WorldWideScience

Sample records for velocity encoded phase

  1. Cardiac magnetic resonance: is phonocardiogram gating reliable in velocity-encoded phase contrast imaging?

    International Nuclear Information System (INIS)

    Nassenstein, Kai; Schlosser, Thomas; Orzada, Stephan; Ladd, Mark E.; Maderwald, Stefan; Haering, Lars; Czylwik, Andreas; Jensen, Christoph; Bruder, Oliver

    2012-01-01

    To assess the diagnostic accuracy of phonocardiogram (PCG) gated velocity-encoded phase contrast magnetic resonance imaging (MRI). Flow quantification above the aortic valve was performed in 68 patients by acquiring a retrospectively PCG- and a retrospectively ECG-gated velocity-encoded GE-sequence at 1.5 T. Peak velocity (PV), average velocity (AV), forward volume (FV), reverse volume (RV), net forward volume (NFV), as well as the regurgitant fraction (RF) were assessed for both datasets, as well as for the PCG-gated datasets after compensation for the PCG trigger delay. PCG-gated image acquisition was feasible in 64 patients, ECG-gated in all patients. PCG-gated flow quantification overestimated PV (Δ 3.8 ± 14.1 cm/s; P = 0.037) and underestimated FV (Δ -4.9 ± 15.7 ml; P = 0.015) and NFV (Δ -4.5 ± 16.5 ml; P = 0.033) compared with ECG-gated imaging. After compensation for the PCG trigger delay, differences were only observed for PV (Δ 3.8 ± 14.1 cm/s; P = 0.037). Wide limits of agreement between PCG- and ECG-gated flow quantification were observed for all variables (PV: -23.9 to 31.4 cm/s; AV: -4.5 to 3.9 cm/s; FV: -35.6 to 25.9 ml; RV: -8.0 to 7.2 ml; NFV: -36.8 to 27.8 ml; RF: -10.4 to 10.2 %). The present study demonstrates that PCG gating in its current form is not reliable enough for flow quantification based on velocity-encoded phase contrast gradient echo (GE) sequences. (orig.)

  2. Phase reconstruction from velocity-encoded MRI measurements – A survey of sparsity-promoting variational approaches

    KAUST Repository

    Benning, Martin; Gladden, Lynn; Holland, Daniel; Schö nlieb, Carola-Bibiane; Valkonen, Tuomo

    2014-01-01

    for the reconstruction of phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly interested in regularisers that correctly treat both smooth and geometric features of the image. These features are common to velocity imaging

  3. Phase reconstruction from velocity-encoded MRI measurements – A survey of sparsity-promoting variational approaches

    KAUST Repository

    Benning, Martin

    2014-01-01

    In recent years there has been significant developments in the reconstruction of magnetic resonance velocity images from sub-sampled k-space data. While showing a strong improvement in reconstruction quality compared to classical approaches, the vast number of different methods, and the challenges in setting them up, often leaves the user with the difficult task of choosing the correct approach, or more importantly, not selecting a poor approach. In this paper, we survey variational approaches for the reconstruction of phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly interested in regularisers that correctly treat both smooth and geometric features of the image. These features are common to velocity imaging, where the flow field will be smooth but interfaces between the fluid and surrounding material will be sharp, but are challenging to represent sparsely. As an example we demonstrate the variational approaches on velocity imaging of water flowing through a packed bed of solid particles. We evaluate Wavelet regularisation against Total Variation and the relatively recent second order Total Generalised Variation regularisation. We combine these regularisation schemes with a contrast enhancement approach called Bregman iteration. We verify for a variety of sampling patterns that Morozov\\'s discrepancy principle provides a good criterion for stopping the iterations. Therefore, given only the noise level, we present a robust guideline for setting up a variational reconstruction scheme for MR velocity imaging. © 2013 Elsevier Inc. All rights reserved.

  4. CSF flow: Correlation between signal void and CSF velocity measured by gated velocity phase-encoded MR imaging

    International Nuclear Information System (INIS)

    Mark, A.S.; Feinberg, D.A.

    1986-01-01

    The direction of the cerebrospinal fluid (CSF) flow in the foramen of Monro (FOM) and aqueduct was determined in 15 normal volunteers (5 of whom had also been studied with gated spin-echo sequences) using a cardiac-gated Fourier transform velocity imaging technique (VMR). The VMR showed that the periodic pattern of flow void seen in the aqueduct and FOM on the gated spin-echo images was due to antegrade CSF flow from the lateral ventricles into the third ventricle and aqueduct during systole and retrograde flow from the aqueduct into the third ventricle and lateral ventricles during late diastole. These findings could not be explained if the CSF pulsations originated in the third ventricle, as had been previously proposed, and suggest the lateral ventricles play an important role in the pulsatile motion of CSF

  5. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  6. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  7. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  8. Aortoiliac stenooculusive disease and aneurysms. Screening with non-contrast enhanced two-dimensional cardiac gated cine phase contrast MR angiography with multiple velocity encoded values and cardiac gated two-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Kato, Katsuhiko

    2001-01-01

    To evaluate the performance of two-dimensional cine phase contrast MRA with multi-velocity encoded values (multi-VENC cine PC) and ECG-gated two-dimensional time-of-flight MRA (ECG-2D-TOF) for the detection of stenoocclusive lesions and aneurysms in the aortoiliac area, when each method was used individually and when the two methods were used together. Forty-one patients were included in this study. Multi-VENC cine PC and ECG-2D-TOF were obtained first, then contrast enhanced three-dimensional magnetic resonance angiography (CE-3D-MRA) was performed as the standard of reference. Two observers reviewed the images separately without knowledge of patients' symptoms or histories. Sensitivities and specificities were obtained separately for stenooclusive lesions and aneurysms by two reviewers. When the two methods were applied together, high sensitivities (93.0 by observer 1 and 91.9% by observer 2) and adequate specificities (87.6 and 82.3%) were obtained for stenoocclusive lesions. For aneurysms, moderate to high sensitivities (91.1 and 71.1%) and high specificities (98.8 and 99.4%) were obtained. These results suggest that the performance of two non-contrast enhanced MRA techniques may be valuable as a screening tool when the two methods are applied together. (author)

  9. Inter-relationship between CSF dynamics and CSF to-and-fro movement in the cervical region as assessed by MR velocity imaging with phase encoding in hydrocephalic and normal patients

    International Nuclear Information System (INIS)

    Kudo, Sumio; Wachi, Akihiko; Sato, Kiyoshi; Sumie, Hirotoshi.

