Sample records for velocity feedback control

  1. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.


    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller....

  2. Velocity feedback control with a flywheel proof mass actuator (United States)

    Kras, Aleksander; Gardonio, Paolo


    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  3. Experimental Verifications of Vibration Suppression for a Smart Cantilever Beam with a Modified Velocity Feedback Controller

    Directory of Open Access Journals (Sweden)

    Ting Zhang


    Full Text Available This paper presents various experimental verifications for the theoretical analysis results of vibration suppression to a smart flexible beam bonded with a piezoelectric actuator by a velocity feedback controller and an extended state observer (ESO. During the state feedback control (SFC design process for the smart flexible beam with the pole placement theory, in the state feedback gain matrix, the velocity feedback gain is much more than the displacement feedback gain. For the difference between the velocity feedback gain and the displacement feedback gain, a modified velocity feedback controller is applied based on a dynamical model with the Hamilton principle to the smart beam. In addition, the feedback velocity is attained with the extended state observer and the displacement is acquired by the foil gauge on the root of the smart flexible beam. The control voltage is calculated by the designed velocity feedback gain multiplied by the feedback velocity. Through some experiment verifications for simulation results, it is indicated that the suppressed amplitude of free vibration is up to 62.13% while the attenuated magnitude of its velocity is up to 61.31%. Therefore, it is demonstrated that the modified velocity feedback control with the extended state observer is feasible to reduce free vibration.

  4. Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback. (United States)

    Iqbal, Kamran; Roy, Anindo


    In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Padé approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite-Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.

  5. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations (United States)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma


    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  6. A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back

    Directory of Open Access Journals (Sweden)

    Emre Sariyildiz


    Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.

  7. Model Predictive Controller Combined with LQG Controller and Velocity Feedback to Control the Stewart Platform

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil Sharak; Bak, Thomas; Izadi-Zamanabadi, Roozbeh


    The main objective of this paper is to investigate the erformance and applicability of two GPC (generalized predictive control) based control methods on a complete benchmark model of the Stewart platform made in MATLAB V6.5. The first method involves an LQG controller (Linear Quadratic Gaussian...

  8. Congestion phenomenon analysis and delayed-feedback control in a modified coupled map traffic flow model containing the velocity difference (United States)

    Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang


    Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.

  9. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...

  10. Feedback control of sound (United States)

    Rafaely, Boaz

    This thesis is concerned with the development an application of feedback control techniques for active sound control. Both fixed and adaptive controllers are considered. The controller design problem for active sound control is formulated as a constrained optimisation problem with an H2 performance objective, of minimising the variance of the control error, and H2 and H∞ design constraints involving control power output, disturbance enhancement, and robust stability. An Internal Model Controller with an FIR control filter is assumed. Conventional H2 design methods for feedback controllers are studied first. Although such controllers can satisfy the design constraints by employing effort terms in the quadratic cost function, they do not achieve the best possible performance, and when adapted using LMS-based algorithms, they suffer from instabilities if the plant response varies significantly. Improved H2/H∞ design methods for fixed and adaptive controllers are then developed, which achieve the best H2 performance under the design constraints, offer an improved stability when made adaptive, and in general outperform the conventional H2 controllers. The H2/H∞ design problems employ convex programming to ensure a unique solution. The Sequential Quadratic Programming methods is used for the off-line design of fixed controllers, and penalty and barrier function methods, together with frequency domain LMS-based algorithms are employed in the H2/H∞ adaptive controllers. The controllers studied and developed here were applied to three active sound control systems: a noise-reducing headset, an active headrest, and a sound radiating panel. The emphasis was put on developing control strategies that improve system performance. First, a high performance controller for the noise-reducing headset was implemented in real-time, which combines analogue and adaptive digital controllers, and can thus reject disturbances which has both broad-band and periodic components. Then


    Directory of Open Access Journals (Sweden)

    Mehesne Berek Szilvia


    Full Text Available The following things led to that the feedback, the supervision and improvement of the processes have become more pronounced: continuous rise in the importance of logistics; increase in complexity of its content; its activity becoming more complex. These activities are necessary for the optimum information supply. The intensification of market competition requires the corporations to possess exact and up-to-date information about their activities. Complexity of the logistics system presumes a parallel application of an effective feedback, supervision and management system simultaneously with the given logistics system. The indispensability of logistics is also proved by the fact that it can be found sporadically (in the form of logistics departments or in a complex way in case of each organization. The logistical approach means a huge support in the management since it contains the complexity, the handling as a unit in order to ensure a harmony of the different corporate departments and part activities. In addition to the professional application of a logistics system, there is an opportunity to coordinate the relations inside an organization as well as between the organizations and to handle them as a unit. The sine qua non of the success of logistical processes is a harmony of the devices applied. The controlling system is a device for feeding back the processes of a corporate system. By means of the checkpoints intercalated into the processes, the logistics controlling provides information for the leadership which contributes even more to the complex approach of logistics system. By dint of the logistics controlling, the monitoring and coordination of every logistical part activity become possible with the help of information supply ensured by the logistics controlling. The logistics controlling reviews, assesses and coordinates; these activities have an effect on the cost and income management. Its reason is to be searched in the built

  12. Optical feedback control for mechatronic actuators (United States)

    Necsulescu, Dan; Khatri, Zubair


    The paper investigates optical implementation of feedback control of mechatronic actuators. The goal is to analyze experimentally the feasibility of optical closed loop control using optical components for signal transmission and control loop implementation. The analysis is carried out for position control of an electric actuator. Angular position and velocity are measured with optical sensors. Measurement signals are transmitted through a fiberglass to an optical controller. Position commands from the optical controller are transmitted through a fiber glass as analog optical signals to a photodetector. A power operational amplifier serves a driver for the electric motor. This feedback controller configuration is designed to have extensive optical implementation and permits to investigate the level of complexity of the control laws which can be implemented optically. Experimental results, obtained using a LabVIEW for data acquisition and processing, illustrate the advantages and the limitations of the proposed optical implementation of a feedback controller for mechatronic actuators.

  13. An improved car-following model with multiple preceding cars' velocity fluctuation feedback (United States)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke


    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  14. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A


    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  15. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle


    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  16. Basic Feedback Controls in Biomedicine

    CERN Document Server

    Lessard, Charles


    This textbook is intended for undergraduate students (juniors or seniors) in Biomedical Engineering, with the main goal of helping these students learn about classical control theory and its application in physiological systems. In addition, students should be able to apply the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) Controls and Simulation Modules to mammalian physiology. The first four chapters review previous work on differential equations for electrical and mechanical systems. Chapters 5 through 8 present the general types and characteristics of feedback control

  17. Quantum feedback control and classical control theory


    Doherty, Andrew C.; Habib, Salman; Jacobs, Kurt; Mabuchi, Hideo; Tan, Sze M.


    We introduce and discuss the problem of quantum feedback control in the context of established formulations of classical control theory, examining conceptual analogies and essential differences. We describe the application of state-observer based control laws, familiar in classical control theory, to quantum systems and apply our methods to the particular case of switching the state of a particle in a double-well potential.

  18. Visual feedback attenuates mean concentric barbell velocity loss, and improves motivation, competitiveness, and perceived workload in male adolescent athletes. (United States)

    Weakley, Jonathon Js; Wilson, Kyle M; Till, Kevin; Read, Dale B; Darrall-Jones, Joshua; Roe, Gregory; Phibbs, Padraic J; Jones, Ben


    It is unknown whether instantaneous visual feedback of resistance training outcomes can enhance barbell velocity in younger athletes. Therefore, the purpose of this study was to quantify the effects of visual feedback on mean concentric barbell velocity in the back squat, and to identify changes in motivation, competitiveness, and perceived workload. In a randomised-crossover design (Feedback vs. Control) feedback of mean concentric barbell velocity was or was not provided throughout a set of 10 repetitions in the barbell back squat. Magnitude-based inferences were used to assess changes between conditions, with almost certainly greater differences in mean concentric velocity between the Feedback (0.70 ±0.04 m·s) and Control (0.65 ±0.05 m·s) observed. Additionally, individual repetition mean concentric velocity ranged from possibly (repetition number two: 0.79 ±0.04 vs. 0.78 ±0.04 m·s) to almost certainly (repetition number 10: 0.58 ±0.05 vs. 0.49 ±0.05 m·s) greater when provided feedback, while almost certain differences were observed in motivation, competitiveness, and perceived workload, respectively. Providing adolescent male athletes with visual kinematic information while completing resistance training is beneficial for the maintenance of barbell velocity during a training set, potentially enhancing physical performance. Moreover, these improvements were observed alongside increases in motivation, competitiveness and perceived workload providing insight into the underlying mechanisms responsible for the performance gains observed. Given the observed maintenance of barbell velocity during a training set, practitioners can use this technique to manipulate training outcomes during resistance training.

  19. Studies Of Positive-Position-Feedback Control (United States)

    Fanson, James L.; Caughey, Thomas K.


    Report discusses theoretical and experimental studies of positive-position-feedback control for suppressing vibrations in large flexible structures. Positive-position-feedback control involves placement of actuators and sensors on structure; control voltages applied to actuators in response to outputs of sensors processed via compensator algorithm. Experiments demonstrate feasibility of suppressing vibrations by positive position feedback, and spillover of vibrational energy into uncontrolled modes has stabilizing effect if control gain sufficiently small.


    Directory of Open Access Journals (Sweden)

    Nicolaos Antonio CUTULULIS


    Full Text Available This paper focuses on the development of a feedback linearization control for a variable speed fixed pitch wind turbine driving a permanent magnet synchronous generator. The power system is considered to operate on an insular grid. The feedback linearization controller aims to maximize the energy captured from the wind, for varying wind speeds. Numerical simulation results are presented to demonstrate the effectiveness of the feedback linearization controller.

  1. Tutorial on Feedback Control of Flows, Part II: Diagnostics and Feedback Control of Mixing

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo


    Full Text Available Control of fluid flows span a wide variety of specialities. In Part II of this tutorial, we focus on diagnostics of mixing and the problem of enhancing mixing by boundary feedback control. Diagnostic tools from dynamical systems theory are presented that enable detection and quantification of chaotic transport in periodically perturbed systems. However, real systems are generally not periodic, and available measurements or simulations are finite in time. A method for quantifying mixing in finite-time velocity fields is discussed, and applied to data obtained from simulations of the 2D controlled channel flow. Mixing has traditionally been brought on by open-loop control strategies, such as stirring, jet injection or mixing valves. Applications of active feedback to mixing problems are scarce in the literature, but the idea is currently drawing attention from various research groups. Feedback laws for the purpose of mixing enhancement in 2D and 3D pipe flow are presented, and simulations show that they induce strong mixing.

  2. Active vibroacoustic control with multiple local feedback loops. (United States)

    Elliott, Stephen J; Gardonio, Paolo; Sors, Thomas C; Brennan, Michael J


    When multiple actuators and sensors are used to control the vibration of a panel, or its sound radiation, they are usually positioned so that they couple into specific modes and are all connected together with a centralized control system. This paper investigates the physical effects of having a regular array of actuator and sensor pairs that are connected only by local feedback loops. An array of 4 x 4 force actuators and velocity sensors is first simulated, for which such a decentralized controller can be shown to be unconditionally stable. Significant reductions in both the kinetic energy of the panel and in its radiated sound power can be obtained for an optimal value of feedback gain, although higher values of feedback gain can induce extra resonances in the system and degrade the performance. A more practical transducer pair, consisting of a piezoelectric actuator and velocity sensor, is also investigated and the simulations suggest that a decentralized controller with this arrangement is also stable over a wide range of feedback gains. The resulting reductions in kinetic energy and sound power are not as great as with the force actuators, due to the extra resonances being more prominent and at lower frequencies, but are still worthwhile. This suggests that an array of independent modular systems, each of which included an actuator, a sensor, and a local feedback control loop, could be a simple and robust method of controlling broadband sound transmission when integrated into a panel.

  3. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang


    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  4. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen


    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  5. Static Output-Feedback Control for Vehicle Suspensions: A Single-Step Linear Matrix Inequality Approach

    Directory of Open Access Journals (Sweden)

    Josep Rubió-Massegú


    Full Text Available In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedback H∞ controller that only uses the suspension deflection and the sprung mass velocity as feedback information. Numerical simulations indicate that, despite the restricted feedback information, this static output-feedback H∞ controller exhibits an excellent behavior in terms of both frequency and time responses, when compared with the corresponding state-feedback H∞ controller.

  6. Nonlinear Feedback Control of the Rotary Inverted Pendulum (United States)


    such a system and derived the partial feedback linearized form which led to a two- level velocity controller and a stabilizing position controller...equations executed in the S-functions were rebuilt using Simulink Math Operation blocks. Building these equations with Math Operations was not...difficult but required attention to detail in order to make sure all the correct operations took place. Simulation outputs using the Math Operations were

  7. Formation feedback control of UAV flight (United States)

    Stegall, Stephen

    This thesis is a study of formation control with autonomous unmanned aerial vehicles using the formation as feedback. There is also an investigation of formation methods presenting insight into different algorithms for formations. A rigid formation is achieved using a proportional-derivative virtual structure with a formation feedback controller. There is an emphasis on stick controlled aerodynamics. The rigid formation is verified by a simulation of a longitudinal model. Formation control ideas are presented for rigid formations.

  8. Nonlinear H-ininity state feedback controllers:

    DEFF Research Database (Denmark)

    Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin


    From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally...

  9. Adaptive Feedfoward Feedback Control Framework Project (United States)

    National Aeronautics and Space Administration — An Adaptive Feedforward and Feedback Control (AFFC) Framework is proposed to suppress the aircraft's structural vibrations and to increase the resilience of the...

  10. Mean Velocity Prediction Information Feedback Strategy in Two-Route Systems under ATIS

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang


    Full Text Available Feedback contents of previous information feedback strategies in advanced traveler information systems are almost real-time traffic information. Compared with real-time information, prediction traffic information obtained by a reliable and effective prediction algorithm has many undisputable advantages. In prediction information environment, a traveler is prone to making a more rational route-choice. For these considerations, a mean velocity prediction information feedback strategy (MVPFS is presented. The approach adopts the autoregressive-integrated moving average model (ARIMA to forecast short-term traffic flow. Furthermore, prediction results of mean velocity are taken as feedback contents and displayed on a variable message sign to guide travelers' route-choice. Meanwhile, discrete choice model (Logit model is selected to imitate more appropriately travelers' route-choice behavior. In order to investigate the performance of MVPFS, a cellular automaton model with ARIMA is adopted to simulate a two-route scenario. The simulation shows that such innovative prediction feedback strategy is feasible and efficient. Even more importantly, this study demonstrates the excellence of prediction feedback ideology.

  11. Output feedback control of a quadrotor UAV using neural networks. (United States)

    Dierks, Travis; Jagannathan, Sarangapani


    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  12. MARTe at FTU: The new feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: [EURATOM - ENEA Fusion Association, Frascati Research Centre, Division of Fusion Physics, Rome, Frascati (Italy); Sadeghi, Yahya; Carnevale, Daniele; Di Geronimo, Andrea; Varano, Gianluca; Vitelli, Riccardo [Department of Computer Science, Systems and Production, University of Rome Tor Vergata, Rome (Italy); Galperti, Critsian [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milan (Italy); Zarfati, Emanuele; Pucci, Daniele [Department Antonio Ruberti, University of Rome La Sapienza, Rome (Italy)


    Highlights: Black-Right-Pointing-Pointer We show that the MARTe is a candidate for ITER PSH. Black-Right-Pointing-Pointer We replace the old real-time feedback software using the MARTe framework. Black-Right-Pointing-Pointer We describe all the work done for the integration. - Abstract: Keeping in mind the necessities of a modern control system for fusion devices, such as modularity and a distributed architecture, an upgrade of the present FTU feedback control system was planned, envisaging also a possible reutilization in the proposed FAST experiment [1]. For standardization and efficiency purposes we decided to adopt a pre-existent ITER-relevant framework called MARTe [2], already used with success in other European Tokamak devices [3]. Following the developments shown in [4], in this paper we report on the structure of the new feedback system, and how it was integrated in the current control structure and pulse programming interface, and in the other MARTe systems already in FTU: RT-ODIN [5] and the ECRH and LH [6] satellite stations. The new feedback system has been installed in the FTU backup station (known as 'Feedback B'), which shares the input signals with the actual feedback system, in order to simplify the validation and debug of the new controller by testing it in parallel with the current one. Experimental results are then presented.

  13. Coherent-feedback control in nanophotonic circuits (United States)

    Mabuchi, Hideo


    The emerging discipline of coherent-feedback quantum control provides core concepts and methods for nanopho- tonic circuit theory, which can be assimilated within modern approaches to computer-aided design. Current research in this area includes the development of software tools to enable a schematic capture workflow for compilation and analysis of quantum stochastic models for nanophotonic circuits, exploration of elementary coherent-feedback circuit motifs, and laboratory demonstrations of quantum nonlinear photonic devices.

  14. Feedback Control of a Class of Nonholonomic Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper

    Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time...... of the closed loop system some extensions are provided: integral action for asymptotic stabilization under the influence of disturbances, and an adaptive damping scheme ensuring that the robot travels at a predefined speed when tracking a path. Both of these extensions are defined in the framework...

  15. Multivariable Feedback Control of Unstable Aircraft Dynamics (United States)

    Bhatia, Abhishek

    The purpose of a flight control system is to provide stability and control for the aircraft with the help of control surfaces. FCS helps improve aircraft performance characteristics during flight. Stability is secured by the mechanism of feedback. Feedback plays an important part in providing a baseline control approach for stabilizing a non-linear unstable aircraft. It helps suppress effects of disturbances. Numerical Linearization is used to design a stabilizing controller for a non-linear model of the F-16 Fighting Falcon jet initialized with nominal flight condition. First a single-loop at a time feedback is designed using Matlab for longitudinal stabilization. Then the lateral modes of the aircraft are fed back and used in a single-loop at a time fashion to stabilize the lateral dynamics. Then, a multivariable feedback approach is used to stabilize the lateral dynamics for a constant turn rate condition using a cost function optimization approach to find suitable gains for the feedback loops. All of these controllers are tested by using a non-linear Simulink simulation of the scale-model F-16 dynamics.

  16. Velocity Controller for a Class of Vehicles

    Directory of Open Access Journals (Sweden)

    Herman Przemyslaw


    Full Text Available This paper addresses the problem of velocity tracking control for various fully-actuated robotic vehicles. The presented method, which is based on transformation of equations of motion allows one to use, in the control gain matrix, the dynamical couplings existing in the system. Consequently, the dynamics of the vehicle is incorporated into the control process what leads to fast velocity error convergence. The stability of the system under the controller is derived based on Lyapunov argument. Moreover, the robustness of the proposed controller is shown too. The general approach is valid for 6 DOF models as well as other reduced models of vehicles. Simulation results on a 6 DOF indoor airship validate the described velocity tracking methodology.

  17. Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity

    Directory of Open Access Journals (Sweden)

    Toure K. Augustin


    Full Text Available This paper studies a variant of an overhead crane model's problem, with a control force in velocity and rotating velocity on the platform. We obtain under certain conditions the well-posedness and the strong stabilization of the closed-loop system. We then analyze the spectrum of the system. Using a method due to Shkalikov, we prove the existence of a sequence of generalized eigenvectors of the system, which forms a Riesz basis for the state energy Hilbert space.

  18. Feedback Control of MEMS to Atoms

    CERN Document Server

    Shapiro, Benjamin


    Feedback Control of MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated miniaturized systems. The book is organized according to the dimensional scale of the problem, starting with microscale systems and ending with atomic-scale systems. Similar to macroscale machines and processes, control systems can play a major role in improving the performance of micro- and nanoscale systems and in enabling new capabilities that would otherwise not be possible. The majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control theory and engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry. This book: Shows how the utilization of feedback control in nanotechnology instrumentation can yield results far better than passive systems can Discusses the application of control systems to problems...

  19. Entanglement-assisted quantum feedback control (United States)

    Yamamoto, Naoki; Mikami, Tomoaki


    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  20. Power Assist Control of Robotic Wheelchair Based on Visual Feedback (United States)

    Oda, Naoki; Shimizu, Hiroyuki

    This paper describes a vision based self-velocity estimation and its feedback system under force/torque sensor-less power assisting control of wheelchair robot. In this method, three dimensional information obtained by stereo images, and the optical flow vectors are also used for self-velocity estimation in real-time. The human force is estimated by sensor-less reaction force observer, and the assisting force is calculated by using its estimated force and virtual impedance model. In the paper, the force based assist function is integrated into visual feedback motion controller. This approach using vision and force based assist control makes it possible to facilitate the direct intelligent interactions between human force and environments such as human following assist, obstacle avoidance one and so on. Such assist functions are changeable by the selection of the weighting matrix in the velocity estimation, which is based on weighted least square solutions from optical flow vectors. The validity of the proposed approach is verified by several experimental results.

  1. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.


    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...... force leads velocity the control is stable and yields a significant improvement in damping performance compared to the pure viscous damper....

  2. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.


    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  3. Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements. (United States)

    Hu, Qinglei; Zhang, Jian


    This paper investigates finite-time relative position coordinated tracking problem by output feedback for spacecraft formation flying without velocity measurement. By employing homogeneous system theory, a finite-time relative position coordinated tracking controller by state feedback is firstly developed, where the desired time-varying trajectory given in advance can be tracked by the formation. Then, to address the problem of lack of velocity measurements, a finite-time output feedback controller is proposed by involving a novel filter to recover unknown velocity information in a finite time. Rigorous proof shows that the proposed control law ensures global stability and guarantees the position of spacecraft formation to track a time-varying reference in finite time. Finally, simulation results are presented to illustrate the performance of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph


    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  5. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics

    National Research Council Canada - National Science Library

    Jansen, Karen; De Groote, Friedl; Aerts, Wouter; De Schutter, Joris; Duysens, Jacques; Jonkers, Ilse


    .... In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits...

  6. Feedback control of unstable cellular solidification fronts (United States)

    Pons, A. J.; Karma, A.; Akamatsu, S.; Newey, M.; Pomerance, A.; Singer, H.; Losert, W.


    We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.

  7. Adaptive control of saccades via internal feedback. (United States)

    Chen-Harris, Haiyin; Joiner, Wilsaan M; Ethier, Vincent; Zee, David S; Shadmehr, Reza


    Ballistic movements like saccades require the brain to generate motor commands without the benefit of sensory feedback. Despite this, saccades are remarkably accurate. Theory suggests that this accuracy arises because the brain relies on an internal forward model that monitors the motor commands, predicts their sensory consequences, and corrects eye trajectory midflight. If control of saccades relies on a forward model, then the forward model should adapt whenever its predictions fail to match sensory feedback at the end of the movement. Using optimal feedback control theory, we predicted how this adaptation should alter saccade trajectories. We trained subjects on a paradigm in which the horizontal target jumped vertically during the saccade. With training, the final position of the saccade moved toward the second target. However, saccades became increasingly curved, i.e., suboptimal, as oculomotor commands were corrected on-line to steer the eye toward the second target. The adaptive response had two components: (1) the motor commands that initiated the saccades changed slowly, aiming the saccade closer to the jumped target. The adaptation of these earliest motor commands displayed little forgetting during the rest periods. (2) Late in saccade trajectory, another adaptive response steered it still closer to the jumped target, producing curvature. Adaptation of these late motor commands showed near-complete forgetting during the rest periods. The two components adapted at different timescales, with the late-acting component displaying much faster rates. It appears that in controlling saccades, the brain relies on an internal feedback that has the characteristics of a fast-adapting forward model.

  8. Adaptive output feedback control of flexible systems (United States)

    Yang, Bong-Jun

    Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in

  9. Output feedback control of a mechanical system using magnetic levitation. (United States)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A


    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Feedback control in project-based management

    CERN Document Server

    Scibile, L


    Project management is a well-known management technique that has gained success because it encourages better organization and good engineering practice. This technique is also being used at CERN where projects are managed by engineers. They usually find themselves not at ease with a methodology and a jargon that are typical of an economical context. This paper presents a different approach to the project-based management. The notion of feedback control theory is introduced to help engineers in the organization and the supervision of the project, as well as to provide a context that is more familiar to them. This new approach is illustrated for the Antiproton Deceleration Access Control project.

  11. Smart building temperature control using occupant feedback (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  12. Motion Control Design for an Omnidirectional Mobile Robot Subject to Velocity Constraints

    Directory of Open Access Journals (Sweden)

    Ollin Peñaloza-Mejía


    Full Text Available A solution to achieve global asymptotic tracking with bounded velocities in an omnidirectional mobile robot is proposed in this paper. It is motivated by the need of having a useful in-practice motion control scheme, which takes into account the physical limits of the velocities. To this end, a passive nonlinear controller is designed and combined with a tracking controller in a negative feedback connection structure. By using Lyapunov theory and passivity tools, global asymptotic tracking with desired bounded velocities is proved. Simulations and experimental results are provided to show the effectiveness of the proposal.

  13. Neural network output feedback control of robot formations. (United States)

    Dierks, Travis; Jagannathan, Sarangapani


    In this paper, a combined kinematic/torque output feedback control law is developed for leader-follower-based formation control using backstepping to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. A neural network (NN) is introduced to approximate the dynamics of the follower and its leader using online weight tuning. Furthermore, a novel NN observer is designed to estimate the linear and angular velocities of both the follower robot and its leader. It is shown, by using the Lyapunov theory, that the errors for the entire formation are uniformly ultimately bounded while relaxing the separation principle. In addition, the stability of the formation in the presence of obstacles, is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation are prevented. Numerical results are provided to verify the theoretical conjectures.

  14. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.


    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  15. Feedback control in planarian stem cell systems. (United States)

    Mangel, Marc; Bonsall, Michael B; Aboobaker, Aziz


    In planarian flatworms, the mechanisms underlying the activity of collectively pluripotent adult stem cells (neoblasts) and their descendants can now be studied from the level of the individual gene to the entire animal. Flatworms maintain startling developmental plasticity and regenerative capacity in response to variable nutrient conditions or injury. We develop a model for cell dynamics in such animals, assuming that fully differentiated cells exert feedback control on neoblast activity. Our model predicts a number of whole organism level and general cell biological and behaviours, some of which have been empirically observed or inferred in planarians and others that have not. As previously observed empirically we find: 1) a curvilinear relationship between external food and planarian steady state size; 2) the fraction of neoblasts in the steady state is constant regardless of planarian size; 3) a burst of controlled apoptosis during regeneration after amputation as the number of differentiated cells are adjusted towards their homeostatic/steady state level. In addition our model describes the following properties that can inform and be tested by future experiments: 4) the strength of feedback control from differentiated cells to neoblasts (i.e. the activity of the signalling system) and from neoblasts on themselves in relation to absolute number depends upon the level of food in the environment; 5) planarians adjust size when food level reduces initially through increased apoptosis and then through a reduction in neoblast self-renewal activity; 6) following wounding or excision of differentiated cells, different time scales characterize both recovery of size and the two feedback functions; 7) the temporal pattern of feedback controls differs noticeably during recovery from a removal or neoblasts or a removal of differentiated cells; 8) the signaling strength for apoptosis of differentiated cells depends upon both the absolute and relative deviations of the

  16. Feedback controlled hybrid fast ferrite tuners

    Energy Technology Data Exchange (ETDEWEB)

    Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P. [General Atomics, San Diego, CA (United States); Arnold, W.; Martin, S.; Pivit, E. [ANT-Bosch, Backnang (Germany)


    A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 {Omega} source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec.

  17. Feedback Error Learning in neuromotor control (United States)

    Ishihara, Abraham K.

    This thesis is concerned with adaptive human motor control. Adaptation is a highly desirable characteristic of any biological system. Failure is an undesirable, yet very real, characteristic of the human motor control systems. Variability is a ubiquitous observation in human movements that has no direct analogue in the design and analysis of robotic control algorithms. This thesis attempts to link these three aspects of motor control under the constraints of a biologically inspired control framework termed Feedback Error Learning (FEL). Utilizing nonlinear and adaptive control methods we prove conditions for which the FEL framework is stable and successful learning can occur. Utilizing singular perturbation methods, we derive conditions for which the system is guaranteed to fail. Variability is analyzed using Ito Calculus and stochastic Lyapunov functionals where signal dependent noise, a commonly observed phenomenon, enters in the learning algorithm. We also show how signal dependent noise might benefit biological control systems despite the inherent variability introduced into the motor control loops. Lastly, we investigate a force tracking control task, where subjects are asked to track a time-varying plant. Using basic control and system identification techniques, we probe the human motor learning system and extract learning rates with respect to the FEL model.

  18. Inferring network connectivity by delayed feedback control.

    Directory of Open Access Journals (Sweden)

    Dongchuan Yu

    Full Text Available We suggest a control based approach to topology estimation of networks with N elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states M times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm (M = N or l(1-norm convex optimization strategy applicable to estimate the topology of sparse networks from M << N perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique.

  19. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.


    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, 30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  20. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel (United States)

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar


    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  1. Optimal haptic feedback control of artificial muscles (United States)

    Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas


    As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.

  2. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. (United States)

    Hasson, Christopher J; Manczurowsky, Julia


    After a limb is lost a prosthesis can restore function. For maximum utility, prosthetic limbs should accept movement commands and provide force and motion feedback, which can be conveyed with vibrotactile feedback (VIBF). While prior studies have shown that force-based VIBF benefits control, the merits of motion-based VIBF are unclear. Our goal was to clarify the effectiveness of position- and velocity-based VIBF for prosthetic arm control. Healthy adults with normal limb function practiced a goal-directed task with a virtual myoelectric prosthetic arm. A linear resonant actuator on the wrist provided VIBF. Two groups with nine subjects each received amplitude modulated VIBF in addition to visual feedback while practicing the task. In one group, the VIBF was proportional to the virtual arm's position, and in the other group, velocity. A control group of nine subjects received only visual feedback. Subjects practiced for 240 trials, followed by 180 trials with feedback manipulations for the VIBF groups. Performance was characterized by end-point error, movement time, and a composite skill measure that combined these quantities. A second experiment with a new group of five subjects assessed discrimination capabilities between different position- and velocity-based VIBF profiles. With practice all groups improved their skill in controlling the virtual prosthetic arm. Subjects who received additional position- and velocity-based VIBF learned at the same rate as the control group, who received only visual feedback (learning rate time constant: about 40 trials). When visual feedback was subsequently removed leaving only VIBF, performance was no better than with no feedback at all. When VIBF was removed leaving only visual feedback, about half of the participants performed better, instead of worse. The VIBF discrimination tests showed that subjects could detect virtual arm angular position and velocity differences of about 5 deg and 20 deg/s, respectively. Kinematic

  3. Sample-Clock Phase-Control Feedback (United States)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy


    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  4. Muscle activation during resistance training with no external load - effects of training status, movement velocity, dominance, and visual feedback. (United States)

    Gentil, Paulo; Bottaro, Martim; Noll, Matias; Werner, Scott; Vasconcelos, Jessica Cabral; Seffrin, Aldo; Campos, Mario Hebling


    To explore the acute effects of training status, movement velocity, dominance, and visual feedback on muscle activation and rating of perceived exertion (RPE) during resistance training with no external load (no-load resistance training; NLRT). Thirty-three men (17 untrained and 16 trained), performed elbow flexions in four NLRT sessions: 1) slow velocity with EMG visual feedback, 2) slow velocity without EMG visual feedback, 3) fast velocity with EMG feedback, and 4) fast velocity without EMG feedback. RPE was measured using the Borg Discomfort scale. EMG for the biceps and triceps were recorded for both arms. EMG feedback had no influence on RPE. The peak and mean EMG values were not different for the biceps (93.8±11.5% and 50±13.1%) and triceps (93.7±23.9% and 49.6±16.2%). The results revealed a difference in the training status, with higher peak EMG for untrained than for trained participants (96.9±20% vs. 90.2±15.6%). However the values for mean EMG were not different between the untrained and trained (50.3±15.7% vs. 49.2±13.7%) participants. There was no difference in the peak (92.8±19% vs. 94.7±20.4%) and mean (49.8±15.0% vs. 49.7±14.5%) EMG values for the dominant and non-dominant sides. Peak EMG values were not different between faster and slower velocities (93.6±19.6% and 93.9±17.8%). However, mean EMG was higher for slower (50.5±14.4%) than for faster (48.5±15.4%) velocities. The peak and mean EMG during contractions with (93.3±17.5% and 49.5±14.1%) and without visual feedback (94.2±19.9% and 50±15.4%) were not significantly different. NLRT produces high levels of muscle activation independent of training, status, dominance, movement velocity, and visual feedback. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Feedback control mechanisms of plant cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, D.J.


