribution, the potential use of diffusive gradients in thin-films (DGTs) for the chemical evaluation of transitional water bodies within the Water Framework Directive (WFD) has been studied. The water metal concentration has been evaluated in 13 estuaries in the southeastern Bay of Biscay. The DGTs were deployed in triplicate at two stations in each estuary, delimiting the tidal influence. The DGT results were in the ranges of 2–1570 ng L −1 for cadmium, 66–515 ng L −1 for copper, 30–3650 ng L −1 for nickel and 0.8–95.5 μg L −1 for zinc. The DGTs provided reliable average labile metal concentrations in highly dynamic systems that were comparable with DGT measurements in coastal and estuarine waters worldwide. In addition, it was possible to discriminate those estuaries more susceptible to environmental impacts, being consistent with the historical contamination of each estuary. Based on the obtained results, a sampling strategy for the monitoring of transitional water bodies using DGTs is proposed.
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Suárez, Francisco; Tyler, Scott W; Childress, Amy E
2010-08-01
Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP. (c) 2010 Elsevier Ltd. All rights reserved.
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
The effect of non-zero radial velocity on the impulse and circulation of starting jets
Krieg, Michael; Mohseni, Kamran
2011-11-01
Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).
Thermal conduction down steep temperature gradients
International Nuclear Information System (INIS)
Bell, A.R.; Evans, R.G.; Nicholas, D.J.
1980-08-01
The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
Hydraulic gradients in rock aquifers
International Nuclear Information System (INIS)
Dahlblom, P.
1992-05-01
This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1995-08-01
The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)
A bistable mechanism for directional sensing
International Nuclear Information System (INIS)
Beta, C; Amselem, G; Bodenschatz, E
2008-01-01
We present a generic mechanism for directional sensing in eukaryotic cells that is based on bistable dynamics. As the key feature of this modeling approach, the velocity of trigger waves in the bistable sensing system changes its sign across cells that are exposed to an external chemoattractant gradient. This is achieved by combining a two-component activator/inhibitor system with a bistable switch that induces an identical symmetry breaking for arbitrary gradient input signals. A simple kinetic example is designed to illustrate the dynamics of a bistable directional sensing mechanism in numerical simulations
International Nuclear Information System (INIS)
Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.
2015-01-01
Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Jamet, D. [CEA Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique]|[Ecole Centrale de Paris, 75 (France)
1998-12-31
One on the main difficulties encountered in the direct numerical simulation of two-phase flows in general and of liquid-vapor flows with phase-change in particular, is the interface tracking. The idea developed in this work consists in modeling a liquid-vapor interface as a volumetric zone across which physical properties vary continuously instead of a discontinuous surface. The second gradient theory allows to establish the evolution equations of the fluid in the whole system: bulk phases and interfaces. That means that the resolution of a unique system of partial differential equations is necessary to determine the whole two-phase flow, the interfaces and their evolution in time being a part of the solution of this unique system. We show in this work that it is possible to artificially enlarge an interface without changing its surface tension and the latent heat of vaporization. That means than it is possible to track all the interfaces of a liquid-vapor two-phase flow with phase-change on a mesh the size of which is imposed by the smallest Kolmogorov scale of the bulk phases for example. The artificial enlargement of an interfacial zone is obtained by modifying the thermodynamic behavior of the fluid within the binodal. We show that this modification does not change the dynamics of an interface. However, although the thickness of an interface and its surface tension vary with the mass and heat fluxes that go though it, the thermodynamic modification necessary to the artificial enlargement of an interface drastically increases these variations. Consequently, the artificial enlargement of an interface must be made carefully to avoid a too much important variation of its surface tension during dynamic situations. (author) 60 refs.
Directory of Open Access Journals (Sweden)
Inger Havsteen
2017-12-01
Full Text Available ObjectiveDiffusion tensor imaging may aid brain ischemia assessment but is more time consuming than conventional diffusion-weighted imaging (DWI. We compared 3-gradient direction DWI (3DWI and 20-gradient direction DWI (20DWI standard vendor protocols in a hospital-based prospective cohort of patients with transient ischemic attack (TIA for lesion detection, lesion brightness, predictability of persisting infarction, and final infarct size.MethodsWe performed 3T-magnetic resonance imaging including diffusion and T2-fluid attenuated inversion recovery (FLAIR within 72 h and 8 weeks after ictus. Qualitative lesion brightness was assessed by visual inspection. We measured lesion area and brightness with manual regions of interest and compared with homologous normal tissue.Results117 patients with clinical TIA showed 78 DWI lesions. 2 lesions showed only on 3DWI. No lesions were uniquely 20DWI positive. 3DWI was visually brightest for 34 lesions. 12 lesions were brightest on 20DWI. The median 3DWI lesion area was larger for lesions equally bright, or brightest on 20DWI [median (IQR 39 (18–95 versus 18 (10–34 mm2, P = 0.007]. 3DWI showed highest measured relative lesion signal intensity [median (IQR 0.77 (0.48–1.17 versus 0.58 (0.34–0.81, P = 0.0006]. 3DWI relative lesion signal intensity was not correlated to absolute signal intensity, but 20DWI performed less well for low-contrast lesions. 3DWI lesion size was an independent predictor of persistent infarction. 3-gradient direction apparent diffusion coefficient areas were closest to 8-week FLAIR infarct size.Conclusion3DWI detected more lesions and had higher relative lesion SI than 20DWI. 20DWI appeared blurred and did not add information.Clinical Trial Registrationhttp://www.clinicaltrials.gov. Unique Identifier NCT01531946.
Instantaneous fluctuation velocity and skewness distributions upstream of transition onset
International Nuclear Information System (INIS)
Hernon, D.; Walsh, E.J.; McEligot, D.M.
2007-01-01
The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ∼ 0.6, whereas the location of the peak positive value was measured at y/δ ∼ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence
Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L
2014-04-03
The phase changes that occur during discharge of an electrode comprised of LiFePO 4 , carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO 4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.
Vertebrate pressure-gradient receivers
DEFF Research Database (Denmark)
Christensen-Dalsgaard, Jakob
2011-01-01
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...
Multidisk neutron velocity selectors
International Nuclear Information System (INIS)
Hammouda, B.
1992-01-01
Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)
EDQNM model of a passive scalar with a uniform mean gradient
International Nuclear Information System (INIS)
Herr, S.; Wang, L.; Collins, L.R.
1996-01-01
Dynamic equations for the scalar autocorrelation and scalar-velocity cross correlation spectra have been derived for a passive scalar with a uniform mean gradient using the Eddy Damped Quasi Normal Markovian (EDQNM) theory. The presence of a mean gradient in the scalar field makes all correlations involving the scalar axisymmetric with respect to the axis pointing in the direction of the mean gradient. Equivalently, all scalar spectra will be functions of the wave number k and the cosine of the azimuthal angle designated as μ. In spite of this complication, it is shown that the cross correlation vector can be completely characterized by a single scalar function Q(k). The scalar autocorrelation spectrum, in contrast, has an unknown dependence on μ. However, this dependency can be expressed as an infinite sum of Legendre polynomials of μ, as first suggested by Herring [Phys. Fluids 17, 859 (1974)]. Furthermore, since the scalar field is initially zero, terms beyond the second order of the Legendre expansion are shown to be exactly zero. The energy, scalar autocorrelation, and scalar-velocity cross correlation were solved numerically from the EDQNM equations and compared to results from direct numerical simulations. The results show that the EDQNM theory is effective in describing single-point and spectral statistics of a passive scalar in the presence of a mean gradient. copyright 1996 American Institute of Physics
Computational Strain Gradient Crystal Plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2011-01-01
A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....
Compositional gradients in Gramineae genes
DEFF Research Database (Denmark)
Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin
2002-01-01
In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...
Velocity bunching of high-brightness electron beams
Directory of Open Access Journals (Sweden)
S. G. Anderson
2005-01-01
Full Text Available Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)
2017-06-10
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
International Nuclear Information System (INIS)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.
2017-01-01
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.
Electron velocity and momentum density
International Nuclear Information System (INIS)
Perkins, G.A.
1978-01-01
A null 4-vector eta + sigma/sub μ/based on Dirac's relativistic electron equation, is shown explicitly for a plane wave and various Coulomb states. This 4-vector constitutes a mechanical ''model'' for the electron in those staes, and expresses the important spinor quantities represented conventionally by n, f, g, m, j, kappa, l, and s. The model for a plane wave agrees precisely with the relation between velocity and phase gradient customarily used in quantum theory, but the models for Coulomb states contradict that relation
Ternary gradient metal-organic frameworks.
Liu, Chong; Rosi, Nathaniel L
2017-09-08
Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Vector blood velocity estimation in medical ultrasound
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper
2006-01-01
Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...... search can also yield the direction, and the full velocity vector is thereby found. An examples from a flow rig is shown....
Radial velocity asymmetries from jets with variable velocity profiles
International Nuclear Information System (INIS)
Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.
2006-01-01
We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models
Direct flow/motion, coils, and field strength concerns in MRI
International Nuclear Information System (INIS)
Moran, P.R.
1986-01-01
Specific flow/motion bipolar phase-gradient encodings are interlaced into MR sequences for direct NMR imaging of motion quantities, velocity, acceleration, etc. This allows evaluation of the functional properties of tissue, blood flow, heart-wall velocity, vortical-eddies in vascular disease, and perfusion assessment. Attention to fundamentals and basics is important in designing successful flow/motion imaging sequences. 2 refs.; 5 figs
Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers
Wei, Tie; Maciel, Yvan
2018-01-01
This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.
An Inexpensive Digital Gradient Controller for HPLC.
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
Turbulent flow velocity distribution at rough walls
International Nuclear Information System (INIS)
Baumann, W.
1978-08-01
Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de
Measurements of ion velocity separation and ionization in multi-species plasma shocks
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.
2018-05-01
The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.
Improved alternating gradient transport and focusing of neutral molecules
International Nuclear Information System (INIS)
Kalnins, Juris; Lambertson, Glen; Gould, Harvey
2001-01-01
Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describe a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed
Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model
Sutyrin Georgi, G.
2004-07-01
A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.
The geostrophic velocity field in shallow water over topography
Charnock, Henry; Killworth, Peter D.
1998-01-01
A recent note (Hopkins, T.S., 1996. A note on the geostrophic velocity field referenced to a point. Continental Shelf Research 16, 1621-1630) suggests a method for evaluating absolute pressure gradients in stratified water over topography. We demonstrate that this method requires no along-slope bottom velocity, in contradiction to what is usually observed, and that mass is not conserved.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Demonstration of a Vector Velocity Technique
DEFF Research Database (Denmark)
Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.
2011-01-01
With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa......With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner...
Analytical approximations of diving-wave imaging in constant-gradient medium
Stovas, Alexey
2014-06-24
Full-waveform inversion (FWI) in practical applications is currently used to invert the direct arrivals (diving waves, no reflections) using relatively long offsets. This is driven mainly by the high nonlinearity introduced to the inversion problem when reflection data are included, which in some cases require extremely low frequency for convergence. However, analytical insights into diving waves have lagged behind this sudden interest. We use analytical formulas that describe the diving wave’s behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena reveal the high dependence of diving-wave imaging on the gradient and the initial velocity. The analytical image point residual equation can be further used to scan for the best-fit linear velocity model, which is now becoming a common sight as an initial velocity model for FWI. We determined the accuracy and versatility of these analytical formulas through numerical tests.