    1992-01-01

    The to-and-fro velocity of cerebrospinal fluid (CSF) at C-1 and C-2 spinal-cord levels was measured by means of MR velocity-imaging technique, and the correlation of changes in velocity and various biophysical factors influencing the intracranial pressure environment were analyzed. Eight hydrocephalic patients, male and female, of different ages (both infants and adults), and 11 normal volunteers with a similar age range were investigated. The to-and-fro CSF movement was measured by means of phase-shift techniques with a bipolar gradient pulse. The cerebrospinal opening pressure was also recorded in 6 of the 8 hydrocephalic patients, either through a ventricular catheter reservoir or a spinal catheter inserted in the lumbosacral subarachnoid space; the CSF pulse amplitude, the pressure volume index (PVI), and the CSF outflow resistance (Ro) were also evaluated during the procedure. CSF flowed towards caudally in the early systolic phase of a cardiac stroke, but the flow direction was reversed in the early diastolic phase when the maximum flow rate was reached. Although such a flow pattern was commonly observed in all normal and hydrocephalic subjects, whatever the age, there was a marked difference in flow rate between the infants and the pediatric-adults groups, -i.e., it was 5-10 mm/sec for the former and 10-20 mm/sec for the latter. An abnormally high flow rate (33.0 mm/sec) was observed in the hydrocephalic patients when there was a malfunction of the ventriculoperitoneal shunt. A close correlation was found to exist among the changes in the CSF flow velocity, the CSF pressure amplitude, and the CSF outflow resistance (Ro), but not in the PVI. The measurement of the CSF flow velocity by MR velocity imaging appears to have an important role not only in the investigation of CSF dynamics, but also in the diagnosis and treatment of such pathologies as hydrocephalus and ventriculoperitoneal shunt malfunction. (author)

  10. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  11. Measuring velocity by differentiation of analog encoder signals

    NARCIS (Netherlands)

    Winarto, R.F.; Steinbuch, M.; Molengraft, van de M.J.G.

    2013-01-01

    In this report a new method for measuring velocities has been introduced. During the research in literature an overview has been made of the existing methods of measuring velocities. From this research, it can be concluded that a lot of existing approaches only work in specific settings. Besides

  12. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    Science.gov (United States)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  13. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  14. Multiple-stage pure phase encoding with biometric information

    Science.gov (United States)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  15. Blood velocity estimation using spatio-temporal encoding based on frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a feasibility study of using a spatial encoding technique based on frequency division for blood flow estimation is presented. The spatial encoding is carried out by dividing the available bandwidth of the transducer into a number of narrow frequency bands with approximately disjoint...... spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...

  16. Velocity encoded cardiovascular magnetic resonance to assess left atrial appendage emptying

    Directory of Open Access Journals (Sweden)

    Muellerleile Kai

    2012-06-01

    Full Text Available Abstract Background The presence of impaired left atrial appendage (LAA function identifies patients who are prone to thrombus formation in the LAA and therefore being at high risk for subsequent cardioembolic stroke. LAA function is typically assessed by measurements of LAA emptying velocities using transesophageal echocardiography (TEE in clinical routine. This study aimed at evaluating the feasibility of assessing LAA emptying by velocity encoded (VENC cardiovascular magnetic resonance (CMR. Methods This study included 30 patients with sinus rhythm (n = 18 or atrial fibrillation (n = 12. VENC-CMR velocity measurements were performed perpendicular to the orifice of the LAA. Peak velocities were measured of passive diastolic LAA emptying (e-wave in all patients. Peak velocities of active, late-diastolic LAA emptying (a-wave were assessed in patients with sinus rhythm. Correlation and agreement was analyzed between VENC-CMR and TEE measurements of e- and a-wave peak velocities. Results A significant correlation and good agreement was found between VENC-CMR and TEE measurements of maximal e-wave velocities (r = 0.61, P  Conclusions The assessment of active and passive LAA emptying by VENC-CMR is feasible. Further evaluation is required of potential future clinical applications such as risk stratification for cardioembolic stroke.

  17. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.

    2011-03-01

    Formulas are derived that relate the strength of the crosstalk noise in supergather migration images to the variance of time, amplitude and polarity shifts in encoding functions. A supergather migration image is computed by migrating an encoded supergather, where the supergather is formed by stacking a large number of encoded shot gathers. Analysis reveals that for temporal source static shifts in each shot gather, the crosstalk noise is exponentially reduced with increasing variance of the static shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both polarity and time statics is a superior encoding strategy compared to using either polarity statics or time statics alone. Signal-to-noise (SNR) estimates show that for a standard migration image and for an image computed by migrating a phase-encoded supergather; here, G is the number of traces in a shot gather, I is the number of stacking iterations in the supergather and S is the number of encoded/blended shot gathers that comprise the supergather. If the supergather can be uniformly divided up into Q unique sub-supergathers, then the resulting SNR of the final image is, which means that we can enhance image quality but at the expense of Q times more cost. The importance of these formulas is that they provide a precise understanding between different phase encoding strategies and image quality. Finally, we show that iterative migration of phase-encoded supergathers is a special case of passive seismic interferometry. We suggest that the crosstalk noise formulas can be helpful in designing optimal strategies for passive seismic interferometry and efficient extraction of Green\\'s functions from simulated supergathers. © 2011 The Authors Geophysical Journal International © 2011 RAS.

  18. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  19. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  20. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    International Nuclear Information System (INIS)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko; Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-01-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  1. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko [Tokyo Medical Coll. (Japan); Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-11-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  2. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    Science.gov (United States)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  3. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    International Nuclear Information System (INIS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-01-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method. (paper)

  4. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  5. Railgun armature velocity improvement, SBIR phase 2

    Science.gov (United States)

    Thurmond, Leo E.; Bauer, David P.

    1992-08-01

    Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.

  6. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  7. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  8. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han; Guo, Bowen; Schuster, Gerard T.

    2014-01-01

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  9. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  10. Synthesis and nanoscale thermal encoding of phase-change nanowires

    International Nuclear Information System (INIS)

    Sun Xuhui; Yu Bin; Meyyappan, M.

    2007-01-01

    Low-dimensional phase-change nanostructures provide a valuable research platform for understanding the phase-transition behavior and thermal properties at nanoscale and their potential in achieving superdense data storage. Ge 2 Sb 2 Te 5 nanowires have been grown using a vapor-liquid-solid technique and shown to exhibit distinctive properties that may overcome the present data storage scaling barrier. Local heating of an individual nanowire with a focused electron beam was used to shape a nano-bar-code on a Ge 2 Sb 2 Te 5 nanowire. The data encoding on Ge 2 Sb 2 Te 5 nanowire may promote novel device concepts to implement ultrahigh density, low energy, high speed data storage using phase-change nanomaterials with diverse thermal-programing strategies

  11. Phased-array vector velocity estimation using transverse oscillations

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Marcher, Jønne; Jensen, Jørgen Arendt

    2012-01-01

    .79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations......, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm....

  12. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...... (correlation coefficient, R: -0.76), and therefore predict estimator performance. CV is correlated with the standard deviation (R=0.74). The results demonstrate the potential for using a phased array for vector velocity imaging at larger depths, and potentially for imaging the heart....

  13. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  14. A gain-field encoding of limb position and velocity in the internal model of arm dynamics.

    Directory of Open Access Journals (Sweden)

    Eun Jung Hwang

    2003-11-01

    Full Text Available Adaptability of reaching movements depends on a computation in the brain that transforms sensory cues, such as those that indicate the position and velocity of the arm, into motor commands. Theoretical consideration shows that the encoding properties of neural elements implementing this transformation dictate how errors should generalize from one limb position and velocity to another. To estimate how sensory cues are encoded by these neural elements, we designed experiments that quantified spatial generalization in environments where forces depended on both position and velocity of the limb. The patterns of error generalization suggest that the neural elements that compute the transformation encode limb position and velocity in intrinsic coordinates via a gain-field; i.e., the elements have directionally dependent tuning that is modulated monotonically with limb position. The gain-field encoding makes the counterintuitive prediction of hypergeneralization: there should be growing extrapolation beyond the trained workspace. Furthermore, nonmonotonic force patterns should be more difficult to learn than monotonic ones. We confirmed these predictions experimentally.