    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  6. Influence of perturbation velocity on balance control in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lars B Oude Nijhuis

    Full Text Available Underlying somatosensory processing deficits of joint rotation velocities may cause patients with Parkinson's disease (PD to be more unstable for fast rather than slow balance perturbations. Such deficits could lead to reduced proprioceptive amplitude feedback triggered by perturbations, and thereby to smaller or delayed stabilizing postural responses. For this reason, we investigated whether support surface perturbation velocity affects balance reactions in PD patients. We examined postural responses of seven PD patients (OFF medication and eight age-matched controls following backward rotations of a support-surface platform. Rotations occurred at three different speeds: fast (60 deg/s, medium (30 deg/s or slow (3.8 deg/s, presented in random order. Each subject completed the protocol under eyes open and closed conditions. Full body kinematics, ankle torques and the number of near-falls were recorded. Patients were significantly more unstable than controls following fast perturbations (26% larger displacements of the body's centre of mass; P<0.01, but not following slow perturbations. Also, more near-falls occurred in patients for fast rotations. Balance correcting ankle torques were weaker for patients than controls on the most affected side, but were stronger than controls for the least affected side. These differences were present both with eyes open and eyes closed (P<0.01. Fast support surface rotations caused greater instability and discriminated Parkinson patients better from controls than slow rotations. Although ankle torques on the most affected side were weaker, patients partially compensated for this by generating larger than normal stabilizing torques about the ankle joint on the least affected side. Without this compensation, instability may have been greater.

  7. Nonlinear feedback control of dual-stage actuator system (United States)

    Liu, Chuan; Liu, Yang; Li, Xing; Chen, Xing-lin


    The wafer stage of lithography is a dual-stage actuator (DSA) system. An nm-level positioning precision is required by using macro movement of long-stroke linear motor and high-precision micro movement of short-stroke voice coil motor, while the platform is moving in high-speed. This brief presents a nonlinear control method for dual-stage actuator systems to track a step command input fast and accurately. To further reduce the settling time, we design the long-stroke actuator controller with the control law of proximate time optimal control (PTOC) to yield a closed-loop system with a small damping ratio for a fast rise time and certain allowable overshoot. Moreover, for the purpose of reducing the overshoot caused by the long-stroke actuator as the system output approaches the target location, a composite nonlinear feedback (CNF) control law is designed for the short-stroke actuator to yield a closed-loop system with a large damping ratio. The linear extended state observer (LESO) was designed to estimate the unknown velocity and compensate the disturbance of servo systems, thus static error could be effectively decreased. We applied this proposed control method to an actual DSA positioning system, which consists of a linear motor and a voice coil motor. Experimental results show that our approach can improve the dynamic performance and the anti-jamming capability of the system, enhance the control precision.

  8. Active control of a flexible structure using a modal positive position feedback controller (United States)

    Poh, S.; Baz, A.


    The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz, respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.

  9. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems (United States)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge


    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  10. Self-control of feedback during motor learning: accounting for the absolute amount of feedback using a yoked group with self-control over feedback. (United States)

    Hansen, Steve; Pfeiffer, Jacob; Patterson, Jae Todd


    A traditional control group yoked to a group that self-controls their reception of feedback receives feedback in the same relative and absolute manner. This traditional control group typically does not learn the task as well as the self-control group. Although the groups are matched for the amount of feedback they receive, the information is provided on trials in which the individual may not request feedback if he or she were provided the opportunity. Similarly, individuals may not receive feedback on trials for which it would be a beneficial learning experience. Subsequently, the mismatch between the provision of feedback and the potential learning opportunity leads to a decrement in retention. The present study was designed to examine motor learning for a yoked group with the same absolute amount of feedback, but who could self-control when they received feedback. Increased mental processing of error detection and correction was expected for the participants in the yoked self-control group because of their choice to employ a limited resource in the form of a decreasing amount of feedback opportunities. Participants in the yoked with self-control group committed fewer errors than the self-control group in retention and the traditional yoked group in both the retention and time transfer blocks. The results suggest that the yoked with self-control group was able to produce efficient learning effects and can be a viable control group for further motor learning studies.

  11. Open Problems on Information and Feedback Controlled Systems

    Directory of Open Access Journals (Sweden)

    Manuel Feito


    Full Text Available Feedback or closed-loop control allows dynamical systems to increase their performance up to a limit imposed by the second law of thermodynamics. It is expected that within this limit, the system performance increases as the controller uses more information about the system. However, despite the relevant progresses made recently, a general and complete formal development to justify this statement using information theory is still lacking. We present here the state-of-the-art and the main open problems that include aspects of the redundancy of correlated operations of feedback control and the continuous operation of feedback control. Complete answers to these questions are required to firmly establish the thermodynamics of feedback controlled systems. Other relevant open questions concern the implications of the theoretical results for the limitations in the performance of feedback controlled flashing ratchets, and for the operation and performance of nanotechnology devices and biological systems.

  12. Momentum limiting velocity controls for robotic manipulators (United States)

    Mcinroy, John E.; Saridis, George N.; Bryan, Tom


    Robotic tasks in space require manipulating massive objects capable of attaining large momentum. The momentum can pose hazardous conditions and introduce destabilizing effects on a space platform. Consequently, a technique for limiting the momentum applied to objects under manipulation subject to arbitrary velocity input commands is proposed. The algorithm does not require mass position or inertia information about the object, and it takes actuator limitations into account in forming the momentum limits. To evaluate the probability that a velocity trajectory will fall within the momentum bounds, reliability theory is employed. This enables autonomously generated trajectories to be validated for compliance with momentum limits.

  13. Role of measurement in feedback-controlled quantum engines (United States)

    Yi, Juyeon; Kim, Yong Woon


    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  14. Control of force through feedback in small driven systems (United States)

    Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifert, U.; Ritort, F.


    Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.

  15. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.


    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...

  16. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper


    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...... demonstrate the effectiveness of the proposed method comparing with the conventional PID controller...

  17. Thermodynamics of quantum-jump-conditioned feedback control. (United States)

    Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano


    We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.

  18. Extreme Precision Environmental Control for Next Generation Radial Velocity Spectrographs (United States)

    Stefansson, Gudmundur K.; Hearty, Fred; Levi, Eric; Robertson, Paul; Mahadevan, Suvrath; Bender, Chad; Nelson, Matt; Halverson, Samuel


    Extreme radial velocity precisions of order 10cm/s will enable the discoveries of Earth-like planets around solar-type stars. Temperature and pressure variations inside a spectrograph can lead to thermomechanical instabilities in the optics and mounts, and refractive index variations in both the optical elements as well as the surrounding air. Together, these variations can easily induce instrumental drifts of several tens to hundreds of meters per second. Enclosing the full optical train in thermally stabilized high-vacuum environments minimizes such errors. In this talk, I will discuss the Environmental Control System (ECS) for the Habitable Zone Planet Finder (HPF) spectrograph: a near infrared (NIR) facility class instrument we will commission at the Hobby Eberly Telescope in 2016. The ECS will maintain the HPF optical bench stable at 180K at the sub milli-Kelvin level on the timescale of days, and at the few milli-Kelvin level over months to years. The entire spectrograph is kept under high-quality vacuum (controlled radiation shield outfitted with custom feedback electronics. High efficiency Multi-Layer Insulation (MLI) blankets, and a passive external thermal enclosure further isolate the optics from ambient perturbations. This environmental control scheme is versatile, suitable to stabilize both next generation NIR, and optical spectrographs. I will show how we are currently testing this control system for use with our design concept of the Extreme Precision Doppler Spectrograph (EPDS), the next generation optical spectrograph for the WIYN 3.5m telescope. Our most recent results from full-scale stability tests will be presented.

  19. Semiglobal H-infinity State Feedback Control

    DEFF Research Database (Denmark)

    Cromme, Marc; Stoustrup, Jakob


    Semi-global set-stabilizing H-infinity controlis a local within some given compact set such that all statetrajectories are bounded inside the set, and are approaching an openloop invariant subset as time approaches infinity. Sufficientconditions for the existence of a continuous state feedback law...

  20. Minimal controller synthesis algorithms with output feedback and their generalization


    SEVİNÇ, Ata


    This paper proposes several improvements in the minimal controller synthesis algorithms, which were developed for a class of nonlinear systems with uncertainties. The major proposition is that only the output feedback is enough to control some nonlinear systems without an observer while the existing algorithms require the complete state feedback. Next, the extended version and the parameter identification technique of the minimal controller synthesis algorithm are combined in a single m...

  1. Control Analysis and Feedback Techniques for Multi Agent Robots


    Ahmed, Salman; Karsiti, Mohd Noh; Robert N. K. Loh


    In this paper, a simulation framework based on the kinematic model for the multi agent robots using the leader-follower formation was presented. The design of feedback controllers for leader-follower formation using feedback linearization techniques was also presented. The follower robots derived their inputs based on the control inputs sent by the leader robot. The leader robot transmitted its control inputs to the follower using the Bluetooth piconet profile. The posture stabilization contr...

  2. Designing Backstepping Control System for Hypersonic Vehicle Based on Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jianli Wei


    Full Text Available A hypersonic vehicle uses the airbreathing scramjet engine and the airframe and engine integrated design. Therefore, there is a strong cross-coupling effect among its aerodynamic force, thrust, structure, and control. The nonlinearity and uncertainty of the model cause difficulties in control system design. Considering the nonlinearity, coupling characteristics, and aerodynamic parametric uncertainty of its longitudinal dynamic model, we design the control law for its altitude system and velocity system based on the adaptive backstepping control method. Because of the feedback linearization method, we introduce the constraints of the flight vehicle’s actuator into the design, obtaining the robust adaptive control system constrained by the actuator of the flight vehicle. To avoid the high-order derivation problem of the feedback linearization method and the derivation of the virtual control volume in adaptive backstepping control method, we use the arbitrary-order robust exact differentiator to solve the high-order derivatives in feedback linearization and utilize the command filter to obtain the virtual control volume and its derivatives. The simulation results show that the robust adaptive control system we designed can achieve the error-free tracking of altitude and velocity command. It can well overcome the influence of structural parameters, aerodynamic parametric uncertainty, and disturbances; meanwhile, the control command can satisfy the constraints of the actuator.

  3. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch


    Ermakov, Ilya; Tronciu, Vasile; Colet, Pere; Mirasso, Claudio R.


    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  4. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern


    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  5. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW


    Full Text Available A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing...

  6. Feedback-controlled stimulation enhances human paralyzed muscle performance


    Shields, Richard K.; Dudley-Javoroski, Shauna; Cole, Keith R.


    Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimula...

  7. Integral quantum fluctuation theorems under measurement and feedback control. (United States)

    Funo, Ken; Watanabe, Yu; Ueda, Masahito


    We derive integral quantum fluctuation theorems and quantum Jarzynski equalities for a feedback-controlled system and a memory which registers outcomes of the measurement. The obtained equalities involve the information content, which reflects the information exchange between the system and the memory, and take into account the back action of a general measurement contrary to the classical case. The generalized second law of thermodynamics under measurement and feedback control is reproduced from these equalities.

  8. Non-Markovian coherent feedback control of quantum dot systems (United States)

    Xue, Shibei; Wu, Rebing; Hush, Michael R.; Tarn, Tzyh-Jong


    In this paper we present a non-Markovian coherent feedback scheme for decoherence suppression in single quantum dot systems. The feedback loop is closed via a quantum tunnelling junction between the natural source and drain baths of the quantum dot. The exact feedback-controlled non-Markovian Langevin equation is derived for describing the dynamics of the quantum dot. To deal with the nonlinear memory function in the Langevin equation, we analyse the Green’s function-based root locus, from which we show that the decoherence of the quantum dot can be suppressed via increasing the feedback coupling strength. The effectiveness of decoherence suppression induced by non-Markovian coherent feedback is demonstrated by a single quantum dot example bathed with Lorentzian noises.

  9. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan


    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  10. Control of resistance plug welding using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, A.E. [Sandia National Lab., Albuquerque, NM (United States); Horowitz, I. [Univ. of California, Davis, CA (United States)]|[Weizmann Inst. of Science, Rehovot (Israel)]|[Wright Patterson Air Force Base, Dayton, OH (United States); Chait, Y.; Rodrigues, J. [Univ. of Massachusetts, Amherst, MA (United States)


    Resistance welding is used extensively throughout the manufacturing industry. Variations in weld quality often result in costly post-weld inspections. Applications of feed-back control to such processes have been limited by the lack of accurate models describing the nonlinear dynamics of this process. A new system based on electrode displacement feedback is developed that greatly improves quality control of the resistance plug welding process. The system is capable of producing repeatable welds of consistent displacement (and thus consistent quality), with wide variations in weld parameters. This paper describes the feedback design of a robust controller using Quantitative Feedback Theory for this highly complex process, and the experimental results of the applied system.

  11. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system (United States)

    Ren, Wei; Deng, Chao; Mao, Yao; Ren, Ge


    In the optical stabilization control system (OSCS) control system based on a charge-coupled device (CCD), stabilization performance of the line-of-sight is severely limited by the mechanical resonance and the low sampling rate of the CCD. An approach to improve the stabilization performance of the OSCS control system with load restriction based on three loops, including an acceleration loop, a virtual velocity loop, and a position loop, by using MEMS accelerometers and a CCD is proposed. The velocity signal is obtained by accelerators instead of gyro sensors. Its advantages are low power, low cost, small size, and wide measuring range. A detailed analysis is provided to show how to design the virtual velocity loop and correct virtual velocity loop drift. Experimental results show that the proposed multiloop feedback control method with virtual velocity loop in which the disturbance suppression performance is better than that of the dual loop control with only an acceleration loop and a position loop at low frequency.

  12. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements (United States)

    Kim, Kwang S.; Max, Ludo


    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated. PMID:25426056

  13. Digital system accurately controls velocity of electromechanical drive (United States)

    Nichols, G. B.


    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  14. A force-feedback control system for micro-assembly (United States)

    Lu, Zhe; Chen, Peter C. Y.; Ganapathy, Anand; Zhao, Guoyong; Nam, Joohoo; Yang, Guilin; Burdet, Etienne; Teo, Cheeleong; Meng, Qingnian; Lin, Wei


    In this paper, we report the development of an explicit force-feedback control system for micro-assembly, focusing on the key issues of force transmission and control. The force-feedback system is incorporated with a compound flexure stage, which is driven by a voice-coil actuator and designed to provide frictionless translation motion along one axis. A force sensor measures the interaction force between the micromanipulator and its environment, while an explicit force controller controls the interaction force to follow a desired force trajectory. The effectiveness of this prototype force-control system has been demonstrated in an experimental application, where parts (with dimensions in microns) were picked up and assembled under explicit force-feedback control.

  15. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani


    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  16. Optimal and robust feedback controller estimation for a vibrating plate

    NARCIS (Netherlands)

    Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.


    This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2

  17. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. (United States)

    Raveh, Eitan; Portnoy, Sigal; Friedman, Jason


    We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback - one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Global feedforward and glocal feedback control of large deformable mirrors (United States)

    Ruppel, Thomas; Sawodny, Oliver


    With an increasing demand for high spatial resolution and fast temporal response of AO components for ELTs, the need for actively controlled, electronically damped deformable mirrors is evident. With typically more than 1000 actuators and collocated sensors, the evolving multi-input multi-output control task for shaping the deformable mirror requires sophisticated control concepts. Although global position control of the mirror would be the most promising solution, the computational complexity for high order spatial control of the deformable element typically exceeds available computing power. Due to this reason, existing deformable membrane mirrors for large telescopes incorporate local feedback instead of global feedback control and neglect some of the global dynamics of the deformable mirror. As a side effect, coupling of the separately controlled actuators through the deformable membrane can lead to instability of the individually stable loops and draws the need for carefully designing the control parameters of the local feedback loops. In this presentation, the computational demands for global position control of deformable mirrors are revisited and a less demanding model-based modal control concept for large deformable membrane mirrors with distributed force actuators and collocated position sensors is presented. Both global feedforward and glocal feedback control is employed in a two-degree-of-freedom control structure allowing for separately designing tracking performance and disturbance rejection. In order to implement state feedback control, non-measureable state information is reconstructed by using model-based distributed state observers. By taking into account the circular symmetry of the deformable mirror geometry, the computational complexity of the algorithms is discussed and model reduction techniques with quasi-static state approximation are presented. As an example, the geometric layout of required sensor / actuator wiring and computational

  19. The Role of Locus of Control and Feedback on Performance of ...

    African Journals Online (AJOL)

    This study examined Students' Locus of Control and Teacher Feedback using a 2x3 factorial to measure the performance of thirty-six (36) primary school students utilizing the two locus of control types and three levels of teacher feedback: no feedback, attributional feedback, and progressive feedback. No significant ...

  20. On spatial spillover in feedforward and feedback noise control (United States)

    Xie, Antai; Bernstein, Dennis


    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  1. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah


    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  2. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.


    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  3. Effect of motor dynamics on nonlinear feedback robot arm control (United States)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping


    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  4. A Result on Output Feedback Linear Quadratic Control

    NARCIS (Netherlands)

    Engwerda, J.C.; Weeren, A.J.T.M.


    In this note we consider the static output feedback linear quadratic control problem.We present both necessary and sufficient conditions under which this problem has a solution in case the involved cost depend only on the output and control variables.This result is used to present both necessary and

  5. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal


    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  6. Sensory feedback in artificial control of human mobility

    NARCIS (Netherlands)

    Veltink, Petrus H.


    Artificial motor control systems may reduce the handicap of motor impaired individuals. Sensors are essential components in feedback control of these systems and in the information exchange with the user. The objective of this paper is to give an overview of the applications of sensors in the

  7. Semiglobal H-infty state feedback control

    DEFF Research Database (Denmark)

    Cromme, Marc


    semi-global set-stabilizing H-infty control is local H-infty control within some given compact set O such that all state trajectories are bounded inside O, and are approaching an open loop invariant set S subset O as t -> infinity. Sufficient conditions for the existance of a continuous statefeed...

  8. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.


    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  9. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.


    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...

  10. Feedback control policies employed by people using intracortical brain-computer interfaces (United States)

    Willett, Francis R.; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Saab, Jad; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Simeral, John D.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.


    Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a ‘feedback control policy’. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users’ feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user’s neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor’s current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  11. Adaptive Feedfoward Feedback Control Framework Project (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for the suppression of the aircraft's structural vibration to increase the resilience of the flight control law in the presence of the...

  12. Feedback Linearized Aircraft Control Using Dynamic Cell Structure (United States)

    Jorgensen, C. C.


    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  13. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity (United States)

    Loria, Tristan; de Grosbois, John; Tremblay, Luc


    Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…

  14. A Biopsychosocial Model Based on Negative Feedback and Control

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Carey


    Full Text Available Although the biopsychosocial model has been a popular topic of discussion for over four decades it has not had the traction in fields of research that might be expected of such an intuitively appealing idea. One reason for this might be the absence of an identified mechanism or a functional architecture that is authentically biopsychosocial. What is needed is a robust mechanism that is equally important to biochemical processes as it is to psychological and social processes. Negative feedback may be the mechanism that is required. Negative feedback has been implicated in the regulation of neurotransmitters as well as important psychological and social processes such as emotional regulation and the relationship between a psychotherapist and a client. Moreover, negative feedback is purported to also govern the activity of all other organisms as well as humans. Perceptual Control Theory (PCT describes the way in which negative feedback establishes control at increasing levels of perceptual complexity. Thus, PCT may be the first biopsychosocial model to be articulated in functional terms. In this paper we outline the working model of PCT and explain how PCT provides an embodied hierarchical neural architecture that utilises negative feedback to control physiological, psychological, and social variables. PCT has major implications for both research and practice and, importantly, provides a guide by which fields of research that are currently separated may be integrated to bring about substantial progress in understanding the way in which the brain alters, and is altered by, its behavioural and environmental context.

  15. A biopsychosocial model based on negative feedback and control. (United States)

    Carey, Timothy A; Mansell, Warren; Tai, Sara J


    Although the biopsychosocial model has been a popular topic of discussion for over four decades it has not had the traction in fields of research that might be expected of such an intuitively appealing idea. One reason for this might be the absence of an identified mechanism or a functional architecture that is authentically biopsychosocial. What is needed is a robust mechanism that is equally important to biochemical processes as it is to psychological and social processes. Negative feedback may be the mechanism that is required. Negative feedback has been implicated in the regulation of neurotransmitters as well as important psychological and social processes such as emotional regulation and the relationship between a psychotherapist and a client. Moreover, negative feedback is purported to also govern the activity of all other organisms as well as humans. Perceptual Control Theory (PCT) describes the way in which negative feedback establishes control at increasing levels of perceptual complexity. Thus, PCT may be the first biopsychosocial model to be articulated in functional terms. In this paper we outline the working model of PCT and explain how PCT provides an embodied hierarchical neural architecture that utilizes negative feedback to control physiological, psychological, and social variables. PCT has major implications for both research and practice and, importantly, provides a guide by which fields of research that are currently separated may be integrated to bring about substantial progress in understanding the way in which the brain alters, and is altered by, its behavioral and environmental context.

  16. Control feedback as the motivational force behind habitual behavior. (United States)

    Nafcha, O; Higgins, E T; Eitam, B


    Motivated behavior is considered to be a product of integration of a behavior's subjective benefits and costs. As such, it is unclear what motivates "habitual behavior" which occurs, by definition, after the outcome's value has diminished. One possible answer is that habitual behavior continues to be selected due to its "intrinsic" worth. Such an explanation, however, highlights the need to specify the motivational system for which the behavior has intrinsic worth. Another key question is how does an activity attain such intrinsically rewarding properties. In an attempt to answer both questions, we suggest that habitual behavior is motivated by the influence it brings over the environment-by the control motivation system, including "control feedback." Thus, when referring to intrinsic worth, we refer to a representation of an activity that has been reinforced due to it being effective in controlling the environment, managing to make something happen. As an answer to when does an activity attain such rewarding properties, we propose that this occurs when the estimated instrumental outcome expectancy of an activity is positive, but the precision of this expectancy is low. This lack of precision overcomes the chronic dominance of outcome feedback over control feedback in determining action selection by increasing the relative weight of the control feedback. Such a state of affairs will lead to repeated selection of control relevant behavior and entails insensitivity to outcome devaluation, thereby producing a habit. © 2016 Elsevier B.V. All rights reserved.

  17. Feedback control architecture and the bacterial chemotaxis network. (United States)

    Hamadeh, Abdullah; Roberts, Mark A J; August, Elias; McSharry, Patrick E; Maini, Philip K; Armitage, Judith P; Papachristodoulou, Antonis


    Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  18. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh


    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  19. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.


    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...

  20. Robot arm force control through system linearization by nonlinear feedback (United States)

    Tarn, T. J.; Bejczy, A. K.; Yun, Xiaoping


    Based on a differential geometric feedback linearization technique for nonlinear time-varying systems, a dynamic force control method for robot arms is developed. It uses active force-moment measurements at the robot wrist. The controller design fully incorporate the robot-arm dynamics and is so general that it can be reduced to pure position control, hybrid position/force control, pure force control. The controller design is independent of the tasks to be performed. Computer simulations show that the controller improves the position error by a factor of ten in cases in which position errors generate force measurements. A theorem on linearization of time-varying system is also presented.

  1. Design of a velocity and position control laboratory servo system (United States)

    Ziegler, Michael A.


    In support of a course in automatic control theory, a velocity and position control laboratory servo system was designed for use in laboratory exercises. The system is constructed using a commercially available DC motor and power amplifier, which are interfaced to a student control panel. All system changes and measurements are conducted with the control panel. The system can be operated open or closed loop, in a position or velocity control mode, and has several adjustable compensators incorporated in the signal path. This thesis provides detailed construction, wiring, and system testing steps, along with the required scale drawings, necessary to perform the hardware integration. A set of laboratory procedures, example laboratory reports, and advanced servo control problems are included for instructional purposes.

  2. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen


    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  3. Discrete-time infinity control problem with measurement feedback (United States)

    Stoorvogel, A. A.; Saberi, A.; Chen, B. M.


    The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.

  4. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal


    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental d...... disturbances correspond to those expected for the Roemer mission. The pros and cons of the algorithm are discussed. The results of the study show that the controller is a > successful candidate for on-board implementation...

  5. Three-parameter feedback control of amorphous ribbon magnetization

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr; Švec, P.


    Roč. 64, č. 3 (2013), s. 166-172 ISSN 0013-578X R&D Projects: GA ČR GP102/09/P108 Institutional support: RVO:68378271 Keywords : magnetic variables measurement * magnetic hysteresis * digital feedback control * amorphous magnetic materials Subject RIV: JB - Sensors, Measurment, Regulation

  6. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik


    be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  7. Feedback Control Architecture and the Bacterial Chemotaxis Network (United States)

    Hamadeh, Abdullah; Roberts, Mark A. J.; August, Elias; McSharry, Patrick E.; Maini, Philip K.; Armitage, Judith P.; Papachristodoulou, Antonis


    Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to ‘reset’ (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a ‘cascade control’ feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance. PMID:21573199

  8. Restricted feedback control of one-dimensional maps (United States)

    Hall, Kevin; Christini, David J.


    Dynamical control of biological systems is often restricted by the practical constraint of unidirectional parameter perturbations. We show that such a restriction introduces surprising complexity to the stability of one-dimensional map systems and can actually improve controllability. We present experimental cardiac control results that support these analyses. Finally, we develop new control algorithms that exploit the structure of the restricted-control stability zones to automatically adapt the control feedback parameter and thereby achieve improved robustness to noise and drifting system parameters.

  9. All-optical noninvasive delayed feedback control of semiconductor lasers

    CERN Document Server

    Schikora, Sylvia


    The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Con...

  10. Non-Markovian quantum feedback networks II: Controlled flows (United States)

    Gough, John E.


    The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering. In this paper, we build on the ideas presented by Bouten and van Handel [Quantum Stochastics and Information: Statistics, Filtering and Control (World Scientific, 2008)] and develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes, Z, and the measured processes, Y, and to this end we make a distinction between what we call the input picture and the output picture. We should note that the input-output relations for the noise fields have additional terms not present in the standard theory but that the relationship between the control processes and measured processes themselves is internally consistent—we do this for the two main cases of quadrature measurement and photon-counting measurement. The theory is general enough to include a modulating filter which post-processes the measurement readout Y before returning to the system. This opens up the prospect of applying very general engineering feedback control techniques to open quantum systems in a systematic manner, and we consider a number of specific modulating filter problems. Finally, we give a brief argument as to why most of the rules for making instantaneous feedback connections [J. Gough and M. R. James, Commun. Math. Phys. 287, 1109 (2009)] ought to apply for controlled dynamical networks as well.

  11. Effect of intermittent feedback control on robustness of human-like postural control system

    National Research Council Canada - National Science Library

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki


    .... Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown...

  12. Closed Loop Optimal Control of a Stewart Platform Using an Optimal Feedback Linearization Method

    Directory of Open Access Journals (Sweden)

    Hami Tourajizadeh


    Full Text Available Optimal control of a Stewart robot is performed in this paper using a sequential optimal feedback linearization method considering the jack dynamics. One of the most important applications of a Stewart platform is tracking a machine along a specific path or from a defined point to another point. However, the control procedure of these robots is more challenging than that of serial robots since their dynamics are extremely complicated and non-linear. In addition, saving energy, together with achieving the desired accuracy, is one of the most desirable objectives. In this paper, a proper non-linear optimal control is employed to gain the maximum accuracy by applying the minimum force distribution to the jacks. Dynamics of the jacks are included in this paper to achieve more accurate results. Optimal control is performed for a six-DOF hexapod robot and its accuracy is increased using a sequential feedback linearization method, while its energy optimization is realized using the LQR method for the linearized system. The efficiency of the proposed optimal control is verified by simulating a six-DOF hexapod robot in MATLAB, and its related results are gained and analysed. The actual position of the end-effector, its velocity, the initial and final forces of the jacks and the length and velocity of the jacks are obtained and then compared with open loop and non-optimized systems; analytical comparisons show the efficiency of the proposed methods.

  13. Divided attention impairs human motor adaptation but not feedback control. (United States)

    Taylor, Jordan A; Thoroughman, Kurt A


    When humans experience externally induced errors in a movement, the motor system's feedback control compensates for those errors within the movement. The motor system's predictive control then uses information about those errors to inform future movements. The role of attention in these two distinct motor processes is unclear. Previous experiments have revealed a role for attention in motor learning over the course of many movements; however, these experimental paradigms do not determine how attention influences within-movement feedback control versus across-movement adaptation. Here we develop a dual-task paradigm, consisting of movement and audio tasks, which can differentiate and expose attention's role in these two processes of motor control. Over the course of several days, subjects performed horizontal reaching movements, with and without the audio task; movements were occasionally subjected to transient force perturbations. On movements with a force perturbation, subjects compensated for the force-induced movement errors, and on movements immediately after the force perturbation subjects exhibited adaptation. On every movement trial, subjects performed a two-tone frequency-discrimination task. The temporal specificity of the frequency-discrimination task allowed us to divide attention within and across movements. We find that divided attention did not impair the within-movement feedback control of the arm, but did reduce subsequent movement adaptation. We suggest that the secondary task interfered with the encoding and transformation of errors into changes in predictive control.

  14. Electrotactile EMG feedback improves the control of prosthesis grasping force (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario


    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  15. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  16. Active Feedback Control of Unstable Wells at the Brage Field

    Directory of Open Access Journals (Sweden)

    Morten Dalsmo


    Full Text Available In this paper we will present new results on stabilization of horizontal wells with gas lift. The stabilization is achieved by a novel dynamic feedback control solution using the production choke at the wellhead. The primary input to the dynamic feedback controller is a measurement of the downhole pressure. The field results to be presented are from the Brage field operated by Norsk Hydro in the North sea. Production at Brage began in 1993 and the field went off plateau in 1998. As the production has decreased, the problems related to unstable production from some of the wells have escalated steadily. The results from the extensive field tests on the Brage wells arc very promising. The tests have confirmed the stabilization feature of the control solution. The pressure and flow variations have been dramatically reduced, and it is possible to produce the wells at a lower downhole pressure leading to increased production.

  17. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)


    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  18. Velocity plus displacement equivalent force control for real-time substructure testing (United States)

    Zhou, Huimeng; Wagg, D.; Wang, Tao


    This paper employs a velocity plus displacement (V+D)-based equivalent force control (EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark- β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological (MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.

  19. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao


    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  20. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang


    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  1. Conformal grasping using feedback controlled bubble actuator array (United States)

    Carrigan, Wei; Stein, Richard; Mittal, Manoj; Wijesundara, Muthu B. J.


    This paper presents an implementation of a bubble actuator array (BAA) based active robotic skin, a modular system, onto existing low cost robotic end-effectors or prosthetic hands for conformal grasping of objects. The active skin is comprised of pneumatically controlled polyurethane rubber bubbles with overlaid sensors for feedback control. Sensor feedback allows the BAA based robotic skin to conformally grasp an object with an explicit uniform force distribution. The bubble actuator array reported here is capable of applying up to 4N of force at each point of contact and tested for conformally grasping objects with a radius of curvature up to 57.15mm. Once integrated onto a two-finger gripper with one degree of freedom (DOF), the active skin was shown to reduce point of contact forces of up to 50% for grasped objects.

  2. Discussion on 'State feedback control with time delay' (United States)

    Araújo, José M.


    This note is a short discussion on the paper 'State feedback control with time delay', in which an a posteriori analysis on the primary closed-loop eigenvalues is proposed to ensure that the chosen location is accurately achieved by state feedback. The goal is twofold. First, a qualitative evaluation of closed-loop stability can be carried out by using classical control techniques, as systems margins or Nyquist plot, without the necessity of evaluating the primary closed-loop eigenvalues; and second, the well-known Padé approximants for time delay in frequency domain is shown to be as accurate as that the truncation of the Taylor exponential expansion proposed in that work.