A Velocity Structure Analysis of Giant Molecular Cloud Associated with HII Region S152
Directory of Open Access Journals (Sweden)
Woo-Yeol Choi
2005-06-01
Full Text Available S152 is a small bright emission nebula located in the Perseus arm. Its optical diameter corresponds to 1.5 pc for an adopted distance 3.5 kpc. However, S152 is a part of a giant molecular cloud complex, which consists of several dense cores, containing active star-forming sites, and well aligned arm-like features. We analyzed the FCRAO 12CO (J = 1→0 Outer Galaxy Survey data in this region to study the kinematical structure of this region, which resembles a big ``scorpion". We found that there exist three different velocity components, about --54.5, --50.4, --48.8 km s-1, depending on the position of the ``scorpion". There also exist velocity gradients of 0.21 km s-1 pc-1 and 0.16 km s-1 pc-1 through the whole extent of the ``scorpion". Interestingly, these two velocity gradients show an opposite direction with each other. It is likely that the velocity structure of this region may result from the mergence of different gas clouds, and the interaction with the SNR 109.1-1.0 occurred later, mostly at the region around the ``head of the scorpion" only.
A new method for measurement of granular velocities
International Nuclear Information System (INIS)
Nyborg Andersen, B.
1984-01-01
A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed
Velocities of Subducted Sediments and Continents
Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.
2009-12-01
The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at
The Local Stellar Velocity Field via Vector Spherical Harmonics
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Applications of seismic spatial wavefield gradient and rotation data in exploration seismology
Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.
2017-12-01
Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C
The effect of gradational velocities and anisotropy on fault-zone trapped waves
Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.
2017-08-01
Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise
Zhang, Mingji; Or, Siu Wing
2017-01-01
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...
Angle independent velocity spectrum determination
DEFF Research Database (Denmark)
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...
International Nuclear Information System (INIS)
Beyer, R.T.
1985-01-01
The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)
International Nuclear Information System (INIS)
Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.
1986-01-01
This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction
International Nuclear Information System (INIS)
Roidl, B.; Meinke, M.; Schröder, W.
2014-01-01
Highlights: • Reformulated synthetic turbulence generation method (RSTGM) is applied. • Zonal RANS-LES method is applied to boundary layers at pressure gradients. • Good agreement with the pure LES and other reference data is obtained. • The RSTGM is applicable to pressure gradient flows without modification. • RANS-to-LES boundary should be located where -1·10 6 6 is satisfied. -- Abstract: The reformulated synthetic turbulence generation (RSTG) method is used to compute by a fully coupled zonal RANS-LES approach turbulent non-zero-pressure gradient boundary layers. The quality of the RSTG method, which is based on the same shape functions and length scale distributions as in zero-pressure gradient flow, is discussed by comparing the zonal RANS-LES findings with pure LES, pure RANS, direct numerical simulation (DNS), and experimental data. For the favorable pressure gradient (FPG) simulation the RANS-to-LES transition occurs in the accelerated flow region and for the adverse pressure gradient (APG) case it is located in the decelerated flow region. The results of the time and spanwise averaged skin-friction distributions, velocity profiles, and Reynolds stress distributions of the zonal RANS-LES simulation show a satisfactory to good agreement with the pure LES, reference DNS, and experimental data. The quality of the findings shows that the rigorous formulation of the synthetic turbulence generation makes the RSTG method applicable without a priori knowledge of the flow properties but those determined by the RANS solution and without using additional control planes to regulate the shear stress budget to a wide range of Reynolds numbers and pressure gradients. The method is a promising approach to formulate embedded RANS-to-LES boundaries in flow regions where the Pohlhausen or acceleration parameter satisfies -1·10 -6 ⩽K⩽2·10 -6
International Nuclear Information System (INIS)
Iguchi, H.; Ida, K.; Yamada, H.
1994-01-01
Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Inversion gradients for acoustic VTI wavefield tomography
Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Dí az, Esteban; Alkhalifah, Tariq Ali
2017-01-01
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.
Inversion gradients for acoustic VTI wavefield tomography
Li, Vladimir
2017-03-21
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.
A Miniature Four-Hole Probe for Measurement of Three-Dimensional Flow with Large Gradients
Directory of Open Access Journals (Sweden)
Ravirai Jangir
2014-01-01
Full Text Available A miniature four-hole probe with a sensing area of 1.284 mm2 to minimise the measurement errors due to the large pressure and velocity gradients that occur in highly three-dimensional turbomachinery flows is designed, fabricated, calibrated, and validated. The probe has good spatial resolution in two directions, thus minimising spatial and flow gradient errors. The probe is calibrated in an open jet calibration tunnel at a velocity of 50 m/s in yaw and pitch angles range of ±40 degrees with an interval of 5 degrees. The calibration coefficients are defined, determined, and presented. Sensitivity coefficients are also calculated and presented. A lookup table method is used to determine the four unknown quantities, namely, total and static pressures and flow angles. The maximum absolute errors in yaw and pitch angles are 2.4 and 1.3 deg., respectively. The maximum absolute errors in total, static, and dynamic pressures are 3.4, 3.9, and 4.9% of the dynamic pressures, respectively. Measurements made with this probe, a conventional five-hole probe and a miniature Pitot probe across a calibration section, demonstrated that the errors due to gradient and surface proximity for this probe are considerably reduced compared to the five-hole probe.
The Limit Deposit Velocity model, a new approach
Directory of Open Access Journals (Sweden)
Miedema Sape A.
2015-12-01
Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.
König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen
2013-03-19
To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.
Algorithms for estimating blood velocities using ultrasound
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2000-01-01
Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...... are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking...
Characteristic wave velocities in spherical electromagnetic cloaks
International Nuclear Information System (INIS)
Yaghjian, A D; Maci, S; Martini, E
2009-01-01
We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
Gradients estimation from random points with volumetric tensor in turbulence
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows
International Nuclear Information System (INIS)
Artun, M.; Tang, W.M.
1992-01-01
The linearized gyrokinetic equation governing electrostatic microinstabilities in the presence of sheared equilibrium flow in both the z and y directions has been systematically derived for a sheared slab geometry, where in the large aspect ratio limit z and y directions correspond to the toroidal and poloidal directions respectively. In the familiar long perpendicular wavelength regime (κ perpendicular ρi > 1), the analysis leads to a comprehensive kinetic differential eigenmode equation which is solved numerically. The numerical results have been successfully cross-checked against analytic estimates in the fluid limit. For typical conditions, the Ion Temperature Gradient (ηi) modes are found to be stabilized for y-direction flows with a velocity shear scale comparable to that of the ion temperature gradient and velocities of a few percent of the sound speed. Sheared flows in the z-direction taken along are usually destabilizing, with the effect being independent of the sign of the flow. However, when both types are simultaneously considered, it is found that in the presence of shared z-direction flow, sheared y-direction flow can be either stabilizing or destabilizing depending on the relative sign of these flows. However, for sufficiently large values of υ' y the mode is completely stabilized regardless of the sign of υ' z υ' y . The importance of a proper kinetic treatment of this problem is supported by comparisons with fluid estimates. In particular, when such effects are favorable, significantly smaller values of sheared y-direction flow are required for stability than fluid estimates would indicate
Validation of Transverse Oscillation Vector Velocity Estimation In-Vivo
DEFF Research Database (Denmark)
Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten
2007-01-01
Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound (US) beam direction. This implies that a Doppler angle under examination close to 90deg results in unreliable information about the true blood direction and blood velocity. The novel...... the presented angle independent 2-D vector velocity method. The results give reason to believe that the TO method can be a useful alternative to conventional Doppler systems bringing forth new information to the US examination of blood flow....
From Boltzmann equations to steady wall velocities
International Nuclear Information System (INIS)
Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA
2014-07-01
By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.
Migration of inclusions in solids in stress gradients
International Nuclear Information System (INIS)
Olander, D.R.
1980-01-01
A theoretical method of assessing the influence of stress and temperature gradients on the motion of inclusions in solids is developed. In nonuniform stress fields, the stress distribution on the surface of the cavity must be calculated and transformed to a potential gradient for driving a surface atom flux. The bubble migration velocity is the first Legendre coefficient of the surface flux. Higher order components represent distortion. The stress gradient effect appears only in small-magnitude terms in the surface chemical potential, specifically in the stress effect on the solid atomic volume and in the elastic energy density. The migration velocities of spherical and faceted bubbles in solids are computed and the extent of distortion of a spherical bubble is estimated. The role of vacancy exchange with the bulk solid on the migration velocity is assessed. (author)
Motion-compensating gradients in the study of multiple sclerosis
International Nuclear Information System (INIS)
Runge, V.M.; Wood, M.L.; Kaufman, D.L.
1987-01-01
A low bandwidth motion compensating technique (no. 1) was compared with a conventional spin-echo technique (no. 2) in 20 patients with multiple sclerosis using a 1.0-T MR imaging system. In technique 1, refocusing gradients were employed to compensate for motion of constant velocity along the frequency-encoding direction. The sampling time was also increased to provide a greater S/N. Use of technique 1 was resulted in detection of 42% +- 23% more lesions (n = 8). The contrast-to-noise ratio for gray versus white matter improved by 87% +- 54% and that for lesion versus white matter by 66% +- 22%. The S/N for white matter improved by 56% +- 25%. An increase in chemical shift artifact was noted but not felt to be detrimental to lesion visualization. In the majority of cases, normal brain stem structures were more distinctly visualized. In two cases, pontine lesions were more clearly demarcated due to reduced pulsation artifacts. The combined use of refocusing gradients and low bandwidth techniques provides reduction of motion artifacts (from CSF and vessel pulsation) and improved S/N, leading to improved lesion detection
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Estimating discharge using multi-level velocity data from acoustic doppler instruments
DEFF Research Database (Denmark)
Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering
In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...
Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.
2017-04-01
We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Directory of Open Access Journals (Sweden)
Pardhasaradhi
2015-10-01
series of 15 patients with complex tibial plateau injuries with associated posterior shear fractures. MATERIALS AND METHODS : This prospective study included 15 cases of patients with mean age of 30 years ( Age range 20 to 40 yr who sustained high velocity posterior tibial plateau fracture - subluxations with or without associated Bicondylar fractures ( Duparc, revised classification, Group – V: Postero - medial fracture and its associations. Surgical management includes by direct, dorsal approach and stabilisation with buttress plating and or also postero medial and or antero lateral approach as needed. The patients were followed up at six week, three month, six month and one year postoperatively and assessed using Oxford Knee Score and Lyshom Score. RESULTS:The mean OKS score was 40 (range 36 to 44 at the end of one year. The main clinical measures were early post - operative non weight bearing ROM, post - operative complication & functional outcome. The time to full weight bearing, t he rate of post - operative complications & functional outcome was significantly better as evident by over 94 % showing good to excellent OKS and Lyshom scores. CONCLUSION : Fractures of the postero - medial tibial plateau are challenging to treat, owing to the ir complexity and unfamiliar surgical approach. Several recent anatomic and biomechanical studies have shown that a locked plate placed from the lateral side of the proximal tibia does not capture and stabilise a typical posteromedial fragment. A direct po sterior (Medial Gastrocnemius or posterior medial approach for these unstable posterior medial tibial plateau subluxations (which are otherwise irreducible by conventional approaches and antiglide plate are usually needed to reduce the fractures anatomic ally, achieving absolute stability and mobilise early NWB, ROM of the knee joint to optimize the functional outcomes and minimise the complications, without the need for revision surgery
Scale interactions in a mixing layer – the role of the large-scale gradients
Fiscaletti, D.