  15. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  16. Control of group velocity by phase-changing collisions

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2005-01-01

    We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity

  17. Surface wave phase velocities between Bulgaria and the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Kolínský, Petr; Popova, I.; Dimitrova, L.

    2011-01-01

    Roč. 18, č. 2 (2011), s. 16-23 ISSN 1803-1447. [OVA´11 – New Knowledge and Measurements in Seismology, Engineering Geophysics and Geotechnics. Ostrava, 12.04.2011-14.04.2011] R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : surface waves * phase velocity * shear wave velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.caag.cz/egrse/2011-2/03%20gazdova_ova.pdf

  18. Quantification of mechanical ventricular dyssynchrony. Direct comparison of velocity-encoded and cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Muellerleile, K.; Baholli, L.; Groth, M.

    2011-01-01

    Purpose: The preoperative assessment of mechanical dyssynchrony can help to improve patient selection in candidates for cardiac resynchronization therapy (CRT). The present study compared the performance of velocity-encoded (VENC) MRI to cine-magnetic resonance imaging (MRI) for quantifying mechanical ventricular dyssynchrony. Materials and Methods: VENC-MRI and cine-MRI were performed in 20 patients with heart failure NYHA class III and reduced ejection fraction (median: 24 %, interquartile range: 18 - 28 %) before CRT device implantation. The interventricular mechanical delay (IVMD) was assessed by VENC-MRI as the temporal difference between the onset of aortic and pulmonary flow. Intraventricular dyssynchrony was quantified by cine-MRI, using the standard deviation of time to maximal wall thickening in sixteen left ventricular segments (SDt-16). The response to CRT was assessed in a six-month follow-up. Results: 14 patients (70 %) clinically responded to CRT. A similar accuracy was found to predict the response to CRT by measurements of the IVMD and SDt-16 (75 vs. 70 %; p = ns). The time needed for data analysis was significantly shorter for the IVMD at 1.69 min (interquartile range: 1.66 - 1.88 min) compared to 9.63 min (interquartile range: 8.92 - 11.63 min) for the SDt-16 (p < 0.0001). Conclusion: Measurements of the IVMD by VENC-MRI and the SDt-16 by cine-MRI provide a similar accuracy to identify clinical responders to CRT. However, data analysis of the IVMD is significantly less time-consuming compared to data analysis of the SDt-16. (orig.)

  19. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    OpenAIRE

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15...

  20. Artificial neural networks using complex numbers and phase encoded weights.

    Science.gov (United States)

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  1. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641

  2. Shear wave crustal velocity model of the Western Bohemian Massif from Love wave phase velocity dispersion

    Czech Academy of Sciences Publication Activity Database

    Kolínský, Petr; Málek, Jiří; Brokešová, J.

    2011-01-01

    Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/

  3. Influences of prolonged apnea and oxygen inhalation on pulmonary hemodynamics during breath holding: Quantitative assessment by velocity-encoded MR imaging with SENSE technique

    International Nuclear Information System (INIS)

    Nogami, Munenobu; Ohno, Yoshiharu; Higashino, Takanori; Takenaka, Daisuke; Yoshikawa, Takeshi; Koyama, Hisanobu; Kawamitsu, Hideaki; Fujii, Masahiko; Sugimura, Kazuro

    2007-01-01

    Purpose: The purpose of our study was to assess the influence of prolonged apnea and administration of oxygen on pulmonary hemodynamics during breath holding (BH) by using velocity-encoded MR imaging combined with the SENSE technique (velocity MRI). Materials and methods: Ten healthy male volunteers underwent velocity MRI during BH with and without O 2 inhalation. All velocity MRI data sets were obtained continuously with the 2D cine phase-contrast method during a single BH period. The data were then divided into three BH time phases as follows: first, second and third. To evaluate the influence of prolonged apnea on hemodynamics, stroke volume (SV) and maximal change in flow rate during ejection (MCFR) of second and third phases were statistically compared with those of first phase by using the ANOVA followed by Turkey's HSD multiple comparison test. To assess the influence of O 2 on hemodynamics, SV and MCFR with or without O 2 were compared by the paired t-test. To assess the measuring agreement of hemodynamic indices during prolonged breath holding, Bland-Altman's analysis was performed. Results: Prolonged apnea had no significant influence on SV and MCFR regardless of administration of O 2 (p > 0.05). Mean MCFR for all phases was significantly lower with administration of O 2 than without (p 2 were smaller than without. Conclusion: O 2 inhalation modulated maximal change in flow rate during ejection, and did not influence stroke volume during breath holding. Influence of O 2 inhalation should be considered for MR measurements of pulmonary hemodynamics during breath holding

  4. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship.

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, pvelocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.

  5. Security enhancement of double random phase encoding using rear-mounted phase masking

    Science.gov (United States)

    Chen, Junxin; Zhang, Yu; Li, Jinchang; Zhang, Li-bo

    2018-02-01

    In this paper, a security enhancement for double random phase encoding (DRPE) by introducing a rear-mounted phase masking procedure is presented. Based on exhaustively studying the cryptanalysis achievements of DRPE and its variants, invalidation of the second lens, which plays a critical role in cryptanalyzing processes, is concluded. The improved system can exploit the security potential of the second lens and consequently strengthen the security of DRPE. Experimental results and security analyses are presented in detail to demonstrate the security potential of the proposed cryptosystem.

  6. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Claude Ahyi, A.; Raju, P. K.

    2001-01-01

    Our earlier studies regarding acoustic scattering resonances and the dispersive phase velocities of the surface waves that generate them, have demonstrated the effectiveness of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies, and their accuracy. This possi...

  7. Models for assessing the relative phase velocity in a two-phase flow. Status report

    International Nuclear Information System (INIS)

    Schaffrath, A.; Ringel, H.

    2000-06-01

    The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)

  8. Distributed-phase OCDMA encoder-decoders based on fiber Bragg gratings

    OpenAIRE

    Zhang, Zhaowei; Tian, C.; Petropoulos, P.; Richardson, D.J.; Ibsen, M.

    2007-01-01

    We propose and demonstrate new optical code-division multiple-access (OCDMA) encoder-decoders having a continuous phase-distribution. With the same spatial refractive index distribution as the reconfigurable optical phase encoder-decoders, they are inherently suitable for the application in reconfigurable OCDMA systems. Furthermore, compared with conventional discrete-phase devices, they also have additional advantages of being more tolerant to input pulse width and, therefore, have the poten...

  9. VALIDITY OF A COMMERCIAL LINEAR ENCODER TO ESTIMATE BENCH PRESS 1 RM FROM THE FORCE-VELOCITY RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Laurent Bosquet

    2010-09-01

    Full Text Available The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway to estimate Bench press 1 repetition maximum (1RM from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg, while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg. Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001 but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37. The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level.

  10. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  11. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  12. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  13. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot; Schuster, Gerard T.