  3. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova


    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  4. Controlling a negative loaded hydraulic cylinder using pressure feedback

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.


    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly...

  5. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach

    Directory of Open Access Journals (Sweden)

    Huashan Liu


    Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed-loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self-tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.

  6. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed


    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  7. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach

    Directory of Open Access Journals (Sweden)

    Huashan Liu


    Full Text Available To deal with the problem of the output feedback tracking (OFT control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed‐loop control with only position measurements, linear and nonlinear filters are optionally involved to generate a pseudo signal to surrogate the actual velocity tracking error. As a third contribution, a fuzzy regulator is added to obtain a self‐tuning performance in tackling the disturbances. Moreover, an explicit but strict stability proof of the system based on the stability theory of singularly perturbed systems is presented. Finally, numerical simulations on several sample controllers are implemented to verify the effectiveness of the proposed approach.

  8. Mobile robot nonlinear feedback control based on Elman neural network observer

    Directory of Open Access Journals (Sweden)

    Khaled Al-Mutib


    Full Text Available This article presents a new approach to control a wheeled mobile robot without velocity measurement. The controller developed is based on kinematic model as well as dynamics model to take into account parameters of dynamics. These parameters related to dynamic equations are identified using a proposed methodology. Input–output feedback linearization is considered with a slight modification in the mathematical expressions to implement the dynamic controller and analyze the nonlinear internal behavior. The developed controllers require sensors to obtain the states needed for the closed-loop system. However, some states may not be available due to the absence of the sensors because of the cost, the weight limitation, reliability, induction of errors, failure, and so on. Particularly, for the velocity measurements, the required accuracy may not be achieved in practical applications due to the existence of significant errors induced by stochastic or cyclical noise. In this article, Elman neural network is proposed to work as an observer to estimate the velocity needed to complete the full state required for the closed-loop control and account for all the disturbances and model parameter uncertainties. Different simulations are carried out to demonstrate the feasibility of the approach in tracking different reference trajectories in comparison with other paradigms.

  9. Feedback-controlled laser-mediated cartilage reshaping. (United States)

    Wong, B J; Milner, T E; Harrington, A; Ro, J; Dao, X; Sobol, E N; Nelson, J S


    To demonstrate feedback-controlled laser-mediated cartilage reshaping using dynamic measurements of tissue optical properties and radiometric surface temperatures. Flat cartilage specimens were reshaped into curved configurations using a feedback-controlled laser device. Fresh porcine nasal septum, stripped of perichondrium and cut into uniform strips (25 x 10 x 1.5-2.1 mm) with a custom guillotine microtome. Cartilage specimens secured in a cylindrical reshaping jig (2.5 cm in diameter) and irradiated with an Nd:YAG laser (lambda = 1.32 microns, 25 W/cm2, 50-Hz pulse repetition rate). During laser irradiation, radiometric surface temperature was measured along with changes in forward-scattered light from a diode probe laser (lambda = 650 nm, 5 mW), using a lock-in detection technique. Sequential irradiation of the specimen outer surface was made (3 laser passes). Characteristic changes in tissue temperature and light-scattering signals were used to terminate laser irradiation. Effective reshaping was accomplished for both thin (1.5-mm) and thick (2.1-mm) specimens. Following reshaping, specimens were stored in saline solution at 4 degrees C for 21 days. No return to the original flat configuration was noted during this period. The prototype device effectively reshapes flat native porcine cartilage into curve configurations. The use of optical and thermal signals provides effective feedback control for optimizing the reshaping process.

  10. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration. (United States)

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B


    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of

  11. Task driven feedback control of robot arms - A step toward intelligent control (United States)

    Bejczy, A. K.; Tarn, T. J.; Li, Z. F.


    The process of connecting task descriptions originating from machine intelligence planning programs to the mechanization of feedback control of robot arms is analyzed. It is shown in this paper that control theories and practices can be extended to a higher level where feedback control of robot arms directly can respond to work space task commands provided that the work space task as a command is given in the form of a closed function of time. A general mathematical procedure using tools from differential geometry is introduced for synthesizing task space motion planning so that the planned motion can be used as a direct input to the robot arm feedback control system to achieve desired robot hand motion. By definition, 'intelligent control' is being manifested through robot performance in the task space relative to task space commands. Thus, the capability of implementing feedback control of robot arms directly driven by appropriate task descriptions in the workspace as commands is a step toward intelligent control.

  12. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum


    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model.

  13. The dominance of haptics over audition in controlling wrist velocity during striking movements. (United States)

    Cao, Yinan; Giordano, Bruno L; Avanzini, Federico; McAdams, Stephen


    Skilled interactions with sounding objects, such as drumming, rely on resolving the uncertainty in the acoustical and tactual feedback signals generated by vibrating objects. Uncertainty may arise from mis-estimation of the objects' geometry-independent mechanical properties, such as surface stiffness. How multisensory information feeds back into the fine-tuning of sound-generating actions remains unexplored. Participants (percussionists, non-percussion musicians, or non-musicians) held a stylus and learned to control their wrist velocity while repeatedly striking a virtual sounding object whose surface stiffness was under computer control. Sensory feedback was manipulated by perturbing the surface stiffness specified by audition and haptics in a congruent or incongruent manner. The compensatory changes in striking velocity were measured as the motor effects of the sensory perturbations, and sensory dominance was quantified by the asymmetry of congruency effects across audition and haptics. A pronounced dominance of haptics over audition suggested a superior utility of somatosensation developed through long-term experience with object exploration. Large interindividual differences in the motor effects of haptic perturbation potentially arose from a differential reliance on the type of tactual prediction error for which participants tend to compensate: vibrotactile force versus object deformation. Musical experience did not have much of an effect beyond a slightly greater reliance on object deformation in mallet percussionists. The bias toward haptics in the presence of crossmodal perturbations was greater when participants appeared to rely on object deformation feedback, suggesting a weaker association between haptically sensed object deformation and the acoustical structure of concomitant sound during everyday experience of actions upon objects.

  14. The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study. (United States)

    Logemann, H N Alexander; Lansbergen, Marieke M; Van Os, Titus W D P; Böcker, Koen B E; Kenemans, J Leon


    EEG-feedback, also called neurofeedback, is a training procedure aimed at altering brain activity, and is used as a treatment for disorders like Attention Deficit/Hyperactivity Disorder (ADHD). Studies have reported positive effects of neurofeedback on attention and other dependent variables. However, double-blind studies including a sham neurofeedback control group are lacking. The inclusion of such group is crucial to control for unspecific effects. The current work presents a sham-controlled, double-blind evaluation. The hypothesis was that neurofeedback enhances attention and decreases impulsive behavior. Participants (n=27) were students selected on relatively high scores on impulsivity/inattention questionnaires (Barrat Impulsivity Scale and Broadbent CFQ). They were assigned to a neurofeedback treatment or a sham group. (sham)Neurofeedback training was planned for 15 weeks consisting of a total of 30 sessions, each lasting 22 min. Before and after 16 sessions (i.e., interim analyses), qEEG was recorded and impulsivity and inattention was assessed using a stop signal task and reversed continuous performance task and two questionnaires. Results of the interim analyses showed that participants were blind with respect to group inclusion, but no trend towards an effect of neurofeedback on behavioral measures was observed. Therefore in line with ethical guidelines the experiment was ceased. These results implicate a possible lack of effect of neurofeedback when one accounts for non-specific effects. However, the specific form of feedback and application of the sham-controlled double-blind design may have diminished the effect of neurofeedback. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.


    with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...

  16. East African weathering dynamics controlled by vegetation-climate feedbacks (United States)

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.


    Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.

  17. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C


    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  18. Design of feedback controller for TCP/AQM networks

    Directory of Open Access Journals (Sweden)

    Sukant Kishoro Bisoy


    Full Text Available In this paper, we propose a novel proportional-differential-type feedback controller called Novel-PD as new active queue management (AQM to regulate the queue length with small oscillation. It measures the current queue length and uses the current queue length and differential error signals to adjust packet drop probability dynamically. We provide control theoretic analysis of system stability and develop guidelines to select control gain parameters of Novel-PD. The design of Novel-PD for TCP/AQM system is given in details. NS2 is used for conducting extensive simulation. The proposed controller is compared with random early detection (RED, random exponential marking (REM, proportional integrator (PI and proportional derivative (PD controller. Result shows that, Novel-PD is stable and achieves faster response in dynamic environments where number of TCP connections, bottleneck capacity, round trip time (RTT keeps changing. The proposed controller outperforms other AQM schemes.

  19. Independent modal space control with positive position feedback (United States)

    Baz, A.; Poh, S.; Fedor, J.


    An independent modal space control (IMSC) algorithm is presented, whose modal control forces are generated from a positive position feedback (PPF) strategy. The proposed algorithm combines the attributes of both the IMSC and the PPF, and maintains the simplicity of the IMSC as it designs the controller of a complex structure at the uncoupled modal level. The effectiveness of the algorithm in damping out the vibration of flexible structures is validated experimentally. A simple cantilevered beam is employed as an example of a flexible structure whose multimodes of vibration are controlled by a single actuator. Performance of the active control system is determined in the frequency and the time domains. The experimental results indicate the potential of the proposed methodology as a viable method for controlling the vibration of large flexible structures.

  20. Control of birhythmicity: A self-feedback approach (United States)

    Biswas, Debabrata; Banerjee, Tanmoy; Kurths, Jürgen


    Birhythmicity occurs in many natural and artificial systems. In this paper, we propose a self-feedback scheme to control birhythmicity. To establish the efficacy and generality of the proposed control scheme, we apply it on three birhythmic oscillators from diverse fields of natural science, namely, an energy harvesting system, the p53-Mdm2 network for protein genesis (the OAK model), and a glycolysis model (modified Decroly-Goldbeter model). Using the harmonic decomposition technique and energy balance method, we derive the analytical conditions for the control of birhythmicity. A detailed numerical bifurcation analysis in the parameter space establishes that the control scheme is capable of eliminating birhythmicity and it can also induce transitions between different forms of bistability. As the proposed control scheme is quite general, it can be applied for control of several real systems, particularly in biochemical and engineering systems.

  1. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik


    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  2. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Directory of Open Access Journals (Sweden)

    Felix Jost


    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  3. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)


    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  4. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  5. Simple Motor Control Concept Results High Efficiency at High Velocities (United States)

    Starin, Scott; Engel, Chris


    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  6. Control of beam halo-chaos by delayed self-controlling feedback

    CERN Document Server

    Zhu Lun Wu; Gao Yuan; Fang Jin Qing


    The delayed self-controlling feedback method is used to control beam halo-chaos in high-intensity accelerator effectively under five different initial distributions of protons. A brief theoretic analysis is presented. This method, considering its linear controller and weak feedback, has the advantage in technology realizability and cost saving. It cna be a good reference in the application to high-intensity accelerators

  7. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh


    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  8. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai


    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  9. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai


    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  10. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez


    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  11. The stabilizing effect of collision-induced velocity shear on the ionospheric feedback instability in Earth's magnetosphere (United States)

    Sydorenko, D.; Rankin, R.


    The feedback instability in the ionospheric Alfvén resonator in Earth's magnetosphere is examined using a two-dimensional multifluid numerical model of coupled ionosphere and magnetosphere. Two simulation configurations are used to demonstrate that the instability occurs under an assumption that is unrealistic for Earth's ionosphere. In the first configuration, a flat sheet height-integrated conducting boundary replaces the ionospheric E layer. In the second configuration, plasma dynamics in a simplified E layer is resolved ignoring ion production, loss, and diffusion. For the same parameters (plasma and neutral density profiles and convection electric field), the instability develops only with the flat sheet boundary. When the E layer is resolved, the variation of ion-neutral collision frequencies with altitude produces vertical shear in the horizontal ion flow velocity. The shear prevents density perturbations from remaining field aligned, causing them to decay rather than grow. It is suggested that the instability cannot occur in Earth's ionosphere because ion-neutral collision frequencies always have a significant variation with altitude through the E layer.

  12. Stochastic Control of Event-Driven Feedback in Multi-Antenna Interference Channels

    CERN Document Server

    Huang, Kaibin; Kim, Dongku


    Spatial interference avoidance is a simple and effective way of mitigating interference in multi-antenna wireless networks. The deployment of this technique requires channel-state information (CSI) feedback from each receiver to all interferers, resulting in substantial network overhead. To address this issue, this paper proposes the method of distributive feedback control that intelligently allocates feedback bits over multiple feedback links and adapts feedback to channel dynamics. For symmetric channel distributions, it is optimal for each receiver to equally allocate the average sum-feedback rate for different feedback links, thereby decoupling their control. For low mobility and using the criterion of minimum sum-interference power, the optimal feedback-control policy is shown using stochastic optimization theory to exhibit opportunism. Specifically, a specific feedback link is turned on only when the corresponding transmit-CSI error is significant or interference-channel gain is large, and the optimal n...

  13. Fractional Order Nonlinear Feedback Controller Design for PMSM Drives

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wen


    Full Text Available Fractional order integral is introduced into active disturbance rejection controller (ADRC to establish the structure of fractional order proportional integral controller (FPI. Fractional order ADRC (FADRC is designed by replacing the nonlinear state error feedback control law using nonlinear function combination in ADRC with FPI, which can combine the high performance of ADRC estimating disturbances with the characteristics of fractional order calculus more really describing the physical object and spreading the stable region of the system parameters. The proposed FADRC is applied to permanent magnet synchronous motor (PMSM speed servo system in order to improve robustness of system against the disturbances. Compared with ADRC, simulation results verify that the proposed control method has given very good robust results and fast speed tracking performance.

  14. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang


    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  15. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters (United States)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.


    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  16. Control by time delayed feedback near a Hopf bifurcation point

    Directory of Open Access Journals (Sweden)

    Sjoerd Verduyn Lunel


    Full Text Available In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit in the controlled system: 1 by directly studying the Floquet multipliers and 2 by use of the Hopf bifurcation theorem. We also propose an extension of the Pyragas control scheme for which the controlled system becomes a functional differential equation of neutral type. Using the observation that we are able to determine the direction of bifurcation by a relatively simple calculation of the root tendency, we find stability conditions for the periodic orbit as a solution of the neutral type equation.

  17. External force/velocity control for an autonomous rehabilitation robot (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn


    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  18. Acoustic beam control in biomimetic projector via velocity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail:, E-mail:; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail:, E-mail: [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)


    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  19. Phase Resolved Angular Velocity Control of Cross Flow Turbines (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian


    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  20. Single-temperature quantum engine without feedback control (United States)

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon


    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  1. Effect of vibrotactile feedback on an EMG-based proportional cursor control system. (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang


    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  2. A Multimedia Visual Feedback in the Web-controlled Laboratory

    Directory of Open Access Journals (Sweden)

    J. Turan


    Full Text Available The paper presents development work related to create WWW based remote control laboratory for teaching Applied Photonics. In order to minimize the cost at the end-user domain, simple WWW browser with fundamental plug-in (Java applets, HTML Pages and LabWindows applets to support the remote control and video transmission functionality of the remote control is proposed. As for telepresence and monitoring of device actions, a simple type zooming web-camera is connected to the hosting multimedia PC via the USB port. The web-camera assists in visual feedback of the system and presents the feeling of telepresence for the end-user (student. USB web-cameras are normally efficient and the presence of another video server is not necessary in this case, thanks to LabWindows.

  3. Feedback control in deep drawing based on experimental datasets (United States)

    Fischer, P.; Heingärtner, J.; Aichholzer, W.; Hortig, D.; Hora, P.


    In large-scale production of deep drawing parts, like in automotive industry, the effects of scattering material properties as well as warming of the tools have a significant impact on the drawing result. In the scope of the work, an approach is presented to minimize the influence of these effects on part quality by optically measuring the draw-in of each part and adjusting the settings of the press to keep the strain distribution, which is represented by the draw-in, inside a certain limit. For the design of the control algorithm, a design of experiments for in-line tests is used to quantify the influence of the blank holder force as well as the force distribution on the draw-in. The results of this experimental dataset are used to model the process behavior. Based on this model, a feedback control loop is designed. Finally, the performance of the control algorithm is validated in the production line.

  4. Attitude control of an underactuated spacecraft using quaternion feedback regulator and tube-based MPC (United States)

    Mirshams, M.; Khosrojerdi, M.


    Feasibility of achieving 3-axis stabilization of an asymmetric spacecraft for cases where there is no control available in one axis (underactuated spacecraft) is explored in this paper. A novel control design methodology is presented which can stabilize the underactuated spacecraft and steer it to the origin. A passive fault tolerant control (FTC) is defined which controls and maintains the attitude of the spacecraft near the desired point in presence of uncertainties, disturbances, control constraints and actuator faults. Considering the general conditions of the underactuated spacecraft, a hybrid controller combining a quaternion feedback regulator (QFR) with a tube-based model predictive controller (MPC) is developed based on the nonlinear kinematic and dynamic equations of the spacecraft motion. The hybrid controller is composed of two control stages. At the first stage, QFR decreases the angular velocities and brings the state vector to an acceptable region for the next stage. Then, tube-based MPC solves two optimal control problems, a standard problem for the nominal system to define a central guide path, and an ancillary problem to steer the state vector towards the central path with semi-optimal control effort. Numerical simulation results obtained for the underactuated spacecraft merely indicate effectiveness of the proposed attitude control method.

  5. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles. (United States)

    Tian, Jiayi; Zhang, Shifeng; Zhang, Yinhui; Li, Tong


    Since motion control plant (y(n)=f(⋅)+d) was repeatedly used to exemplify how active disturbance rejection control (ADRC) works when it was proposed, the integral chain system subject to matched disturbances is always regarded as a canonical form and even misconstrued as the only form that ADRC is applicable to. In this paper, a systematic approach is first presented to apply ADRC to a generic nonlinear uncertain system with mismatched disturbances and a robust output feedback autopilot for an airbreathing hypersonic vehicle (AHV) is devised based on that. The key idea is to employ the feedback linearization (FL) and equivalent input disturbance (EID) technique to decouple nonlinear uncertain system into several subsystems in canonical form, thus it would be much easy to directly design classical/improved linear/nonlinear ADRC controller for each subsystem. It is noticed that all disturbances are taken into account when implementing FL rather than just omitting that in previous research, which greatly enhances controllers' robustness against external disturbances. For autopilot design, ADRC strategy enables precise tracking for velocity and altitude reference command in the presence of severe parametric perturbations and atmospheric disturbances only using measurable output information. Bounded-input-bounded-output (BIBO) stable is analyzed for closed-loop system. To illustrate the feasibility and superiority of this novel design, a series of comparative simulations with some prominent and representative methods are carried out on a benchmark longitudinal AHV model. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Surfing the edge: using feedback control to find nonlinear solutions (United States)

    Willis, A. P.; Duguet, Y.; Omel'chenko, O.; Wolfrum, M.


    Many transitional wall-bounded shear flows are characterised by the coexistence in state-space of laminar and turbulent regimes. Probing the edge boundary between the two attractors has led in the last decade to the numerical discovery of new (unstable) solutions to the incompressible Navier-Stokes equations. However, the iterative bisection method used to achieve this can become prohibitively costly for large systems. Here we suggest a simple feedback control strategy to stabilise edge states, hence accelerating their numerical identification by several orders of magnitude. The method is illustrated for several configurations of cylindrical pipe flow. Travelling waves solutions are identified as edge states, and can be isolated rapidly in only one short numerical run. A new branch of solutions is also identified. When the edge state is a periodic orbit or chaotic state, the feedback control does not converge precisely to solutions of the uncontrolled system, but nevertheless brings the dynamics very close to the original edge manifold in a single run. We discuss the opportunities offered by the speed and simplicity of this new method to probe the structure of both state space and parameter space.

  7. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    Directory of Open Access Journals (Sweden)

    Hikari Shirakata


    Full Text Available We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016. We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  8. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback. (United States)

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan


    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  9. Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback

    Directory of Open Access Journals (Sweden)

    Ricky eMehta


    Full Text Available Although individual heads of triceps surae, soleus (SO and medial gastrocnemius (MG muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1 inhibition occurs at high movement velocities and mediated by velocity-dependent sensory feedback and (2 inhibition depends on the ankle-knee joint moment combination and does not require high movement velocities. The hypotheses were tested by comparing the SO EMG/MG EMG ratio during fast and slow motor behaviors (cat paw shake responses vs. back, straight leg load lifting in humans, which had the same ankle extension-knee flexion moment combination; and during fast and slow behaviors with the ankle extension-knee extension moment combination (human vertical jumping and stance phase of walking in cats and leg load lifting in humans. In addition, SO EMG/MG EMG ratio was determined during cat paw shake responses and walking before and after removal of stretch velocity-dependent sensory feedback by self-reinnervating SO and/or gastrocnemius. We found the ratio SO EMG/MG EMG below 1 (p<0.05 during fast paw shake responses and slow back load lifting, requiring the ankle extension-knee flexion moment combination; whereas the ratio SO EMG/MG EMG was above 1 (p<0.05 during fast vertical jumping and slow tasks of walking and leg load lifting, requiring ankle extension-knee extension moments. Removal of velocity-dependent sensory feedback did not affect the SO EMG/MG EMG ratio in cats. We concluded that the relative inhibition of SO does not require high muscle velocities, depends on ankle-knee moment combinations, and is mechanically advantageous for allowing a greater MG contribution to ankle extension and knee flexion moments.

  10. An active feedback flow control theory of the vortex breakdown process (United States)

    Granata, Joshua

    An active feedback flow control theory of the vortex breakdown process in incompressible, axisymmetric swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions. A long-wave asymptotic analysis, which involves a re-scaling of the axial distance and time at near critical swirl ratios, results in a nonlinear model problem for the dynamics and control of both inviscid and high-Reynolds number, Re, flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. Computed examples of the flow dynamics based on the full Euler and Navier-Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level which depends on Re. Numerical stability and mesh convergence studies performed on the inviscid and high-Re flow simulations ensure the accuracy of the computations and the agreement with the theoretical approaches. In addition, an energy analysis of the nonlinear model problem sheds insight into the mechanisms of the flow dynamics which lead to vortex breakdown and suggests a feedback control law which relates the flow injection and the evolving maximum radial velocity at the inlet. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl up to 53 percent above the first critical level for the inviscid flow case and for a range of swirl up to 15 percent above the first critical level for viscous flows. The control law can be improved for a lower momentary maximum flux injection through the use of discrete injection regions along the pipe. The feedback control cuts the natural feed-forward mechanism of the breakdown

  11. Feedback-controlled stimulation enhances human paralyzed muscle performance. (United States)

    Shields, Richard K; Dudley-Javoroski, Shauna; Cole, Keith R


    Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimulation, and 2) ascertain which of three stimulation strategies best maintains soleus torque during repetitive stimulation. When torque declined by 10%, the FDBCK protocol modulated the base stimulation frequency in three ways: by a fixed increase, by a paired pulse (doublet) at the beginning of the stimulation train, and by a fixed decrease. The stimulation strategy that most effectively restored torque continued for successive contractions. This process repeated each time torque declined by 10%. In fresh muscle, FDBCK stimulation offered minimal advantage in maintaining peak torque or mean torque over CONST stimulation. As long-duration fatigue developed in subsequent bouts, FDBCK stimulation became most effective ( approximately 40% higher final normalized torque than CONST). The high-frequency strategy was selected approximately 90% of the time, supporting that excitation-contraction coupling compromise and not neuromuscular transmission failure contributed to fatigue of paralyzed muscle. Ideal stimulation strategies may vary according to the site of fatigue; this stimulation approach offered the advantage of online modulation of stimulation strategies in response to fatigue conditions. Based on stress-adaptation principles, FDBCK-controlled stimulation may enhance training effects in chronically paralyzed muscle.

  12. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.


    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion is...... force leads velocity the control is stable and yields a significant improvement in damping performance compared to the pure viscous damper.......In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...

  13. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu


    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  14. Effect of intermittent feedback control on robustness of human-like postural control system (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki


    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  15. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis. (United States)

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo


    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity. (United States)

    Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi


    The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COPAP) and mediolateral (COPML) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COMAP and COMML). The coordinates of the COG in the AP direction (COGAP) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COPAP and/or COGAP moved forward and vice versa. The COP + COG group received the real-time COPAP and COGAP feedback simultaneously, whereas the COP group received the real-time COPAP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COPAP and COGAP and reduce the COGAP fluctuation, whereas the COP group was required to reduce the COPAP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COMAP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COMAP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that

  17. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej


    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  18. Self-controlled concurrent feedback and the education of attention towards perceptual invariants. (United States)

    Huet, Michaël; Camachon, Cyril; Fernandez, Laure; Jacobs, David M; Montagne, Gilles


    The present study investigates the effects of different types of concurrent feedback on the acquisition of perceptual-motor skills. Twenty participants walked through virtual corridors in which rhythmically opening and closing sliding doors were placed. The participants aimed to adjust their walking speed so as to cross the doors when the doors were close to their maximal aperture width. The highest level of performance was achieved by learners who practiced the task with unambiguous self-controlled concurrent feedback, which is to say, by learners who could request that feedback at wish. Practice with imposed rather than self-controlled feedback and practice without concurrent feedback were shown to be less effective. Finally, the way in which the self-controlled concurrent feedback was presented was also found to be of paramount importance; if the feedback is ambiguous, it may even prevent participants from learning the task. Clearly, unambiguous self-controlled feedback can give rise to higher levels of performance than other feedback conditions (compared to imposed schedule) but, depending on the way it is presented, the feedback can also prevent the participants from learning the task. In the discussion it is argued that unambiguous self-controlled concurrent feedback allows learners to more rapidly educate their attention towards more useful perceptual invariants and to calibrate the relation between perceptual invariants and action parameters.

  19. Transparent Higher Order Sliding Mode Control for Nonlinear Master-Slave Systems without Velocity Measurement

    Directory of Open Access Journals (Sweden)

    Luis G. Garcia-Valdovinos


    Full Text Available Transparency has been a major objective in bilateral teleoperation systems, even in the absence of time delay induced by the communication channel, since a high degree of transparency would allow humans to drive the remote teleoperator as if he or she were directly interacting with the remote environment, with the remote teleoperator as a physical and sensorial extension of the operator. When fast convergence of position and force tracking errors are ensured by the control system, then complete transparency is obtained, which would ideally guarantee humans to be tightly kinaesthetically coupled. In this paper a model-free Cartesian second order sliding mode (SOSM PD control scheme for nonlinear master-slave systems is presented. The proposed scheme does not rely on velocity measurements and attains very fast convergence of position trajectories, with bounded tracking of force trajectories, rendering a high degree of transparency with lesser knowledge of the system. The degree of transparency can easily be improved by tuning a feedback gain in the force loop. A unique energy storage function is introduced; such that a similar Cartesian-based controller is implemented in the master and slave sides. The resulting properties of the Cartesian control structure allows the human operator to input directly Cartesian variables, which makes clearer the kinaesthetic coupling, thus the proposed controller becomes a suitable candidate for practical implementation. The performance of the proposed scheme is evaluated in a semi-experimental setup.

  20. Neural network based adaptive output feedback control: Applications and improvements (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  1. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi


    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  2. Neural network control of mobile robot formations using RISE feedback. (United States)

    Dierks, Travis; Jagannathan, S


    In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are AS and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most NN controllers. Additionally, the stability of the formation in the presence of obstacles is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation do not occur. The asymptotic stability of the follower robots as well as the entire formation during an obstacle avoidance maneuver is demonstrated using Lyapunov methods, and numerical results are provided to verify the theoretical conjectures.

  3. State feedback controller design for the synchronization of Boolean networks with time delays (United States)

    Li, Fangfei; Li, Jianning; Shen, Lijuan


    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  4. Uncontrolled manifold reference feedback control of multi-joint robot arms

    Directory of Open Access Journals (Sweden)

    Shunta Togo


    Full Text Available The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the UCM reference feedback control. To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for

  5. The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study.

    NARCIS (Netherlands)

    Logemann, H.N.; Lansbergen, M.M.; Os, T.W. Van; Bocker, K.B.; Kenemans, J.L.


    EEG-feedback, also called neurofeedback, is a training procedure aimed at altering brain activity, and is used as a treatment for disorders like Attention Deficit/Hyperactivity Disorder (ADHD). Studies have reported positive effects of neurofeedback on attention and other dependent variables.

  6. The effectiveness of EEG-feedback on attention, impulsivity and EEG : A sham feedback controlled study

    NARCIS (Netherlands)

    Logemann, H. N. Alexander; Lansbergen, Marieke M.; Van Os, Titus W. D. P.; Bocker, Koen B. E.; Kenemans, J. Leon


    EEG-feedback, also called neurofeedback, is a training procedure aimed at altering brain activity, and is used as a treatment for disorders like Attention Deficit/Hyperactivity Disorder (ADHD). Studies have reported positive effects of neurofeedback on attention and other dependent variables.

  7. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder. (United States)

    Shanechi, Maryam M; Orsborn, Amy; Moorman, Helene; Gowda, Suraj; Carmena, Jose M


    Brain-machine interface (BMI) performance has been improved using Kalman filters (KF) combined with closed-loop decoder adaptation (CLDA). CLDA fits the decoder parameters during closed-loop BMI operation based on the neural activity and inferred user velocity intention. These advances have resulted in the recent ReFIT-KF and SmoothBatch-KF decoders. Here we demonstrate high-performance and robust BMI control using a novel closed-loop BMI architecture termed adaptive optimal feedback-controlled (OFC) point process filter (PPF). Adaptive OFC-PPF allows subjects to issue neural commands and receive feedback with every spike event and hence at a faster rate than the KF. Moreover, it adapts the decoder parameters with every spike event in contrast to current CLDA techniques that do so on the time-scale of minutes. Finally, unlike current methods that rotate the decoded velocity vector, adaptive OFC-PPF constructs an infinite-horizon OFC model of the brain to infer velocity intention during adaptation. Preliminary data collected in a monkey suggests that adaptive OFC-PPF improves BMI control. OFC-PPF outperformed SmoothBatch-KF in a self-paced center-out movement task with 8 targets. This improvement was due to both the PPF's increased rate of control and feedback compared with the KF, and to the OFC model suggesting that the OFC better approximates the user's strategy. Also, the spike-by-spike adaptation resulted in faster performance convergence compared to current techniques. Thus adaptive OFC-PPF enabled proficient BMI control in this monkey.

  8. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.


    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron

  9. Active automotive engine vibration isolation using feedback control (United States)

    Olsson, Claes


    Large frequency band feedback active automotive engine vibration isolation is considered. A MIMO (multi-input multi-output) controller design for an active engine suspension system has been performed making use of a virtual development environment for design, analysis, and co-simulation based closed-loop verification. Utilising relevant control object dynamic modelling, this design strategy provides a powerful opportunity to deal with various plant dynamics, such as structural flexibility and nonlinear characteristics where the main objective is to approach the actual physical characteristics for design and verification in early design phases where no prototypes are yet physically available. H2 loop shaping technique proves to be powerful when achieving the desired frequency dependent loop gain while ensuring closed-loop stability. However, to achieve closed-loop stability two kinds of nonlinearities have to be taken into account. Those are nonlinear material characteristics of the engine mounts and large angular engine displacements. It is demonstrated how the adopted design strategy facilitates the investigation of the latter nonlinearity's impact on closed-loop characteristics. To deal with the nonlinearities, gain scheduling has been used.

  10. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory


    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  11. Precise feedback control underlies sensorimotor learning in speech. (United States)

    Vaughn, Chris; Nasir, Sazzad M


    Acquiring the skill of speaking in another language, or for that matter a child's learning to talk, does not follow a single recipe. People learn by variable amounts. A major component of speech learnability seems to be sensing precise feedback errors to correct subsequent utterances that help maintain speech goals. We have tested this idea in a speech motor learning paradigm under altered auditory feedback, in which subjects repeated a word while their auditory feedback was changed online. Subjects learned the task to variable degrees, with some simply failing to learn. We assessed feedback contribution by computing one-lag covariance between formant trajectories of the current feedback and the following utterance that was found to be a significant predictor of learning. Our findings rely on a novel use of information-rich formant trajectories in evaluating speech motor learning and argue for their relevance in auditory speech goals of vowel sounds. Copyright © 2015 the American Physiological Society.