2016-02-15
© 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.
Roberts, C. W.; Smith, D. L.
1970-01-01
Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
International Nuclear Information System (INIS)
Zhou, J. F.; Shao, C. L.; Gu, B. Q.
2016-01-01
Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient
Full waveform inversion based on the optimized gradient and its spectral implementation
Wu, Zedong
2014-01-01
Full waveform inversion (FWI) despite it\\'s potential suffers from the ability to converge to the desired solution due to the high nonlinearity of the objective function at conventional seismic frequencies. Even if frequencies necessary for the convergence are available, the high number of iterations required to approach a solution renders FWI as very expensive (especially in 3D). A spectral implementation in which the wavefields are extrapolated and gradients are calculated in the wavenumber domain allows for a cleaner more efficient implementation (no finite difference dispersion errors). In addition, we use not only an up and down going wavefield decomposition of the gradient to access the smooth background update, but also a right and left propagation decomposition to allow us to do that for large dips. To insure that the extracted smooth component of the gradient has the right decent direction, we solve an optimization problem to search for the smoothest component that provides a negative (decent) gradient. Application to the Marmousi model shows that this approach works well with linear increasing initial velocity model and data with frequencies above 2Hz.
Intracellular chemical gradients: morphing principle in bacteria
Directory of Open Access Journals (Sweden)
Endres Robert G
2012-09-01
Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.
Zhang, Mingji; Or, Siu Wing
2017-10-25
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.
A new rf structure for intermediate-velocity particles
International Nuclear Information System (INIS)
Billen, J.H.; Krawczyk, F.L.; Wood, R.L.; Young, L.M.
1994-01-01
This paper describes an rf structure with high shunt impedance and good field stability for particle velocities o.1 ≤ β ≤ 0.5. Traditionally, the drift-tube linac (DTL) has been the structure of choice for this velocity range. The new structure, called a coupled-cavity drift-tube linac (CCDTL), combines features of the Alvarez DTL and the π-mode coupled-cavity linac (CCL). Each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between gaps is γλ. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a π/2 structure mode so the coupling cavities are nominally unexcited. We will discuss 2-D and 3-D electromagnetic code calculations, and some initial measurements on a low-power model of a CCDTL. We will compare shunt impedance calculations for DTL, CCL, and CCDTL structures. The CCDTL has potential application for a wide range of ion linacs. For example, high-intensity proton linacs could use the CCDTL instead of a DTL up to an energy of about 200 MeV. Another example is a stand-alone, low-duty, low-current, very high gradient, proton, cancer therapy machine. The advantage for this application would be a saving in the cost of the machine because the linac would be short
Gradient augmented level set method for phase change simulations
Anumolu, Lakshman; Trujillo, Mario F.
2018-01-01
A numerical method for the simulation of two-phase flow with phase change based on the Gradient-Augmented-Level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, Γ (t), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for μ), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at Γ (t) and are consistent with their analytical expression, i.e. no local averaging is applied. Treatment of the jump in velocity and pressure at Γ (t) is achieved using the Ghost Fluid Method. The solution of the energy equation employs the sub-grid knowledge of Γ (t) to discretize the temperature Laplacian using second-order one-sided differences, i.e. the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.
A parametric study of adverse pressure gradient turbulent boundary layers
International Nuclear Information System (INIS)
Monty, J.P.; Harun, Z.; Marusic, I.
2011-01-01
There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.
Continuous spray forming of functionally gradient materials
International Nuclear Information System (INIS)
McKechnie, T.N.; Richardson, E.H.
1995-01-01
Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers
Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity
Zhao, Zhongxiang
2017-12-01
The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Evolution of a Planar Wake in Adverse Pressure Gradient
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
Detonation velocity in poorly mixed gas mixtures
Prokhorov, E. S.
2017-10-01
The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.
Seismic velocity and attenuation structures at the top 400 km of the inner core
Yu, W.; Wen, L.; Niu, F.
2002-12-01
Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient
Directory of Open Access Journals (Sweden)
Chiu Choi
2017-02-01
Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.
The critical ionization velocity
International Nuclear Information System (INIS)
Raadu, M.A.
1980-06-01
The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)
1988-01-01
A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.
Stability of boundary layer flow based on energy gradient theory
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Wichert, William R A; Han, Donghoon; Bohn, Paul W
2016-03-07
The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.
International Nuclear Information System (INIS)
Salat, A.
1990-01-01
In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Planar isotropy of passive scalar turbulent mixing with a mean perpendicular gradient.
Danaila, L; Dusek, J; Le Gal, P; Anselmet, F; Brun, C; Pumir, A
1999-08-01
A recently proposed evolution equation [Vaienti et al., Physica D 85, 405 (1994)] for the probability density functions (PDF's) of turbulent passive scalar increments obtained under the assumptions of fully three-dimensional homogeneity and isotropy is submitted to validation using direct numerical simulation (DNS) results of the mixing of a passive scalar with a nonzero mean gradient by a homogeneous and isotropic turbulent velocity field. It is shown that this approach leads to a quantitatively correct balance between the different terms of the equation, in a plane perpendicular to the mean gradient, at small scales and at large Péclet number. A weaker assumption of homogeneity and isotropy restricted to the plane normal to the mean gradient is then considered to derive an equation describing the evolution of the PDF's as a function of the spatial scale and the scalar increments. A very good agreement between the theory and the DNS data is obtained at all scales. As a particular case of the theory, we derive a generalized form for the well-known Yaglom equation (the isotropic relation between the second-order moments for temperature increments and the third-order velocity-temperature mixed moments). This approach allows us to determine quantitatively how the integral scale properties influence the properties of mixing throughout the whole range of scales. In the simple configuration considered here, the PDF's of the scalar increments perpendicular to the mean gradient can be theoretically described once the sources of inhomogeneity and anisotropy at large scales are correctly taken into account.
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong; Alkhalifah, Tariq Ali
2016-01-01
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong
2016-03-28
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
Study of flow instability in a centrifugal fan based on energy gradient theory
International Nuclear Information System (INIS)
Xiao, Meina; Dou, Hua-Shu; Ma, Xiaoyang; Xiao, Qing; Chen, Yongning; He, Haijiang; Ye, Xinxue
2016-01-01
Flow instability in a centrifugal fan was studied using energy gradient theory. Numerical simulation was performed for the three dimensional turbulent flow field in a centrifugal fan. The flow is governed by the three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-ε turbulent model. The finite volume method was used to discretize the governing equations and the Semiimplicit method for pressure linked equation (SIMPLE) algorithm is employed to iterate the system of the equations. The interior flow field in the centrifugal fan and the distribution of the energy gradient function K are obtained at different flow rates. According to the energy gradient method, the area with larger value of K is the place where the flow loses stability easier. The results show that instability is easier to generate in the regions of impeller outlet and volute tongue. The air flow near the hub is more stable than that near the shroud. That is due to the influences of variations of the velocity and the inlet angle along the axial direction. With the decrease of the flow rate, instability zone in a blade channel moves to the impeller inlet from the outlet and the unstable regions in different channels develop in opposite direction to the rotation of impeller
Thermal-gradient migration of brine inclusions in salt crystals
International Nuclear Information System (INIS)
Yagnik, S.K.
1982-09-01
It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables
Thermal gradient migration of brine inclusions in salt crystals
International Nuclear Information System (INIS)
Yagnik, S.K.
1982-01-01
Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed
Conjugate gradient algorithms using multiple recursions
Energy Technology Data Exchange (ETDEWEB)
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
Rumsey, Ian C.; Walker, John T.
2016-06-01
The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. Flux
Gradient computation for VTI acoustic wavefield tomography
Li, Vladimir
2016-09-06
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.
METALLICITY GRADIENTS OF THICK DISK DWARF STARS
Energy Technology Data Exchange (ETDEWEB)
Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2012-12-01
We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.
Spectrum of resistivity gradient driven turbulence
International Nuclear Information System (INIS)
Terry, P.W.; Diamond, P.H.; Shaing, K.C.; Garcia, L.; Carreras, B.A.
1986-01-01
The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi 2 )/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs
Energy Transfer Using Gradient Index Metamaterial
Directory of Open Access Journals (Sweden)
Boopalan Ganapathy
2018-01-01
Full Text Available The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.
Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet
Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.
2012-10-01
Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.
Stability of Gradient Field Corrections for Quantitative Diffusion MRI
Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-01-01
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng
2012-05-11
Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng; Qian, Tiezheng
2012-01-01
Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the
Analytical approximations of diving-wave imaging in constant-gradient medium
Stovas, Alexey; Alkhalifah, Tariq Ali
2014-01-01
behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena
Recent TAURUS results on Hα velocities in M83
International Nuclear Information System (INIS)
Allen, R.J.; Atherton, P.D.; Oosterloo, T.A.
1983-01-01
Preliminary Hα observations with the TAURUS imaging spectrometer confirm a pattern of systematic radial motions in a section of spiral arm in M83. The velocity gradients are not consistent with those predicted for the neutral gas. Non-circular motions have also been discovered in the central regions of the galaxy. (Auth.)
Velocity and turbulence at a wing-wall abutment
Indian Academy of Sciences (India)
Experimental investigation of the 3D turbulent ﬂow ﬁeld around a 45° wing-wall abutment, resting on a rough rigid bed, is reported. The experiment was conducted ... The shear stresses acting on the bed around the abutment are estimated from the Reynolds stresses and velocity gradients. The data presented in this study ...
Modified circular velocity law
Djeghloul, Nazim
2018-05-01
A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.
International Nuclear Information System (INIS)
Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique
2008-01-01
Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction
Measurement of sound velocity profiles in fluids for process monitoring
International Nuclear Information System (INIS)
Wolf, M; Kühnicke, E; Lenz, M; Bock, M
2012-01-01
In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Pressure gradients fail to predict diffusio-osmosis
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
The Prescribed Velocity Method
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...
Multidisc neutron velocity selector
International Nuclear Information System (INIS)
Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.
1987-12-01
The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs
Uncertainty assessment of 3D instantaneous velocity model from stack velocities
Emanuele Maesano, Francesco; D'Ambrogi, Chiara
2015-04-01
3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the
Directory of Open Access Journals (Sweden)
Denny Milakara
2017-01-01
Full Text Available In many cerebral grey matter structures including the neocortex, spreading depolarization (SD is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.
DEFF Research Database (Denmark)
Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie
2015-01-01
Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...
Imaging chemical reactions - 3D velocity mapping
Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.
Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.
2012-05-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
Energy Technology Data Exchange (ETDEWEB)
Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2012-05-15
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
International Nuclear Information System (INIS)
Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.
2012-01-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
Scattering angle base filtering of the inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.
Theory of ion-temperature-gradient-driven turbulence in tokamaks
International Nuclear Information System (INIS)
Lee, G.S.; Diamond, P.H.