    2010-01-01

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual

  14. Wireless, Passive Encoded Saw Sensors and Communication Links, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several objectives of this Phase I proposal. One major objective is to investigate SAW sensor embodiments for pressure and acceleration. Two approaches...

  15. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  17. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  18. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  19. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  20. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  1. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  2. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  3. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert

    2012-01-01

    greater than 100 mm. Tests at depths of 72 mm and 82 mm with a peak velocity of 0.5 m/s, showed a relative mean bias ~Bvx that varied from 0 % and to 21 % and a relative mean standard deviation ~vx that varied from 18 % and to 51 %. The investigation showed an increasing bias with respect to depth, which...

  4. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  5. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  6. GPU accelerated iterative SENSE reconstruction of radial phase encoded whole-heart MRI

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Prieto, Claudia; Atkinson, David

    2010-01-01

    Isotropic whole-heart imaging has become an important protocol in simplifying cardiac MRI. The acquisition time can however be a prohibiting factor. To reduce acquisition times a 3D scheme combining Cartesian sampling in the readout direction with radial sampling in the phase encoding plane was r...... time can be brought to a clinically acceptable level using commodity graphics hardware (GPUs)....

  7. Functional analysis of third ventriculostomy patency with phase-contrast MRI velocity measurements

    International Nuclear Information System (INIS)

    Lev, S.; Bhadelia, R.A.; Estin, D.; Heilman, C.B.; Wolpert, S.M.

    1997-01-01

    Our purpose was to explore the utility of cine phase-contrast MRI velocity measurements in determining the functional status of third ventriculostomies, and to correlate the quantitative velocity data with clinical follow-up. We examined six patients with third ventriculostomies and 12 normal subjects by phase-contrast MRI. The maximum craniocaudal to maximum caudocranial velocity range was measured at regions of interest near the third ventricular floor, and in cerebrospinal fluid anterior to the upper pons and spinal cord on midline sagittal images. Ratios of the velocities of both the third ventricle and prepontine space to the space anterior to the spinal cord were obtained. The velocities near the third ventricular floor and in the pontine cistern were significantly higher in patients than in normal subjects, but the velocity anterior to the spinal cord was similar between the groups. The velocity ratios, used to normalize individual differences, were also higher in patients than in controls. Two patients had lower velocity ratios than their fellows at the third ventricular floor and in the pontine cistern; one required a shunt 11 months later, while in the other, who had a third ventricular/thalamic tumor, the lower values probably reflect distortion of the third ventricular floor. We conclude that phase-contrast MR velocity measurements, specifically the velocity ratio between the high pontine cistern and the space anterior to the spinal cord, can help determine the functional status of third ventriculostomies. (orig.)

  8. Skeleton sled velocity profiles: a novel approach to understand critical aspects of the elite athletes' start phases.

    Science.gov (United States)

    Colyer, Steffi L; Stokes, Keith A; Bilzon, James L J; Salo, Aki I T

    2018-06-01

    The development of velocity across the skeleton start is critical to performance, yet poorly understood. We aimed to understand which components of the sled velocity profile determine performance and how physical abilities influence these components. Thirteen well-trained skeleton athletes (>85% of athletes in the country) performed dry-land push-starts alongside countermovement jump and sprint tests at multiple time-points. A magnet encoder attached to the sled wheel provided velocity profiles, which were characterised using novel performance descriptors. Stepwise regression revealed four variables (pre-load velocity, pre-load distance, load effectiveness, velocity drop) to explain 99% variance in performance (β weights: 1.70, -0.81, 0.25, -0.07, respectively). Sprint times and jump ability were associated (r ± 90% CI) with pre-load velocity (-0.70 ± 0.27 and 0.88 ± 0.14, respectively) and distance (-0.48 ± 0.39 and 0.67 ± 0.29, respectively), however, unclear relationships between both physical measures and load effectiveness (0.33 ± 0.44 and -0.35 ± 0.48, respectively) were observed. Athletes should develop accelerative ability to attain higher velocity earlier on the track. Additionally, the loading phase should not be overlooked and may be more influenced by technique than physical factors. Future studies should utilise this novel approach when evaluating skeleton starts or interventions to enhance performance.

  9. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    Science.gov (United States)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  10. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  11. Rayleigh and Love Wave Phase Velocities in the Northern Gulf Coast of the United States

    Science.gov (United States)

    Li, A.; Yao, Y.

    2017-12-01

    The last major tectonic event in the northern Gulf Coast of the United States is Mesozoic continental rifting that formed the Gulf of Mexico. This area also experienced igneous activity and local uplifts during Cretaceous. To investigate lithosphere evolution associated with the rifting and igneous activity, we construct Rayleigh and Love wave phase velocity models at the periods of 6 s to 125 s in the northern Gulf Coast from Louisiana to Alabama including the eastern Ouachita and southern Appalachian orogeny. The phase velocities are derived from ambient noise and earthquake data recorded at the 120 USArray Transportable Array stations. At periods below 20 s, phase velocity maps are characterized by significant low velocities in the Interior Salt Basin and Gulf Coast Basin, reflecting the effects of thick sediments. The northern Louisiana and southern Arkansas are imaged as a low velocity anomaly in Rayleigh wave models but a high velocity anomaly of Love wave at the periods of 14 s to 30 s, indicating strong lower crust extension to the Ouachita front. High velocity is present in the Mississippi Valley Graben from period 20 s to 35 s, probably reflecting a thin crust or high-velocity lower crust. At longer periods, low velocities are along the Mississippi River to the Gulf Coast Basin, and high velocity anomaly mainly locates in the Black Warrior Basin between the Ouachita Belt and Appalachian Orogeny. The magnitude of anomalies in Love wave images is much smaller than that in Rayleigh wave models, which is probably due to radial anisotropy in the upper mantle. A 3-D anisotropic shear velocity model will be developed from the phase velocities and will provide more details for the crust and upper mantle structure beneath the northern Gulf of Mexico continental margin.

  12. Phase Resolved Angular Velocity Control of Cross Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2015-11-01

    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  13. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  14. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  15. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    Directory of Open Access Journals (Sweden)

    Mohammad S. Alam

    2012-10-01

    Full Text Available In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

  16. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  17. Sound velocities of the 23 Å phase at high pressure and implications for seismic velocities in subducted slabs

    Science.gov (United States)

    Cai, N.; Chen, T.; Qi, X.; Inoue, T.; Li, B.

    2017-12-01

    Dense hydrous phases are believed to play an important role in transporting water back into the deep interior of the Earth. Recently, a new Al-bearing hydrous Mg-silicate, named the 23 Å phase (ideal composition Mg12Al2Si4O16(OH)14), was reported (Cai et al., 2015), which could be a very important hydrous phase in subducting slabs. Here for the first time we report the measurements of the compressional and shear wave velocities of the 23 Å phase under applied pressures up to 14 GPa and room temperature, using a bulk sample with a grain size of less than 20 μm and density of 2.947 g/cm3. The acoustic measurements were conducted in a 1000-ton uniaxial split-cylinder multi-anvil apparatus using ultrasonic interferometry techniques (Li et al., 1996). The pressures were determined in situ by using an alumina buffer rod as the pressure marker (Wang et al., 2015). A dual-mode piezoelectric transducer enabled us to measure P and S wave travel times simultaneously, which in turn allowed a precise determination of the sound velocities and elastic bulk and shear moduli at high pressures. A fit to the acoustic data using finite strain analysis combined with a Hashin-Shtrikman (HS) bounds calculation yields: Ks0 = 113.3 GPa, G0 = 42.8 GPa, and K' = 3.8, G' = 1.9 for the bulk and shear moduli and their pressure derivatives. The velocities (especially for S wave) of this 23 Å phase (ambient Vp = 7.53 km/s, Vs = 3.72 km/s) are lower than those of phase A, olivine, pyrope, etc., while the Vp/Vs ratio (from 2.02 to 1.94, decreasing with increasing pressure) is quite high. These results suggest that a hydrous assemblage containing 23 Å phase should be distinguishable from a dry one at high pressure and temperature conditions relevant to Al-bearing subducted slabs.