  12. Proximal Blade Twist Feedback Control for Heliogyro Solar Sails (United States)

    Smith, Sarah Mitchell

    mode is on the order of 0.005%, meaning there is almost no inherent damping in the blade. Next, the proximal blade twist feedback control design was successful in overcoming friction in the root actuator and added damping to the blade. The damping ratio for the lowest frequency torsional mode was increased from 0.001% to 0.09%, which is a significant amount for a heliogyro spacecraft. Finally, the camera sensor used for the proximal differential twist measurement proved to be feasible and quantization from these measurements only decreased the damping ratio to 0.075%. This research provides the first indication that a physically realizable blade root controller can deal with friction in an effective way, thus taking a step towards advancing the technology readiness level of the heliogyro spacecraft.

  13. Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law (United States)

    Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang


    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.

  14. Controlling methicillin-resistant Staphylococcus aureus: a feedback approach using annotated statistical process control charts. (United States)

    Curran, Evonne T; Benneyan, James C; Hood, John


    To investigate the benefit of a hospitalwide feedback program regarding methicillin-resistant Staphylococcus aureus (MRSA), using annotated statistical process control charts. Retrospective and prospective analysis of MRSA rates using statistical process control charts. Twenty-four medical, medical specialty, surgical, intensive care, and cardiothoracic care wards and units at four Glasgow Royal Infirmary hospitals. Annotated control charts were applied to prospective and historical monthly data on MRSA cases from each ward and unit during a 46-month period from January 1997 through September 2000. Results were fed back from December 1999 and then on a regular monthly basis to medical staff, ward managers, senior managers, and hotel services. Monthly reductions in the MRSA acquisition rate started 2 months after the introduction of the feedback program and have continued to the present time. The overall MRSA rate currently is approximately 50% lower than when the program began and has become more consistent and less variable within departments throughout Glasgow Royal Infirmary. The control charts have helped to detect rate changes and manage resources more effectively. Medical and nursing staff and managers also report that they find this the most positive form of MRSA feedback they have received. Feedback programs that provide current information to front-line staff and incorporate annotated control charts can be effective in reducing the rate of MRSA.

  15. Influence of self-controlled feedback on learning a serial motor skill. (United States)

    Lim, Soowoen; Ali, Asif; Kim, Wonchan; Kim, Jingu; Choi, Sungmook; Radlo, Steven J


    Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art. Twenty-four novice female participants (M age=27.2 yr., SD=1.8) were divided into two groups. All participants performed 16 trials in 4 blocks of the acquisition phase and 20 hr. later, 8 trials in 2 blocks of the retention phase. The self-controlled feedback group had significantly higher performance compared to the yoked-feedback group with regard to acquisition and retention. The results of this study may contribute to the literature regarding feedback by extending the usefulness of self-controlled feedback for learning a serial skill.

  16. Temperature feedback control for long-term carrier-envelope phase locking (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS


    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  17. Patient and Partner Feedback Reports to Improve Statin Medication Adherence: A Randomized Control Trial. (United States)

    Reddy, Ashok; Huseman, Tiffany L; Canamucio, Anne; Marcus, Steven C; Asch, David A; Volpp, Kevin; Long, Judith A


    Simple nudges such as reminders and feedback reports to either a patient or a partner may facilitate improved medication adherence. To test the impact of a pill bottle used to monitor adherence, deliver a daily alarm, and generate weekly medication adherence feedback reports on statin adherence. Three-month, three-arm randomized clinical trial ( identifier: NCT02480530). One hundred and twenty-six veterans with known coronary artery disease and poor adherence (medication possession ratio medication adherence feedback report; and (3) a partner feedback group (n = 54) that received an alarm and a weekly feedback report that was shared with a friend, family member, or a peer. The intervention continued for 3 months, and participants were followed for an additional 3 months after the intervention period. Adherence as measured by pill bottle. Secondary outcomes included change in LDL (mg/dl), patient activation, and social support. During the 3-month intervention period, medication adherence was higher in both feedback arms than in the control arm (individual feedback group 89 %, partner feedback group 86 %, control group 67 %; p medication adherence between either of the feedback groups and the control (individual feedback 60 %, partner feedback 52 %, control group 54 %; p = 0.75 and 0.97). Daily alarms combined with individual or partner feedback reports improved statin medication adherence. While neither an individual feedback nor partner feedback strategy created a sustainable medication adherence habit, the intervention itself is relatively easy to implement and low cost.

  18. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method. (United States)

    Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Wang, Yong-Ji; Luo, Jun


    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to [Formula: see text] at the signal frequency of 2 mHz, which contributes a [Formula: see text] uncertainty to the G value.

  19. Learning feedback and feedforward control in a mirror-reversed visual environment. (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn


    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  20. Improved methods in neural network-based adaptive output feedback control, with applications to flight control (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  1. Efferent Feedback in a Spinal-Like Controller: Reaching With Perturbations. (United States)

    Stefanovic, Filip; Galiana, Henrietta L


    We use simulations of a controller that adopts a spinal-like network topology for goal-oriented reaching and assess its sensitivity to the dynamics of internal elements that allow context-independent performance. Such internal elements are often referred to as inverse or forward models of the periphery dynamics, depending on the proposed controller theory. Here, the "models" are used in a forward implementation, and we evaluate how the controller's performance would be affected by the nature of the model. For each point-to-point reaching motion experiment, we use forms of internal "efference models" (e.g., full mathematical representations of peripheral dynamics, simple spindle feedback, etc.) driven by motor reafference, then compare hand trajectories and hand path speeds in the presence or absence of external perturbations. It is demonstrated that a simple velocity-based model reduced the effects of dynamic perturbations by as much as 66%. In addition, the 2D hand trajectories varied from a biological reference by only 0.05 cm. Thus, the controller facilitated biological like motions while providing response to dynamic events which are omitted in earlier biomimetic controllers. This research suggests that these spinal-like systems are robust and tunable via gain-fields without the need of context dependent pre-planning.

  2. Effects of self-control and instructor-control feedback on motor learning in individuals with cerebral palsy. (United States)

    Hemayattalab, Rasool


    In this study we investigated the effects of "self-control and instructor-control feedback" on motor learning in individuals with cerebral palsy (CP). For this reason 22 boy students with CP type I (12.26±3.11 years of age) were chosen. They were put into self-control feedback, instructor-control feedback and control groups. All participants practiced dart throwing skill for 5 sessions (4 blocks of 5 trails each session). The self-control group received knowledge of results (KR) feedback for half of their trials whenever they wanted. The instructor-control group received KR feedback after half of both their good and bad trails. The control group received no feedback for any trails. The acquisition test was run immediately at the end of each practice session (the last block) and the retention and transfer tests were run 24h following the acquisition phase. Analyses of variance with repeated measures and Post hoc tests were used to analyze the data. According to the results of this study, individuals with CP have the ability of acquiring and retaining a new motor skill. Also, it was found that self-control feedback is effective than instructor-control feedback on learning of a motor task in individuals with CP as in the average population. These findings show that rules regarding feedback also apply to people afflicted with CP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. (United States)

    Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W


    It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede


    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

  5. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Tianhua Li


    Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

  6. Core stabilization exercise with real-time feedback for chronic hemiparetic stroke: a pilot randomized controlled trials. (United States)

    Chung, Eunjung; Lee, Byoung-Hee; Hwang, Sujin


    The purpose of this study was to examine the feasibility of core stabilization exercise with real-time feedback on balance and gait function in patients with chronic hemiparetic stroke. Nineteen stroke subjects were enrolled in this study. The patients were randomly divided into the experimental (n = 10) and control groups (n = 9). Subjects in the experimental group performed core stabilization exercise with real-time feedback training for 30 minutes per day during a period of six weeks. Subjects in the control group performed core stabilization exercise during the same period. This study assessed the kinematic parameters using a portable walkway system, and timed up-and-go test. Gait velocity showed significantly greater improvement in the experimental group (7.3 ± 5.0 sec) than in the control group (-0.7 ± 10.6). Stride length showed significantly greater increase in the experimental group (13.2 ± 7.9 on the affected side and 12.6 ± 8.0 on the less affected side) than the control group (3.5 ± 8.7 on the affected side and 3.4 ± 8.5 on the less affected side). After training, change in results on the timed up and go test was significantly greater in the experimental group than in the control group. Core stabilization exercise using real-time feedback produces greater improvement in gait performance in chronic hemiparetic stroke patients than core stabilization exercise only.

  7. A randomized controlled trial of a personalized feedback intervention for problem gamblers.

    Directory of Open Access Journals (Sweden)

    John A Cunningham

    Full Text Available Personalized feedback is a promising self-help for problem gamblers. Such interventions have shown consistently positive results with other addictive behaviours, and our own pilot test of personalized normative feedback materials for gamblers yielded positive findings. The current randomized controlled trial evaluated the effectiveness, and the sustained efficacy, of the personalized feedback intervention materials for problem gamblers.Respondents recruited by a general population telephone screener of Ontario adults included gamblers with moderate and severe gambling problems. Those who agreed to participate were randomly assigned to receive: 1 the full personalized normative feedback intervention; 2 a partial feedback that contained all the feedback information provided to those in condition 1 but without the normative feedback content (i.e., no comparisons provided to general population gambling norms; or 3 a waiting list control condition. The primary hypothesis was that problem gamblers who received the personalized normative feedback intervention would reduce their gambling more than problem gamblers who did not receive any intervention (waiting list control condition by the six-month follow-up.The study found no evidence for the impact of normative personalized feedback. However, participants who received, the partial feedback (without norms reduced the number of days they gambled compared to participants who did not receive the intervention. We concluded that personalized feedback interventions were well received and the materials may be helpful at reducing gambling. Realistically, it can be expected that the personalized feedback intervention may have a limited, short term impact on the severity of participants' problem gambling because the intervention is just a brief screener. An Internet-based version of the personalized feedback intervention tool, however, may offer an easy to access and non-threatening portal that can be used to

  8. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages (United States)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.


    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  9. Magnetic Flux Density Feedback Control for Permanent Magnetic-Electromagnetic Hybrid Suspension System

    Directory of Open Access Journals (Sweden)

    Chen Qiang


    Full Text Available Permanent magnetic-electromagnetic hybrid suspension system can effectively reduce energy consumption and heat release of the system, but also increase the difficulty of suspension control because of the existence of permanent magnets. The traditional current feedback control method is not conducive to the stability of the system and is difficult to debug. In this paper, the models of permanent magnetic-electromagnetic hybrid suspension system based on current feedback and magnetic flux density feedback are established. The effects of current feedback and magnetic flux density feedback on the stability of the system are analyzed in theory and the advantages of flux density feedback are pointed out. The model of magnet flux feedback is simple and it can overcome the disadvantages of current feedback, which is beneficial to the stability of the system. The magnetic flux density feedback control of permanent magnetic-electromagnetic hybrid suspension system is realized by simulation and experiment. Control system performs well and is easy to debug.

  10. Low velocity tracking control-based ADRC for large-scale telescope system (United States)

    Cai, Huaxiang; Huang, Yongmei; Du, Junfeng; Tang, Tao; Zuo, Dan


    In this paper, an improved Active Disturbance Rejection control (ADRC) method is proposed to enhance the tracking precision of telescope if the telescope runs in a low velocity. Low velocity telescope system usually suffers some obvious nonlinear disturbances, such as nonlinear friction and unknown external disturbance. Thereby, to ensure the tracking precision, multiple loops control structure is a common control method in telescope system, which includes current loop, velocity loop and position loop. The proposed control method is used in the velocity loop which consists of a PD controller and an Extend State Observer (ESO). The ESO is designed to estimate the disturbance involved in the telescope system. Besides, the PD controller is designed to stabilize the closed-loop system. Furthermore, this control method theoretically guarantees a prescribed tracking performance and final tracking accuracy. Finally, the experiment results show that the proposed control method has excellent performance for reducing the tracking error of low velocity.

  11. Guideline implementation in clinical practice: Use of statistical process control charts as visual feedback devices

    Directory of Open Access Journals (Sweden)

    Fahad A Al-Hussein


    Conclusions: A process of audits in the context of statistical process control is necessary for any improvement in the implementation of guidelines in primary care. Statistical process control charts are an effective means of visual feedback to the care providers.

  12. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach

    National Research Council Canada - National Science Library

    Liu, Huashan; Hao, Kuangrong; Lai, Xiaobo


    To deal with the problem of the output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory...

  13. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen


    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  14. Feedback power control strategies in wireless sensor networks with joint channel decoding. (United States)

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio


    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  15. Students' satisfaction with general practitioners' feedback to their reflective writing: a randomized controlled trial. (United States)

    Kiss, Alexander; Steiner, Claudia; Grossman, Paul; Langewitz, Wolf; Tschudi, Peter; Kiessling, Claudia


    Reflective Writing (RW) is increasingly being implemented in medical education. Feedback to students' reflective writing (RW) is essential, but resources for individualized feedback often lack. We aimed to determine whether general practitioners (GPs) teaching students clinical skills could also provide feedback to RW and whether an instruction letter specific to RW feedback increases students' satisfaction. GPs were randomized to the two study arms using block randomization. GPs in both groups received an instruction letter on giving students feedback on clinical skills. Additionally, intervention group GPs received specific instructions on providing feedback to students' RW. Students completed satisfaction questionnaires on feedback received on clinical skills and RW. T-tests were employed for all statistical analysis to compare groups. Eighty-three out of 134 physicians participated: 38 were randomized to the control, 45 to the intervention group. Students were very satisfied with the feedback on RW and clinical skills regardless of tutors' group allocation. A specific instruction letter had no additional effect on students' satisfaction. Based on student satisfaction, GPs who give students feedback on clinical skills are also well suited to provide feedback on RW. This approach can facilitate the introduction of mandatory RW into the regular medical curriculum.

  16. Event-Sampled Direct Adaptive NN Output- and State-Feedback Control of Uncertain Strict-Feedback System. (United States)

    Szanto, Nathan; Narayanan, Vignesh; Jagannathan, Sarangapani


    In this paper, a novel event-triggered implementation of a tracking controller for an uncertain strict-feedback system is presented. Neural networks (NNs) are utilized in the backstepping approach to design a control input by approximating unknown dynamics of the strict-feedback nonlinear system with event-sampled inputs. The system state vector is assumed to be unknown and an NN observer is used to estimate the state vector. By using the estimated state vector and backstepping design approach, an event-sampled controller is introduced. As part of the controller design, first, input-to-state-like stability for a continuously sampled controller that has been injected with bounded measurement errors is demonstrated, and subsequently, an event-execution control law is derived, such that the measurement errors are guaranteed to remain bounded. Lyapunov theory is used to demonstrate that the tracking errors, the observer estimation errors, and the NN weight estimation errors for each NN are locally uniformly ultimately bounded in the presence bounded disturbances, NN reconstruction errors, as well as errors introduced by event sampling. Simulation results are provided to illustrate the effectiveness of the proposed controllers.

  17. Feedback control of one's own action: Self-other sensory attribution in motor control. (United States)

    Asai, Tomohisa


    The sense of agency, the subjective experience of controlling one's own action, has an important function in motor control. When we move our own body or even external tools, we attribute that movement to ourselves and utilize that sensory information in order to correct "our own" movement in theory. The dynamic relationship between conscious self-other attribution and feedback control, however, is still unclear. Participants were required to make a sinusoidal reaching movement and received its visual feedback (i.e., cursor). When participants received a fake movement that was spatio-temporally close to their actual movement, illusory self-attribution of the fake movement was observed. In this situation, since participants tried to control the cursor but it was impossible to do so, the movement error was increased (Experiment 1). However, when the visual feedback was reduced to make self-other attribution difficult, there was no further increase in the movement error (Experiment 2). These results indicate that conscious self-other sensory attribution might coordinate sensory input and motor output. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The effects of self-controlled video feedback on the learning of the basketball set shot

    Directory of Open Access Journals (Sweden)

    Christopher Adam Aiken


    Full Text Available Allowing learners to control some aspect of instructional support (e.g., augmented feedback appears to facilitate motor skill acquisition. No studies, however, have examined self-controlled (SC video feedback without the provision of additional attentional cueing. The purpose of this study was to extend previous SC research using video feedback about movement form for the basketball set shot without explicitly directing attention to specific aspects of the movement. The SC group requested video feedback of their performance following any trial during the acquisition phase. The yoked (YK group received feedback according to a schedule created by a SC counterpart. During acquisition participants were also allowed to view written instructional cues at any time. Results revealed that the SC group had significantly higher form scores during the transfer phase and utilized the instructional cues more frequently during acquisition. Post-training questionnaire responses indicated no preference for requesting or receiving feedback following good trials as reported by Chiviacowsky and Wulf (2002, 2005. The nature of the task was such that participants could have assigned both positive and negative evaluations to different aspects of the movement during the same trial. Thus, the lack of preferences along with the similarity in scores for feedback and no-feedback trials may simply have reflected this complexity. Importantly, however, the results indicated that SC video feedback conferred a learning benefit without the provision of explicit additional attentional cueing.

  19. The effects of self-controlled video feedback on the learning of the basketball set shot. (United States)

    Aiken, Christopher Adam; Fairbrother, Jeffrey T; Post, Phillip Guy


    Allowing learners to control some aspect of instructional support (e.g., augmented feedback) appears to facilitate motor skill acquisition. No studies, however, have examined self-controlled (SC) video feedback without the provision of additional attentional cueing. The purpose of this study was to extend previous SC research using video feedback about movement form for the basketball set shot without explicitly directing attention to specific aspects of the movement. The SC group requested video feedback of their performance following any trial during the acquisition phase. The yoked group received feedback according to a schedule created by a SC counterpart. During acquisition participants were also allowed to view written instructional cues at any time. Results revealed that the SC group had significantly higher form scores during the transfer phase and utilized the instructional cues more frequently during acquisition. Post-training questionnaire responses indicated no preference for requesting or receiving feedback following good trials as reported by Chiviacowsky and Wulf (2002, 2005). The nature of the task was such that participants could have assigned both positive and negative evaluations to different aspects of the movement during the same trial. Thus, the lack of preferences along with the similarity in scores for feedback and no-feedback trials may simply have reflected this complexity. Importantly, however, the results indicated that SC video feedback conferred a learning benefit without the provision of explicit additional attentional cueing.

  20. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures. (United States)

    Kilby, Melissa C; Molenaar, Peter C M; Slobounov, Semyon M; Newell, Karl M


    The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP-COM coupling. The findings in the static condition showed that the VTC and COP-COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP-COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP-COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

  1. Nonlinear H-infinity State Feedback Controllers: Computation of Valid Region

    DEFF Research Database (Denmark)

    Pedersen, Michael; Møller-Pedersen, J.; Pagh Petersen, M.


    "From a general point of view the state feedback QTR H-infinitysuboptimal control probelm is reasonable well-understood. Inportantproblems remain with regard to a priori information of the size of theneighbourhood where the local state feedback QTR H-infinityproblem is solvable, and with regard t...

  2. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. (United States)

    Kim, Keehoon; Colgate, J Edward


    In this study, we hypothesized that haptic feedback would enhance grip force control of surface electromyography (sEMG)-controlled prosthetic hands for targeted reinnervation (TR) amputees. A new miniature haptic device, a tactor, that can deliver touch, pressure, shear, and temperature sensation, allows modality-matching haptic feedback. TR surgery that creates sensory regions on the patient's skin that refer to the surface of the missing limb allows somatotopic-matching haptic feedback. This paper evaluates the hypothesis via an sEMG-controlled virtual prosthetic arm operated by TR amputees under diverse haptic feedback conditions. The results indicate that the grip force control is significantly enhanced via the haptic feedback. However, the simultaneous display of two haptic channels (pressure and shear) does not enhance, but instead degrades, grip force control.

  3. Design of PID controllers in double feedback loops for SISO systems with set-point filters. (United States)

    Vijayan, V; Panda, Rames C


    A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (λ) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  4. The role of feed-forward and feedback processes for closed-loop prosthesis control

    Directory of Open Access Journals (Sweden)

    Saunders Ian


    Full Text Available Abstract Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i in ideal conditions, (ii under sensory deprivation, and (iii under feed-forward uncertainty. Results (i We found that subjects formed economical grasps in ideal conditions. (ii To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control.

  5. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai


    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  6. Design of Attitude Control System for UAV Based on Feedback Linearization and Adaptive Control

    Directory of Open Access Journals (Sweden)

    Wenya Zhou


    Full Text Available Attitude dynamic model of unmanned aerial vehicles (UAVs is multi-input multioutput (MIMO, strong coupling, and nonlinear. Model uncertainties and external gust disturbances should be considered during designing the attitude control system for UAVs. In this paper, feedback linearization and model reference adaptive control (MRAC are integrated to design the attitude control system for a fixed wing UAV. First of all, the complicated attitude dynamic model is decoupled into three single-input single-output (SISO channels by input-output feedback linearization. Secondly, the reference models are determined, respectively, according to the performance indexes of each channel. Subsequently, the adaptive control law is obtained using MRAC theory. In order to demonstrate the performance of attitude control system, the adaptive control law and the proportional-integral-derivative (PID control law are, respectively, used in the coupling nonlinear simulation model. Simulation results indicate that the system performance indexes including maximum overshoot, settling time (2% error range, and rise time obtained by MRAC are better than those by PID. Moreover, MRAC system has stronger robustness with respect to the model uncertainties and gust disturbance.

  7. Sensitivity to plant modelling uncertainties in optimal feedback control of sound radiation from a panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob


    Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... of a rectangular baffled panel radiating into free field has been constructed. Secondary actuators have been modelled as vibrational inputs acting directly on the panel. A cost function proportional to the averaged radiated sound power and based on knowledge of the modal amplitudes of the panel has been derived...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...

  8. Application of neural models as controllers in mobile robot velocity control loop (United States)

    Cerkala, Jakub; Jadlovska, Anna


    This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.

  9. Delayed Feedback Control and Bifurcation Analysis of an Autonomy System

    Directory of Open Access Journals (Sweden)

    Zhen Wang


    Full Text Available An autonomy system with time-delayed feedback is studied by using the theory of functional differential equation and Hassard’s method; the conditions on which zero equilibrium exists and Hopf bifurcation occurs are given, the qualities of the Hopf bifurcation are also studied. Finally, several numerical simulations are given; which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable state or a stable periodic orbit.

  10. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review (United States)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; Pincus, Robert


    The response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the "cloud-controlling factors" of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming, one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m-2 K-1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.

  11. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review (United States)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; Pincus, Robert


    The response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the "cloud-controlling factors" of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming, one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m-2 K-1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.

  12. Velocity Control System Design for Leader-Following UAV Using Dynamic Inversion (United States)

    榎本, 圭祐; 山崎, 武志; 高野, 博行; 馬場, 順昭

    The purpose of this paper is to introduce a velocity control system for a leader-following UAV. For the purpose of our work, we designed a whole guidance and control system; the guidance system using the pure pursuit navigation guidance law, the attitude control system using the dynamic inversion with the two-time scale approach, and the velocity control system considering aircraft and engine dynamics. This paper concentrates on the velocity controller including the stability analysis for the uncertainty of the aerodynamic parameters. Velocity controller gain determination technique adapted for the aircraft and/or engine dynamics are discussed in this paper. Simulation results show that the proposed guidance and control system provides a good performance.

  13. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang


    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  14. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels. (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo


    We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.

  15. The effects of motivation feedback in patients with severe mental illness : A cluster randomized controlled trial

    NARCIS (Netherlands)

    Jochems, E.C.; van der Feltz-Cornelis, C.M.; van Dam, A.; Duivenvoorden, H.J.; Mulder, C.L.


    Objective: To evaluate the effectiveness of providing clinicians with regular feedback on the patient’s motivation for treatment in increasing treatment engagement in patients with severe mental illness. Methods: Design: cluster randomized controlled trial (Dutch Trials Registry NTR2968).

  16. Feedback control in a general almost periodic discrete system of plankton allelopathy. (United States)

    Yin, Wenshuang


    We study the properties of almost periodic solutions for a general discrete system of plankton allelopathy with feedback controls and establish a theorem on the uniformly asymptotic stability of almost periodic solutions.

  17. Experimental Model Based Feedback Control for Flutter Suppression and Gust Load Alleviation Project (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes an R&D effort to develop an Experimental Model Based Feedback Control (EMBFC) Framework for the flutter suppression and...

  18. A dynamic feedback-control toll pricing methodology : a case study on Interstate 95 managed lanes. (United States)


    Recently, congestion pricing emerged as a cost-effective and efficient strategy to mitigate the congestion problem on freeways. This study develops a feedback-control based dynamic toll approach to formulate and solve for optimal tolls. The study com...

  19. Modeling and Output Feedback Control of Networked Control Systems with Both Time Delays; and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Li Qiu


    Full Text Available This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C and controller-to-actuator (C-A time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.

  20. A remark on "Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity"

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques


    with a Lyapunov analysis. In this technical communication, such an analysis was also briefly compared with the so-called contraction analysis. This communication goes further into the details of the comparison by proving - through a link between contracting and globally exponentially stable (GES) systems...

  1. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg


    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  2. Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations


    Loranty, MM; Berner, LT; Goetz, SJ; Jin, Y; Randerson, JT


    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, ...

  3. Nonlinear feedforward-feedback control of clutch-to-clutch shift technique (United States)

    Gao, Bingzhao; Chen, Hong; Hu, Yunfeng; Sanada, Kazushi


    To improve the shift quality of the vehicle with clutch-to-clutch gear shifts, a nonlinear feedforward-feedback control scheme is proposed for clutch slip control during the shift inertia phase. The feedforward control is designed based on flatness in consideration of the system nonlinearities, and the linear feedback control is given to accommodate the model errors and the disturbances. Lookup tables, which are widely used to represent complex nonlinear characteristics of powertrain systems, appear in their original form in the designed feedforward controller, while the linear feedback controller is calculated through linear matrix inequalities such that the control system is robust against the parameter uncertainties. Finally, the designed controller is tested on an AMESim powertrain simulation model, which contains a time-variant model of clutch actuators.

  4. Tip position control of a two-link flexible robot manipulator based on nonlinear deflection feedback

    CERN Document Server

    Oke, G


    The control of flexible link manipulators has gained an increasing importance in robotics, in recent years. To control the tip of a flexible manipulator, the joint angles should converge to the desired positions fast and elastic deflections must be effectively suppressed. In this study, a two-link flexible manipulator is controlled by three methods and the results are compared. These methods are, Pd control, PD control augmented by a nonlinear correction term feedback, where the correction term is a function of the deflection of each link, and an adaptive fuzzy controller with the nonlinear correction term feedback. Simulations have been carried out to compare the performances of all three methods.

  5. Physiological Feedback Control 2011-2012 Annual Report (United States)


    0.05, **p ɘ.01 vs RA or CO2 before NLX/NPD 24 Figure 4.1| Design of a dendrimer drug carrier, and its proposed mechanism of action that releases...Final Report PI: James R. Baker, Jr., M.D. 29 | P a g e Figure 4.1| Design of a dendrimer drug carrier, and its proposed mechanism of action ...prophylaxis of organophosphate (OP) poisoning. This platform aims to release antidote small molecules in a sustained and feedback-based mechanism

  6. Advanced feedback control methods in EXTRAP T2R reversed field pinch (United States)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.


    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  7. Bifurcation Regulations Governed by Delay Self-Control Feedback in a Stochastic Birhythmic System (United States)

    Ma, Zhidan; Ning, Lijuan


    We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker-Planck-Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.

  8. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)


    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.


    This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  10. Basis Function Repetitive And Feedback Control With Application To A Particle Accelerator

    CERN Document Server

    Akogyeram, R A


    The thesis addresses three problem areas within repetitive control. Firstly, it addresses issues concerning the ability of repetitive control and feedback control systems to eliminate periodic disturbances occurring above the Nyquist frequency of the hardware. Methods are developed for decomposing and unfolding notch filter or comb filter feedback control so that disturbances above Nyquist frequency can be canceled. Phenomena affecting final error levels are discussed, including error in unfolding, coarseness of zero-order hold cancellation, and waterbed effects in the feedback control system frequency response for different sample rates. Secondly, matched basis function repetitive control laws are developed for batch mode and real time implementation to converge to zero tracking error in the presence of periodic disturbances. For both control methods, conditions are given that guarantee asymptotic and monotonic convergence. Stability tests are formulated to examine stability when the period of a disturbance ...

  11. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao


    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  12. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni


    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  13. EMG and kinematic analysis of sensorimotor control for patients after stroke using cyclic voluntary movement with visual feedback

    Directory of Open Access Journals (Sweden)

    Song Rong


    Full Text Available Abstract Background Clinical scales are often used to evaluate upper-limb deficits. The objective of this study is to investigate the parameters during voluntary arm tracking at different velocities for evaluating motor control performance after stroke. Methods Eight hemiplegic chronic stroke subjects were recruited to perform voluntary movements of elbow flexion and extension by following sinusoidal trajectories from 30 deg to 90 deg at six velocities in the horizontal plane by completing 3, 6, 8, 12, 15, 18 flexion and extension cycles in 36 seconds in a single trial, and the peak velocities ranged from 15.7 to 94.2 deg/s. The actual elbow angle and the target position were displayed as real-time visual feedback. The angular displacement of the arm and electromyographic (EMG signals of biceps and triceps were captured to evaluate the sensorimotor control of the affected and unaffected side. Results The results showed significant differences in the root mean square error (RMSE, response delay (RD and cocontraction index (CI when the affected and unaffected sides were compared during the arm tracking experiment (P Conclusions The method and parameters have potential for clinical use in quantitatively evaluating the sensorimotor deficiencies for patients after stroke about the accuracy of motion, response delay and cocontraction between muscle pairs.

  14. Exponential synchronization of the Genesio Tesi chaotic system via a novel feedback control (United States)

    Park, Ju H.


    A novel feedback control scheme is proposed for exponential synchronization of the Genesio-Tesi chaotic system. The feedback controller consists of two parts: a linear dynamic control law and a nonlinear control one. For exponential synchronization between the drive and response Genesio-Tesi systems, the Lyapunov stability analysis is used. Then an existence criterion for the stabilizing controller is presented in terms of linear matrix inequalities (LMIs). The LMIs can be solved easily by various convex optimization algorithms. Finally, a numerical simulation is illustrated to show the effectiveness of the proposed chaos synchronization scheme.


    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)


    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  16. A Randomized Controlled Trial to Compare e-Feedback Versus "Standard" Face-to-Face Verbal Feedback to Improve the Acquisition of Procedural Skill. (United States)

    Al-Jundi, Wissam; Elsharif, Mohamed; Anderson, Melanie; Chan, Phillip; Beard, Jonathan; Nawaz, Shah

    Constructive feedback plays an important role in learning during surgical training. Standard feedback is usually given verbally following direct observation of the procedure by a trained assessor. However, such feedback requires the physical presence of expert faculty members who are usually busy and time-constrained by clinical commitments. We aim to evaluate electronic feedback (e-feedback) after video observation of surgical suturing in comparison with standard face-to-face verbal feedback. A prospective, blinded, randomized controlled trial comparing e-feedback with standard verbal feedback was carried out in February 2015 using a validated pro formas for assessment. The study participants were 38 undergraduate medical students from the University of Sheffield, UK. They were recorded on video performing the procedural skill, completed a self-evaluation form, and received e-feedback on the same day (group 1); observed directly by an assessor, invited to provide verbal self-reflection, and then received standard verbal feedback (group 2). In both groups, the feedback was provided after performing the procedure. The participants returned 2 days later and performed the same skill again. Poststudy questionnaire was used to assess the acceptability of each feedback among the participants. Overall, 19 students in group 1 and 18 students in group 2 completed the study. Although there was a significant improvement in the overall mean score on the second performance of the task for all participants (first performance mean 11.59, second performance mean 15.95; p ≤ 0.0001), there was no difference in the overall mean improvement score between group 1 and group 2 (4.74 and 3.94, respectively; p = 0.49). The mean overall scores for the e-feedback group at baseline recorded by 2 independent investigators showed good agreement (mean overall scores of 12.84 and 11.89; Cronbach α = 0.86). Poststudy questionnaire demonstrated that both e-feedback and standard verbal feedback

  17. Velocity Tracking Control of Wheeled Mobile Robots by Iterative Learning Control

    Directory of Open Access Journals (Sweden)

    Xiaochun Lu


    Full Text Available This paper presents an iterative learning control (ILC strategy to resolve the trajectory tracking problem of wheeled mobile robots (WMRs based on dynamic model. In the previous study of WMRs’ trajectory tracking, ILC was usually applied to the kinematical model of WMRs with the assumption that desired velocity can be tracked immediately. However, this assumption cannot be realized in the real world at all. The kinematic and dynamic models of WMRs are deduced in this chapter, and a novel combination of D-type ILC algorithm and dynamic model of WMR with random bounded disturbances are presented. To analyze the convergence of the algorithm, the method of contracting mapping, which shows that the designed controller can make the velocity tracking errors converge to zero completely when the iteration times tend to infinite, is adopted. Simulation results show the effectiveness of D-type ILC in the trajectory tracking problem of WMRs, demonstrating the effectiveness and robustness of the algorithm in the condition of random bounded disturbance. A comparative study conducted between D-type ILC and compound cosine function neural network (NN controller also demonstrates the effectiveness of the ILC strategy.