1986-01-01
An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs
Role of spatial averaging in multicellular gradient sensing.
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-05-20
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Jupiter's evolution with primordial composition gradients
Vazan, Allona; Helled, Ravit; Guillot, Tristan
2018-02-01
Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org
Gradient algorithm applied to laboratory quantum control
International Nuclear Information System (INIS)
Roslund, Jonathan; Rabitz, Herschel
2009-01-01
The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.
Self-induced temperature gradients in Brownian dynamics
Devine, Jack; Jack, M. W.
2017-12-01
Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
Neoclassical rotation velocities in multispecies plasmas
International Nuclear Information System (INIS)
Houlberg, W.A.; Hirshman, S.P.; Shaing, K.C.
1996-01-01
We examine the relationships between the poloidal, toroidal and parallel rotation velocities for typical plasma conditions in existing tokamak experiments. The radial force balance, neoclassical solution to the poloidal flow from the parallel force balance, and anomalous toroidal rotation axe included. A full multispecies formulation of the neoclassical transport theory is implemented in the NCLASS code (which includes arbitrary axisymmetric geometries and plasma collisionalities) to determine the poloidal rotation velocities. Comparisons are made with analytic relationships derived from a single impurity formulation of the problem. The roles of the radial electric field and species density and pressure gradients are evaluated. The determination of the radial electric field using the NCLASS solution for poloidal rotation and a local measurement of the toroidal rotation in conjunction with measured plasma profiles is discussed; it has been used in analysis of TFTR enhanced reverse shear plasmas. The ordering of banana orbit size small relative to local minor radius and gradients (as incorporated into initial versions of NCLASS) are examined for typical negative shear plasmas. We show the degree to which these constraints axe violated and demonstrate that finite orbit corrections axe required for better determination of the bootstrap current, particle fluxes and ion heat fluxes, i.e., the conditions r much-lt Δ b much-lt r n , r T , r E are significantly violated. Progress in relaxing these constraints is discussed
Superconducting RF for Low-Velocity and Intermediate-Velocity Beams
Grimm, Terry L
2005-01-01
Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...
Atmospheric kinematics of high velocity long period variables
International Nuclear Information System (INIS)
Willson, L.A.
1982-01-01
Radial velocities of atomic absorption lines of three long period variables, RT Cyg, Z Oph and S Car, have been analysed in order to understand velocity gradients and discontinuities in their atmospheres. Phase coverage is from five days before maximum to 73 days after maximum for RT Cyg, from 17 days before to 44 days after maximum for Z Oph, and at 9 days before maximum for S Car. On a few spectrograms double lines were seen. All spectrograms were analysed by a four-parameter regression programme to yield the dependence of the radial velocity on the excitation potential, first ionization potential, wavelength and line strength, as indicators of the depth of line formation. The data were analysed to yield the velocity discontinuity across shock waves and velocity gradients between shock waves. Near maximum light the radial velocities cannot be understood by the presence of one shock only but rather require two shocks. The lower shock becomes apparent at the longer wavelengths. Consistent parameters are obtained if these stars are fundamental mode pulsators with total masses in the range of 0.5 to 1.0 solar mass and effective radii in the range of 0.85 to 1.5 x 10 13 cm. (author)
Directory of Open Access Journals (Sweden)
Wang Kuangfei
2010-02-01
Full Text Available The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model. The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth. For dendritic structures formed under a high thermal gradient, the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition. Furthermore, it has been observed that, with increasing pulling velocity, there exists a cell/dendrite transition region consisting of cells and dendrites, which varies with the thermal gradient in a contradicting way, i.e. increase of the thermal gradient leading to the decrease of the range of the transition region. The simulations agree reasonably well with experiment results.
Crosswind Shear Gradient Affect on Wake Vortices
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Role of polarized G protein signaling in tracking pheromone gradients
McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.
2015-01-01
Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960
Reflection and absorption of ion-acoustic waves in a plasma density gradient
International Nuclear Information System (INIS)
Ishihara, O.
1977-01-01
Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma
Instrument for measuring flow velocities
International Nuclear Information System (INIS)
Griffo, J.
1977-01-01
The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de
The Microflown, an acoustic particle velocity sensor
de Bree, H.E.
2003-01-01
The Microflown is an acoustic sensor directly measuring particle velocity instead of sound pressure, which is usually measured by conventional microphones. Since its invention in 1994 it is mostly used for measurement purposes (broadband1D and 3D-sound intensity measurement and acoustic impedance).
International Nuclear Information System (INIS)
Bakosi, Jozsef; Ristorcelli, Raymond J.
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Saito, S.; Yoshihara, T.
2017-08-01
Associated with plasma bubbles, extreme spatial gradients in ionospheric total electron content (TEC) were observed on 8 April 2008 at Ishigaki (24.3°N, 124.2°E, +19.6° magnetic latitude), Japan. The largest gradient was 3.38 TECU km-1 (total electron content unit, 1 TECU = 1016 el m-2), which is equivalent to an ionospheric delay gradient of 540 mm km-1 at the GPS L1 frequency (1.57542 GHz). This value is confirmed by using multiple estimating methods. The observed value exceeds the maximum ionospheric gradient that has ever been observed (412 mm km-1 or 2.59 TECU km-1) to be associated with a severe magnetic storm. It also exceeds the assumed maximum value (500 mm km-1 or 3.08 TECU km-1) which was used to validate the draft international standard for Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS) to support Category II/III approaches and landings. The steepest part of this extreme gradient had a scale size of 5.3 km, and the front-normal velocities were estimated to be 71 m s-1 with a wavefront-normal direction of east-northeastward. The total width of the transition region from outside to inside the plasma bubble was estimated to be 35.3 km. The gradient of relatively small spatial scale size may fall between an aircraft and a GBAS ground subsystem and may be undetectable by both aircraft and ground.
Anisotropy of dark matter velocity distribution
Nagao, Keiko I.
2018-01-01
Direct detection of dark matter with directional sensitivity has the potential to discriminate the dark matter velocity distribution. Especially, it will be suitable to discriminate isotropic distribution from anisotropic one. Analyzing data produced with Monte-Carlo simulation, required conditions for the discrimination is estimated. If energy threshold of detector is optimized, $O(10^3-10^4)$ event number is required to discriminate the anisotropy.
Near surface velocity and Q S structure of the Quaternary sediment in Bohai basin, China
Chong, Jiajun; Ni, Sidao
2009-10-01
Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation ( Q P and Q S) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 M W4.9 Wen’an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average ν P and ν S of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ν P/ ν S ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain Q S and the near surface velocity structure. Our modeling indicates that Q S is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (˜10), but consistent with Q S modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.
Velocity and Q Structure of the Quaternary Sediment in Bohai Basin, China
Chong, J.; Luo, Y.; Ni, S.; Chen, Y.
2008-12-01
Heavily populated by Beijing and Tianjin cities, Bohai Basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. There have been some studies about three dimensional structure of the lithosphere in this region; however the attenuation (Qp and Qs) of the surfacial quaternary sediment has not been studied at natural seismic frequency (1-10HZ), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and Q attenuation of the surfacial structure (0-500m). We found that there are two pulses well separated with simple waveforms while analyzing borehole seismic records from the 2006 Mw4.9 WenAn earthquake sequence. Then we performed waveform modeling with Generalized Ray Theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average Vp and Vs of the top 300m in this region are about 1.83km/s and 0.42km/s while Vp/Vs falls in a high value of 4.4. We also modeled surface reflected wave with Propagating Matrix method to study the value of Qs and the surfacial velocity structure. Our modeling indicates that Qs should be larger than 30, even up to 100, this is quite larger than the typically assumed extremely low Q (~=10) found by Hauksson et al (Hauksson et al, 1987; Blakeslee and Malin, 1991) but much similar to that of Langston (2002). Also, the velocity gradient just beneath the free surface (0-50m) is very large and velocity increases slowly at larger depth. Our modeling demonstrates the value of borehole seismic records in resolving shallow velocity and attenuation structure, and hence their significance in earthquake hazard simulation.
Velocity navigator for motion compensated thermometry.
Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael
2012-02-01
Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.
A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)
2017-09-05
velocity, preventing the use of gradient-based optimization routines. The typical approach to solving this problem is to perform the inverse many times...is dependent on the wave velocity. However, the wave velocity is unknown at this point, which means p and v must be determined simultaneously . One way...defined as: Z=−iBA−1 (11) where A is the matrix formed by combining the displacement vectors, a into a single matrix. The inverse is guaranteed to exist
Strain gradient effects on steady state crack growth in rate-sensitive materials
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.
2012-01-01
, a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling.......Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover...
Geotail observations of FTE velocities
Directory of Open Access Journals (Sweden)
G. I. Korotova
2009-01-01
Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.
ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.
2018-02-01
Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.
Anisotropic gradients in the upper mantle
International Nuclear Information System (INIS)
Garmany, J.
1981-01-01
Pn amplitudes in some widely spaced sets of orthogonal marine refraction lines on young oceanic crust are greater in the fast direction than in the slow direction. This is inconsistent with the predicted amplitude behavior for simple head waves, but can be explained by an increase in anisotropy with depth. It appears that these gradients are due to increasing olivine crystal orientation, although changes in the relative abundance of two anisotropic minerals without variable tectonization could also account for the observations. Depth variation of tectonization most probably indicates very high temperature gradients at the Moho. This would imply a substantial amount of convective heat transport in the whole oceanic crust near mid-ocean rises
The species velocity of trees in Alaska
Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.
2017-12-01
Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Fundamental limits to position determination by concentration gradients.
Directory of Open Access Journals (Sweden)
Filipe Tostevin
2007-04-01
Full Text Available Position determination in biological systems is often achieved through protein concentration gradients. Measuring the local concentration of such a protein with a spatially varying distribution allows the measurement of position within the system. For these systems to work effectively, position determination must be robust to noise. Here, we calculate fundamental limits to the precision of position determination by concentration gradients due to unavoidable biochemical noise perturbing the gradients. We focus on gradient proteins with first-order reaction kinetics. Systems of this type have been experimentally characterised in both developmental and cell biology settings. For a single gradient we show that, through time-averaging, great precision potentially can be achieved even with very low protein copy numbers. As a second example, we investigate the ability of a system with oppositely directed gradients to find its centre. With this mechanism, positional precision close to the centre improves more slowly with increasing averaging time, and so longer averaging times or higher copy numbers are required for high precision. For both single and double gradients, we demonstrate the existence of optimal length scales for the gradients for which precision is maximized, as well as analyze how precision depends on the size of the concentration-measuring apparatus. These results provide fundamental constraints on the positional precision supplied by concentration gradients in various contexts, including both in developmental biology and also within a single cell.
International Nuclear Information System (INIS)
Bentaleb, Y.; Leschziner, M.A.
2013-01-01
Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows
Sound field separation with a double layer velocity transducer array (L)
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn
2011-01-01
of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...
Lee, Sujin; Hong, Juhee; Lee, Junghoon
2016-02-28
Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment.
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients
Energy Technology Data Exchange (ETDEWEB)
Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)
2013-10-15
The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.
Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients
International Nuclear Information System (INIS)
Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul
2013-01-01
The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced
Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer
Sekhar, Susheel; Mansour, Nagi N.
2015-01-01
A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.
Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I
2017-01-01
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Considerations of ion temperature gradient driven turbulence
International Nuclear Information System (INIS)
Cowley, S.C.; Kulsrud, R.M.
1991-02-01
The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs
International Nuclear Information System (INIS)
Kay, S.E.; Dougherty, M.E.; Pelton, J.R.
1994-01-01
Seismic velocity has been shown in previous engineering studies to be related to the fracture characteristics and rippability of rock outcrops. However, common methods of measuring seismic velocity in outcrops do not take into account the many possible travel paths for wave propagation and the fact that velocity zones may exist within an outcrop. Presented here are the results of using raytracing inversion of first-arrival travel-time data to map P-velocity structure in basalt outcrops, and also the investigation of the relationship of the mapped velocities to observed surface fractures and hand-sample P-velocities. It is shown that basalt outcrops commonly consist of an irregular near-surface low-velocity zone underlain by higher velocity material; that velocity gradients can exist in outcrops; that hand-sample velocity measurements are typically higher than outcrop-scale measurements; and that the characteristics of surface fractures are empirically related to near-surface P-velocity. All of these findings are relevant to the estimated rippability of rock in geotechnical engineering. The data for this study are derived from eleven sites on basalt outcrops of the Troodos Ophiolite in Cyprus. The basalt types include pillow basalts, massive flows, and a pillow breccia. A commonly available raytracing inversion program (RAYINVR) was used to produce a velocity profile of each outcrop. Different velocity zones were detailed by inverting observed travel times to produce a model of outcrop velocity structure which produces rippability profiles for each outcrop. 16 refs., 9 figs
Energy Technology Data Exchange (ETDEWEB)
Ledo P, L.M.; Guibert G, R. [CEADEN, Calle 30 No. 502 e/5 y 7 Ave. Miramar, Ciudad La Habana (Cuba); Dominguez L, O.; Alonso A, D.; Ramos V, E.O. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, 11300 La Habana, A.P. 6195 C.P. 10600 (Cuba)]. e-mail: ledo@ceaden.edu.cu
2006-07-01
The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)
International Nuclear Information System (INIS)
Gao Ming Qing.
1997-02-01
There is a free surface at the upper plenum in a reactor vessel of LMFBR. The free surface has spatial gradient caused by the internal coolant flow. This is a disadvantageous factor to engineering from the view point of gas entrainment into coolant. To eliminate the free surface gradients, ring plates about 20 cm wide are fitted at about 1 meter under the free surface. They interfere fluid flow, and decrease the component velocity in vertical direction. To investigate the efficiency of the ring plates, analyses with the AQUA-VOF code were carried out. For contrast, three conditions were given: Case-1: Without ring plates. Case-2: Ring plates, fitted at 1.125 m under the free surface. Case-3: Ring plates, fitted at 1.5 m under the free surface. The results shown that the ring plates have a sufficiently high potential to eliminate the free surface gradients due to disperse the momentum along reactor vessel axis to radial direction. In the calculations with ring plate (Cases-2 and -3), the maximum free surface height differences and the maximum gradients of free surface were decreased to less than 15% and 64% compared with the case without ring plates, respectively. (author)
Propagation Velocity of Solid Earth Tides
Pathak, S.
2017-12-01
One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.
Effects of Spatial Gradients on Electron Runaway Acceleration
MacNeice, Peter; Ljepojevic, N. N.
1996-01-01
The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.
Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor
Pili, Unofre; Violanda, Renante
2018-01-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…
New technology - demonstration of a vector velocity technique
DEFF Research Database (Denmark)
Møller Hansen, Peter; Pedersen, Mads M; Hansen, Kristoffer L
2011-01-01
With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...
Governing equations for a seriated continuum: an unequal velocity model for two-phase flow
International Nuclear Information System (INIS)
Solbrig, C.W.; Hughes, E.D.
1975-05-01
The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Purification of Giardia muris cysts by velocity sedimentation.
Sauch, J F
1984-01-01
Giardia muris cysts were separated from fecal contaminants in primary isolates by unit gravity velocity sedimentation. Crude isolates obtained by centrifugation over 1.0 M sucrose were overlaid onto a Percoll density gradient, 1.01 to 1.03 g/ml. G. muris cysts were well separated from faster-sedimenting fecal debris and slower-sedimenting Spironucleus muris and bacteria in 1.5 h.
Purification of Giardia muris cysts by velocity sedimentation.
Sauch, J F
1984-01-01
Giardia muris cysts were separated from fecal contaminants in primary isolates by unit gravity velocity sedimentation. Crude isolates obtained by centrifugation over 1.0 M sucrose were overlaid onto a Percoll density gradient, 1.01 to 1.03 g/ml. G. muris cysts were well separated from faster-sedimenting fecal debris and slower-sedimenting Spironucleus muris and bacteria in 1.5 h. PMID:6486790
Evaluation of Maryland abutment scour equation through selected threshold velocity methods
Benedict, S.T.
2010-01-01
The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
Electrohydromechanical analysis based on conductivity gradient in microchannel
International Nuclear Information System (INIS)
Jiang Hongyuan; Ren Yukun; Ao Hongrui; Ramos, Antonio
2008-01-01
Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel. (classical areas of phenomenology)
Tables of the velocity of sound in sea water
Bark, L S; Meister, N A
1964-01-01
Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s
Substrate-Bound Protein Gradients to Study Haptotaxis
Directory of Open Access Journals (Sweden)
Sebastien G. Ricoult
2015-03-01
Full Text Available Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact-printing, light patterning and 3D fabrication to pattern substrate-bound protein gradients in vitro, and focus on their application to study axon guidance. The range of methods to create substrate-bound gradients discussed herein make possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.
Development of an optimal velocity selection method with velocity obstacle
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-08-15
The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.
Algorithm for image retrieval based on edge gradient orientation statistical code.
Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang
2014-01-01
Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.
Quasi Gradient Projection Algorithm for Sparse Reconstruction in Compressed Sensing
Directory of Open Access Journals (Sweden)
Xin Meng
2014-02-01
Full Text Available Compressed sensing is a novel signal sampling theory under the condition that the signal is sparse or compressible. The existing recovery algorithms based on the gradient projection can either need prior knowledge or recovery the signal poorly. In this paper, a new algorithm based on gradient projection is proposed, which is referred as Quasi Gradient Projection. The algorithm presented quasi gradient direction and two step sizes schemes along this direction. The algorithm doesn’t need any prior knowledge of the original signal. Simulation results demonstrate that the presented algorithm cans recovery the signal more correctly than GPSR which also don’t need prior knowledge. Meanwhile, the algorithm has a lower computation complexity.
A flexoelectric theory with rotation gradient effects for elastic dielectrics
International Nuclear Information System (INIS)
Anqing, Li; Shenjie, Zhou; Lu, Qi; Xi, Chen
2016-01-01
In this paper, a general flexoelectric theory in the framework of couple stress theory is proposed for isotropic dielectrics, in which the rotation gradient and the polarization gradient are involved to represent the nonlocal mechanical and electrical effects, respectively. The present flexoelectric theory shows only the anti-symmetric part of rotation gradient can induce polarization, while the symmetric part of rotation gradient cannot induce polarization in isotropic dielectrics. The electrostatic stress is obtained naturally in the governing equations and boundary conditions in terms of the variational principle, which is composed of two parts: the Maxwell stress corresponding to the polarization and the remainder relating to the polarization gradient. The current theory is able to account for the effects of size, direct and inverse flexoelectricities, and electrostatic force. To illustrate this theory, a simple application of Bernoulli–Euler cantilever beam is discussed. The numerical results demonstrate neither the higher-order constant l 1 nor the higher-order constant l 2 associated with the symmetric and anti-symmetric parts of rotation gradient, respectively, can be ignored in the flexoelectric theory. In addition, the induced deflection increases as the increase of the flexoelectric coefficient. The polarization is no longer constant and the potential is no longer linear along the thickness direction of beam because of the influence of polarization gradient. (paper)
Social gradients in periodontal diseases among adolescents.
López, Rodrigo; Fernández, Olaya; Baelum, Vibeke
2006-06-01
To investigate the association between socioeconomic position and periodontal diseases among adolescents. Data were obtained from 9203 Chilean high school students. Clinical examinations included direct recordings of clinical attachment level and the necrotizing ulcerative gingival lesions. Students answered a questionnaire on various dimensions of socioeconomic position. Seven periodontal outcomes were analyzed. Logistic regression analyses were used to identify socioeconomic variables associated with the periodontal outcomes. The occurrence of all periodontal outcomes investigated followed social gradients, and paternal income and parental education were the most influential variables. The study demonstrates the existence of significant social gradients in periodontal diseases already among adolescents. This is worrying, and indicates a new potential for further insight into the mechanisms of periodontal disease causation.
Alternating gradient synchrotron
International Nuclear Information System (INIS)
Lowenstein, D.I.
1984-01-01
With the start of a research and development effort directed towards the Superconducting Super Collider (SSC), it is essential that US industry become involved as soon as possible. For that reason, I describe what a conventional accelerator complex is like and therefore what the first stages of the SSC would entail
Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv
2018-05-01
We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.
Waveform inversion of lateral velocity variation from wavefield source location perturbation
Choi, Yun Seok
2013-09-22
It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.
Refining geoid and vertical gradient of gravity anomaly
Directory of Open Access Journals (Sweden)
Zhang Chijun
2011-11-01
Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.
MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT
Directory of Open Access Journals (Sweden)
ZURAIDAH FITRIAH
2017-10-01
Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.
Velocity Dispersions Across Bulge Types
International Nuclear Information System (INIS)
Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David
2010-01-01
We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Gradient coil system for nuclear magnetic resonance apparatus
International Nuclear Information System (INIS)
Frese, G.; Siebold, H.
1984-01-01
A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry
Block-conjugate-gradient method
International Nuclear Information System (INIS)
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
On linear relationship between shock velocity and particle velocity
International Nuclear Information System (INIS)
Dandache, H.
1986-11-01
We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs
In Vivo Validation of a Blood Vector Velocity Estimator with MR Angiography
DEFF Research Database (Denmark)
Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten
2009-01-01
Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound beam direction. This implies that a Doppler angle under examination close to 90° results in unreliable information about the true blood direction and blood velocity. The novel method...... indicate that reliable vector velocity estimates can be obtained in vivo using the presented angle-independent 2-D vector velocity method. The TO method can be a useful alternative to conventional Doppler systems by avoiding the angle artifact, thus giving quantitative velocity information....
Measurements of phoretic velocities of aerosol particles in microgravity conditions
Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.
2006-11-01
Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.
Group Velocity for Leaky Waves
Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo
2017-11-01
In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.
A novel velocity estimator using multiple frequency carriers
DEFF Research Database (Denmark)
Zhang, Zhuo; Jakobsson, Andreas; Nikolov, Svetoslav
2004-01-01
. In this paper, we propose a nonlinear least squares (NLS) estimator. Typically, NLS estimators are computationally cumbersome, in general requiring the minimization of a multidimensional and often multimodal cost function. Here, by noting that the unknown velocity will result in a common known frequency......Most modern ultrasound scanners use the so-called pulsed-wave Doppler technique to estimate the blood velocities. Among the narrowband-based methods, the autocorrelation estimator and the Fourier-based method are the most commonly used approaches. Due to the low level of the blood echo, the signal......-to-noise ratio is low, and some averaging in depth is applied to improve the estimate. Further, due to velocity gradients in space and time, the spectrum may get smeared. An alternative approach is to use a pulse with multiple frequency carriers, and do some form of averaging in the frequency domain. However...