  18. M/T method based incremental encoder velocity measurement error analysis and self-adaptive error elimination algorithm

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Long, Jiang

    2017-01-01

    For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...

  19. Combining Fourier phase encoding and broadband inversion toward J-edited spectra

    Science.gov (United States)

    Lin, Yulan; Guan, Quanshuai; Su, Jianwei; Chen, Zhong

    2018-06-01

    Nuclear magnetic resonance (NMR) spectra are often utilized for gathering accurate information relevant to molecular structures and composition assignments. In this study, we develop a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks, and combine it with a pure shift experiments (PSYCHE) based J-modulated scheme, providing simple 2D J-edited spectra for accurate measurement of scalar coupling networks. Chemical shifts and J coupling constants of protons coupled to the specific protons are demonstrated along the F2 and F1 dimensions, respectively. Polychromatic pulses by Fourier phase encoding were performed to simultaneously detect several coupling networks. Proton-proton scalar couplings are chosen by a polychromatic pulse and a PSYCHE element. Axis peaks and unwanted couplings are complete eradicated by incorporating a selective COSY block as a preparation period. The theoretical principles and the signal processing procedure are laid out, and experimental observations are rationalized on the basis of theoretical analyses.

  20. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  1. Phase recovering algorithms for extended objects encoded in digitally recorded holograms

    Directory of Open Access Journals (Sweden)

    Peng Z.

    2010-06-01

    Full Text Available The paper presents algorithms to recover the optical phase of digitally encoded holograms. Algorithms are based on the use of a numerical spherical reconstructing wave. Proof of the validity of the concept is performed through an experimental off axis digital holographic set-up. Two-color digital holographic reconstruction is also investigated. Application of the color set-up and algorithms concerns the simultaneous two-dimensional deformation measurement of an object submitted to a mechanical loading.

  2. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    Science.gov (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  3. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-02

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  6. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Directory of Open Access Journals (Sweden)

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  7. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Ahyi, A. C.; Raju, P. K.

    2002-01-01

    In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278–289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase ...

  8. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  9. Lossy effects on the lateral shifts in negative-phase-velocity medium

    International Nuclear Information System (INIS)

    You Yuan

    2009-01-01

    Theoretical investigations of the lateral shifts of the reflected and transmitted beams were performed, using the stationary-phase approach, for the planar interface of a conventional medium and a lossy negative-phase-velocity medium. The lateral shifts exhibit different behaviors beyond and below a certain angle, for both incident p-polarized and incident s-polarized plane waves. Loss in the negative-phase-velocity medium affects lateral shifts greatly, and may cause changes from negative to positive values for p-polarized incidence

  10. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  11. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  12. Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator

    International Nuclear Information System (INIS)

    Spence, W.L.

    1985-01-01

    The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function

  13. Determination of drift-flux velocity as a function of two-phase flow patterns

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1986-01-01

    A method is suggested for the calculation of drift-flux velocity as a function of two-phase flow patterns determined analytically. This model can be introduced in computer codes for thermal hydraulic analyses based mainly on homogeneous assumptions, in order to achieve a more realis tic description of two-phase flow phenomena, which is needed for the simulation of accidents in nuclear power plants for which phase separation effects are dominant, e.g., small break accidents. (Author) [pt

  14. Assessment of the Influence Factors on Nasal Spray Droplet Velocity Using Phase-Doppler Anemometry (PDA)

    OpenAIRE

    Liu, Xiaofei; Doub, William H.; Guo, Changning

    2011-01-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box–Behnken design of experiments (DOE) methodology were applied to investigate the influences of actua...

  15. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  16. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  17. Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2011-03-01

    Droplet velocity is an important parameter that can be used to characterize nasal spray products. In this study, a phase-Doppler anemometry (PDA) system was used to measure the droplet velocities of nasal sprays. A survey of seven commercial nasal spray products showed a range of droplet velocities from 6.7 to 19.2 m/s, all significantly different from each other. A three-level, four-factor Box-Behnken design of experiments (DOE) methodology were applied to investigate the influences of actuation parameters and formulation properties on nasal spray droplet velocity using a set of placebo formulations. The DOE study shows that all four input factors (stroke length, actuation velocity, concentration of the gelling agent, and concentration of the surfactant) have significant influence on droplet velocity. An optimized quadratic model generated from the DOE results describes the inherent relationships between the input factors and droplet velocity thus providing a better understanding of the input factor influences. Overall, PDA provides a new in vitro characterization method for the evaluation of inhalation drugs through assessment of spray velocity and may assist in product development to meet drug delivery equivalency requirements. © 2011 American Association of Pharmaceutical Scientists

  18. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  19. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Phase and group velocities for Lamb waves in DOP-26 iridium alloy sheet

    International Nuclear Information System (INIS)

    Simpson, W.A.; McGuire, D.J.

    1994-07-01

    The relatively coarse grain structure of iridium weldments limits the ultrasonic inspection of these structures to frequencies in the low megahertz range. As the material thickness is nominally 0.635 mm for clad vent set capsules, the low frequencies involved necessarily entail the generation of Lamb waves m the specimen. These waves are, of course, dispersive and detailed knowledge of both the phase and group velocities is required in order to determine accurately the location of flaws detected using Lamb waves. Purpose of this study is to elucidate the behavior of Lamb waves propagating in the capsule alloy and to quantify the velocities so that accurate flaw location is ensured. We describe a numerical technique for computing the phase velocities of Lamb waves (or of any other type of guided wave) and derive the group velocities from this information. A frequency-domain method is described for measuring group velocity when multiple Lamb modes are present and mutually interfering in the time domain, and experimental confirmation of the group velocity is presented for the capsule material

  1. Estimating Accurate Target Coordinates with Magnetic Resonance Images by Using Multiple Phase-Encoding Directions during Acquisition.

    Science.gov (United States)

    Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo

    2018-06-01

    Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.

  2. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji

    1995-01-01

    In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)

  3. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    Science.gov (United States)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  4. Some issues in the simulation of two-phase flows: The relative velocity

    International Nuclear Information System (INIS)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P.; Zeidan, D.

    2016-01-01

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  5. Some issues in the simulation of two-phase flows: The relative velocity

    Energy Technology Data Exchange (ETDEWEB)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P. [Niederrhein University of Applied Sciences, Institute for Modelling and High Performance Computing, Reinarzstraße 49, 47805 Krefeld (Germany); Zeidan, D. [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)

    2016-06-08

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  6. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  7. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  8. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  9. Detection of various phases in liquids from the hypersound velocity and damping near closed phase-separation regions of solutions

    International Nuclear Information System (INIS)

    Kovalenko, K. V.; Krivokhizha, S. V.; Chaban, I. A.; Chaikov, L. L.