  18. Design of pilot-assisted load control valve with load velocity control ability and fast opening feature

    Directory of Open Access Journals (Sweden)

    Haibo Xie


    Full Text Available This article presents a design of pilot-assisted load control valve with load velocity control ability and fast opening feature based on static and dynamic modeling. Traditional load control valves do not have the load velocity control ability and its opening feature is very poor because the high spring stiffness comes along with the pressure–spring balance–based principle. Some improvement has been done by employing a two-stage pressure–pressure balance principle to make a load control valve to achieve load velocity control ability while the opening feature was not improved much. In this design, another pressure–pressure balance principle is proposed to make the load control valve achieve load velocity control ability and fast opening closing feature at the same time. Static modeling method based on force balance and Bernoulli orifice pressure-flow equation is used to design the load velocity control ability of the valve. Dynamic modeling method based on Newton’s second law and fluid continuity equation is used to optimize the parameters to give the proposed load control valve a fast opening feature. An actual load control valve was developed according to the above methods and the test results show both good load velocity control ability and fast opening feature of the design, which validates the potentiality of the proposed design in many applications.

  19. Feedback Power Control Strategies inWireless Sensor Networks with Joint Channel Decoding

    Directory of Open Access Journals (Sweden)

    Fabio Perna


    Full Text Available In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD. In particular, upon the derivation of the feasible signal-to-noise ratio (SNR region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP, and (ii an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO scenario, where the sensors observe noisy versions of a common binary information sequence and the AP’s goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  20. Movement duration, Fitts’s law, and an infinite-horizon optimal feedback control model for biological motor systems (United States)

    Qian, Ning; Jiang, Yu; Jiang, Zhong-Ping; Mazzoni, Pietro


    Optimization models explain many aspects of biological goal-directed movements. However, most such models use a finite-horizon formulation which requires a pre-fixed movement duration to define a cost function and solve the optimization problem. To predict movement duration, these models have to be run multiple times with different pre-fixed durations until an appropriate duration is found via trial and error. The constrained minimum time model directly predicts movement duration; however, it does not consider sensory feedback and is thus only applicable to open-loop movements. To address these problems, we analyzed and simulated an infinite-horizon optimal feedback control model, with linear plants, that contains both control dependent and independent noise and optimizes steady-state accuracy and energetic costs per unit time. The model applies the steady-state estimator and controller continuously to guide an effector to, and keep it at, target position. As such, it integrates movement control and posture maintenance, without artificially dividing them with a precise, pre-fixed time boundary. Movement pace is determined by the model parameters and the duration is an emergent property with trial-to-trial variability. By considering the mean duration, we derived both the log and power forms of Fitts’s law as different approximations of the model. Moreover, the model reproduces typically observed velocity profiles and occasional transient overshoots. For unbiased sensory feedback, the effector reaches the target without bias, in contrast to finite-horizon models that systematically undershoot target when energetic cost is considered. Finally, the model does not involve backward and forward sweeps in time, its stability is easily checked, and the same solution applies to movements of different initial conditions and distances. We argue that biological systems could use steady-state solutions as default control mechanisms and might seek additional optimization of

  1. The effects of self-controlled feedback on learning of a "relaxed phonation task". (United States)

    Ma, Estella P-M; Yiu, Gigi K-Y; Yiu, Edwin M-L


    This study examined the effects of self-controlled feedback paradigm on motor learning of a relaxed phonation task. It investigated whether providing the learner with more control over practice condition has positive influences on the performance and learning of "relaxed phonation" skill. Vocally healthy individuals were randomly assigned into either self-controlled feedback group (SELF) or clinician-controlled feedback group (YOKED). All participants were engaged in a reading aloud task. Throughout the task, their perilaryngeal muscle activities were measured at thyrohyoid (TH) and orofacial (OF) sites using surface electromyography (EMG). The EMG values measured at the TH site were provided to participants as terminal biofeedback. Participants were required to minimize the EMG values. The SELF group received EMG biofeedback whenever they requested it, whereas the YOKED group received the same feedback schedule as chosen by their self-controlled counterparts. The pooled data for all participants revealed that there was a significant reduction of muscle tension across baseline, training, and retention phases. Generalization was shown to reading of untrained passage. Interestingly, significant reduction of muscle tension across training and retention tests was found in the control OF site but not in the target TH site. The results failed to demonstrate significant differences between SELF and YOKED groups. It provided no clear evidence to conclude that self-controlled feedback paradigm was beneficial to learning of relaxed phonation. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Velocity-sensorless tracking control and identification of switched-reluctance motors


    Chumacero, Erik; Loria, Antonio; Espinosa-Pérez, G.


    In revision, submitted to Automatica; We present a solution to the speed sensorless control problem for switched-reluctance motors under parametric uncertainty. Our main results guarantee velocity tracking control for velocity references with constant reference acceleration under the assumption that the load torque, the rotor inertia, the resistance and inductances are unknown. Under a persistency of excitation condition on a function which depends only on reference trajectories, we guarantee...

  3. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan


    -time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...

  4. Web/smart phone based control and feedback systems for irrigation systems (United States)

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  5. Odd-number theorem: Optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser (United States)

    Schikora, S.; Wünsche, H.-J.; Henneberger, F.


    A subcritical Hopf bifurcation is prepared in a multisection semiconductor laser. In the free-running state, hysteresis is absent due to noise-induced escape processes. The missing branches are recovered by stabilizing them against noise through application of phase-sensitive noninvasive delayed optical feedback control. The same type of control is successfully used to stabilize the unstable pulsations born in the Hopf bifurcation. This experimental finding represents an optical counterexample to the so-called odd-number limitation of delayed feedback control. However, as a leftover of the limitation, the domains of control are extremely small.

  6. Robust output feedback H-infinity control and filtering for uncertain linear systems

    CERN Document Server

    Chang, Xiao-Heng


    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  7. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control (United States)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.


    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  8. Intracycle Angular Velocity Control of Cross-Flow Turbines

    CERN Document Server

    Strom, Benjamin; Polagye, Brian


    Cross-flow turbines, also known as vertical-axis turbines, have numerous features that make them attractive for wind and marine renewable energy. To maximize power output, the turbine blade kinematics may be controlled during the course of the blade revolution, thus optimizing the unsteady fluid dynamic forces. Dynamically pitching the blades, similar to blade control in a helicopter, is an established method. However, this technique adds undesirable mechanical complexity to the turbine, increasing cost and reducing durability. Here we introduce a novel alternative requiring no additional moving parts: we optimize the turbine rotation rate as a function of blade position resulting in motion (including changes in the effective angle of attack) that is precisely timed to exploit unsteady fluid effects. We demonstrate experimentally that this approach results in a 79% increase in power output over industry standard control methods. Analysis of the fluid forcing and blade kinematics show that maximal power is ach...

  9. Dynamic Output-Feedback Passivity Control for Fuzzy Systems under Variable Sampling

    Directory of Open Access Journals (Sweden)

    Hongyi Li


    Full Text Available This paper concerns the problem of dynamic output-feedback control for a class of nonlinear systems with nonuniform uncertain sampling via Takagi-Sugeno (T-S fuzzy control approach. The sampling is not required to be periodic, and the state variables are not required to be measurable. A new type fuzzy dynamic output-feedback sampled-data controller is constructed, and a novel time-dependent Lyapunov-Krasovskii functional is chosen for fuzzy systems under variable sampling. By using Lyapunov stability theory, a sufficient condition for very-strict passive analysis of fuzzy systems with nonuniform uncertain sampling is derived. Based on this condition, a novel fuzzy dynamic output-feedback controller is designed such that the closed-loop system is very-strictly passive. The existence condition of the controller can be solved by convex optimization approach. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.

  10. Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    CERN Document Server

    Ardestanizadeh, Ehsan


    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channe...

  11. Effectiveness of patient feedback as an educational intervention to improve medical student consultation (PTA Feedback Study): study protocol for a randomized controlled trial. (United States)

    Lai, Michelle Mei Yee; Roberts, Noel; Martin, Jenepher


    Oral feedback from clinical educators is the traditional teaching method for improving clinical consultation skills in medical students. New approaches are needed to enhance this teaching model. Multisource feedback is a commonly used assessment method for learning among practising clinicians, but this assessment has not been explored rigorously in medical student education. This study seeks to evaluate if additional feedback on patient satisfaction improves medical student performance. The Patient Teaching Associate (PTA) Feedback Study is a single site randomized controlled, double-blinded trial with two parallel groups.An after-hours general practitioner clinic in Victoria, Australia, is adapted as a teaching clinic during the day. Medical students from two universities in their first clinical year participate in six simulated clinical consultations with ambulatory patient volunteers living with chronic illness. Eligible students will be randomized in equal proportions to receive patient satisfaction score feedback with the usual multisource feedback and the usual multisource feedback alone as control. Block randomization will be performed. We will assess patient satisfaction and consultation performance outcomes at baseline and after one semester and will compare any change in mean scores at the last session from that at baseline. We will model data using regression analysis to determine any differences between intervention and control groups. Full ethical approval has been obtained for the study. This trial will comply with CONSORT guidelines and we will disseminate data at conferences and in peer-reviewed journals. This is the first proposed trial to determine whether consumer feedback enhances the use of multisource feedback in medical student education, and to assess the value of multisource feedback in teaching and learning about the management of ambulatory patients living with chronic conditions. Australian New Zealand Clinical Trials Registry (ANZCTR

  12. A novel application of velocity-based force control for use in robotic biomechanical testing. (United States)

    Goertzen, Darrell J; Kawchuk, Gregory N


    This paper presents a novel application of a velocity-based force control routine used for robotic biomechanical testing. The routine employs a jog function, available from the robot's motion commands, that permits easy adjustment of velocity on each axis. Force and moment targets are achieved by adjusting jog velocities in proportion to force or moment errors while limiting the maximum velocity of the system. The force control jog routine does not require specimen stiffness values and is inherently stable. The performance of the method was shown to be suitable for unconstrained in vitro spine testing in a rabbit model where extremely small motions are necessary to maintain the target force values. The jogging feature on which this work is based is a feature available on most robots and is equally applicable to a serial robot. The simplicity, stability, and performance of this method warrant its consideration for other robotic biomechanical testing applications where force control is required.

  13. Intracycle angular velocity control of cross-flow turbines (United States)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian


    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  14. Synthesis of dissipative output feedback controllers. Application to mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Johannessen, Erling Aarsand


    This thesis presents new results on the synthesis of linear controllers with passivity, or more general, dissipativity properties. These methods may be applied to obtain more accurate control over mechanical systems and in the control of chemical processes that involve dissipative subsystems. The thesis presents two different approaches for synthesis of dissipative controllers: (1) A method that exploits the Riccati equation solution to the state space formulation of the H{sub {infinity}} control problem is investigated, illustrated by synthesising a controller for damping of flexible modes in a beam. (2) A more general method for dissipative control synthesis is developed that retains the well-known techniques of loop-shaping and frequency weighting in H{sub {infinity}}. A method is also presented for controller synthesis directly from frequency response data. 82 refs., 34 figs., 3 tabs.

  15. IPMSM velocity and current control using MTPA based adaptive fractional order sliding mode controller

    Directory of Open Access Journals (Sweden)

    Sayed Hamed Hosseini


    Full Text Available This paper presents a two-loop approach for velocity and stator currents control of an Interior-type Permanent Magnet Synchronous Motor (IPMSM. In the outer loop, the reference torque obtained from a conventional PI controller gives two-axis stator reference currents based on Maximum-Torque per Ampere (MTPA strategy. In the inner loop, an adaptive fractional order sliding mode controller is designed to reach the two-axis stator currents to their reference values obtained from the MTPA method. To achieve this idea, fractional order sliding surfaces and an adaptive controller with adjustable parameters are employed. The adaptive controller is designed to increase the robustness of the proposed method against the uncertainties in stator resistance and inductances. A Lyapunov based adaptation mechanism is proposed for adjustment of the controller parameters. The optimal value of the fractional orders are obtained by optimization of an integral time absolute error performance index. The simulation results show the robustness of the proposed method against the uncertainties in stator resistance and stator inductances.

  16. Adaptive fuzzy control of DC motors using state and output feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rigatos, Gerasimos G. [Unit of Industrial Automation, Industrial Systems Institute, Stadiou str., 26504 Rion Patras (Greece)


    Conventional PID of state feedback controllers for DC motors have poor performance when changes of the motor or load dynamics take place. To handle this shortcoming adaptive fuzzy control of DC motors is proposed. Neuro-fuzzy networks are used to approximate the unknown motor dynamics. The information needed to generate the control signal comes from feedback of the full state vector or from feedback of only the system's output. In the latter case a state observer is used to estimate the parameters of the state vector. The stability of the closed-loop system is proved with the use of Lyapunov analysis. The performance of the proposed control approach is evaluated through simulation tests. (author)

  17. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R (United States)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.


    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  18. Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization

    DEFF Research Database (Denmark)

    Bidram, Ali; Davoudi, Ali; Lewis, Frank


    This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors. The dist......This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors...... parameters can be tuned to obtain a desired response speed. The effectiveness of the proposed control methodology is verified by the simulation of a microgrid test system....

  19. Dynamic Evaluation of LCL-type Grid-Connected Inverters with Different Current Feedback Control Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Li, Zipeng; Guerrero, Josep M.


    typical current feedback control schemes in LCL grid-connected system are analyzed and compared systematically. Analysis in s-domain take the effect of the digital computation and modulation delay into account. The stability analysis is presented by root locus in the discrete domain, the optimal values...... of the controller and filter with different feedback configurations are provided. The impacts of digital delay, PR parameters and LCL parameters on different control strategies are also investigated. Finally, the theoretical analysis are validated by simulation results....

  20. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model (United States)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç


    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  1. Decentralized H∞ Control for Uncertain Interconnected Systems of Neutral Type via Dynamic Output Feedback

    Directory of Open Access Journals (Sweden)

    Heli Hu


    Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.

  2. Dynamic control of robot arms in tasks space using nonlinear feedback (United States)

    Bejczy, A. K.; Tarn, T. J.


    Differential geometric system and control theory is used to develop a new dynamic system feedback technique for robot task space commands. The nonlinear robot arm system is feedback-linearized and simultaneously is output-decoupled by an appropriate nonlinear feedback and nonlinear coordinate transformation. On the joint space level, the scheme only commands drive forces or torques or their equivalent quantities addressed to the joint drives. An important property of the technique is that the planned and commanded task space trajectory together with its time derivatives directly drive the robot arm through a linear system model. A method for task space motion planning matching the requirements of the new scheme is briefly presented. The implications of the new technique for second and third order model robot arms with and without force feedback measuremnts and for two or more dynamically cooperating robot arms are discussed.

  3. Analyzing effects of providing performance feedback at ward rounds on guideline adherence - the importance of feedback usage analysis and statistical control charts. (United States)

    Abu-Hanna, Ameen; Eslami, Saeid; Schultz, Marcus J; de Jonge, Evert; de Keizer, Nicolette F


    Feedback to clinicians on their past performance is often aimed at increasing adherence to guidelines. We investigate how various analytical approaches influence the interpretation of adherence data. The analytical approaches vary in considering the actual or the intended use of the feedback, and whether outcomes are inspected over time. At base line, a computerized decision support system was employed at the ICU bedside to increase adherence to a mechanical ventilation strategy. We intervened by providing feedback about adherence to the guideline at the daily ward rounds. The outcome measure was the percentage of ventilation time (VT) in excess of the guideline's recommendation. Actual usage of the feedback was logged and data analysis was carried out using two approaches: classical statistics, and statistical process control (SPC) that inspect progress of an outcome over time. Prospective, before/after study. The classical analysis stated that the percentage of ventilation time in excess of the guideline's recommendation decreased significantly due to the feedback (5% reduction, p analysis of the outcome was applied, the effect was deemed not significant. When the actual delivery of feedback over time was also included it showed that the experiment does not allow for conclusive results. The concluded effect of providing feedback on adherence to a guideline depends on whether the actual usage pattern of the feedback and the inspection of the outcome over time are considered. Future evaluative studies should report on usage patterns and progression of outcomes over time.

  4. A Critical Review of Position- and Velocity-Based Concepts of Postural Control During Upright Stance

    Directory of Open Access Journals (Sweden)

    Portela Fellipe Machado


    Full Text Available Purpose. Postural control during quiet standing has been modeled by concepts using kinematic variables estimated from center of pressure (COP signals. The concept of position-based postural control has had particular ramifications in the literature, although a more recent concept of velocity-based control has been proposed as being more relevant. Methods. This study reviews the literature investigating these concepts and their respective quantitative methods alongside current supporting evidence and criticisms. Results. The position-based control concept suggests the existence of two control loops that alternate whenever certain thresholds are exceeded. Such a theory is supported by studies describing the time delay between the skeletal muscle activation and CoP displacement. However, this concept has been criticized to be the result of statistical artifacts due to it not being adapted to the analysis of bounded time series. Conversely, the velocity-based control concept claims that velocity is the most relevant kinematic variable for postural control. Such a theory suggests that postural adjustments are executed to change the trajectory of the CoP whenever the velocity crosses a threshold. Both theories have their major methodological limitations, while interpretation of data from the position-based concept is difficult, velocity-based thresholds are empirical and still need verification in different motor tasks and populations. Conclusions. Given the observed similarities and mutual exclusivity of both concepts, there is a need for the development of methods that can quantitatively analyze stabilometric signals while simultaneously considering both kinematic variables.

  5. A Velocity-Based Impedance Control System for a Low Impact Docking Mechanism (LIDM

    Directory of Open Access Journals (Sweden)

    Chuanzhi Chen


    Full Text Available In this paper, an impedance control algorithm based on velocity for capturing two low impact docking mechanisms (LIDMs is presented. The main idea of this algorithm is to track desired forces when the position errors of two LIDMs are random by designing the relationship between the velocity and contact forces measured by a load sensing ring to achieve low impact docking. In this paper, the governing equation of an impedance controller between the deviation of forces and velocity is derived, and simulations are designed to verify how impedance parameters affect the control characteristics. The performance of the presented control algorithm is validated by using the MATLAB and ADAMS software for capturing simulations. The results of capturing simulations demonstrate that the impedance control algorithm can respond fast and has excellent robustness when the environmental errors are random, and the contact forces and torques satisfy the low impact requirements.

  6. Attitude output feedback control for rigid spacecraft with finite-time convergence. (United States)

    Hu, Qinglei; Niu, Guanglin


    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Local distributed estimation. [for flexible spacecraft vibration mode optimal feedback control (United States)

    Schaechter, D. B.


    Based on partial differential equations of motion the closed form solution for the optimal estimation of a spatially continuous state vector is derived, using a continuously distributed sensor. Local control is shown to be the feedback that minimizes a quadratic performance index of sensor and process disturbances. A detailed example of the control of a string in tension is presented.

  8. Resonant passive–active vibration absorber with integrated force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen


    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d...

  9. Durable Feedback Control System for Small Scale Wood Chip Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Bjoerkqvist, T.; Lautala, P. (Tampere Univ. of Technology, Dept. of Automation Science and Engineering, FIN-33101 Tampere (Finland)). E-mail:


    The purpose is to control wood chip combustion in an inexpensive and durable way. A control concept in order to reduce the effect of fluctuation of the fuel feed is introduced. The concept is based on temperature and lambda measurements. The main task of the control system is to set the fuel feed at a desired level after a change in the combustion conditions. Additionally, temporary fluctuations of the degree of filling of feeding screw are compensated. Test results of a 80 kW and a 200 kW commercial wood chip fired systems are introduced. The process experiments indicate that the high level control system is able to adapt to varying combustion conditions and to maintain low emission levels. Furthermore, passive means that can be exploited to stabilize the combustion are discussed. As the control concept is not dependent on the design of the combustion system, the concept is adaptable to present systems

  10. Dynamic Feedback Backstepping Control for a Class of MIMO Nonaffine Block Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Hai-Yan Li


    Full Text Available For a class of MIMO nonaffine block nonlinear systems, a neural network- (NN- based dynamic feedback backstepping control design method is proposed to solve the tracking problem. This problem is difficult to be dealt with in the control literature, mainly because the inverse controls of block nonaffine systems are not easy to resolve. To overcome this difficulty, dynamic feedback, backstepping design, sliding mode-like technique, NN, and feedback linearization techniques are incorporated to deal with this problem, in which the NNs are used to approximate and adaptively cancel the uncertainties. It is proved that the whole closed-loop system is stable in the sense of Lyapunov. Finally, simulations verify the effectiveness of the proposed scheme.

  11. End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen


    Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.

  12. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. (United States)

    Soetedjo, Robijanto; Kaneko, Chris R S; Fuchs, Albert F


    There is general agreement that saccades are guided to their targets by means of a motor error signal, which is produced by a local feedback circuit that calculates the difference between desired saccadic amplitude and an internal copy of actual saccadic amplitude. Although the superior colliculus (SC) is thought to provide the desired saccadic amplitude signal, it is unclear whether the SC resides in the feedback loop. To test this possibility, we injected muscimol into the brain stem region containing omnipause neurons (OPNs) to slow saccades and then determined whether the firing of neurons at different sites in the SC was altered. In 14 experiments, we produced saccadic slowing while simultaneously recording the activity of a single SC neuron. Eleven of the 14 neurons were saccade-related burst neurons (SRBNs), which discharged their most vigorous burst for saccades with an optimal amplitude and direction (optimal vector). The optimal directions for the 11 SRBNs ranged from nearly horizontal to nearly vertical, with optimal amplitudes between 4 and 17 degrees. Although muscimol injections into the OPN region produced little change in the optimal vector, they did increase mean saccade duration by 25 to 192.8% and decrease mean saccade peak velocity by 20.5 to 69.8%. For optimal vector saccades, both the acceleration and deceleration phases increased in duration. However, during 10 of 14 experiments, the duration of deceleration increased as fast as or faster than that of acceleration as saccade duration increased, indicating that most of the increase in duration occurred during the deceleration phase. SRBNs in the SC changed their burst duration and firing rate concomitantly with changes in saccadic duration and velocity, respectively. All SRBNs showed a robust increase in burst duration as saccadic duration increased. Five of 11 SRBNs also exhibited a decrease in burst peak firing rate as saccadic velocity decreased. On average across the neurons, the number of

  13. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis (United States)

    Dzielski, John Edward


    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  14. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming. (United States)

    Wang, Jun-Sheng; Yang, Guang-Hong


    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  15. Fuzzy Saturated Output Feedback Tracking Control for Robot Manipulators: A Singular Perturbation Theory Based Approach


    Huashan Liu; Kuangrong Hao; Xiaobo Lai


    To deal with the problem of the output feedback tracking (OFT) control with bounded torque inputs of robot manipulators, we propose a generalized fuzzy saturated OFT controller based on singular perturbation theory. First, considering the fact that the output toque of joint actuators is limited, a general expression for a class of saturation functions is given to be applied in the control law. Second, to carry out the whole closed‐loop control with only position measurements, linear and...

  16. Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate. (United States)

    Ankarali, M Mert; Tutkun Sen, H; De, Avik; Okamura, Allison M; Cowan, Noah J


    Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.

  17. Real-Time Performance Feedback for the Manual Control of Spacecraft (United States)

    Karasinski, John Austin

    Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.

  18. Positive Periodic Solutions of a Periodic Discrete Competitive System Subject to Feedback Controls

    Directory of Open Access Journals (Sweden)

    Ronghua Tan


    Full Text Available Species living in a fluctuating medium and human exploitation activities might result in the duration of continuous changes. Such changes can be well-approximated as feedback controls. In this contribution a periodic discrete competitive system subject to feedback controls is proposed. By using the methods of discrete inequality, fixed point theorem, and analysis techniques, a good understanding of the existence and global asymptotic stability of positive periodic solutions is obtained. Some numerical investigations are provided to verify our analytical results.

  19. Impulsive State Feedback Control of Cheese Whey Fermentation for Single-Cell Protein Production

    Directory of Open Access Journals (Sweden)

    Chunjin Wei


    Full Text Available The work is the analysis of a mathematical model of cheese whey fermentation for single-cell protein production with impulsive state feedback control. Through the analysis, the sufficient conditions of existence and stability of positive order-1 periodic solution are obtained. It is shown that the system either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate, and the initial concentrate of microorganism and substrate. For some special cases, it is also shown that the system may exist in order-2 periodic solution. Furthermore, our findings are confirmed by means of numerical simulations.

  20. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang


    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...

  1. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control (United States)

    Yan, Zhihui; Jia, Xiaojun


    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  2. Frequency modulated cutaneous orientation feedback from artificial arms. [dynamic control model of human arm (United States)

    Solomonow, M.; Freedy, A.; Lyman, J.


    A model of the human arm, emphasizing the neuromuscular mechanisms of feedback control, has been constructed. The various parameters and functions of physiological receptors in the feedback section have been classified into an automated category that can be incorporated in the prosthesis servo loop, and into a sensory category that should be communicated to the operator if control and dynamic performance are to be optimized. A scheme for simultaneous display of two such sensory parameters, i.e., fingertip pressure and elbow position, has been developed, implemented and evaluated. The neurophysiological mechanism of such displays, and the feasibility of sensory transformation, is discussed in this paper.

  3. Output-Feedback Adaptive SP-SD-Type Control with an Extended Continuous Adaptation Algorithm for the Global Regulation of Robot Manipulators with Bounded Inputs

    Directory of Open Access Journals (Sweden)

    Daniela J. López-Araujo


    Full Text Available In this work, an output-feedback adaptive SP-SD-type control scheme for the global position stabilization of robot manipulators with bounded inputs is proposed. Compared with the output-feedback adaptive approaches previously developed in a bounded-input context, the proposed velocity-free feedback controller guarantees the adaptive regulation objective globally (i.e. for any initial condition, avoiding discontinuities throughout the scheme, preventing the inputs from reaching their natural saturation bounds and imposing no saturation-avoidance restrictions on the choice of the P and D control gains. Moreover, through its extended structure, the adaptation algorithm may be configured to evolve either in parallel (independently or interconnected to the velocity estimation (motion dissipation auxiliary dynamics, giving an additional degree of design flexibility. Furthermore, the proposed scheme is not restricted to the use of a specific saturation function to achieve the required boundedness, but may involve any one within a set of smooth and non-smooth (Lipschitz-continuous bounded passive functions that include the hyperbolic tangent and the conventional saturation as particular cases. Experimental results on a 3-degree-of-freedom manipulator corroborate the efficiency of the proposed scheme.

  4. Neural network-based optimal adaptive output feedback control of a helicopter UAV. (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani


    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  5. Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Linear Systems (United States)

    Nguyen, Chuong Hoang; Leonessa, Alexander


    In this paper, the problem of characterizing adaptive output feedback control laws for a general class of unknown MIMO linear systems is considered. Specifically, the presented control approach relies on three components, i.e., a predictor, a reference model and a controller. The predictor is designed to predict the system's output with arbitrary accuracy, for any admissible control input. Subsequently, a full state feedback control law is designed to control the predictor output to approach the reference system, while the reference system tracks the desired trajectory. Ultimately, the control objective of driving the actual system output to track the desired trajectories is achieved by showing that the system output, the predictor output and the reference system trajectories all converge to each other.

  6. Feedback stimulation strategy: control of retinal ganglion cells activation. (United States)

    Kameneva, Tatiana; Grayden, David B; Meffin, Hamish; Burkitt, Anthony N


    It is possible to cause a sensation of light in patients who have lost photoreceptors due to degenerative eye diseases by targeting surviving neurons with electrical stimulation by means of visual prosthetic devices. All stimulation strategies in currently used visual prostheses are open-loop, that is, the stimulation parameters do not depend on the level of activation of neurons surrounding stimulating electrodes. In this paper, we investigate a closed-loop stimulation strategy using computer simulations of previously constrained models of ON and OFF retinal ganglion cells. Using a proportional-integral-type controller we show that it is possible to control activation level of both types of retinal ganglion cells. We also demonstrate that the controller tuned for a particular combination of synaptic currents continues to work during retina degeneration when excitatory currents are reduced by 20%.

  7. Physical examination skills training: Faculty staff vs. patient instructor feedback-A controlled trial.

    Directory of Open Access Journals (Sweden)

    Markus Krautter

    Full Text Available Standardized patients are widely used in training of medical students, both in teaching and assessment. They also frequently lead complete training sessions delivering physical examination skills without the aid of faculty teaching staff-acting as "patient instructors" (PIs. An important part of this training is their ability to provide detailed structured feedback to students which has a strong impact on their learning success. Yet, to date no study has assessed the quality of physical examination related feedback by PIs. Therefore, we conducted a randomized controlled study comparing feedback of PIs and faculty staff following a physical examination assessed by students and video assessors.14 PIs and 14 different faculty staff physicians both delivered feedback to 40 medical students that had performed a physical examination on the respective PI while the physicians observed the performance. The physical examination was rated by two independent video assessors to provide an objective performance standard (gold standard. Feedback of PI and physicians was content analyzed by two different independent video assessors based on a provided checklist and compared to the performance standard. Feedback of PIs and physicians was also rated by medical students and video assessors using a questionnaire consisting of 12 items.There was no statistical significant difference concerning overall matching of physician or PI feedback with gold standard ratings by video assessment (p = .219. There was also no statistical difference when focusing only on items that were classified as major key steps (p = .802, mistakes or parts that were left out during physical examination (p = .219 or mistakes in communication items (p = .517. The feedback of physicians was significantly better rated than PI feedback both by students (p = .043 as well as by video assessors (p = .034.In summary, our study demonstrates that trained PIs are able to provide feedback of equal

  8. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing. (United States)

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin


    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.

  9. Design of proportional-derivative-type state feedback controllers for congestion control of transmission control protocol networks (United States)

    Azadegan, Masoumeh; Beheshti, Mohammad T. H.; Tavassoli, Babak


    A new proportional-derivative-type state feedback controller is proposed for congestion control of transmission control protocol (TCP) networks. An analytical TCP model is adopted. In the proposed control scheme, it is possible to efficiently control the TCP traffic using only the queue length at the router without the need to know the TCP window size which is not available locally. The results are presented in terms of delay-dependent linear matrix inequality. The proposed method is verified by simulation examples using NS software, and the effectiveness and superiority of our method over other control schemes, such as the proportional-integral, random early detection and generalised minimum variancemethods, are also shown.

  10. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system. (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong


    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Temporal control and compensation for perturbed voicing feedback

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen; Munhall, Kevin G.


    Previous research employing a real-time auditory perturbation paradigm has shown that talkers monitor their own speech attributes such as fundamental frequency, vowel intensity, vowel formants, and fricative noise as part of speech motor control. In the case of vowel formants or fricative noise...