Coherence measures in automatic time-migration velocity analysis
International Nuclear Information System (INIS)
Maciel, Jonathas S; Costa, Jessé C; Schleicher, Jörg
2012-01-01
Time-migration velocity analysis can be carried out automatically by evaluating the coherence of migrated seismic events in common-image gathers (CIGs). The performance of gradient methods for automatic time-migration velocity analysis depends on the coherence measures used as the objective function. We compare the results of four different coherence measures, being conventional semblance, differential semblance, an extended differential semblance using differences of more distant image traces and the product of the latter with conventional semblance. In our numerical experiments, the objective functions based on conventional semblance and on the product of conventional semblance with extended differential semblance provided the best velocity models, as evaluated by the flatness of the resulting CIGs. The method can be easily extended to anisotropic media. (paper)
Superconducting accelerating structures for very low velocity ion beams
Directory of Open Access Journals (Sweden)
J. Xu
2008-03-01
Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006
Superconducting accelerating structures for very low velocity ion beams
Energy Technology Data Exchange (ETDEWEB)
Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab
2008-01-01
This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.
The Potential of Tropospheric Gradients for Regional Precipitation Prediction
Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert
2017-04-01
Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement
Sodium Velocity Maps on Mercury
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
Quantifying seasonal velocity at Khumbu Glacier, Nepal
Miles, E.; Quincey, D. J.; Miles, K.; Hubbard, B. P.; Rowan, A. V.
2017-12-01
While the low-gradient debris-covered tongues of many Himalayan glaciers exhibit low surface velocities, quantifying ice flow and its variation through time remains a key challenge for studies aimed at determining the long-term evolution of these glaciers. Recent work has suggested that glaciers in the Everest region of Nepal may show seasonal variability in surface velocity, with ice flow peaking during the summer as monsoon precipitation provides hydrological inputs and thus drives changes in subglacial drainage efficiency. However, satellite and aerial observations of glacier velocity during the monsoon are greatly limited due to cloud cover. Those that do exist do not span the period over which the most dynamic changes occur, and consequently short-term (i.e. daily) changes in flow, as well as the evolution of ice dynamics through the monsoon period, remain poorly understood. In this study, we combine field and remote (satellite image) observations to create a multi-temporal, 3D synthesis of ice deformation rates at Khumbu Glacier, Nepal, focused on the 2017 monsoon period. We first determine net annual and seasonal surface displacements for the whole glacier based on Landsat-8 (OLI) panchromatic data (15m) processed with ImGRAFT. We integrate inclinometer observations from three boreholes drilled by the EverDrill project to determine cumulative deformation at depth, providing a 3D perspective and enabling us to assess the role of basal sliding at each site. We additionally analyze high-frequency on-glacier L1 GNSS data from three sites to characterize variability within surface deformation at sub-seasonal timescales. Finally, each dataset is validated against repeat-dGPS observations at gridded points in the vicinity of the boreholes and GNSS dataloggers. These datasets complement one another to infer thermal regime across the debris-covered ablation area of the glacier, and emphasize the seasonal and spatial variability of ice deformation for glaciers in High
Nonlocal linear theory of the gradient drift instability in the equatorial electrojet
International Nuclear Information System (INIS)
Ronchi, C.; Similon, P.L.; Sudan, R.N.
1989-01-01
The linear global eigenmodes of the gradient drift instability in the daytime equatorial electrojet are investigated. A main feature of the analysis is the inclusion of ion-neutral and electron-neutral collision frequencies dependent on altitude. It is found that the basic characteristics and localization of the unstable modes are determined mainly by the profiles of the Pedersen and Hall mobilities, which are derived from the Cowling conductivity model and experimental data. The equilibrium density profile is parabolic, which is fairly representative of the actual measurements. The unstable modes are sensitive not to the details of this profile, but only to the average value of the gradient. The results are obtained from a direct numerical integration of nonlocal linearized equations. They are further analyzed through an eikonal analysis, which provides both an interpretation of the transient modes observed by Fu et al. (1986) and some additional physics insight into the linear evolution of the global unstable modes. Finally, it is shown that the previously reported short-wavelength stabilization effect due to velocity shear may be overshadowed by the presence of regions in which the transient modes can develop into absolute instabilities. copyright American Geophysical Union 1989
International Nuclear Information System (INIS)
Chang, Qiang; Zuo, Li
2013-01-01
Spatial gradients of surrounding chemoattractants are the key factors in determining the directionality of eukaryotic cell movement. Thus, it is important for cells to accurately measure the spatial gradients of surrounding chemoattractants. Here, we study the precision of sensing the spatial gradients of multiple chemoattractants using cooperative receptor clusters. Cooperative receptors on cells are modeled as an Ising chain of Monod–Wyman–Changeux clusters subject to multiple chemical-gradient fields to study the physical limits of multiple chemoattractants spatial gradients sensing. We found that eukaryotic cells cannot sense each chemoattractant gradient individually. Instead, cells can only sense a weighted sum of surrounding chemical gradients. Moreover, the precision of sensing one chemical gradient is signicantly affected by coexisting chemoattractant concentrations. These findings can provide a further insight into the role of chemoattractants in immune response and help develop novel treatments for inflammatory diseases. (paper)
The effect of water uptake gradient in membrane electrode assembly on fuel cell performance
Energy Technology Data Exchange (ETDEWEB)
Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)
2011-02-15
Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.
Spatial gradient tuning in metamaterials
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
Fabrication of Ni-Al/diamond composite based on layered and gradient structures of SHS system
Directory of Open Access Journals (Sweden)
Lu Jiafeng
2017-01-01
Full Text Available In this paper layered and gradient structures of Ni-Al SHS system were adopted to manufacture Ni-Al/diamond composites. The effect of the layered and the diamond mesh gradient structures of Ni-Al/diamond on the SHS process and the microstructure of the composites were investigated. It is found that with the increasing of the number of layers, the combustion wave velocity is decreased. The combustion wave velocity for diamond mesh size gradient structure of Ni-Al SHS is faster than that for the layered structure. A well bonding can be formed between diamond and the matrix in layered and gradient structure Ni-Al/diamond composites due to the melt of Ni-Cr brazing alloy.
Heavy Metal Diffusion through Soft Clay under High Hydraulic Gradients
Directory of Open Access Journals (Sweden)
Zaheer Ahmed Almani
2013-04-01
Full Text Available This study was focused on the determination of contaminant transport parameters of heavy metal Zinc moving through saturated soft Bangkok undisturbed clay under high hydraulic gradients. These parameters were compared with contaminant transport determined under concentration gradient alone (pure diffusion. In total fifteen column tests were conducted and a mathematical model was applied to determine the coefficients. Two different source concentrations conditions, constant and decreasing, were applied. Testing periods were ranged from 15-60 days while hydraulic gradients were ranged from 0-500. The curves between relative concentration and time and pore volume were developed for the constant source condition whereas curves between source reservoirs concentrations and time were developed for decreasing source condition. The effective diffusion and distribution coefficients, De and Kd, were determined by curve fitting using the computer code POLLUTE v 6.3. The results showed that diffusion coefficient increases and distribution coefficient decreases as hydraulic gradient increases from 0 to high value of 500 due to contribution of dispersion and additional molecular diffusion at high advective velocity. Thus, testing at high gradients ensures the safe performance of earthen barriers under worse conditions.
Metallicity gradient of the thick disc progenitor at high redshift
Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.
2018-01-01
We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.
Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion
Wu, Zedong
2015-09-02
The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Han, Z.; Chen, X.
2017-12-01
BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the
Introduction to vector velocity imaging
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov
Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...
Graded/Gradient Porous Biomaterials
Directory of Open Access Journals (Sweden)
Xigeng Miao
2009-12-01
Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
Motion of Drops on Surfaces with Wettability Gradients
Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying
2002-11-01
A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a
Phenomena accompanying gradient-B drift injection of energetic ions into Tokamak plasmas
International Nuclear Information System (INIS)
Goldston, R.J.; Jassby, D.L.
1976-01-01
The application of vertically asymmetric toroidal-field ripple, in order to permit the gradient B-drift injection and subsequent capture of energetic ions, results in a new radial diffusion of banana orbits. The nearly mono-kinetic velocity distribution of gradient B-drifting ions in the outer plasma region represents a large source of free energy; and the nonambipolar inward drift of these ions modifies the radial electric field
Diffraction imaging and velocity analysis using oriented velocity continuation
Decker, Luke
2014-08-05
We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.
Tunable high-gradient permanent magnet quadrupoles
Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A
2014-01-01
A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.
Sodium setpoint and gradient in bicarbonate hemodialysis.
Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo
2013-01-01
The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.
Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets
Pouransari, Z.; Biferale, L.; Johansson, A. V.
2015-02-01
The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.
Numerical modeling of the destruction of steel plates with a gradient substrate
Orlov, M. Yu.; Glazyrin, V. P.; Orlov, Yu. N.
2017-10-01
The paper presents the results of numerical simulation of the shock loading process of steel barriers with a gradient substrate. In an elastic plastic axisymmetric statement, a shock is simulated along the normal in the range of initial velocities up to 300 m / s. A range of initial velocities was revealed, in which the presence of a substrate "saved" the obstacle from spallation. New tasks were announced to deepen scientific knowledge about the behavior of unidirectional gradient barriers at impact. The results of calculations are obtained in the form of graphs, calculated configurations of the "impact - barrier" and tables.
Characterization of a texture gradient in tantalum plate
International Nuclear Information System (INIS)
Wright, S.I.; Gray, G.T. III.
1994-01-01
Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed
Determination of wall shear stress from mean velocity and Reynolds shear stress profiles
Volino, Ralph J.; Schultz, Michael P.
2018-03-01
An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.
Directory of Open Access Journals (Sweden)
M. J. Smith
2018-04-01
Full Text Available Direct measurements of marine dimethylsulfide (DMS fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS and the gradient flux (GF technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG. A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89. A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG
Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.
2018-04-01
Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.
Thermal gradient migration of brine inclusions in synthetic alkali halide single crystals
International Nuclear Information System (INIS)
Olander, D.R.; Machiels, A.J.; Balooch, M.; Yagnik, S.K.
1982-01-01
An apparatus consisting of an optical microscope with a hot stage attachment capable of simultaneously nonuniformly heating and mechanically loading small single crystals of salt was used to measure the velocities of all-liquid inclusions NaC1 and KC1 specimens under various conditions of temperature, temperature gradient, and uniaxial stress. The rate-controlling elementary step in the migration of the inclusions was found to be associated with interfacial processes, probably dissolution of the hot face. Dislocations are required for this step to take place. The small number of dislocation intersections with small inclusions in nearly perfect crystals causes substantial variations in the velocity, a sensitivity of the velocity to mechanical loading of the crystal, and a velocity which varies approximately as the second power of the temperature gradient
A feasible DY conjugate gradient method for linear equality constraints
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Fractals control in particle's velocity
International Nuclear Information System (INIS)
Zhang Yongping; Liu Shutang; Shen Shulan
2009-01-01
Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.