    2008-01-01

    Theoretical analysis revealed that experimental results obtained in our studies on hypersound propagation in a guaiacol-glycerol solution in the vicinity of the closed phase-separation region, double critical point, and special point, as well as the origin of these regions, can be explained by the presence of two different phases (I and II) of the solution with phase-transition temperature T 0 . Temperature T 0 coincides with the temperature at the center of closed phase-separation regions, as well as with the double critical point and with the special point. In (Frenkel) phase I, molecules are in potential wells whose depth exceeds the thermal energy of a molecule, while thermal energy in (gaslike) phase II is higher than the potential well depth. At the lower critical point, the thermodynamic potential of phase I is equal to the thermodynamic potential of the phase-separated solution. At the upper critical point, the thermodynamic potential of phase II is equal to the thermodynamic potential of the phase-separated solution. The observed broad dome of the hypersound absorption coefficient near T 0 can be explained by the contribution associated with fluctuations of the order parameter corresponding to the transition from phase I to phase II. The difference in the temperature coefficients of hypersound velocity on different sides of T 0 and some other effects are also explained

  10. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  11. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  12. On-line velocity measurements using phase probes at the SuperHILAC

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs

  13. On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities

    Science.gov (United States)

    Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.

    The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.

  14. 3D Vector Velocity Estimation using a 2D Phased Array

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2011-01-01

    of using the TO method for estimation 3D velocity vectors, and the proposed decoupling is demonstrated. A 64x64 and a 32x32 elements transducer are emulated using Field II. Plug flow with a speed of 1 m/s in a small region is rotated in the XY -plane. A binary flow example with [vx,vy]=[1,0] and [0,1] m......A method to estimate the three dimensional (3D) velocity vector is presented is this paper. 3D velocity vector techniques are needed to measure the full velocity and characterize the complicated flow patterns in the human body. The Transverse Oscillation (TO) method introduces oscillations...... matrix transducer. For the 32x32 transducer, the mean and standard deviation for the speed are 0.94 0.11 m/s and for the angle bias -0.487.7. The simulation study clearly demonstrates, that the new method can be used to estimate the 3D velocity vector using a 2D phased matrix array, and that the velocity...

  15. Effect of particle velocity fluctuations on the inertia coupling in two-phase flow

    International Nuclear Information System (INIS)

    Drew, D.A.

    1989-01-01

    Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed

  16. Correlations of drift velocity for gas-liquid two-phase flow in rod bundle

    International Nuclear Information System (INIS)

    Kataoka, Isao; Matsuura, Keizo; Serizawa, Akimi

    2004-01-01

    A new correlation was developed for the drift velocity for low inlet liquid flux in rod bundle. Based on authors' previous analysis of drift velocity for large diameter pipe, an analysis was made on the drift velocity in rod bundle. It is assumed that the large bubble of which size is several subchannel diameter behaves as slug bubble. Under this assumption, it becomes very important how to define equivalent diameter for rod bundle. In view of physical consideration of slug bubble behavior and previous analysis, an equivalent diameter based on the wetted perimeter was found to be most appropriate. Using this equivalent diameter, experimental data of drift velocity in rod bundle were correlated with dimensional analysis. It was found out that for small diameter (dimensionless diameter less than 48) drift velocity increased with square root of diameter which is same dependency of ordinary slug flow correlation. For larger diameter (dimensionless diameter is more than 48), drift velocity is almost constant and same as that of dimensionless diameter of 48. The physical meaning of this result was considered to be the instability of interface of large slug bubble. The density ratio between gas and liquid and viscosity of liquid phase were found to be the main parameters which affect the drift velocity. This is physically reasonable because density ratio is related to the buoyancy force and liquid viscosity is related to shear force near solid wall. The experimental data were correlated by density ratio and dimensionless liquid viscosity. The obtained dimensionless correlation for the drift velocity in rod bundle successfully correlated experimental data for various rod bundles (equivalent diameters), pressures, liquid fluxes etc. It is also consistent with the drift flux correlation for round tube. (author)

  17. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  18. MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods

    Science.gov (United States)

    Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.

    2012-03-01

    Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.

  19. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  20. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  1. Known-plaintext attack on the double phase encoding and its implementation with parallel hardware

    Science.gov (United States)

    Wei, Hengzheng; Peng, Xiang; Liu, Haitao; Feng, Songlin; Gao, Bruce Z.

    2008-03-01

    A known-plaintext attack on the double phase encryption scheme implemented with parallel hardware is presented. The double random phase encoding (DRPE) is one of the most representative optical cryptosystems developed in mid of 90's and derives quite a few variants since then. Although the DRPE encryption system has a strong power resisting to a brute-force attack, the inherent architecture of DRPE leaves a hidden trouble due to its linearity nature. Recently the real security strength of this opto-cryptosystem has been doubted and analyzed from the cryptanalysis point of view. In this presentation, we demonstrate that the optical cryptosystems based on DRPE architecture are vulnerable to known-plain text attack. With this attack the two encryption keys in the DRPE can be accessed with the help of the phase retrieval technique. In our approach, we adopt hybrid input-output algorithm (HIO) to recover the random phase key in the object domain and then infer the key in frequency domain. Only a plaintext-ciphertext pair is sufficient to create vulnerability. Moreover this attack does not need to select particular plaintext. The phase retrieval technique based on HIO is an iterative process performing Fourier transforms, so it fits very much into the hardware implementation of the digital signal processor (DSP). We make use of the high performance DSP to accomplish the known-plaintext attack. Compared with the software implementation, the speed of the hardware implementation is much fast. The performance of this DSP-based cryptanalysis system is also evaluated.

  2. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    International Nuclear Information System (INIS)

    Lin, C.

    2016-01-01

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  3. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C. [Indiana University School of Medicine (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  4. Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System

    Science.gov (United States)

    Adams, A. N.; Miller, J. C.

    2017-12-01

    This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping

  5. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations

    NARCIS (Netherlands)

    Kästle, Emanuel D.; Soomro, Riaz; Weemstra, C.; Boschi, Lapo; Meier, Thomas

    2016-01-01

    Phase velocities derived from ambient-noise cross-correlation are compared with phase velocities calculated from cross-correlations of waveform recordings of teleseismic earthquakes whose epicentres are approximately on the station–station great circle. The comparison is conducted both for Rayleigh

  6. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2010-03-30

    To determine aerosol deposition during the inhalation drug delivery, it is important to understand the combination of velocity and droplet size together. In this study, phase Doppler anemometry (PDA) was used to simultaneously characterize the aerosol velocity and droplet size distribution (DSD) of three nasal spray pumps filled with water. Thirteen sampling positions were located in the horizontal cross-sectional area of the nasal spray plumes at a distance of 3cm from the pump orifice. The results showed droplet velocities near the center of the spray plume were higher and more consistent than those near the edge. The pumps examined showed significant differences in their aerosol velocity at the center of the spray plume, which suggest that this metric might be used as a discriminating parameter for in vitro testing of nasal sprays. Droplet size measurements performed using PDA were compared with results from laser light scattering measurements. The ability of PDA to provide simultaneous measurements of aerosol velocity and size makes it a powerful tool for the detailed investigation of nasal spray plume characteristics. Published by Elsevier B.V.