  12. Guaranteed Cost Control for Exponential Synchronization of Cellular Neural Networks with Mixed Time-Varying Delays via Hybrid Feedback Control

    Directory of Open Access Journals (Sweden)

    T. Botmart


    Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

  13. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER


    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  14. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia (United States)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.


    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  15. A Neuroprosthesis System Utilizing Optical Spatial Feedback Control (United States)


    stimulation of multiple muscles of the shoulder, elbow, wrist , and hand using stimulation patterns based on electromyographic (EMG) activity in able-bodied... orthosis was incorporated into the system to augment elbow flexion and shoulder stability and was identified as the most important factor in...electrodes that were held in place by an elastic sleeve. Splinting and the use of a sling-augmented voice controlled stimulation to the extremity

  16. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel


    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  17. Nonlinear Feedback Control and Stability Analysis of a Proof-of-Work Blockchain

    Directory of Open Access Journals (Sweden)

    Geir Hovland


    Full Text Available In this paper a novel feedback controller and stability analysis of a blockchain implementation is developed by using a control engineering perspective. The controller output equals the difficulty adjustment in the mining process while the feedback variable is the average block time over a certain time period. The computational power (hash rate of the miners is considered a disturbance in the model. The developed controller is tested against a simulation model with constant disturbance, step and ramp responses as well as with a high-frequency sinusoidal disturbance. Stability and a fast response is demonstrated in all these cases with a controller which adjusts it's output at every new block. Finally the performance of the controller is implemented and demonstrated on a testnet with a constant hash rate as well as on the mainnet of a public open source blockchain project.

  18. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach. (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong


    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Hybrid Invariance and Stability of a Feedback Linearizing Controller for Powered Prostheses. (United States)

    Martin, Anne E; Gregg, Robert D


    The development of powered lower-limb prostheses has the potential to significantly improve amputees' quality of life. By applying advanced control schemes, such as hybrid zero dynamics (HZD), to prostheses, more intelligent prostheses could be designed. Originally developed to control bipedal robots, HZD-based control specifies the motion of the actuated degrees of freedom using output functions to be zeroed, and the required torques are calculated using feedback linearization. Previous work showed that an HZD-like prosthesis controller can successfully control the stance period of gait. This paper shows that an HZD-based prosthesis controller can be used for the entire gait cycle and that feedback linearization can be performed using only information measured with on-board sensors. An analytic metric for orbital stability of a two-step periodic gait is developed. The results are illustrated in simulation.

  20. Uncertainty Estimator based Nonlinear Feedback Control for Tracking Trajectories in a Class of Continuous Bioreactor

    Directory of Open Access Journals (Sweden)

    Maria Isabel Neria-Gonzále


    Full Text Available The main goal of this work is presents an alternative design of a class of nonlinear controller for tracking trajectories in a class of continuous bioreactor. It is assumed that the reaction rate of the controlled variable is unknown, therefore an uncertainty estimator is proposed to infer this important term, and the observer is coupled with a class of nonlinear feedback. The considered controller contains a class of continuous sigmoid feedback in order to provide smooth closed-loop response of the considered bioreactor. A kinetic model of a sulfate-reducing system is experimentally corroborated and is employed as a benchmark for further modeling and simulation of the continuous operation. A linear PI controller, a class of sliding-mode controller and the proposed one are compared and it is show that the proposed controller yields the best performance. The closed-loop behavior of the process is analyzed via numerical experiments.

  1. An Orbital Feedback Linearization Approach to Solving Terminal Problems for Affine Systems with Vector Control

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov


    Full Text Available State-feedback linearization is widely used to solve various problems of the control theory. An affine system is said to be state-feedback linearizable if there are a smooth change of variables in the space of states and an invertible change of controls, which transform the system to the system of a regular canonical form. However if a system is not state-feedback linearizable it yet can be orbitally feedback linearized, i.e. the system can be transformed to a regular canonical form after a change of the independent variable.The article solves the following terminal problem for multi-dimensional stationary affine systems: for given two states, find controls and a time T such that the corresponding trajectory of the system joins these states for the time T. We make an integrable change of the independent variable depending on controls. As a result, we obtain a non-stationary affine system, its dimension being one less than dimension of the original system. The new terminal problem with the restriction on controls is formulated for the transformed system. We prove the relation between solutions of the original terminal problem and solutions of the terminal problem for the transformed system. It is shown that to solve the original terminal problem it is sufficient to solve terminal problem for the transformed system. Then, we check whether the transformed system can be state-feedback linearized. For this purpose, we check the necessary and sufficient conditions of state-feedback linearization for non-stationary affine systems. If the conditions are met then we transform the system to a regular canonical form for which the concept of inverse dynamics problems can be used to solve terminal problems. However, due to the restriction on controls an additional check is necessary whether the found controls meet the restriction.An example of the terminal problem for the five-dimensional affine system with two controls is given. We prove that the system in

  2. Hybrid Invariance and Stability of a Feedback Linearizing Controller for Powered Prostheses


    Martin, Anne E.; Gregg, Robert D.


    The development of powered lower-limb prostheses has the potential to significantly improve amputees’ quality of life. By applying advanced control schemes, such as hybrid zero dynamics (HZD), to prostheses, more intelligent prostheses could be designed. Originally developed to control bipedal robots, HZD-based control specifies the motion of the actuated degrees of freedom using output functions to be zeroed, and the required torques are calculated using feedback linearization. Previous work...

  3. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus


    Full Text Available What is Pulse Energy Control: • Reliability & Repeatability • Accuracy & Stability • Programmability head2righthead2rightWhy do we need it: • Protection against component & subject damage • Micromachining with irregular pulse rate • Safer/improved laser....0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 Q-switched Pulse Repetition Rate [Hz] P u l s e E n e r g y [ m J ] Sources of Instability Reliability & Repeatability Programmability Reliability & Repeatability Accuracy & Stability Pump...

  4. Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)


    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)

  5. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong


    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  6. Thermal Simulation of a Contactor with Feedback Controlled Magnet System (United States)

    Ji, Liang; Chen, Degui; Liu, Yingyi; Li, Xingwen

    Similarities and differences of the thermal analysis issues between the intelligent and general AC contactors are analyzed. Heat source model of the magnet system is established according to the unique control mode of the intelligent AC contactor. Linking with the features common of the two kinds of contactors, the extension of the thermal analysis method of the general AC contactor to the intelligent AC contactor is demonstrated. Consequently, a comprehensive thermal analysis model considering heat sources of both main circuit and magnet system is constructed for the intelligent AC contactor. With this model, the steady-state temperature rise of the intelligent AC contactor is calculated and compared with the measurements of an actual intelligent AC contactor.

  7. "Just Dance": The Effects of Exergame Feedback and Controller Use on Physical Activity and Psychological Outcomes. (United States)

    Lin, Jih-Hsuan


    In Asia, dance games are among the most popular types of exergames. Whereas traditional dance-based games emphasize step movements on a dance pad, more recent dance games emphasize intuitive dance movements using simple controllers or players' own bodies to "just dance." However, because of limited space and access, young adults in Taiwan often do not use these games. Popular dance videos on YouTube are more readily available to students because these videos can be accessed on a computer. Therefore, the current study examines the effects of interactivity (the role of feedback) and controller use on participants' physiological and psychological outcomes during exergames. The dance game "Just Dance 3" (Ubisoft, Montreuil, France) was chosen as the stimulus for this study. Participants danced through one song for rehearsal and warm-up, followed by three songs for the experiment, which lasted approximately 12 minutes. One hundred twenty-nine college students participated in a 2×2×2 (interactivity, feedback versus no feedback; controller, with versus without; sex, male versus female) between-subject factorial design. A series of 2×2×2 (interactivity, controller, and sex) analyses of variance showed no significant differences in interaction effects on participants' heart rates, blood pressures, body movements, step counts, or perceived psychological outcomes. Dance game videos without feedback are also effective tools for achieving moderate-level exercise intensity. These videos can supplement the limited access to games in Asian countries, such as Taiwan.

  8. Effect of Feedback during Virtual Training of Grip Force Control with a Myoelectric Prosthesis

    NARCIS (Netherlands)

    Bouwsema, Hanneke; van der Sluis, Corry K.; Bongers, Raoul M.


    The aim of this study was to determine whether virtual training improves grip force control in prosthesis use, and to examine which type of augmented feedback facilitates its learning most. Thirty-two able-bodied participants trained grip force with a virtual ball-throwing game for five sessions in

  9. The effects of motivation feedback in patients with severe mental illness: A cluster randomized controlled trial

    NARCIS (Netherlands)

    E.C. Jochems (Eline); C.M. van der Feltz-Cornelis (Christina); A. van Dam (Arno); H.J. Duivenvoorden (Hugo); C.L. Mulder (Niels)


    textabstractObjective: To evaluate the effectiveness of providing clinicians with regular feedback on the patient’s motivation for treatment in increasing treatment engagement in patients with severe mental illness.Methods: Design: cluster randomized controlled trial (Dutch Trials Registry NTR2968).

  10. A centralized feedback control model for resource management in wireless networks

    NARCIS (Netherlands)

    Yang, Y.; Haverkort, Boudewijn R.H.M.; Heijenk, Geert; Cloth, L.; Hiltunen, M.; van Moorsel, A.


    In a wireless environment, guaranteeing QoS constraints is challenging because applications at multiple devices share the same limited radio bandwidth in the network. In this paper we introduce and study a resource management model for centralized wireless networks, using feedback control theory.

  11. A centralized feedback control model for resource management in wireless networks

    NARCIS (Netherlands)

    Yang, Y.; Haverkort, Boudewijn R.H.M.; Heijenk, Geert

    In a wireless environment, guaranteeing QoS is challenging because applications at multiple devices share the same limited radio bandwidth. In this paper we introduce and study a resource management model for centralized wireless networks, using feedback control theory. Before applying in practice,

  12. Efficacy of Web-Based Personalized Normative Feedback: A Two-Year Randomized Controlled Trial (United States)

    Neighbors, Clayton; Lewis, Melissa A.; Atkins, David C.; Jensen, Megan M.; Walter, Theresa; Fossos, Nicole; Lee, Christine M.; Larimer, Mary E.


    Objective: Web-based brief alcohol interventions have the potential to reach a large number of individuals at low cost; however, few controlled evaluations have been conducted to date. The present study was designed to evaluate the efficacy of gender-specific versus gender-nonspecific personalized normative feedback (PNF) with single versus…

  13. Magnetic motion control and planning of untethered soft grippers using ultrasound image feedback

    NARCIS (Netherlands)

    Scheggi, Stefano; Chandrasekar, Krishna Kumar T.; Yoon, ChangKyu; Sawaryn, Ben; van de Steeg, G.; Gracias, David H.; Misra, Sarthak


    Soft miniaturized untethered grippers can be used to manipulate and transport biological material in unstructured and tortuous environments. Previous studies on control of soft miniaturized grippers employed cameras and optical images as a feedback modality. However, the use of cameras might be

  14. Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard


    This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...

  15. Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard

    This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...

  16. Monolithically integrated light feedback control circuit for blue/UV LED smart package

    NARCIS (Netherlands)

    Kolahdouz Esfahani, Zahra; Tohidian, M.; van Zeijl, H.W.; Kolahdouz, Mohammadreza; Zhang, G.Q.


    Given the performance decay of high-power light-emitting diode (LED) chips over time and package condition changes, having a reliable output light for sensitive applications is a point of concern. In this study, a light feedback control circuit, including blue-selective photodiodes, for

  17. Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force (United States)

    Liu, Zong-Kai; Zhou, Ben-Mou; Liu, Hui-Xing; Ji, Yan-Liang; Huang, Ya-Dong


    In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%.

  18. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong


    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...... in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using...... the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening...

  19. Nonlinear power flow feedback control for improved stability and performance of airfoil sections (United States)

    Wilson, David G.; Robinett, III, Rush D.


    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  20. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time. (United States)

    Long, Lijun; Zhao, Jun


    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  1. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot. (United States)

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying


    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Simultaneous H2/H-infinity optimal control - The state feedback case (United States)

    Saberi, Ali; Chen, Ben M.; Sannuti, Peddapullaiah; Ly, Uy-Loi


    A simultaneous H2/H-infinity control problem is considered. This problem seeks to minimize the H2 norm of a closed-loop transfer matrix while simultaneously satisfying a prescribed H-infinity norm bound on some other closed-loop transfer matrix by utilizing dynamic state feedback controllers. Such a problem was formulated earlier by Rotea and Khargonekar (1991) who considered only so called regular problems. Here, for a class of singular problems, necessary and sufficient conditions are established so that the posed simultaneous H2/H-infinity problem is solvable by using state feedback controllers. The class of singular problems considered have a left invertible transfer function matrix from the control input to the controlled output which is used for the H2 norm performance measure. This class of problems subsumes the class of regular problems.

  3. Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zongkai; Zhou Benmou; Liu Huixing; Ji Yanliang; Huang Yadong, E-mail: [Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)


    In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%. (paper)

  4. Real-Time Navigation of Nonholonomic Mobile Robots under Velocity Vector Control

    Directory of Open Access Journals (Sweden)

    Zi-Hui Zhang


    Full Text Available In this paper, linear navigation law is studied in depth and we suggest an efficient, practical and simple approach for nonholonomic mobile robot navigation under velocity vector control based on the linear navigation law. First of all, an obstacle is equivalent to a velocity vector when detected by a robot's sensory system according to the relative distant and relative direction between the robot and the obstacle. Then the vector sum of all obstacles' equivalent velocity vectors (OEVVs and the linear navigation velocity vector (LNVV derived from the linear navigation law drives the robot to reach the desired goal position without colliding with any obstacle in the robot's workspace. Furthermore, during the process of driving the mobile robot under the resultant velocity vector, a set of strategies for velocity and acceleration constraints (VAC is devised to make kinematic behaviours of the mobile robot more practical. Finally, to validate the effectiveness and superiority, extensive simulation results with no obstacles, a single obstacle and multiple obstacles are provided.

  5. Trade-offs for feedback control of the linearized Ginzburg-Landau system (United States)

    Illingworth, Simon; Oehler, Stephan


    We consider feedback control of the linearized Ginzburg-Landau system. The particular focus is on any trade-offs present in the single-input single-output control problem. The work is in three parts. First, we consider the estimation problem in which a single sensor is used to estimate the entire flow field (without any control). By considering the optimal sensor placement with varying system stability, a fundamental trade-off for the estimation problem is made clear. Second, we consider the full-information control problem in which the entire flow field is known, but only a single actuator is available for control. We show that a similar trade-off exists when placing the single actuator. Third, we consider the overall feedback control problem in which only a single sensor is available for measurement; and only a single actuator is available for control. By varying the system stability, a similar fundamental trade-off is made clear. Implications for effective feedback control with a single sensor and a single actuator are discussed.

  6. Optimal Trajectory Planning and Coordinated Tracking Control Method of Tethered Space Robot Based on Velocity Impulse

    Directory of Open Access Journals (Sweden)

    Panfeng Huang


    Full Text Available The tethered space robot (TSR is a new concept of space robot which consists of a robot platform, space tether and operation robot. This paper presents a multi-objective optimal trajectory planning and a coordinated tracking control scheme for TSR based on velocity impulse in the approaching phase. Both total velocity impulse and flight time are included in this optimization. The non-dominated sorting genetic algorithm is employed to obtain the optimal trajectory Pareto solution using the TSR dynamic model and optimal trajectory planning model. The coordinated tracking control scheme utilizes optimal velocity impulse. Furthermore, the PID controller is designed in order to compensate for the distance measurement errors. The PID control force is optimized and distributed to thrusters and the space tether using a simulated annealing algorithm. The attitude interferential torque of the space tether is compensated a using time-delay algorithm through reaction wheels. The simulation results show that the multi-objective optimal trajectory planning method can reveal the relationships among flight time, fuel consumption, planar view angle and velocity impulse number. This method can provide a series of optimal trajectory according to a number of special tasks. The coordinated control scheme can significantly save thruster fuel for tracking the optimal trajectory, restrain the attitude interferential torque produced by space tether and maintain the relative attitude stability of the operation robot.

  7. Feasibility of a feedback control of atomic self-organization in an optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D. A., E-mail:; Ivanova, T. Yu. [St. Petersburg State University (Russian Federation)


    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  8. Dynamic axial stabilization of counterpropagating beam-traps with feedback control

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin


    . Here we propose a dynamic method for controlling axial forces to overcome this constraint. The technique uses computervision object tracking of the axial position, in conjunction with softwarebased feedback, for dynamically stabilizing the axial forces. We present proof-of-concept experiments showing...... real-time rapid repositioning coupled with a strongly enhanced axial trapping for a plurality of particles of varying sizes. We also demonstrate the technique’s adaptability for real-time reconfigurable feedback-trapping of a dynamically growing structure that mimics a continuously dividing cell colony....... Advanced implementation of this feedback-driven approach can help make CP-trapping resistant to a host of perturbations such as laser fluctuations, mechanical vibrations and other distortions emphasizing its experimental versatility....

  9. Competence feedback improves CBT competence in trainee therapists: A randomized controlled pilot study. (United States)

    Weck, Florian; Kaufmann, Yvonne M; Höfling, Volkmar


    The development and improvement of therapeutic competencies are central aims in psychotherapy training; however, little is known about which training interventions are suitable for the improvement of competencies. In the current pilot study, the efficacy of feedback regarding therapeutic competencies was investigated in cognitive behavioural therapy (CBT). Totally 19 trainee therapists and 19 patients were allocated randomly to a competence feedback group (CFG) or control group (CG). Two experienced clinicians and feedback providers who were blind to the treatment conditions independently evaluated therapeutic competencies on the Cognitive Therapy Scale at five treatment times (i.e., at Sessions 1, 5, 9, 13, and 17). Whereas CFG and CG included regular supervision, only therapists in the CFG additionally received written qualitative and quantitative feedback regarding their demonstrated competencies in conducting CBT during treatment. We found a significant Time × Group interaction effect (η² = .09), which indicates a larger competence increase in the CFG in comparison to the CG. Competence feedback was demonstrated to be suitable for the improvement of therapeutic competencies in CBT. These findings may have important implications for psychotherapy training, clinical practice, and psychotherapy research. However, further research is necessary to ensure the replicability and generalizability of the findings.

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen


    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  11. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  12. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats (United States)

    Liu, Ying; Feng, Jiang; Metzner, Walter


    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  13. Strong suppression of shot noise in a feedback-controlled single-electron transistor (United States)

    Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.


    Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.

  14. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator. (United States)

    Ayvali, Elif; Desai, Jaydev P


    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  15. Active random noise control using adaptive learning rate neural networks with an immune feedback law (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi


    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  16. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server



    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  17. Suboptimal feedback control of TCP flows in computer network using random early discard (RED mechanism

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.


    Full Text Available We consider a dynamic model that simulates the interaction of TCP sources with active queue management system (AQM. We propose a modified version of an earlier dynamic model called RED. This is governed by a system of stochastic differential equations driven by a doubly stochastic point process with intensity as the control. The feedback control law proposed observes the router (queue status and controls the intensity by sending congestion signals (warnings to the sources for adjustment of their transmission rates. The (feedback control laws used are of polynomial type (including linear with adjustable coefficients. They are optimized by use of genetic algorithm (GA and random recursive search (RRS technique. The numerical results demonstrate that the proposed model and the method can improve the system performance significantly.

  18. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders (United States)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette


    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  19. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems. (United States)

    Tran, Tri; Ha, Q P


    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Delayed feedback control for a parametrically excited van der Pol oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Via Alfredo Casella 3, 00013 Mentana (Italy)


    Periodic solutions for a parametrically excited van der Pol system with nonlinear stiffness and under state feedback control with a time delay are investigated. Two slow flow equations for the amplitude and phase of the parametric resonance response are derived. It is well known that their fixed points correspond to phase-locked periodic solutions for the starting system. In the system without control, periodic solutions exist only for fixed values of amplitude and phase and depend on the system parameters and excitation amplitude. The stable condition for steady-state response is given by the Routh-Hurwitz criterion, but in many cases the amplitudes of periodic solutions do not correspond to the technical requirements. On the contrary, it is demonstrated that, if the vibration control terms are added, stable periodic solutions with arbitrarily chosen amplitude and phase can be accomplished. An effective vibration control is then possible if appropriate time delay and feedback gains are chosen.

  1. State-space model identification and feedback control of unsteady aerodynamic forces

    CERN Document Server

    Brunton, Steven L; Rowley, Clarence W


    Unsteady aerodynamic models are necessary to accurately simulate forces and develop feedback controllers for wings in agile motion; however, these models are often high dimensional or incompatible with modern control techniques. Recently, reduced-order unsteady aerodynamic models have been developed for a pitching and plunging airfoil by linearizing the discretized Navier-Stokes equation with lift-force output. In this work, we extend these reduced-order models to include multiple inputs (pitch, plunge, and surge) and explicit parameterization by the pitch-axis location, inspired by Theodorsen's model. Next, we investigate the na\\"{\\i}ve application of system identification techniques to input--output data and the resulting pitfalls, such as unstable or inaccurate models. Finally, robust feedback controllers are constructed based on these low-dimensional state-space models for simulations of a rigid flat plate at Reynolds number 100. Various controllers are implemented for models linearized at base angles of ...

  2. Velocity control with disturbance observer for pedal-assisted electric bikes (United States)

    Chang, Shyue-Bin; Chen, Pang-Chia; Chuang, Hung-Shiang; Hsiao, Chih-Ching


    This paper proposes a velocity control approach for light electric bicycles with human power assistance. A disturbance observer mechanism is used to estimate the sum of the human torque and resistance torques. The resulting vehicle velocity control provides better battery energy efficiency by knowledge of the instantaneous human torque assistance and better speed control by knowledge of the instantaneous resistive torque. The disturbance observer is tuned in terms of the DC gain of a low-passed Q-filter for both open-loop and closed-loop schemes. Assuming that the slow varying nature of the disturbance has been properly estimated and compensated, the torque control law is designed via an optimal control approach to achieve multi-objective performances regarding the external disturbance input, control signal magnitude, and velocity tracking error. The three main parameters of the electric bike, including the moment of inertia, the radius of tyre and the vehicle weight are allowed to be variational. Specifically, the deviation of the inertia moment and deviation of the tyre radius are addressed during the controller design in terms of linear matrix inequalities. On the other hand, the effect of vehicle weight deviation on the system behaviour is evaluated when the vehicle is implemented with the constructed control law. Based on the parameters and specifications of the EL-168 electric bike produced by KENTFA Advanced Technology, Taiwan, the design results are verified through time-response simulations.

  3. Automatic feedback to promote safe walking and speech loudness control in persons with multiple disabilities: two single-case studies. (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea


    Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.

  4. Recursive proportional feedback and its use to control chaos in an electrochemical system

    CERN Document Server

    Rollins, R W; Sherard, P; Dewald, H D


    The recursive proportional feedback (RPF) algorithm for controlling chaos is described and applied to control chemical chaos observed during the electrodissolution of a rotating copper disk in a sodium acetate/acetic acid buffer. Experimental evidence is presented to indicate why the RPF method was used and the theoretical robustness of the algorithm is discussed. (This paper appears in the "Proceedings of the 2nd Conference on EXPERIMENTAL CHAOS," World Scientific Press, River Ridge, NJ, 1995)

  5. State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Junhai Luo


    Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.

  6. Designing Linear Feedback Controller for Elastic Inverted Pendulum with Tip Mass

    Directory of Open Access Journals (Sweden)

    Minh Hoang Nguyen


    Full Text Available This paper introduced a kind of cart and pole system. The pole in this system is not a solid beam but an elastic beam. The paper analyzed the dynamic equation of this complex system. Then, a linear feedback controller was designed to stabilize this model in order to keep the elastic beam balanced in the up-side position. The control results were proved to work well through simulation.

  7. Discrete-time H(infinity) control problem with strictly proper measurement feedback (United States)

    Stoorvogel, Anton A.; Saberi, Ali; Chen, Ben M.


    The paper is concerned with the discrete-time H(sub infinity) control problem with strictly proper measurement feedback. The authors derive necessary and sufficient conditions for the existence of a strictly proper compensator which achieves a given H(sub infinity) norm bound. Note that contrary to the continuous time, in discrete time there might exist a suitable proper compensator but no suitable strictly proper compensator. Finally, they give an explicit formula for one controller which achieves this bound.

  8. Analysis of eco-hydrological control and feedback using data-derived entropic process networks (United States)

    Ruddell, B. L.; Praveen, K.


    We hypothesize that plant ecosystems form self-organizing systems on the landscape which function to control their immediate surroundings towards the end of improving the efficiency of community carbon assimilation. Self- organization is difficult to define, but the concept requires the presence of feedbacks. Flows of control and feedbacks may be studied using network theory. This research uses entropy-based statistics of information flow to render the eco-hydrological system as a process network empirically derived from multivariate timeseries datasets. The resulting process network is analyzed to identify ecosystem controls and feedbacks and to separate different modes of system behavior. This approach is applied to the central corn belt eco-region using FLUXNET eddy-covariance timeseries data. Results indicate that plant respiration is a dominant controller of the interaction in the network of variables, including CO2 flux and sensible heat flux under well-watered conditions, and latent heat flux (but not CO2 flux) under drought conditions. Respiration is not controlled directly by other processes in the network, indicating that respiration is an independent (information-driven) mechanism of control by plants. Under drought conditions the ecosystem loses its ability to control CO2 assimilation through respiration, in agreement with the Ball-Berry model. CO2 flux inhabits a control feedback loop via latent and sensible heat flux, precipitation and cloud conditions, suggesting that carbon assimilation activity forms the basis of a self-organizing system spanning the Atmospheric Boundary Layer. Our finding that plants regulate their environment and CO2 uptake by modifying respiration, and that carbon assimilation feeds back on itself via atmospheric processes, supports the hypothesis that this ecosystem is self-organizing.

  9. Postural control and cognitive decline in older adults: position versus velocity implicit motor strategy. (United States)

    Deschamps, Thibault; Beauchet, Olivier; Annweiler, Cédric; Cornu, Christophe; Mignardot, Jean-Baptiste


    The present study explored the impact of cognitive decline on postural control strategies in older adults with and without cognitive decline from mild cognitive impairment (MCI) to mild-to-moderate Alzheimer disease (MMAD). We hypothesized that the cognitive decline affected the postural control leading to higher bounding limits of COP velocity dynamics. Based on a cross-sectional design, 175 non-faller older adults were recruited in Angers University Hospital, France, including 50 cognitively healthy individuals [CHI] (mean age 76.42 ± 4.84 years; 30% women), 64 age- and body mass index-matched participants with MCI (mean age 77.51 ± 6.32 years; 39% women), and 61 age- and body mass index-matched participants with MMAD (mean age 78.44 ± 3.97 years; 62% women). For all data collection of postural sway, the participants were asked to maintain quiet stance on force platform. The postural test consisted of two trials of quiet stance, with eyes open and with eyes closed. The COP parameters were mean and standard deviation (SD) of position, velocity and average absolute maximal velocity (AAMV) in antero-posterior and medio-lateral directions. Overall, the analysis concerning all COP parameters revealed a significant main effect of cognitive status on velocity-based variables, with post hoc comparisons evidencing that SD velocity and AAMV increased with cognitive impairment. The current findings suggest an active control (or corrective process) of COP velocity dynamics for CHI, whereas MCI and MMAD are affected by COP movements. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Optimized PID Position Control of a Nonlinear System Based on Correlating the Velocity with Position Error

    Directory of Open Access Journals (Sweden)

    Nenad Muškinja


    Full Text Available We examined a design approach for a PID controller for a nonlinear ball and beam system. Main objective of our research was to establish a nonmodel based control system, which would also not be dependent on a specific ball and beam hardware setup. The proposed PID controller setup is based on a cascaded configuration of an inner PID ball velocity control loop and an outer proportional ball position control loop. The effectiveness of the proposed controller setup was first presented in simulation environment in comparison to a hardware dependent PD cascaded controller, along with a more comprehensive study on possible design approach for optimal PID controller parameters in relation to main functionality of the controller setup. Experimental real time control results were then obtained on a laboratory setup of the ball and beam system on which PD cascaded controller could not be applied without parallel system model processing.

  11. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot. (United States)

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M


    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user.

  12. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    Directory of Open Access Journals (Sweden)

    Emmanuele eTidoni


    Full Text Available Advancement in brain computer interfaces (BCI technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI’s user and help in the feeling of control over it. Our results shed light on the possibility to increase robot’s control through the combination of multisensory feedback to a BCI user.

  13. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations. (United States)

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T


    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. © 2013 John Wiley & Sons Ltd.

  14. Velocity dependence of vestibular information for postural control on tilting surfaces (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek


    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  15. Feedback stabilization of controlled dynamical systems in honor of Laurent Praly

    CERN Document Server


    This book is a tribute to Professor Laurent Praly and follows on from a workshop celebrating the occasion of his 60th birthday. It presents new and unified visions of the numerous problems that Laurent Praly has worked on in his prolific career: adaptive control, output feedback and observers, stability and stabilization. His main contributions are the central topic of this book. The book collects contributions written by prominent international experts in the control community, addressing a rich variety of topics: emerging ideas, advanced applications, and theoretical concepts. Organized in three sections, the first section covers the field of adaptive control, where Laurent Praly started his career. The second section focuses on stabilization and output feedback, which is also the topic of the second half of his career. Lastly, the third section presents the emerging research that will form Laurent Praly’s scientific legacy.

  16. Gravity Compensation and Feedback of Ground Reaction Forces for Biped Balance Control

    Directory of Open Access Journals (Sweden)

    Satoshi Ito


    Full Text Available This paper considers the balance control of a biped robot under a constant external force or on a sloped ground. We have proposed a control method with feedback of the ground reaction forces and have realized adaptive posture changes that ensure the stability of the robot. However, fast responses have not been obtained because effective control is achieved by an integral feedback that accompanies a time delay necessary for error accumulation. To improve this response, here, we introduce gravity compensation in a feedforward manner. The stationary state and its stability are analyzed based on dynamic equations, and the robustness as well as the response is evaluated using computer simulations. Finally, the adaptive behaviors of the robot are confirmed by standing experiments on the slope.

  17. Act-and-wait time-delayed feedback control of autonomous systems (United States)

    Pyragas, Viktoras; Pyragas, Kestutis


    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  18. Hierarchical Brokering with Feedback Control Framework in Mobile Device-Centric Clouds

    Directory of Open Access Journals (Sweden)

    Chao-Lieh Chen


    Full Text Available We propose a hierarchical brokering architecture (HiBA and Mobile Multicloud Networking (MMCN feedback control framework for mobile device-centric cloud (MDC2 computing. Exploiting the MMCN framework and RESTful web-based interconnection, each tier broker probes resource state of its federation for control and management. Real-time and seamless services were developed. Case studies including intrafederation energy-aware balancing based on fuzzy feedback control and higher tier load balancing are further demonstrated to show how HiBA with MMCN relieves the embedding of algorithms when developing services. Theoretical performance model and real-world experiments both show that an MDC2 based on HiBA features better quality in terms of resource availability and network latency if it federates devices with enough resources distributed in lower tier hierarchy. The proposed HiBA realizes a development platform for MDC2 computing which is a feasible solution to User-Centric Networks (UCNs.

  19. A Predictive Velocity Observer in Wire Bonder’s Control System

    Directory of Open Access Journals (Sweden)

    Lei Zhou


    Full Text Available Wire bonder is a typical high speed machine. The motion speed of XY-stage is the key factor of bonding efficiency. However, phase lag elements in the servo system limit the bandwidth and slow down the system’s response. A predictive velocity observer is proposed to compensate for those phase lags. Then, the velocity loop controller can be designed as for a servo system which does not have those phase lags. Loop gains are enlarged and bandwidth is enlarged correspondingly. Then, the motion speed is improved and settling time is decreased. Experiment results verify that the predictive velocity observer provided a significant phase lead and the performance of wire bonder is improved.