International Nuclear Information System (INIS)
Augensen, H.J.; Buscombe, W.
1978-01-01
Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)
International Nuclear Information System (INIS)
Cao Qiong; Lu Daogang; Zhang Pan; Shi Wenbo; Tian Lu
2012-01-01
An experiment was performed to study the effect of inlet velocity ratios for 3-D temperature fluctuation caused by coaxial-jet flows based on the 3-D temperature and 2-D velocity fields. The experiment results show that the mixing behavior is completed at the bottom of test section in R<1 condition. The averaged temperatures at the bottom of the flow field are asymmetric in R
Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow
International Nuclear Information System (INIS)
Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.
1992-01-01
Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)
Motiwalla, S. K.
1973-01-01
Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
The influence of ALN-Al gradient material gradient index on ballistic performance
International Nuclear Information System (INIS)
Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang
2013-01-01
Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.
Point and planar LIF for velocity-concentration correlations in a jet in cross flow
DEFF Research Database (Denmark)
Meyer, Knud Erik; Özcan, Oktay; Larsen, Poul Scheel
2002-01-01
Simultaneous measurements of velocities and concentration with Planar Laser Induced Fluorescense (PLIF) combined with Particle Image Velocimetry (PIV) are compared to similar measurements with pointwise Laser Induced Fluorescense (LIF) made with a slightly modified standard Laser Doppler Anemometer......, since these involve areas with high velocity- and concentration gradients, which in turn amplifies the effect of a finite measurement volume in the two measurement systems. In addition, the concentration measurement was realized by injecting clean water into the dye seeded main flow. This "inverse...
Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped
Krakov, M. S.; Nikiforov, I. V.
2012-01-01
Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depen...
Thermal-gradient migration of brine inclusions in salt
International Nuclear Information System (INIS)
Yagnik, S.K.
1982-02-01
It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process
Dielectric haloscopes: sensitivity to the axion dark matter velocity
Energy Technology Data Exchange (ETDEWEB)
Millar, Alexander J.; Redondo, Javier; Steffen, Frank D., E-mail: millar@mpp.mpg.de, E-mail: jredondo@unizar.es, E-mail: steffen@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)
2017-10-01
We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40–400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.
Velocity slip of gas mixtures in free jet expansions
International Nuclear Information System (INIS)
Cattolica, R.J.; Talbot, L.; Coe, D.
1976-11-01
Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number
A natural gradient dispersion test in a sandy aquifer using tritium as tracer
International Nuclear Information System (INIS)
Bitsch, K.; Jensen, K.H.
1990-01-01
A large-scale natural gradient dispersion test was carried out in a sandy aquifer in the western part of Denmark using tritium as a tracer. A slug of tritium (4.66 x 10 9 Bq H 3 ) was injected, and the transport and dispersion behaviour of the plume were examined by water sampling in a dense three-dimensional network of observation piezometers. Transport parameters were determined by applying an optimization model to the observed breakthrough curves at various locations in the zone traversed by the tracer. The tracer plume migrated with a rather constant velocity of 0.7 m/day. A pronounced spreading was observed in the longitudinal direction while the spreading in the transverse horizontal and transverse vertical directions was very small. The asymptotic value for the dispersivity was apparently achieved within the first 50 m, reaching a value of 0.46 m, while the transverse dispersivities were estimated to be 0.02 m and 0.001 m in the horizontal and vertical directions, respectively. (Author) (33 refs., 8 figs., tab.)
International Nuclear Information System (INIS)
Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan
2012-01-01
The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration
Settling velocities in batch sedimentation
International Nuclear Information System (INIS)
Fricke, A.M.; Thompson, B.E.
1982-10-01
The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles
Zhang, Xiao-bo
2017-06-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.
Semiautomated system for the production and analysis of sucrose density gradients
International Nuclear Information System (INIS)
Lange, C.S.; Liberman, D.F.
1974-01-01
A semiautomated system in DNA damage studies permitting considerable accuracy, speed, and reproducibility in the making and fractionation of sucrose density gradients is described. The system consists of a modified Beckman gradient forming device that makes six gradients simultaneously and delivers them into six 12.5 ml polyallomer centrifuge tubes in such a manner that new material is continuously added to the meniscus of the gradient. The gradients are fractionated three at a time and up to 100 fractions per gradient can be collected automatically directly into scintillation vials with a choice of drop counting or time mode with rinse and automatic addition of scintillation fluid to each vial. The system can process up to six gradients per hour but centrifugation time is usually the limiting factor. With neutral sucrose gradients, sharp, reproducible, monodisperse peaks containing up to 100 percent of the gradient radioactivity are usually obtained but a smaller monodisperse peak containing as little as 3.5 percent of the gradient radioactivity can be detected under conditions where some pairs of molecules might tangle or dimerize. The resolution and reproducibility of this system when used with neutral sucrose gradients is at least the equal if not superior to that commonly claimed for alkaline sucrose gradients. (U.S.)
A New Method for Estimation of Velocity Vectors
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Munk, Peter
1998-01-01
The paper describes a new method for determining the velocity vector of a remotely sensed object using either sound or electromagnetic radiation. The movement of the object is determined from a field with spatial oscillations in both the axial direction of the transducer and in one or two...... directions transverse to the axial direction. By using a number of pulse emissions, the inter-pulse movement can be estimated and the velocity found from the estimated movement and the time between pulses. The method is based on the principle of using transverse spatial modulation for making the received...
Cognitive regulation of saccadic velocity by reward prospect.
Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin
2013-08-01
It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Hesse, M.; Birn, J.; Schindler, K.
1990-01-01
A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares
Molecular evolution and the latitudinal biodiversity gradient.
Dowle, E J; Morgan-Richards, M; Trewick, S A
2013-06-01
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Braak, ter C.J.F.
1988-01-01
The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into
Orderings for conjugate gradient preconditionings
Ortega, James M.
1991-01-01
The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.
Boundary layer heights derived from velocity spectra
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)
1997-10-01
It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)
A constant gradient planar accelerating structure for linac use
International Nuclear Information System (INIS)
Kang, Y.W.; Matthews, P.J.; Kustom, R.L.
1995-01-01
Planar accelerating millimeter-wave structures have been studied during the last few years at Argonne National Laboratory in collaboration with Technical University of Berlin. The cavity structures are intended to be manufactured by using x-ray lithography microfabrication technology. A complete structure consists of two identical planar half structures put together face-to-face. Since microfabrication technology can make a since-depth indentation on a planar substrate, realizing the constant impedance structure was possible but a constant gradient structure was difficult; changing the group velocity along the structure while maintaining the gap and the depth of the indentation constant was difficult. A constant gradient structure has been devised by introducing a cut between the adjacent cavity cells along the beam axis of each half structure. The width of the cut is varied along the longitudinal axis of the structure to have proper coupling between the cells. The result of the computer simulation on such structures is shown
High Gradient Accelerating Structures for Carbon Therapy Linac
Energy Technology Data Exchange (ETDEWEB)
Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.
2016-05-01
Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
A neural circuit for angular velocity computation
Directory of Open Access Journals (Sweden)
Samuel B Snider
2010-12-01
Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
Lagrangian velocity correlations in homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Gotoh, T.; Rogallo, R.S.; Herring, J.R.; Kraichnan, R.H.
1993-01-01
The Lagrangian velocity autocorrelation and the time correlations for individual wave-number bands are computed by direct numerical simulation (DNS) using the passive vector method (PVM), and the accuracy of the method is studied. It is found that the PVM is accurate when K max /k d ≥2 where K max is the maximum wave number carried in the simulation and k d is the Kolmogorov wave number. The Eulerian and Lagrangian time correlations for various wave-number bands are compared. At moderate to high wave number the Eulerian time correlation decays faster than the Lagrangian, and the effect of sweep on the former is observed. The time scale of the Eulerian correlation is found to be (kU 0 ) -1 while that of the Lagrangian is [∫ 0 k p 2 E(p)dp] -1/2 . The Lagrangian velocity autocorrelation in a frozen turbulent field is computed using the DIA, ALHDIA, and LRA theories and is compared with DNS measurements. The Markovianized Lagrangian renormalized approximation (MLRA) is compared with the DNS, and good agreement is found for one-time quantities in decaying turbulence at low Reynolds numbers and for the Lagrangian velocity autocorrelation in stationary turbulence at moderate Reynolds number. The effect of non-Gaussianity on the Lagrangian correlation predicted by the theories is also discussed
Anderson, D. N.; Yizengaw, E.
2011-12-01
A recent paper has investigated the sharp longitude gradients in the dayside ExB drift velocities associated with the 4-cell, non-migrating structures thought to be connected with the eastward propagating, diurnal, non-migrating (DE3) tides. Observations of vertical ExB drift velocities obtained from the Ion Velocity Meter (IVM) on the Communication/Navigation Outage Forecast System (C/NOFS) satellite were obtained in the Western Pacific, Eastern Pacific, Peruvian and Atlantic sectors for a few days during the months of October, March and December, 2009. Respective ExB drift velocity gradients at the cell boundaries for these 4 longitude sectors were a.) -1.3m/sec/degree, b.) 3m/sec/degree, c.) -4m/sec/degree and d.) 1m/sec/degree and were observed on a day-to-day basis. In this talk, we estimate the longitude gradients in the dayside, vertical ExB drift velocities from magnetometer H-component observations in the African sector. We briefly describe the technique for obtaining realistic ExB drift velocities associated with the difference in the H-component values between a magnetometer on the magnetic equator and one off the magnetic equator at 6 to 9 degrees dip latitude (delta H). We present magnetometer-inferred, dayside ExB drift velocities obtained from the AMBER (African Meridian B-field Education and Research) magnetometer chain in the East Africa (Ethiopian) longitude sector and the West African (Nigerian) longitude sector. We compare the longitude gradients in ExB drift velocities in the African sector with the C/NOFS- observed longitude gradients mentioned above. We also discuss the advantages of using ground-based magnetometer observations to infer ExB drift velocities compared with the C/NOFS satellite observations.
Velocity distribution in snow avalanches
Nishimura, K.; Ito, Y.
1997-12-01
In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.
Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise
2018-05-01
Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.
Effects of Wind Velocity Driven by Alfven Waves on the Line Profiles for 32 CYG
Directory of Open Access Journals (Sweden)
Kyung-Mee Kim
1996-06-01
Full Text Available We calculate the theoretical line profiles for 32 Cyg in order to investigate the influence of various velocity fields. Line profiles are calculated with wind accelerations driven by Alfven waves and described by velocity parameters. The results for Alfvenic wave model show weakened line profiles. For the orbital phases ¥÷=0.78 and ¥÷=0.06 the Alfvenic models show strong absorption part due to very low densities at the surface of the supergiant. Hence, we conclude the velocity gradient of the wind near the supergiant could influence on the theoretical line formation.
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient
Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.
2013-01-01
Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all
Magnetic field gradients and their uses in the study of the earth's magnetic field
Harrison, C. G. A.; Southam, J. R.
1991-01-01
Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.
Instability and transport driven by an electron temperature gradient close to critical
International Nuclear Information System (INIS)
Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.
2003-01-01
Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)
Investigation of Ionospheric Spatial Gradients for Gagan Error Correction
Chandra, K. Ravi
In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.