  7. Evaluation of metered dose inhaler spray velocities using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2012-02-28

    Droplet velocity is an important parameter which can significantly influence inhalation drug delivery performance. Together with the droplet size, this parameter determines the efficiency of the deposition of MDI products at different sites within the lungs. In this study, phase Doppler anemometry (PDA) was used to investigate the instantaneous droplet velocity emitted from MDIs as well as the corresponding droplet size distribution. The nine commercial MDI products surveyed showed significantly different droplet velocities, indicating that droplet velocity could be used as a discriminating parameter for in vitro testing of MDI products. The droplet velocity for all tested MDI products decreased when the testing distance was increased from 3 cm to 6 cm from the front of mouthpiece, with CFC formulations showing a larger decrease than HFA formulations. The mean droplet diameters of the nine MDIs were also significantly different from one-another. Droplet size measurements made using PDA (a number-based technique) could not be directly compared to results obtained using laser light scattering measurements (a volume-based technique). This work demonstrates that PDA can provide unique information useful for characterizing MDI aerosol plumes and evaluating MDI drug delivery efficiency. PDA could also aid the evaluation of in vitro equivalence in support of formulation or manufacturing changes and in evaluation of abbreviated new drug applications (ANDAs) for MDIs. Published by Elsevier B.V.

  8. Automatic discrimination of bubbles and slugs in two-phase gas-liquid flow and measurement of the respective velocities

    International Nuclear Information System (INIS)

    Fitremann, J.M.; Guilpin, C.; Postaire, J.

    1976-01-01

    The measurement of the interface velocity in a two-phase gas-liquid flow is a difficult problem, owing to the dispersion of the velocity components of individual bubbles, gas-slugs, droplets, waves, etc. An entirely automatic method is presented, it gives the velocity of slugs and bubbles independently, by discrimination of local phase probe signals into a 'slug' signal and a 'bubble' signal feeding a shape-recognition program. Both discriminated void fractions are also calculated by the apparatus [fr

  9. Age-specific changes in left ventricular diastolic function: A velocity-encoded magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafpoor, Golmehr [Sorbonne Universites, UPMC Univ Paris 06, UMR 7371, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); CNRS, UMR 7371, Laboratoire d' Imagerie Biomedicale, Paris (France); Universite Paris Descartes, Cardiovascular Imaging Department, European Hospital Georges Pompidou, Paris (France); Bollache, Emilie; Cesare, Alain de; Giron, Alain; Defrance, Carine; Kachenoura, Nadjia [Sorbonne Universites, UPMC Univ Paris 06, UMR 7371, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); CNRS, UMR 7371, Laboratoire d' Imagerie Biomedicale, Paris (France); Redheuil, Alban [Sorbonne Universites, UPMC Univ Paris 06, UMR 7371, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); CNRS, UMR 7371, Laboratoire d' Imagerie Biomedicale, Paris (France); Hopital Pitie-Salpetriere, Department of Cardiovascular Radiology, Institut de Cardiologie, Paris (France); ICAN, Imaging Core Lab, Paris (France); Azarine, Arshid [INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); Universite Paris Descartes, Cardiovascular Imaging Department, European Hospital Georges Pompidou, Paris (France); Perdrix, Ludivine; Ladouceur, Magalie [European Hospital Georges Pompidou, Cardiology Department, Paris (France); Diebold, Benoit [Sorbonne Universites, UPMC Univ Paris 06, UMR 7371, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); CNRS, UMR 7371, Laboratoire d' Imagerie Biomedicale, Paris (France); European Hospital Georges Pompidou, Cardiology Department, Paris (France); Mousseaux, Elie [Sorbonne Universites, UPMC Univ Paris 06, UMR 7371, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); INSERM, UMR S 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); CNRS, UMR 7371, Laboratoire d' Imagerie Biomedicale, Paris (France); Universite Paris Descartes, Cardiovascular Imaging Department, European Hospital Georges Pompidou, Paris (France); European Hospital Georges Pompidou, Cardiology Department, Paris (France)

    2015-04-01

    Our objectives were to assess the ability of phasecontrast MRI (PC-MRI) to detect sub-clinical age-related variations of left ventricular (LV) diastolic parameters and thus to provide age-related reference ranges currently available for echocardiography but not for MRI-PC, and to identify independent associates of such variations. We studied 100 healthy volunteers (age = 42 ± 15years, 50 females) who had MRI with simultaneous blood pressure measurements. LV mass and volumes were assessed. Semiautomated analysis of PC-MRI data provided: 1) early transmitral (Ef) and atrial (Af) peak filling flow-rates (ml/s) and filling volume (FV), 2) deceleration time (DT), isovolumic relaxation time (IVRT), and 3) early myocardial longitudinal (E') peak velocity. MRI-PC diastolic parameters were reproducible as reflected by low coefficients of variations (ranged between 0.31 to 6.26 %). Peak myocardial velocity E' (r = -0.63, p < 0.0001) and flow-rate parameters were strongly and independently associated to age (Ef/Af:r = -0.63, DT:r = 0.46, IVRT:r = 0.44, Ef/FV:r = -0.55, Af/FV:r = 0.56, p < 0.0001). Furthermore, LV relaxation parameters (E', DT, IVRT), were independently associated to LV remodelling (LV mass/end-diastolic volume) and myocardial wall thickness (p < 0.01). PC-MRI age-related reference ranges of diastolic parameters are provided. Such parameters might be useful for a fast, reproducible and reliable characterization of diastolic function in patients referred for clinical MRI exam. (orig.)

  10. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  11. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    Science.gov (United States)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  12. Governing equations for a seriated continuum: an unequal velocity model for two-phase flow

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Hughes, E.D.

    1975-05-01

    The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)

  13. A multispectral photon-counting double random phase encoding scheme for image authentication.

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  14. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  15. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    Science.gov (United States)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density

  16. Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

    Directory of Open Access Journals (Sweden)

    Golestan karami

    2013-03-01

    Full Text Available Introduction Echo-planar imaging (EPI is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that causes more geometric distortion in phase encoding direction. This inhomogeneity is induced mainly by the magnetic susceptibility differences between various structures within the object placed inside the scanner, often at air-tissue or bone-tissue interfaces. Methods of reducing EPI distortion are mainly based on decreasing steps of the phase encoding. Reducing steps of phase encoding can be applied by reducing field of view, slice thickness, and/or the use of parallel acquisition technique. Materials and Methods We obtained three data acquisitions with different FOVs including: conventional low resolution, conventional high resolution, and zoomed high resolution EPIs. Moreover we used SENSE technique for phase encoding reduction. All experiments were carried out on three Tesla scanners (Siemens, TIM, and Germany equipped with 12 channel head coil. Ten subjects participated in the experiments. Results The data were processed by FSL software and were evaluated by ANOVA. Distortion was assessed by obtaining low displacement voxels map, and calculated from a field map image. Conclusion We showed that image distortion can be reduced by decreasing slice thickness and phase encoding steps. Distortion reduction in zoomed technique resulted the lowest level, but at the cost of signal-to-noise loss. Moreover, the SENSE technique was shown to decrease the amount of image distortion, efficiently.