    Directory of Open Access Journals (Sweden)

    Mikhail Popov


    Full Text Available Sliding friction can be reduced substantially by applying ultrasonic vibration in the sliding plane or in the normal direction. This effect is well known and used in many applications ranging from press forming to ultrasonic actuators. One of the characteristics of the phenomenon is that, at a given frequency and amplitude of oscillation, the observed friction reduction diminishes with increasing sliding velocity. Beyond a certain critical sliding velocity, there is no longer any difference between the coefficients of friction with or without vibration. This critical velocity depends on material and kinematic parameters and is a key characteristic that must be accounted for by any theory of influence of vibration on friction. Recently, the critical sliding velocity has been interpreted as the transition point from periodic stick-slip to pure sliding and was calculated for purely elastic contacts under uniform sliding with periodic normal loading. Here we perform a similar analysis of the critical velocity in viscoelastic contacts using a Kelvin material to describe viscoelasticity. A closed-form solution is presented, which contains previously reported results as special cases. This paves the way for more detailed studies of active control of friction in viscoelastic systems, a previously neglected topic with possible applications in elastomer technology and in medicine.

  1. Real-time feedback control of pH within microfluidics using integrated sensing and actuation. (United States)

    Welch, David; Christen, Jennifer Blain


    We demonstrate a microfluidic system which applies engineering feedback principles to control the pH of a solution with a high degree of precision. The system utilizes an extended-gate ion-sensitive field-effect transistor (ISFET) along with an integrated pseudo-reference electrode to monitor pH values within a microfluidic reaction chamber. The monitored reaction chamber has an approximate volume of 90 nL. The pH value is controlled by adjusting the flow through two input channels using a pulse-width modulated signal applied to on-chip integrated valves. We demonstrate real-time control of pH through the feedback-controlled stepping of 0.14 pH increments in both the increasing and decreasing direction. The system converges to the pH setpoint within approximately 20 seconds of a step change. The integration of feedback theory into a microfluidic environment is a necessary step for achieving complete control over the microenvironment.

  2. Semi-Active Control Using Magnetorhelogical Dampers with Output Feedback and Distributed Sensing

    Directory of Open Access Journals (Sweden)

    N.K. Chandiramani


    Full Text Available Control of seismic response of a building fitted with magnetorheological dampers is considered using Optimal Static Output Feedback (OSOF for desired damper forces. The Modified Bouc-Wen damper model is used and two control voltage laws based on the MR constraint filter, i.e., Semi-inverse Quadratic Voltage Law and Semi-inverse On-Off Voltage Law, are proposed. These appear to perform at least as well as an existing Clipped Voltage Law. Comparisons with available results from a robust reliability-based controller show OSOF control to be quite effective. Controlled response using OSOF is compared with Linear Quadratic Guassian (LQG and passive-on controllers. Moderate to substantial reduction in maximum peak/RMS responses is mostly obtained with base configuration of sensors when using OSOF control, and controller CPU time reduces by two orders of magnitude. Parametric studies regarding sensor configuration and state/control weighting matrices are performed in order to obtain effective control. Effective OSOF control requires drift feedback with drift sensor preferably collocated with damper.

  3. Ammonia-based feedforward and feedback aeration control in activated sludge processes. (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B


    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  4. Response time and noise power gain of electrical substitution radiometers with feedback control. (United States)

    Clare, J F; White, D R


    We present criteria for choosing filter and control parameters for absolute radiometers and true RMS meters that employ feedback controlled electrical substitution. Expressions are obtained for the response of the electrical heating power to radiation and to detector noise. The gains and time constants that minimize the response time for a given variance in a single power measurement are obtained from analyses of second- and third-order systems. Near optimal behavior is obtained in the third-order system comprising a first-order filter and a proportional-plus-integral controller with an integration time equal to the detector time constant. A procedure for tuning the control system is presented.

  5. The effect of myoelectric prosthesis control strategies and feedback level on adaptation rate for a target acquisition task. (United States)

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W


    The long-term performance of myoelectric prostheses is related not only to the short-term performance of the controller, but also to the user's ability to learn and adapt to the system. Different control architectures may have inherent tradeoffs between their short-term performance and the amount of relevant feedback that informs this adaptation. In this study we focused on the ability of two common types of myoelectric control interfaces: raw control with raw feedback, such as a regression, and filtered control with filtered feedback, such as a classifier, to affect user adaptation. We evaluated trial-by-trial adaptation to self-generated errors during a multi degree-of-freedom target acquisition task by fitting a linear regression model to data collected from 24 able-bodied subjects. Subjects showed significantly higher adaptation behavior to self-generated errors when using raw control with a raw feedback strategy than when using filtered control with a filtered feedback strategy, which suggests that control strategies with more feedback allow for higher adaptation. These results support our hypothesis that feedback-rich control strategies allow users to better understand the myoelectric control system, which may enable better long-term performance.

  6. A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim


    The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect...

  7. The Effects of Age, Control Beliefs, and Feedback on Self-Regulation of Reading and Problem Solving (United States)

    West, Robin L.


    We examined the effects of adult age and control beliefs on self-regulatory responses to feedback using a false feedback paradigm. Young and older adults read and attempted to solve a series of problems and periodically received either high- or low- performance feedback. Self-regulatory processes were assessed in terms of task specific beliefs consisting of self-efficacy and performance expectations as well as degree of attention allocated to reading the mysteries. Results showed that high-performance feedback increased self-efficacy and performance expectations relative to low-performance feedback and that these effects were comparable across levels of pre-existing control beliefs and across age groups. However, the effects of feedback on attention were moderated by age and pre-existing control beliefs. Older adults in the high-performance feedback condition who had high levels of control beliefs allocated more attention to the text than did their low-control peers. These findings suggest that positive feedback may encourage older adults to engage more fully in a reading task, however, only when they possess a strong sense of control. PMID:20054726

  8. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems. (United States)

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng


    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  9. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu


    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  10. Elastic wave velocity of granite during triaxial compression under controlled pore pressure (United States)

    Zaima, K.; Katayama, I.


    Elastic wave velocity is one of important physical properties to investigate structure in the Earth's interior. Because of a markedly change in elastic wave velocity at the presence of fluid, the geothermal fluid reservoir is frequently detected through seismic tomography. Previous laboratory experiments have carried to investigate effect of confining pressure (e.g. Nur and Simmons, 1969), axial stress during deformation (e.g. Lockner et al, 1977), fluid saturation (e.g. Nur and Simmons, 1969). However, there are few studies examining elastic wave velocity change on fracture process under controlled pore pressure. In this study, we examined change of elastic wave velocity and amplitude during triaxial compression under pore pressure as a fundamental research on estimating of artificial geothermal reservoir on hot dry rock system. We used Aji granite with a cylindrical shape. On dry condition, confining pressure was 20 MPa, and on wet condition, we used water as a pore fluid and confining pressure was 20 MPa and pore pressure was 10 MPa. We adopted pulse transmission method for measurements of elastic wave velocity and amplitude. We observed a systematic change of elastic wave velocity possibly due to closure, growth and formation of cracks during deformation. While elastic wave velocity was increased due to closure of preexisting cracks at the primary stage of deformation, it decreased markedly at the late stage of deformation. Vp/Vs tends to increase during deformation on wet condition while it decreases on dry condition. These data are consistent with theoretical model by O'Connell and Budiansky (1974), in which fluid filled cracks increase Vp/Vs but open (dry) cracks have an opposite influence. Based on the theoretical model, crack density tends to be suppressed during deformation under wet experiments. During deformation, amplitude was decreased with increasing cracks in the specimens, in which P wave has relatively small amplitude compared to wet condition

  11. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers. (United States)

    Merrikh-Bayat, Farshad


    One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive Neural Output Feedback Control for Uncertain Robot Manipulators with Input Saturation

    Directory of Open Access Journals (Sweden)

    Rong Mei


    Full Text Available This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.

  13. Vibration control for the parametrically excited van der Pol oscillator by nonlocal feedback

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Via Alfredo Casella 3, 00013 Mentana, Rome (Italy)


    A nonlocal feedback is used for the control of nonlinear vibrations in a parametrically excited van der Pol oscillator. A nonlocal control force is introduced in order to obtain a third-order nonlinear differential equation (jerk dynamics). Using the asymptotic perturbation method, two slow flow equations on the amplitude and phase of the response are obtained, and subsequently the performance of the control strategy is investigated. Parametric excitation-response and frequency-response curves are shown. Uncontrolled and controlled systems are compared, and the appropriate choices of the feedback gains for reducing the amplitude peak of the response are found. Energy considerations are used in order to study the existence and characteristics of limit cycles of the slow flow equations. A limit cycle corresponds to a two-period modulated motion for the van der Pol oscillator. To exclude the possibility of quasi-periodic motion and to reduce the amplitude peak of the parametric resonance, appropriate choices of the feedback gains are found. Numerical simulation confirms the validity of the new method.

  14. Output Feedback Controller Design with Symbolic Observers for Cyber-physical Systems

    Directory of Open Access Journals (Sweden)

    Masashi Mizoguchi


    Full Text Available In this paper, we design a symbolic output feedback controller of a cyber-physical system (CPS. The physical plant is modeled by an infinite transition system. We consider the situation that a finite abstracted system of the physical plant, called a c-abstracted system, is given. There exists an approximate alternating simulation relation from the c-abstracted system to the physical plant. A desired behavior of the c-abstracted system is also given, and we have a symbolic state feedback controller of the physical plant. We consider the case where some states of the plant are not measured. Then, to estimate the states with abstracted outputs measured by sensors, we introduce a finite abstracted system of the physical plant, called an o-abstracted system, such that there exists an approximate simulation relation. The relation guarantees that an observer designed based on the state of the o-abstracted system estimates the current state of the plant. We construct a symbolic output feedback controller by composing these systems. By a relation-based approach, we proved that the controlled system approximately exhibits the desired behavior.

  15. Control of bifurcation-delay of slow passage effect by delayed self-feedback (United States)

    Premraj, D.; Suresh, K.; Banerjee, Tanmoy; Thamilmaran, K.


    The slow passage effect in a dynamical system generally induces a delay in bifurcation that imposes an uncertainty in the prediction of the dynamical behaviors around the bifurcation point. In this paper, we investigate the influence of linear time-delayed self-feedback on the slow passage through the delayed Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. We perform linear stability analysis to derive the Hopf bifurcation point and its stability as a function of self-feedback time delay. Interestingly, the bifurcation-delay associated with Hopf bifurcation behaves differently in two different edges. In the leading edge of the modulating signal, it decreases with increasing self-feedback delay, whereas in the trailing edge, it behaves in an opposite manner. We also show that the linear time-delayed self-feedback can reduce bifurcation-delay in pitchfork bifurcation. These results are illustrated numerically and corroborated experimentally. We also propose a mechanistic explanation of the observed behaviors. In addition, we show that our observations are robust in the presence of noise. We believe that this study of interplay of two time delays of different origins will shed light on the control of bifurcation-delay and improve our knowledge of time-delayed systems.


    Energy Technology Data Exchange (ETDEWEB)

    Sereno, N. S.; Arnold, N.; Brill, A.; Bui, H.; Carwardine, J.; Decker, G.; Deriy, B.; Emery, L.; Farnsworth, R.; Fors, T.; Keane, R.; Lenkszus, F.; Lill, R.; Paskvan, D.; Pietryla, A.; Shang, H.; Shoaf, S.; Veseli, S.; Wang, J.; Xu, S.; Yang, B.X.


    The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns for arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.

  17. The Preschool Classroom as a Context for Cognitive Development: Type of Teacher Feedback and Children's Metacognitive Control (El aula Preescolar como espacio de desarrollo cognitivo: tipo de feedback docente y control metacognitivo en los niños) (United States)

    Muñoz, Liz; Cruz, Josefina Santa


    Introduction: The aim of this work was to determine whether the type of feedback given by the preschool teacher during class impacts the children's metacognitive control. For this purpose, the children's behavior was analyzed while teachers provided feedback during collaborative learning sessions. Method: A quasi-experimental, cross-sectional…

  18. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. (United States)

    Dong, Jiuxiang; Yang, Guang-Hong


    This correspondence paper is concerned with the problem of designing switched dynamic output feedback H(infinity) controllers for continuous-time Takagi-Sugeno (T-S) fuzzy systems. A new type of dynamic output feedback controllers, namely, switched dynamic parallel distributed compensation (SDPDC) controllers, is proposed, which are switched by basing on the values of membership functions. A new method for designing SDPDC controllers for guaranteeing stabilities and H(infinity) performances of closed-loop nonlinear systems is presented, where the design conditions are given in terms of the solvability of a set of linear matrix inequalities. It is shown that the new method provides better or at least the same results of the existing design methods via a pure DPDC scheme. A numerical example is given to illustrate the effectiveness of the proposed method.

  19. Suboptimal RED Feedback Control for Buffered TCP Flow Dynamics in Computer Network

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed


    Full Text Available We present an improved dynamic system that simulates the behavior of TCP flows and active queue management (AQM system. This system can be modeled by a set of stochastic differential equations driven by a doubly stochastic point process with intensities being the controls. The feedback laws proposed monitor the status of buffers and multiplexor of the router, detect incipient congestion by sending warning signals to the sources. The simulation results show that the optimal feedback control law from the class of linear as well as quadratic polynomials can improve the system performance significantly in terms of maximizing the link utilization, minimizing congestion, packet losses, as well as global synchronization. The optimization process used is based on random recursive search technique known as RRS.

  20. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang


    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  1. Effects of speed bottleneck on traffic flow with feedback control signal (United States)

    Zhu, Kangli; Bi, Jiantao; Wu, Jianjun; Li, Shubin


    Various car-following models (CMs) have been developed to capture the complex characteristics of microscopic traffic flow, among which the coupled map CM can better reveal and reflect various phenomena of practical traffic flow. Capacity change at bottleneck contributes to high-density traffic flow upstream the bottleneck and contains very complex dynamic behavior. In this paper, we analyze the effect of speed bottleneck on the spatial-temporal evolution characteristics of traffic flow, and propose a method to reduce traffic congestion with the feedback control signal based on CM. Simulation results highlight the potential of using the feedback signal to control the stop-and-go wave and furthermore to alleviate the traffic congestion effectively.

  2. Robust output feedback cruise control for high-speed train movement with uncertain parameters (United States)

    Li, Shu-Kai; Yang, Li-Xing; Li, Ke-Ping


    In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.2014JBM150).

  3. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory (United States)

    Hess, R. A.


    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  4. Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature

    Directory of Open Access Journals (Sweden)

    Zhe Dong


    Full Text Available Power-level control is a crucial technique for the safe, stable and efficient operation of modular high temperature gas-cooled nuclear reactors (MHTGRs, which have strong inherent safety features and high outlet temperatures. The current power-level controllers of the MHTGRs need measurements of both the nuclear power and the helium temperature, which cannot provide satisfactory control performance and can even induce large oscillations when the neutron sensors are in error. In order to improve the fault tolerance of the control system, it is important to develop a power-level control strategy that only requires the helium temperature. The basis for developing this kind of control law is to give a state-observer of the MHTGR a relationship that only needs the measurement of helium temperature. With this in mind, a novel nonlinear state observer which only needs the measurement of helium temperature is proposed. This observer is globally convergent if there is no disturbance, and has the L2 disturbance attenuation performance if the disturbance is nonzero. The separation principle of this observer is also proven, which denotes that this observer can recover the performance of both globally asymptotic stabilizers and L2 disturbance attenuators. Then, a new dynamic output feedback power-level control strategy is established, which is composed of this observer and the well-built static state-feedback power-level control based upon iterative dissipation assignment (IDA-PLC. Finally, numerical simulation results show the high performance and feasibility of this newly-built dynamic output feedback power-level controller.

  5. Control Framework for Dexterous Manipulation Using Dynamic Visual Servoing and Tactile Sensors’ Feedback

    Directory of Open Access Journals (Sweden)

    Carlos A. Jara


    Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

  6. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy (United States)

    Seltzer, S. M.


    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  7. [High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy]. (United States)

    Yang, Xi; Liu, Xiao; Zhang, Xiao-Fan; Lu, Hu-Jie; Zhang, Yan-Jun


    The ion channels located on the cell fine structures play an important role in the physiological functions of cell membrane. However, it is impossible to achieve precise positioning on the nanometer scale cellular microstructures by conventional patch-clamp technique, due to the 200 nm resolution limit of optical microscope. To solve this problem, we have established a high-resolution patch-clamp technique, which combined commercial scanning ion conductance microscopy (SICM) and patch-clamp recording through a nanopipette probe, based on SICM feedback control. MDCK cells were used as observation object to test the capability of the technique. Firstly, a feedback controlled SICM nanopipette (approximately 150 MOmega) non-contactly scanned over a selected area of living MDCK cells monolayer to obtain high-resolution topographic images of microvilli and tight-junction microstructures on the MDCK cells monolayer. Secondly, the same nanopipette was non-contactly moved and precisely positioned over the microvilli or tight-junction microstructure under SICM feedback control. Finally, the SICM feedback control was switched off, the nanopipette slowly contacted with the cell membrane to get a patch-clamp giga-ohm sealing in the cell-attached patch-clamp configuration, and then performed ion channel recording as a normal patch-clamp electrode. The ion channel recordings showed that ion channels of microvilli microstructure opened at pipette holding potential of -100, -60, -40, 0, +40, +60, +100 mV (n=11). However, the opening of ion channels of tight-junction microstructure was not detected at pipette holding potential of -100, -40, 0, +40, +100 mV (n=9). These results suggest that our high-resolution patch-clamp technique can achieve accurate nanopipette positioning and nanometer scale high-resolution patch-clamp recording, which may provide a powerful tool to study the spatial distribution and functions of ion channel in the nanometer scale microstructures of living

  8. Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Baodong [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China)], E-mail:; Zheng Huifeng [Department of Electronics and Communication Engineering, Harbin Institute of Technology, Harbin 150001 (China)


    Jerk systems with delayed feedback are considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, the stability and direction of the Hopf bifurcation are determined by applying the normal form method and center manifold theorem. Finally, the application to chaotic control is investigated, and some numerical simulations are carried out to illustrate the obtained results.

  9. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration (United States)

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  10. An Approach to Applying Feedback Error Learning for Functional Electrical Stimulation Controller: Computer Simulation Tests of Wrist Joint Control

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe


    Full Text Available Feedback error-learning (FEL controller that consists of a proportional-integral-derivative (PID controller and an artificial neural network (ANN had applicability to functional electrical stimulation (FES. Because of the integral (reset windup, however, delay or overshoot sometimes occurred in feedback FES control, which was considered to cause inappropriate ANN learning and to limit the feasibility of the FEL controller for FES to controlling 1-DOF movements stimulating 2 muscles. In this paper, an FEL-FES controller was developed applying antireset windup (ARW scheme that worked based on total controller output. The FEL-FES controller with the ARW was examined in controlling 2-DOF movements of the wrist joint stimulating 4 muscles through computer simulation. The developed FEL-FES controller was found to realize appropriately inverse dynamics model and to have a possibility of being used as an open-loop controller. The developed controller would be effective in multiple DOF movement control stimulating several muscles.

  11. An Active Capacitor with Self-Power and Internal Feedback Control Signals

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai


    This paper proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. A control strategy that does not require any external feedback...... signal is proposed and a self-power scheme for gate drivers and the controller is applied to achieve the two-terminal active capacitor. The concept, control method, self-power scheme, efficiency, and impedance characteristics of the active capacitor are presented. A case study of the proposed active...

  12. Chaos analysis and delayed-feedback control in a discrete dynamic coupled map traffic model (United States)

    Fang, Yaling; Shi, Zhongke


    The presence of chaos in traffic flow is studied using a modified discrete dynamic coupled map model which is derived from both the flow-density-speed fundamental diagram and Del Castillo's speed-density model. The modified model employs occupancy as its new variable and introduces a coupling strength with the consideration of effect of the front adjacent vehicle. And we analyze its stability of the control system and provide a procedure to design the decentralized delayed-feedback controllers for the traffic control system. These theoretical results are illustrated by numerical simulations.

  13. Magnetic resonance velocity imaging derived pressure differential using control volume analysis

    Directory of Open Access Journals (Sweden)

    Cohen Benjamin


    Full Text Available Abstract Background Diagnosis and treatment of hydrocephalus is hindered by a lack of systemic understanding of the interrelationships between pressures and flow of cerebrospinal fluid in the brain. Control volume analysis provides a fluid physics approach to quantify and relate pressure and flow information. The objective of this study was to use control volume analysis and magnetic resonance velocity imaging to non-invasively estimate pressure differentials in vitro. Method A flow phantom was constructed and water was the experimental fluid. The phantom was connected to a high-resolution differential pressure sensor and a computer controlled pump producing sinusoidal flow. Magnetic resonance velocity measurements were taken and subsequently analyzed to derive pressure differential waveforms using momentum conservation principles. Independent sensor measurements were obtained for comparison. Results Using magnetic resonance data the momentum balance in the phantom was computed. The measured differential pressure force had amplitude of 14.4 dynes (pressure gradient amplitude 0.30 Pa/cm. A 12.5% normalized root mean square deviation between derived and directly measured pressure differential was obtained. These experiments demonstrate one example of the potential utility of control volume analysis and the concepts involved in its application. Conclusions This study validates a non-invasive measurement technique for relating velocity measurements to pressure differential. These methods may be applied to clinical measurements to estimate pressure differentials in vivo which could not be obtained with current clinical sensors.

  14. Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Raymond K. Chong


    Full Text Available Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome.

  15. Identification and robust water level control of horizontal steam generators using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Safarzadeh, O., E-mail: [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of); Khaki-Sedigh, A. [K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shirani, A.S. [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of)


    Highlights: {yields} A robust water level controller for steam generators (SGs) is designed based on the Quantitative Feedback Theory. {yields} To design the controller, fairly accurate linear models are identified for the SG. {yields} The designed controller is verified using a developed novel global locally linear neuro-fuzzy model of the SG. {yields} Both of the linear and nonlinear models are based on the SG mathematical thermal-hydraulic model developed using the simulation computer code. {yields} The proposed method is easy to apply and guarantees desired closed loop performance. - Abstract: In this paper, a robust water level control system for the horizontal steam generator (SG) using the quantitative feedback theory (QFT) method is presented. To design a robust QFT controller for the nonlinear uncertain SG, control oriented linear models are identified. Then, the nonlinear system is modeled as an uncertain linear time invariant (LTI) system. The robust designed controller is applied to the nonlinear plant model. This nonlinear model is based on a locally linear neuro-fuzzy (LLNF) model. This model is trained using the locally linear model tree (LOLIMOT) algorithm. Finally, simulation results are employed to show the effectiveness of the designed QFT level controller. It is shown that it will ensure the entire designer's water level closed loop specifications.

  16. Self-adjusting control system of the electrodynamic velocity transducer for Mössbauer spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zekhtser, M.Yu., E-mail:; Revyakin, A.S., E-mail:; Sarychev, D.A., E-mail:


    The novel control system has been developed on the basis of motion equation for the moving part of the electrodynamic velocity transducer of Mössbauer spectrometer. The motion equation coefficients are the parameters of its vibrating system. The square of cyclic eigenfrequency and damping factor are automatically determined by the control software for the spectrometer using the express analysis of free damped oscillations before any measurements are taken. The control system does not require manual adjustment of the spectrometer before the experiment. It exhibits accuracy of self-tuning and high degree of Doppler modulation stability in long-term experiments, providing high quality Mössbauer spectra.

  17. Building Macro-models for Waveform Inversion using Strip-off Controlled Directional Reception Velocity Analysis (United States)

    Park, Eunjin; Shin, Changsoo


    The controlled directional reception (CDR) method is a velocity analysis method using ray-tracing. It is one of the tomographic methods that use slope (or ray parameter), so it is often called the "slope tomography method". It does not require a pre-picking operation like traveltime tomography does. Auto-picked information from the local slant stack is regarded as more reliable than reflection traveltime picked directly from the seismic data. The method also provides more detailed information about the moveout than the imaging operator in migration-based velocity analysis (MVA). Therefore, we constructed a velocity macro-model using this strip-off CDR velocity analysis. When compared to the conventional CDR method, it increased the resolution of common receiver gathers (CRG) data and reduced computer storage space dramatically. Additionally, it improved the accuracy of the velocity model by using the migrated image as a background panel during the velocity analysis. The results obtained by this method were applied to full waveform inversion (FWI) as the initial velocity model. In FWI, an exact initial model is important because it reduces instability and increases the probability of convergence to the global minimum. It is significant that the CDR model is first applied as the initial model of FWI. We confirmed good inverted results from two realistic synthetic data tests by comparison with the results obtained using the conventional initial models. In particular, the CDR macro-model has great value on its high accuracy. It is expected to provide good results with difficult data, such as seismic data with a weathered zone or short offset, and so increase the accuracy compared with the conventional method. Furthermore, it is possible to apply to multi-parameter inversion. In summary, the macro-model obtained from strip-off CDR velocity analysis is suitable for frequency domain FWI. Three-dimensional exploration and exploration in complex terrains are being conducted

  18. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems (United States)

    Li, Zhifu; Hu, Yueming; Li, Di


    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  19. Further results on saturated globally stabilizing linear state feedback control laws for single-input neutrally stable planar systems

    NARCIS (Netherlands)

    Yang, Tao; Stoorvogel, Antonie Arij; Saberi, Ali; Johansson, Karl H.


    It is known that for single-input neutrally stable planar systems, there exists a class of saturated globally stabilizing linear state feedback control laws. The goal of this paper is to characterize the dynamic behavior for such a system under arbitrary locally stabilizing linear state feedback

  20. Feedback control linear, nonlinear and robust techniques and design with industrial applications

    CERN Document Server

    Dodds, Stephen J


    This book develops the understanding and skills needed to be able to tackle original control problems. The general approach to a given control problem is to try the simplest tentative solution first and, when this is insufficient, to explain why and use a more sophisticated alternative to remedy the deficiency and achieve satisfactory performance. This pattern of working gives readers a full understanding of different controllers and teaches them to make an informed choice between traditional controllers and more advanced modern alternatives in meeting the needs of a particular plant. Attention is focused on the time domain, covering model-based linear and nonlinear forms of control together with robust control based on sliding modes and the use of state observers such as disturbance estimation. Feedback Control is self-contained, paying much attention to explanations of underlying concepts, with detailed mathematical derivations being employed where necessary. Ample use is made of diagrams to aid these conce...

  1. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback. (United States)

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J


    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods.

  2. Gain Scheduling for Hybrid Force/Velocity Control in Contour Tracking Task

    Directory of Open Access Journals (Sweden)

    Giacomo Ziliani


    Full Text Available In this paper a gain scheduling approach is proposed for the hybrid force/velocity control of an industrial manipulator employed for the contour tracking of objects of unknown shape. The methodology allows to cope with the configuration dependent dynamics of the manipulator during a constrained motion and therefore a significant improvement of the performance results. Experimental results obtained with an industrial SCARA manipulator demonstrate the effectiveness of the technique.

  3. Performance Investigation of Air Velocity Effects on PV Modules under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali


    Full Text Available Junction temperature of PV modules is one of the key parameters on which the performance of PV modules depends. In the present work, an experimental investigation was carried out to analyze the effects of air velocity on the performance of two PV modules, that is, monocrystalline silicon and polycrystalline silicon under the controlled conditions of a wind tunnel in the presence of an artificial solar simulator. The parameters investigated include the surface temperature variation, power output, and efficiency of PV modules under varying air velocity from near zero (indoor lab. conditions to 15 m/s. Additionally, the results were also determined at two different module angular positions: at 0° angle, that is, parallel to air direction and at 10° angle with the direction of coming air to consider the effects of tilt angles. Afterwards, the thermal analysis of the modules was performed using Ansys-Fluent in which junction temperature and heat flux of modules were determined by applying appropriate boundary conditions, such as air velocity, heat flux, and solar radiation. Finally, the numerical results are compared with the experiment in terms of junction temperatures of modules and good agreement was found. Additionally, the results showed that the maximum module temperature drops by 17.2°C and the module efficiency and power output increased from 10 to 12% with increasing air velocity.

  4. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications (United States)

    Lake, John R.; Heyde, Keith C.


    Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. PMID:28369134

  5. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.

    Directory of Open Access Journals (Sweden)

    John R Lake

    Full Text Available Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110 syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino, we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.

  6. Real-time RNN-based acoustic thermometry with feedback control (United States)

    Hsu, Stephen J.; Nam, Joana H.; Fan, Liexiang; Brunke, Shelby S.; Sekins, K. Michael


    A major obstacle to the widespread adoption of HIFU therapy is the development of a suitable method of monitoring the a blation therapy in real-time. While MR-thermometry has emerged as a promising method for HIFU therapy monitoring, acoustic guidance has continuously been sought for reasons of cost and practicality. We have previously demonstrated the potential of acoustic thermometry, by using a recurrent neural network (RNN) to estimate changes in tissue temperature during HIFU ablation therapies. A limitation of this method is that an excessive therapeutic dose can cause multiple, non-linear changes within the ultrasound data, resulting in unreliable temperature estimates from the RNN. Accordingly, we propose a revised method of dosing wherein closed loop feedback is used to provide a controlled and specific dose; not only to ensure an efficacious lesion, but also to preserve the integrity of the ultrasound image, thereby producing accurate temperature estimates from the RNN. This investigation of controlling the thermal dose using feedback was performed on ex vivo bovine liver. The acoustic parameters used as inputs to the RNN were: changes in integrated backscatter intensity, thermal strain, and decorrelation. The therapeutic dose was delivered using a 1.1 MHz, 2D-array HIFU transducer transmitting at regular intervals during a 40-second dose. Interleaved between these regular HIFU dose intervals, volumetric ultrasound images were acquired on a Siemens ACUSON SC2000, with a 4Zlc probe. Feedback was introduced to the system by varying the HIFU duty cycle, in order to minimize the difference between a desired temperature curve (assigned a priori) and the estimated focal temperature values. Two methods were used for obtaining the focal temperature: the first was direct measurement using a 75-micron copper-constantan thermocouple embedded within the liver sample, and the second was temperature estimation as calculated from the RNN-based output temperatures

  7. Utilizing measure-based feedback in control-mastery theory: A clinical error. (United States)

    Snyder, John; Aafjes-van Doorn, Katie


    Clinical errors and ruptures are an inevitable part of clinical practice. Often times, therapists are unaware that a clinical error or rupture has occurred, leaving no space for repair, and potentially leading to patient dropout and/or less effective treatment. One way to overcome our blind spots is by frequently and systematically collecting measure-based feedback from the patient. Patient feedback measures that focus on the process of psychotherapy such as the Patient's Experience of Attunement and Responsiveness scale (PEAR) can be used in conjunction with treatment outcome measures such as the Outcome Questionnaire 45.2 (OQ-45.2) to monitor the patient's therapeutic experience and progress. The regular use of these types of measures can aid clinicians in the identification of clinical errors and the associated patient deterioration that might otherwise go unnoticed and unaddressed. The current case study describes an instance of clinical error that occurred during the 2-year treatment of a highly traumatized young woman. The clinical error was identified using measure-based feedback and subsequently understood and addressed from the theoretical standpoint of the control-mastery theory of psychotherapy. An alternative hypothetical response is also presented and explained using control-mastery theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Resonant current in coupled inertial Brownian particles with delayed-feedback control (United States)

    Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can


    The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.

  9. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse


    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  10. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control. (United States)

    Boyer, Eric O; Portron, Arthur; Bevilacqua, Frederic; Lorenceau, Jean


    As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM) can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  11. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer


    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  12. Haptic feedback control in medical robots through fractional viscoelastic tissue model. (United States)

    Kobayashi, Yo; Moreira, Pedro; Liu, Chao; Poignet, Philippe; Zemiti, Nabil; Fujie, Masakatsu G


    In this paper, we discuss the design of an adaptive control system for robot-assisted surgery with haptic feedback. Through a haptic device, the surgeon teleoperates the medical instrument in free space, fixed on a remote robot or in contact. In free space, the surgeon feels the motion of the robot. In the present paper, we evaluated the performance of the controller on viscoelastic tissue, modeled by a fractional derivative equation. In addition, we propose a novel controller using an integer formalization process that is suitable for these tissue properties. The simulation results suggested that performance, in terms of force control and telepresence, became poorer when the conventional controller, which was designed for elastic target object, was applied to the viscoelastic tissues. In contrast, the results suggested that our proposed controller maintained its performance on the viscoelastic tissues.