Velocity Estimate Following Air Data System Failure
National Research Council Canada - National Science Library
McLaren, Scott A
2008-01-01
.... A velocity estimator (VEST) algorithm was developed to combine the inertial and wind velocities to provide an estimate of the aircraft's current true velocity to be used for command path gain scheduling and for display in the cockpit...
Elemental gradients in macrophytes from a reactor effluent gradient
International Nuclear Information System (INIS)
Grace, J.B.; Tilly, L.J.
1978-01-01
The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern
Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms
2018-05-01
Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.
Photographic guidance for selecting flow resistance coefficients in high-gradient channels
Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao
2014-01-01
Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Transient state of electron transport in semiconductors: over velocity and ballistic effect
International Nuclear Information System (INIS)
Laval, S.
1984-01-01
As the dimensions of the active regions of electronic components are reduced, transient effects must be considered when electrons encounter a high electric field gradient. The electron velocity can overshoot its stationary value over a few tenths of a micron and during about one picosecond. This has been observed experimentally and permits to forecast new ultrafast electronic devices [fr
Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey
Westfall, K. B.; Bershady, M. A.; Verheijen, M. A. W.; Andersen, D. R.; Swaters, R. A.
2008-01-01
We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio
Equivalence of velocity-level and acceleration-level redundancy-resolution of manipulators
International Nuclear Information System (INIS)
Cai Binghuang; Zhang Yunong
2009-01-01
The equivalence of velocity-level and acceleration-level redundancy resolution of robot manipulators is investigated in this Letter. Theoretical analysis based on gradient-descent method and computer simulations based on PUMA560 robot manipulator both demonstrate the equivalence of redundancy-resolution schemes at different levels.
Coding of Velocity Storage in the Vestibular Nuclei
Directory of Open Access Journals (Sweden)
Sergei B. Yakushin
2017-08-01
Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing
Cosmic string induced peculiar velocities
International Nuclear Information System (INIS)
van Dalen, A.; Schramm, D.N.
1987-02-01
We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab
Velocity Profiles and Skin Friction on a Ribletted Flat Plate in Adverse Pressure Gradient
National Research Council Canada - National Science Library
Branam, Richard
1997-01-01
.... The skin friction drag coefficients were calculated using a numerical integration technique to determine an average value and scaled to the platform area of the plate to compare results with smooth plate values...
X-ray line transfer in plasmas with large velocity gradients
Czech Academy of Sciences Publication Activity Database
Kerr, F.M.; Gouveia, A.; Lee, R. W.; Patel, P. K.; Renner, Oldřich; Rose, S. J.; Scott, H.A.; Wark, J. S.
2005-01-01
Roč. 298, 1-2 (2005), s. 171-178 ISSN 0004-640X Institutional research plan: CEZ:AV0Z10100523 Keywords : plasmas * radiation transport * high-power laserplasmas * high-power lasers Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.495, year: 2005
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
Osorno, T.; Devlin, J. F.
2017-12-01
Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when
Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing
2018-03-01
Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.
Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope
Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo
2017-06-01
Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.
Computational strain gradient crystal plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2014-01-01
A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....
Portico charging to control column gradient in the ESTU
International Nuclear Information System (INIS)
McKay, J.W.
1989-01-01
The problem of gradient control in the ESTU is made more complicated than in a standard machine by the presence of a Portico. Normally charge is supplied to the terminal of a Van De Graaff by chains or a belt, then flows away from the terminal via resistor chains or directly to the corona point. In addition, charge may be drawn from the terminal due to the action of radiation sources. This paper reports on efforts to charge the Portico to control column gradient
Study of thermal-gradient-induced migration of brine inclusions in salt. Final report
International Nuclear Information System (INIS)
Olander, D.R.
1984-08-01
Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed
Study of thermal-gradient-induced migration of brine inclusions in salt. Final report
Energy Technology Data Exchange (ETDEWEB)
Olander, D.R.
1984-08-01
Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
ROTATIONAL VELOCITIES FOR M DWARFS
International Nuclear Information System (INIS)
Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.
2009-01-01
We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v
Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique
International Nuclear Information System (INIS)
Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S
2016-01-01
Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)
Estimation of sand dune thickness using a vertical velocity profile
International Nuclear Information System (INIS)
Al-Shuhail, Abdullatif A.
2004-01-01
Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)
Burning velocity measurements of nitrogen-containing compounds.
Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira
2008-06-30
Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.
Liquid velocity in upward and downward air-water flows
International Nuclear Information System (INIS)
Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru
2004-01-01
Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions
Growth of large aluminum nitride single crystals with thermal-gradient control
Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J
2015-05-12
In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.
Measuring surface flow velocity with smartphones: potential for citizen observatories
Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik
2014-05-01
Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.
Anomalous cross-field velocities in a CIV laboratory experiment
International Nuclear Information System (INIS)
Axnaes, I.
1988-10-01
The axial and radial ion velocities and the electron radial velocity are determined in coaxial plasma gun operated under critical velocity conditions. The particle celocities are determined from probe measurement together with He I 3889 AA absolute intensity measurements and the consideration of the total momentum balance of the current sheet. The ions are found move axially and the electrons radially much faster than predicted by the E/B drift in the macroscopic fields. These results agree with what can be expected from the instability processes, which has earlier been proposed to operate in these experiments. It is therefore a direct experimental demonstration that instability processes have to be invoked not only for the electron heating, but also to explain the macroscopic velocities and currents. (author)
MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters
International Nuclear Information System (INIS)
Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko; Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.
1999-01-01
The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)
MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters
Energy Technology Data Exchange (ETDEWEB)
Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko [Tokyo Medical Coll. (Japan); Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.
1999-11-01
The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)
Gradient index metamaterials realized by drilling hole arrays
International Nuclear Information System (INIS)
Mei Zhonglei; Cui Tiejun; Bai Jing
2010-01-01
Gradient index metamaterials have wide applications in the microwave and optical fields. Based on the quasi-static theory, such materials at the microwave band have been realized by drilling hole arrays on ordinary dielectric materials. As applications of the gradient index metamaterials, novel devices including a 45 0 dielectric wave-bending structure, a 16 0 wave-steering lens and a microwave focusing lens are designed and fabricated. Field mapping measurements validate the proposed gradient index metamaterials and the device designs. The method can be directly and easily extended to the design of cloaks, various lenses, beam shifters and beam-steering devices. It can also be applied in the optical band as long as quasi-static conditions are satisfied. The method and the devices may find applications in integrated circuit systems.
Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography.
Yang, Qiang; Vogel, Curtis R; Ellerbroek, Brent L
2006-07-20
By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty.
Fire Regime Characteristics along Environmental Gradients in Spain
Directory of Open Access Journals (Sweden)
María Vanesa Moreno
2016-11-01
Full Text Available Concern regarding global change has increased the need to understand the relationship between fire regime characteristics and the environment. Pyrogeographical theory suggests that fire regimes are constrained by climate, vegetation and fire ignition processes, but it is not obvious how fire regime characteristics are related to those factors. We used a three-matrix approach with a multivariate statistical methodology that combined an ordination method and fourth-corner analysis for hypothesis testing to investigate the relationship between fire regime characteristics and environmental gradients across Spain. Our results suggest that fire regime characteristics (i.e., density and seasonality of fire activity are constrained primarily by direct gradients based on climate, population, and resource gradients based on forest potential productivity. Our results can be used to establish a predictive model for how fire regimes emerge in order to support fire management, particularly as global environmental changes impact fire regime characteristics.
Instabilities in power law gradient hardening materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2005-01-01
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....
A study on the velocity characteristics of the spray formed by two impinging jets
International Nuclear Information System (INIS)
Choo, Yeon Jun; Seo, Kwi Hyun; Kang, Bo Seon
2001-01-01
In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25% lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point
Attenuation and velocity dispersion in the exploration seismic frequency band
Sun, Langqiu
In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to
An education gradient in health, a health gradient in education, or a confounded gradient in both?
Lynch, Jamie L; von Hippel, Paul T
2016-04-01
There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strain gradient effects in surface roughening
DEFF Research Database (Denmark)
Borg, Ulrik; Fleck, N.A.
2007-01-01
evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
HNO3 fluxes to a deciduous forest derived using gradient and REA methods
DEFF Research Database (Denmark)
Pryor, S.C.; Barthelmie, R.J.; Jensen, B.
2002-01-01
Summertime nitric acid concentrations over a deciduous forest in the midwestern United States are reported, which range between 0.36 and 3.3 mug m(-3). Fluxes to the forest are computed using the relaxed eddy accumulation technique and gradient methods. In accord with previous studies, the results...... indicate substantial uncertainties in the gradient-based calculations. The relaxed eddy accumulation (REA) derived fluxes are physically reasonable and are shown to be of similar magnitude to dry deposition estimates from gradient sampling. The REA derived mean deposition velocity is approximately 3 cm s......(-1), which is also comparable to growing season estimates derived by Meyers et al. for a similar deciduous forest. Occasional inverted concentration gradients and fluxes are observed but most are not statistically significant. Data are also presented that indicate substantial through canopy...
Avoiding vacuum arcs in high gradient normal conducting RF structures
Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter
In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...
Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients
Novák, Pavel; Šprlák, Michal
2018-03-01
The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.
W-Cu gradient materials - processing, properties and application possibilities
International Nuclear Information System (INIS)
Joensson, M.; Kieback, B.
2001-01-01
The functionally graded material (FGM) of tungsten with its high thermal and mechanical resistance and copper with its very high thermal and electrical conductivity and ductility expands the application fields of this material in the direction of extreme demands such as plasma facing components in fusion reactors. The PM-production of W-Cu-gradients recommends itself because of the possibility to form the gradient by the mixing of powder components, but is also demanding because of the differences in their sintering behavior and thermal expansions. W-Gu-gradient samples of different concentration profiles have been formed in layers by powder stacking in a die and continuously by centrifugal powder forming. The consolidation routes were determined by the concentration areas of the gradients and encompass liquid phase sintering, pressure assisted solid phase sintering and the application of coated Tungsten powder and sintering additives. The microstructure and the concentration profiles of the samples have been investigated metaliographically and by EDX. The influence of processing and the gradient profile of the properties have been characterized by TRS and the investigation of residual thermal stresses by neutron diffraction. (author)
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.
Simulations of Flame Acceleration and DDT in Mixture Composition Gradients
Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).
Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts
International Nuclear Information System (INIS)
Axente, Emanuel; Sima, Felix; Elena Sima, Livia; Serban, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Erginer, Merve; Toksoy Oner, Ebru; Eroglu, Mehmet S; Petrescu, Stefana M
2014-01-01
There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts’ extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration. (papers)
Geomorphic controls on elevational gradients of species richness.
Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2016-02-16
Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.
Dhia, Hamed Ben
1987-10-01
Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.
Two dimensional dynamic analysis of sandwich plates with gradient foam cores
Energy Technology Data Exchange (ETDEWEB)
Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)
2016-09-15
Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.
Temperature Gradient in Hall Thrusters
International Nuclear Information System (INIS)
Staack, D.; Raitses, Y.; Fisch, N.J.
2003-01-01
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons
Generalized Gradient Approximation Made Simple
International Nuclear Information System (INIS)
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-01-01
Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.