  13. Robust fixed-order dynamic output feedback controller design for nonlinear uncertain suspension system (United States)

    Badri, Pouya; Amini, Amir; Sojoodi, Mahdi


    This paper deals with designing a robust fixed-order non-fragile dynamic output feedback controller for active suspension system of a quarter-car, by means of convex optimization and linear matrix inequalities (LMIs). Our purpose is to design a low-order controller that keeps the desired design specifications besides the simplicity of the implementation. The proposed controller is capable of asymptotically stabilizing the closed-loop system and developing H∞ control, despite model uncertainties and nonlinear dynamics of the quarter-car as well as the norm bounded perturbations of controller parameters. Furthermore, controller parameters are prevented from taking very large and undesirable amounts through appropriate LMI constraints. Finally, a numerical example is presented to show the effectiveness of the proposed method by comparing it with similar works.

  14. Delay-feedback control strategy for reducing CO2 emission of traffic flow system (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing


    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  15. An Effective Method on Applying Feedback Error Learning Scheme to Functional Electrical Stimulation Controller (United States)

    Watanabe, Takashi; Kurosawa, Kenji; Yoshizawa, Makoto

    A Feedback Error Learning (FEL) scheme was found to be applicable to joint angle control by Functional Electrical Stimulation (FES) in our previous study. However, the FEL-FES controller had a problem in learning of the inverse dynamics model (IDM) in some cases. In this paper, methods of applying the FEL to FES control were examined in controlling 1-DOF movement of the wrist joint stimulating 2 muscles through computer simulation under several control conditions with several subject models. The problems in applying FEL to FES controller were suggested to be in restricting stimulation intensity to positive values between the minimum and the maximum intensities and in the case of very small output values of the IDM. Learning of the IDM was greatly improved by considering the IDM output range with setting the minimum ANN output value in calculating ANN connection weight change.

  16. State Feedback H∞ Control of Power Units Based on an Improved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zhongqiang Wu


    Full Text Available A new state feedback H∞ control scheme is presented used in the boiler-turbine power units based on an improved particle swarm optimizing algorithm. Firstly, the nonlinear system is transformed into a linear time-varying system; then the H∞ control problem is transformed into the solution of a Riccati equation. The control effect of H∞ controller depends on the selection of matrix P, so an improved particle swarm optimizing (PSO algorithm by introducing differential evolution algorithm is used to solve the Riccati equation. The main purpose is that mutation and crossover are introduced for a new population, and the population diversity is improved. It is beneficial to eliminate stagnation caused by premature convergence, and the algorithm convergence rate is improved. Finally, the real-time optimizing of the controller parameters is realized. Theoretical analysis and simulation results show that a state feedback H∞ controller can be obtained, which can ensure asymptotic stability of the system, and the double objectives of stabilizing system and suppressing the disturbance are got. The system can work well over a large range working point.

  17. Study on fault diagnosis and load feedback control system of combine harvester (United States)

    Li, Ying; Wang, Kun


    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  18. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)


    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  19. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation. (United States)

    Huang, Yong; Tao, Gang


    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  20. Temperature feedback-controlled photothermal treatment with diffusing applicator: theoretical and experimental evaluations. (United States)

    Nguyen, Trung Hau; Park, Suhyun; Hlaing, Kyu Kyu; Kang, Hyun Wook


    To minimize thermal injury, the current study evaluated the real-time temperature monitoring with a proportional-integrative-derivative (PID) controller during 980-nm photothermal treatment with a radially-diffusing applicator. Both simulations and experiments demonstrated comparable thermal behaviors in temperature distribution and the degree of irreversible tissue denaturation. The PID-controlled application constantly maintained the pre-determined temperature of 353 K (steady-state error = temperature feedback with diffuser-assisted photothermal treatments can provide a feasible therapeutic modality to treat pancreatic tumors in an effective manner.

  1. Bifurcation and Feedback Control of an Exploited Prey-Predator System

    Directory of Open Access Journals (Sweden)

    Uttam Das


    Full Text Available This paper makes an attempt to highlight a differential algebraic model in order to investigate the dynamical behavior of a prey-predator system due to the variation of economic interest of harvesting. In this regard, it is observed that the model exhibits a singularity induced bifurcation when economic profit is zero. For the purpose of stabilizing the proposed model at the positive equilibrium, a state feedback controller is therefore designed. Finally, some numerical simulations are carried out to show the consistency with theoretical analysis and to illustrate the effectiveness of the proposed controller.

  2. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control. (United States)

    Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan


    Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, Pcontrol balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, Pcontrol rate of sway with neuropathy severity (rPearson = 0.65-085, Pdiabetes (rPearson = 0.58-071, Pcontrols. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.

  3. Feedback Control for a Smart Wheelchair Trainer Based on the Kinect Sensor (United States)

    Darling, Aurelia McLaughlin

    This thesis describes a Microsoft Kinect-based feedback controller for a robot-assisted powered wheelchair trainer for children with a severe motor and/or cognitive disability. In one training mode, "computer gaming" mode, the wheelchair is allowed to rotate left and right while the children use a joystick to play video games shown on a screen in front of them. This enables them to learn the use of the joystick in a motivating environment, while experiencing the sensation and dynamics of turning in a safe setting. During initial pilot testing of the device, it was found that the wheelchair would creep forward while children were playing the games. This thesis presents a mathematical model of the wheelchair dynamics that explains the origin of the creep as a center of gravity offset from the wheel axis or a mismatch of the torques applied to the chair. Given these possible random perturbations, a feedback controller was developed to cancel these effects, correcting the system creep. The controller uses a Microsoft Kinect sensor to detect the distance to the screen displaying the computer game, as well as the left-right position (parallel parking concept) with respect to the screen, and then adjusts the wheel torque commands based on this measurement. We show through experimental testing that this controller effectively stops the creep. An added benefit of the feedback controller is that it approximates a washout filter, such as those used in aircraft simulators, to convey a more realistic sense of forward/backward motion during game play.

  4. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer


    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  5. Power flow control based solely on slow feedback loop for heart pump applications. (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David


    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  6. Output-feedback sampled-data control design for linear parameter-varying systems with delay (United States)

    Ramezanifar, Amin; Mohammadpour, Javad; Grigoriadis, Karolos M.


    In this paper, we address the sampled-data output-feedback control design problem for continuous-time linear parameter-varying systems with time-varying delay in the system states. Due to the combination of the plant's continuous-time dynamics and the controller's discrete-time dynamics connected through A/D and D/A converter devices, the closed-loop system is a hybrid system. In order to analyse this hybrid system from stability and performance perspectives we use the input-delay approach to map the closed-loop system into the continuous-time domain with delay in the states. This results in a closed-loop system containing two types of delays, the system internal delay and the one imposed by the mapping. Next, we use delay-dependent conditions for analysis of stability and ?-norm performance which result in a sampled-data control synthesis procedure. The proposed output-feedback sampled-data controller is obtained based on the solution to a linear matrix inequality optimisation problem using a set of appropriately defined slack variables. A numerical example of a milling machine is presented to demonstrate the viability of the proposed sampled-data control design method to satisfy the stability and performance objectives even with a varying sampling rate.

  7. Numerical study of linear feedback control for form-drag reduction (United States)

    Dahan, Jeremy; Morgans, Aimee


    The present work is a numerical investigation of linear system identification and model-based feedback control methods for form-drag reduction. Large-Eddy Simulation (LES) is used to represent the flow over a simple bluff body with a sharp trailing edge, with a turbulent separation. For actuation, two types of perturbations are considered: a model of zero-net-mass-flux slot jets and momentum sources. Pressure measurements distributed over the base of the body provide the sensor information. The first part of the study will focus on the open-loop characterization of the flow. The base pressure field will be studied in relation to the wake dynamics. The effect of key actuation and flow parameters, such as actuation type, actuation location and Reynolds number, will be investigated. A black-box model of the flow response, obtained via system identification, will be examined. The second part will look at the design of robust controllers. It will be shown that uncertainties in the model and inflow conditions can be partially mitigated by the robustness of the controller. The behaviour of the feedback-controlled flow will be compared with the results achievable using open-loop forcing to draw conclusions about the success of the flow response model and the controller synthesis. PhD student in Department of Aeronautics.

  8. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun


    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  9. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System (United States)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.


    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  10. Simulating Displacement and Velocity Signals by Piezoelectric Sensor in Vibration Control Applications

    Directory of Open Access Journals (Sweden)

    G. J. Sheu


    Full Text Available Intelligent structures with built-in piezoelectric sensor and actuator that can actively change their physical geometry and/or properties have been known preferable in vibration control. However, it is often arguable to determine if measurement of piezoelectric sensor is strain rate, displacement, or velocity signal. This paper presents a neural sensor design to simulate the sensor dynamics. An artificial neural network with error backpropagation algorithm is developed such that the embedded and attached piezoelectric sensor can faithfully measure the displacement and velocity without any signal conditioning circuitry. Experimental verification shows that the neural sensor is effective to vibration suppression of a smart structure by embedded sensor/actuator and a building structure by surface-attached piezoelectric sensor and active mass damper.

  11. Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis

    DEFF Research Database (Denmark)

    Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit

    control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require a precise model of the HVDC grid, wind farm, and the controllers. In this paper, a linear multivariable...... feedback control system (FCS) model is proposed to represent the dynamic characteristics of HVDC grids and their controllers. The FCS model can be used for different dynamic analyses in time and frequency domains. Moreover, using the FCS model the system stability is analyzed in both open- and closed......-loop forms. The standard eigenanalysis identifies the modes of only the closed-loop system and detects the pertaining state variables. The open-loop model, in the frequency domain, is a complementary tool that helps to have more intuitive insight into the system stability. A four terminal HVDC grid with two...

  12. Robust state feedback controller design of STATCOM using chaotic optimization algorithm

    Directory of Open Access Journals (Sweden)

    Safari Amin


    Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.

  13. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S


    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  14. Feedback control design and SHM based on spectral element method (Conference Presentation) (United States)

    Conceição, Sanderson M.; Bueno, Douglas D.; Lopes, Vicente


    Frequency domain modeling has been developed to different engineering applications. In particular, the Spectral Element method (SEM) has been discussed in literature mainly for vibration control design and structural health monitoring once it allows to study unlimited range of frequencies. However, although different authors discuss classical control techniques like PID for SEM formulations there is a limited number of works involving modern control theory based on state space representation. In this context, this work introduces a new approach that allows to use feedback techniques in vibration control design based on SEM. The formulation is presented and numerical simulations are performed using the Timoshenko beam model with two PZT patch bonded. The PZT transducer effects are included too. Results show vibrations reductions of the first three modes of a campled-clamped beam and the proposed approach offers promise to control design using SEM.

  15. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti


    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  16. Factors controlling floc settling velocity within San Francisco Bay, USA and comparisons with parameterisation approaches (United States)

    Manning, Andrew; Schoellhamer, David


    Much of the sediment within San Francisco Bay (SFB) is cohesive and can therefore act as transport mechanism for pollutants which adsorb to clay minerals. Furthermore, muddy sediment can flocculate when resuspended; this significantly alters their transport characteristics, which poses a serious complication to the modelling of sediment pathways. The aim of this research was to determine the factors that affect floc settling velocity along a longitudinal transect in an estuary. We collected and analysed data on flocs and on potential controlling factors along a 147 km transect the length of San Francisco Bay, USA, on June 17th, 2008. The INSSEV-LF video system, which includes the novel video-based LabSFLOC instrument (developed by Manning) was used to measure floc diameters and settling velocities at 30 stations at a height of 0.7 m above the estuary bed. Floc sizes (D) ranged from 22 microns to 639 microns settling velocities (Ws) ranged between 0.04 mm/s to 15.8 mm/s during the longitudinal transect. Nearbed turbulent shear stresses throughout the transect duration were within the 0.2-0.5 Pa range which typically stimulates flocculation growth. Individual D-Ws-floc density plots suggest the suspended sediments encountered throughout SFB were composed of both mud and mixed sediment flocs. The macroflocs and microflocs (demarcation at 160 microns) sub-populations demonstrated parameterised settling velocities which spanned nearly double the range of the sample mean settling velocities (Ws_mean spanned 0.6-6 mm/s). The macroflocs tended to dominate the suspended mass (up to 77% of the ambient suspended solids concentration; SSC) from San Pablo Bay through to Carquinez Strait (the vicinity of the turbidity maximum zone). Microfloc mass was particularly significant (typically 60-100% of the SSC) in the northern section of South Bay and most of Central Bay. During slack tide, larger and faster settling flocs deposited, accounting for most of the longitudinal

  17. Analysis of saccades and peak velocity to symmetrical convergence stimuli: binocularly normal controls compared to convergence insufficiency patients. (United States)

    Alvarez, Tara L; Kim, Eun H


    To assess the potential peak velocity asymmetry between the left-eye and right-eye movement responses stimulated by symmetrical vergence steps in those with normal binocular vision and those with convergence insufficiency (CI) before and after vergence training. This study also evaluated whether vergence training influenced convergence peak velocity and the prevalence of saccades within the first second of the response. The peak velocities of the left-eye, right-eye, and combined vergence response evoked from symmetrical 2°, 4°, and 6° convergence step stimuli were assessed in 10 controls and 7 CI subjects. Four of the CI subjects participated in vergence training. An asymmetry ratio was calculated as the peak velocity of the slower eye movement response divided by the peak velocity of the faster eye movement response. Controls were significantly more symmetrical (left-eye peak velocity was approximately equal to right-eye peak velocity) compared to CI subjects (P movements became significantly more symmetrical, convergence peak velocity increased, and the prevalence of saccades within the first 1 second decreased (P saccades observed within the first second of the response (r = 0.8; P movements, increases convergence peak velocity, and decreases the prevalence of saccades within the first second of the response, which facilitates binocular coordination in CI patients. Saccades may be a compensatory mechanism used by CI subjects when convergence peak velocity is reduced.

  18. Using Press Ganey Provider Feedback to Improve Patient Satisfaction: A Pilot Randomized Controlled Trial. (United States)

    Newgard, Craig D; Fu, Rongwei; Heilman, James; Tanski, Mary; John Ma, O; Lines, Alan; Keith French, L


    The objective was to conduct a pilot randomized controlled trial to assess the feasibility, logistics, and potential effect of monthly provider funnel plot feedback reports from Press Ganey data and semiannual face-to-face coaching sessions to improve patient satisfaction scores. This was a pilot randomized controlled trial of 25 emergency medicine faculty providers in one urban academic emergency department. We enrolled full-time clinical faculty with at least 12 months of baseline Press Ganey data, who anticipated working in the ED for at least 12 additional months. Providers were randomized into intervention or control groups in a 1:1 ratio. The intervention group had an initial 20-minute meeting to introduce the funnel plot feedback tool and standardized feedback based on their baseline Press Ganey scores and then received a monthly e-mail with their individualized funnel plot depicting cumulative Press Ganey scores (compared to their baseline score and the mean score of all providers) for 12 months. The primary outcome was the difference in Press Ganey "doctor-overall" scores between treatment groups at 12 months. We used a weighted analysis of covariance model to analyze the study groups, accounting for variation in the number of surveys by provider and baseline scores. Of 36 eligible faculty, we enrolled 25 providers, 13 of whom were randomized to the intervention group and 12 to the control group. During the study period, there were 815 Press Ganey surveys returned, ranging from four to 71 surveys per provider. For the standardized overall doctor score over 12 months (primary outcome), there was no difference between the intervention and control groups (difference = 1.3 points, 95% confidence interval = -2.4 to 5.9, p = 0.47). Similarly, there was no difference between groups when evaluating the four categories of doctor-specific patient satisfaction scores from the Press Ganey survey (all p > 0.05). In this pilot trial of monthly provider funnel plot

  19. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle


    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  20. Video-feedback intervention increases sensitive parenting in ethnic minority mothers: a randomized control trial. (United States)

    Yagmur, Sengul; Mesman, Judi; Malda, Maike; Bakermans-Kranenburg, Marian J; Ekmekci, Hatice


    Using a randomized control trial design we tested the effectiveness of a culturally sensitive adaptation of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) in a sample of 76 Turkish minority families in the Netherlands. The VIPP-SD was adapted based on a pilot with feedback of the target mothers, resulting in the VIPP-TM (VIPP-Turkish Minorities). The sample included families with 20-47-month-old children with high levels of externalizing problems. Maternal sensitivity, nonintrusiveness, and discipline strategies were observed during pretest and posttest home visits. The VIPP-TM was effective in increasing maternal sensitivity and nonintrusiveness, but not in enhancing discipline strategies. Applying newly learned sensitivity skills in discipline situations may take more time, especially in a cultural context that favors more authoritarian strategies. We conclude that the VIPP-SD program and its video-feedback approach can be successfully applied in immigrant families with a non-Western cultural background, with demonstrated effects on parenting sensitivity and nonintrusiveness.

  1. Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery. (United States)

    Stelzle, Florian; Zam, Azhar; Adler, Werner; Tangermann-Gerk, Katja; Douplik, Alexandre; Nkenke, Emeka; Schmidt, Michael


    Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of ex vivo domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC). Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%. Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery.

  2. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem. (United States)

    Milhinhos, Ana; Prestele, Jakob; Bollhöner, Benjamin; Matos, Andreia; Vera-Sirera, Francisco; Rambla, José L; Ljung, Karin; Carbonell, Juan; Blázquez, Miguel A; Tuominen, Hannele; Miguel, Célia M


    Polyamines are small polycationic amines that are widespread in living organisms. Thermospermine, synthesized by thermospermine synthase ACAULIS5 (ACL5), was recently shown to be an endogenous plant polyamine. Thermospermine is critical for proper vascular development and xylem cell specification, but it is not known how thermospermine homeostasis is controlled in the xylem. We present data in the Populus model system supporting the existence of a negative feedback control of thermospermine levels in stem xylem tissues, the main site of thermospermine biosynthesis. While over-expression of the ACL5 homologue in Populus, POPACAULIS5, resulted in strong up-regulation of ACL5 expression and thermospermine accumulation in leaves, the corresponding levels in the secondary xylem tissues of the stem were similar or lower than those in the wild-type. POPACAULIS5 over-expression had a negative effect on accumulation of indole-3-acetic acid, while exogenous auxin had a positive effect on POPACAULIS5 expression, thus promoting thermospermine accumulation. Further, over-expression of POPACAULIS5 negatively affected expression of the class III homeodomain leucine zipper (HD-Zip III) transcription factor gene PttHB8, a homologue of AtHB8, while up-regulation of PttHB8 positively affected POPACAULIS5 expression. These results indicate that excessive accumulation of thermospermine is prevented by a negative feedback control of POPACAULIS5 transcript levels through suppression of indole-3-acetic acid levels, and that PttHB8 is involved in the control of POPACAULIS5 expression. We propose that this negative feedback loop functions to maintain steady-state levels of thermospermine, which is required for proper xylem development, and that it is dependent on the presence of high concentrations of endogenous indole-3-acetic acid, such as those present in the secondary xylem tissues. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty (United States)

    Zhou, Hua-Cheng; Guo, Bao-Zhu


    In this paper, we consider boundary output feedback stabilization for a multi-dimensional wave equation with boundary control matched unknown nonlinear internal uncertainty and external disturbance. A new unknown input type extended state observer is proposed to recover both state and total disturbance which consists of internal uncertainty and external disturbance. A key feature of the proposed observer in this paper is that we do not use the high-gain to estimate the disturbance. By the active disturbance rejection control (ADRC) strategy, the total disturbance is compensated (canceled) in the feedback loop, which together with a collocated stabilizing controller without uncertainty, leads to an output feedback stabilizing feedback control. It is shown that the resulting closed-loop system is well-posed and asymptotically stable under weak assumption on internal uncertainty and external disturbance. The numerical experiments are carried out to show the effectiveness of the proposed scheme.

  4. Modeling T cell antigen discrimination based on feedback control of digital ERK responses.

    Directory of Open Access Journals (Sweden)


    Full Text Available T-lymphocyte activation displays a remarkable combination of speed, sensitivity, and discrimination in response to peptide-major histocompatibility complex (pMHC ligand engagement of clonally distributed antigen receptors (T cell receptors or TCRs. Even a few foreign pMHCs on the surface of an antigen-presenting cell trigger effective signaling within seconds, whereas 1 x 10(5-1 x 10(6 self-pMHC ligands that may differ from the foreign stimulus by only a single amino acid fail to elicit this response. No existing model accounts for this nearly absolute distinction between closely related TCR ligands while also preserving the other canonical features of T-cell responses. Here we document the unexpected highly amplified and digital nature of extracellular signal-regulated kinase (ERK activation in T cells. Based on this observation and evidence that competing positive- and negative-feedback loops contribute to TCR ligand discrimination, we constructed a new mathematical model of proximal TCR-dependent signaling. The model made clear that competition between a digital positive feedback based on ERK activity and an analog negative feedback involving SH2 domain-containing tyrosine phosphatase (SHP-1 was critical for defining a sharp ligand-discrimination threshold while preserving a rapid and sensitive response. Several nontrivial predictions of this model, including the notion that this threshold is highly sensitive to small changes in SHP-1 expression levels during cellular differentiation, were confirmed by experiment. These results combining computation and experiment reveal that ligand discrimination by T cells is controlled by the dynamics of competing feedback loops that regulate a high-gain digital amplifier, which is itself modulated during differentiation by alterations in the intracellular concentrations of key enzymes. The organization of the signaling network that we model here may be a prototypic solution to the problem of achieving

  5. Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury. (United States)

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J


    This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. Copyright © 2017 IPEM

  6. Synthetic feedback control using an RNAi-based gene-regulatory device. (United States)

    Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D


    Homeostasis within mammalian cells is achieved through complex molecular networks that can respond to changes within the cell or the environment and regulate the expression of the appropriate genes in response. The development of biological components that can respond to changes in the cellular environment and interface with endogenous molecules would enable more sophisticated genetic circuits and greatly advance our cellular engineering capabilities. Here we describe a platform that combines a ligand-responsive ribozyme switch and synthetic miRNA regulators to create an OFF genetic control device based on RNA interference (RNAi). We developed a mathematical model to highlight important design parameters in programming the quantitative performance of RNAi-based OFF control devices. By modifying the ribozyme switch integrated into the system, we demonstrated RNAi-based OFF control devices that respond to small molecule and protein ligands, including the oncogenic protein E2F1. We utilized the OFF control device platform to build a negative feedback control system that acts as a proportional controller and maintains target intracellular protein levels in response to increases in transcription rate. Our work describes a novel genetic device that increases the level of silencing from a miRNA in the presence of a ligand of interest, effectively creating an RNAi-based OFF control device. The OFF switch platform has the flexibility to be used to respond to both small molecule and protein ligands. Finally, the RNAi-based OFF switch can be used to implement a negative feedback control system, which maintains target protein levels around a set point level. The described RNAi-based OFF control device presents a powerful tool that will enable researchers to engineer homeostasis in mammalian cells.

  7. Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. (United States)

    Chizeck, H J; Lan, N; Palmieri, L S; Crago, P E


    This paper considers the closed-loop control of electrically stimulated muscle using simultaneous pulse width and frequency modulation. Previous work has experimentally demonstrated good feedback regulation of muscle force using fixed parameter and an adaptive controller modulating pulse width. In this work, it is shown how the addition of pulse frequency modulation to pulse width modulation can improve controller performance. This combination controller has been developed for both single muscle activation and for costimulation of antagonists. This is accomplished using a single command input. In single muscle operation, the combination of pulse width and stimulus pulse frequency modulation results in better control of transient responses than with pulse width modulation alone; the total number of stimulus pulses is increased, however, when compared with pulse width-only modulation at the muscle fusion frequency. In the case of costimulation, the controller modulates the pulse stimulus periods of the antagonists in a reciprocal manner, to ensure stable and fast responses. That is, the frequency of stimulation of the antagonist is increased when that of the agonist is decreased. This results in better control performance with generally fewer stimulus pulses than those generated by costimulation using only pulse width modulation. This feedback controller was evaluated in animal experiments. Step responses with rapid rise times but without overshoot were obtained by the combined modulation. Good steady-state and transient performance were obtained over a wide range of static lengths and commands, under different loading conditions and in different animals. This controller is a promising potential component of neural prostheses to restore functional movement in paralyzed individuals.

  8. Feedback Control of Bistability in the Turbulent Wake of an Ahmed Body (United States)

    Brackston, Rowan; Wynn, Andrew; Garcia de La Cruz, Juan Marcos; Rigas, Georgios; Morrison, Jonathan


    Three-dimensional bluff body wakes have seen considerable interest in recent years, not least because of their relevance to road vehicles. A key feature of these wakes is spatial symmetry breaking, reminiscent of the large scale structures observed during the laminar and transitional regimes. For the flat backed Ahmed body, this feature manifests itself as a bistability of the wake in which the flow switches randomly between two asymmetric states. This feature is associated with instantaneous lateral forces on the body as well as increased pressure drag. Starting from the modelling approach of Rigas et al. (J. Fluid Mech. 778, R2, 2015)we identify a linearised model for this mode of the flow, obtaining parameters via a system identification. The identified model is then used to design a linear feedback controller with the aim of restoring the flow to the unstable, symmetric state. The controller is implemented experimentally at Re ~ 3 ×105 and is found to both suppress the bistability of the flow and reduce the drag on the body. Furthermore, the control system is found to have a positive energy balance, providing a key demonstration of efficient feedback control applied to a 3D bluff body at Reynolds numbers representative of road vehicle wakes.

  9. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming


    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  10. Decentralized Framework for Optimal Price-Based Power System Operation Using Feedback Control Mechanism

    Directory of Open Access Journals (Sweden)

    Young Gyu Jin


    Full Text Available Future power systems are expected to have distributed energy resources (DERs. A price-based operation (PBO, where dynamic prices are used as the control signal, can be an alternative scheme to address challenging operational issues in the future power systems. In this paper, a decentralized framework for optimal PBO using a feedback control mechanism is proposed to determine the nodal prices for power balance and congestion management. The substructures and feedback controllers of the proposed framework are derived based on the optimal power flow (OPF method. Thus, the framework guarantees optimality for all situations in real-time and enables the use of various types of controllers. The effectiveness of the proposed framework is verified with the IEEE 39 bus network under some scenarios, such as the failure of a generator and a transmission line. The results clearly demonstrate that the proposed framework successfully resolves the balance and congestion problems by generating appropriate nodal prices in the PBO and provides a solution similar to the optimal solution determined by the conventional OPF method.

  11. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell (United States)

    Vial, M.; Hernández, R. H.


    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  12. Modeling and control of non-square MIMO system using relay feedback. (United States)

    Kalpana, D; Thyagarajan, T; Gokulraj, N


    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Vibration Analysis of a Piecewise-Smooth System with Negative Stiffness under Delayed Feedback Control

    Directory of Open Access Journals (Sweden)

    Dongmei Huang


    Full Text Available The principal resonance of a delayed piecewise-smooth (DPWS system with negative stiffness under narrow-band random excitation is investigated in aspects of multiscale analysis, design methodology of the controller, and response properties. The amplitude-frequency response and steady-state moments together with the corresponding stability conditions of the controlled stochastic system are derived, in which the degradation case is also under consideration. Then, from the perspective of the equivalent damping, the comparisons of the response characteristics of the controlled system to the uncontrolled system, such as the phenomenon of frequency island, are fulfilled. Furthermore, sensitivity of the system response to feedback gain and time delay is studied and interesting dynamic properties are found. Meanwhile, the classification of the steady-state solution is also discussed. To control the maximum amplitude, the feedback parameters are determined by the frequency response together with stability boundaries which must be utilized to exclude the combinations of the unstable parameters. For the case with small noise intensity, mean-square responses present the similar characteristics to what is discussed in the deterministic case.

  14. The Design and Control of a Bipedal Robot with Sensory Feedback

    Directory of Open Access Journals (Sweden)

    Teck-Chew Wee


    Full Text Available A stable walking motion requires effective gait balancing and robust posture correction algorithms. However, to develop and implement such intelligent motion algorithms remains a challenging task for researchers. Effective sensory feedback for stable posture control is essential for bipedal locomotion. In order to minimize the modelling errors and disturbances, this paper presents an effective sensory system and an alternative approach in generating a stable Centre-of-Mass (CoM trajectory by using an observer-based augmented model predictive control technique with sensory feedback. The proposed approach is used to apply an Augmented Model Predictive Control (AMPC algorithm with an on-line time shift and to look ahead to process future data to optimize a control signal by minimizing the cost function so that the system is able to track the desired Zero Moment Point (ZMP as closely as possible, and at the same time to limit the motion jerk. The robot's feet are fitted with force sensors to measure the contact force's location. An observer is also implemented into the system.

  15. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. (United States)

    Zhang, BiTao; Pi, YouGuo; Luo, Ying


    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li


    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  17. Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities (United States)

    Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo


    In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.

  18. Phenological controls on inter-annual variability in ozone dry deposition velocity (United States)

    Clifton, Olivia; Fiore, Arlene; Munger, J. William; Shevliakova, Elena; Horowitz, Larry; Malyshev, Sergey; Griffin, Kevin


    Our understanding of ozone removal by northern mid-latitude temperate deciduous forests is largely based on short-term observational studies, and thus year-to-year variations of this sink have received little attention. The specific pathways for ozone dry deposition include stomatal uptake and other non-stomatal processes that are poorly understood. Given the importance of ozone dry deposition to model accurately the tropospheric ozone budget and regional air quality, an improved mechanistic understanding of this ozone sink is needed. We investigate here the physical and biological controls on inter-annual variations in seasonal and diurnal cycles of ozone dry deposition velocity using nine years of hourly observations of eddy covariance ozone flux and concentration measurements at Harvard Forest, a northern mid-latitude temperate deciduous forest. We also use coincident eddy covariance water vapor flux and sensible heat flux and other micrometeorological measurements to infer stomatal conductance in order to separate the impacts of stomatal versus non-stomatal pathways on ozone deposition. There is a difference of approximately a factor of two between minimum and maximum monthly daytime mean ozone dry deposition velocities at Harvard Forest. The highest summertime mean ozone dry deposition velocities occur during 1998 and 1999 (0.72 cm/s), and similar seasonal and diurnal cycles occur in both years. The similar dry deposition velocities during these two years, however, may reflect compensation between different processes as mean daytime summertime stomatal conductance during 1998 is roughly 1.5 times higher than for 1999, suggesting large year-to-year variations in non-stomatal as well as stomatal uptake of ozone. We partition the onset and decline of the growing season each year into different periods using spring and fall phenology observations at Harvard Forest. Combining the dry deposition velocities across years during each phenological period, we find that

  19. Modeling of low frequency dynamics of a smart system and its state feedback based active control (United States)

    Kant, Mohit; Parameswaran, Arun P.


    Major physical systems/structures suffer from unwanted vibrations. For efficient working of such systems, these vibrations have to be controlled. In this paper, mathematical modeling of an aluminum cantilever beam with bonded multiple piezoelectric patches which act as the disturbance generator, sensor as well as control actuator has been presented. This piezoelectric laminate cantilever beam is assumed to be vibrating in a single degree of freedom i.e. in the flexural mode only and the corresponding state space models have been derived analytically using the finite element technique. Dominant modes of flexural vibration are identified from the frequency response of the developed model of the system and finally a state feedback controller based on pole placement technique is designed to actively suppress the vibrations. Through numerous simulations as well as experimental validation, the effectiveness of the active controller in damping the vibrations at various excitation frequencies as well as frequency ranges along the flexural mode is established.

  20. Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback (United States)

    Popovych, Oleksandr V.; Tass, Peter A.


    We propose a method for the control of synchronization in two oscillator populations interacting according to a drive-response coupling scheme. The response ensemble of oscillators, which gets synchronized because of a strong forcing by the intrinsically synchronized driving ensemble, is controlled by mixed nonlinear delayed feedback. The stimulation signal is constructed from the mixed macroscopic activities of both ensembles. We show that the suggested method can effectively decouple the interacting ensembles from each other, where the natural desynchronous dynamics can be recovered in a demand-controlled way either in the stimulated ensemble, or, intriguingly, in both stimulated and not stimulated populations. We discuss possible therapeutic applications in the context of the control of abnormal brain synchrony in loops of affected neuronal populations.