  17. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  18. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  19. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-01-01

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  20. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-01

    Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  1. Relationship between lower limbs kinematic variables and effectiveness of sprint during maximum velocity phase.

    Science.gov (United States)

    Struzik, Artur; Konieczny, Grzegorz; Grzesik, Kamila; Stawarz, Mateusz; Winiarski, Sławomir; Rokita, Andrzej

    2015-01-01

    The aim of the study was to determine the relationships between time of running over a 15-25 m section of a 30-meter run along a straight line and changes in the angle and angular velocity observed in ankle, knee and hip joints. Therefore, the authors attempted to answer the question of whether a technique of lower limbs movement during the phase of sprint maximum velocity significantly correlates with the time of running over this section. A group of 14 young people from the Lower Silesia Voivodeship Team participated in the experiment. A Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using Noraxon MyoMotion system. There were observed statistically significant relationships between sprint time over a section from 15 to 25 m and left hip rotation (positive) and between this time and left and right ankle joint dorsi-plantar flexion (negative). During the maximum velocity phase of a 30 m sprint, the effect of dorsi-plantar flexion performed in the whole range of motion was found to be beneficial. This can be attributed to the use of elastic energy released in the stride cycle. Further, hip rotation should be minimized, which makes the stride aligned more along a line of running (a straight line) instead of from side to side.

  2. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra

    Science.gov (United States)

    Ryden, N.; Park, C.B.

    2006-01-01

    The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.

  3. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  4. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  5. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  6. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  7. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  8. Current injection phase thermography for low-velocity impact damage identification in composite laminates

    International Nuclear Information System (INIS)

    Grammatikos, S.A.; Kordatos, E.Z.; Matikas, T.E.; David, C.; Paipetis, A.S.

    2014-01-01

    Highlights: • A novel Current injection phase thermography NDE method has been developed. • Blind impact damage has been successfully detected in composite laminates. • Carbon nanotubes enhance detection by improving of through thickness conductivity. • Detection is feasible with considerably less energy than for IR excited thermography. - Abstract: An innovative non-destructive evaluation (NDE) technique is presented based on current stimulated thermography. Modulated electric current is injected to Carbon Fibre Reinforced Plastics (CFRP) laminates as an external source of thermal excitation. Pulsed Phase Thermography (PPT) is concurrently employed to identify low velocity impact induced (LVI) damage. The efficiency of the proposed method is demonstrated for both plain and with Carbon Nanotubes (CNTs) modified laminates, which are subjected to low-velocity impact damaged composite laminates at different energy levels. The presence of the nano reinforcing phase is important in achieving a uniform current flow along the laminate, as it improves the through thickness conductivity. The acquired thermographs are compared with optical PPT, C-scan images and Computer Tomography (CT) representations. The typical energy input for successful damage identification with current injection is three to four orders of magnitude less compared to the energy required for optical PPT

  9. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  10. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  11. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari

    2018-01-01

    We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from: https://github.com/Hamzeh-Sadeghi/GSpecDisp

  12. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations

    NARCIS (Netherlands)

    Van Houwelingen, Josje; Roerdink, Melvyn; Huibers, Alja V.; Evers, Lotte L.W.; Beek, Peter J.

    2017-01-01

    In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the

  13. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 60, č. 3 (2016), s. 403-418 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : weak anisotropy * P-wave * phase velocity * ray velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016

  14. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.

    Science.gov (United States)

    Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino

    2006-10-01

    Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

  15. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  16. A new phase coding method using a slice selection gradient for high speed flow velocity meaurements in NMR tomography

    International Nuclear Information System (INIS)

    Oh, C.H.; Cho, Z.H.; California Univ., Irvine

    1986-01-01

    A new phase coding method using a selection gradient for high speed NMR flow velocity measurements is introduced and discussed. To establish a phase-velocity relationship of flow under the slice selection gradient and spin-echo RF pulse, the Bloch equation was numerically solved under the assumption that only one directional flow exists, i.e. in the direction of slice selection. Details of the numerical solution of the Bloch equation and techniques related to the numerical computations are also given. Finally, using the numerical calculation, high speed flow velocity measurement was attempted and found to be in good agreement with other complementary controlled measurements. (author)

  17. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki

    2000-01-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year (ΔD) were significantly greater than in groups R and B (%TFV: 74.1±0.07 vs 15.2±0.03 vs 11.8±0.04, p<0.01; ΔD: 3.62±0.82 vs 0 vs 0.58±0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and ΔD (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  18. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  19. Saccades phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding

    OpenAIRE

    Noachtar, Soheyl; Doeller, Christian; Jensen, Ole; Hartl, Elisabeth; Staudigl, Tobias

    2017-01-01

    Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and MEG recordings, we show that saccades are locked to the phase of visual alpha oscillations, and that this coordination supports mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the inter...

  20. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    OpenAIRE

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety ar...

  1. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    Science.gov (United States)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with

  2. Two-phase modeling of DDT: Structure of the velocity-relaxation zone

    International Nuclear Information System (INIS)

    Kapila, A.K.; Son, S.F.; Bdzil, J.B.; Menikoff, R.; Stewart, D.S.

    1997-01-01

    The structure of the velocity relaxation zone in a hyperbolic, nonconservative, two-phase model is examined in the limit of large drag, and in the context of the problem of deflagration-to-detonation transition in a granular explosive. The primary motivation for the study is the desire to relate the end states across the relaxation zone, which can then be treated as a discontinuity in a reduced, equivelocity model, that is computationally more efficient than its parent. In contrast to a conservative system, where end states across thin zones of rapid variation are determined principally by algebraic statements of conservation, the nonconservative character of the present system requires an explicit consideration of the structure. Starting with the minimum admissible wave speed, the structure is mapped out as the wave speed increases. Several critical wave speeds corresponding to changes in the structure are identified. The archetypal structure is partly dispersed, monotonic, and involves conventional hydrodynamic shocks in one or both phases. The picture is reminiscent of, but more complex than, what is observed in such (simpler) two-phase media as a dusty gas. copyright 1997 American Institute of Physics

  3. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  4. Description of turbulent velocity and temperature fields of single phase flow through tight rod bundles

    International Nuclear Information System (INIS)

    Monir, C.

    1991-02-01

    A two-dimensional procedure, VANTACY-II, describing the turbulent velocity and temperature fields for single phase flow in tight lattices is presented and validated. The flow is assumed to be steady, incrompressible and hydraulic and thermal fully developed. First, the state of art of turbulent momentum and heat transport in tight lattices is documented. It is shown that there is a necessity for experimental investigations in the field of turbulent heat transport. The presented new procedure is based on the turbulence model VELASCO-TUBS by NEELEN. The numerical solution of the balance equations is done by the finite element method code VANTACY by KAISER. The validation of the new procedure VANTACY-II is done by comparing the numerically calculated data for the velocity and temperature fields and for natural mixing with the experimental data of SEALE. The comparison shows a good agreement of experimental and numerically computed data. The observed differences can be mainly attributed to the model of the turbulent PRANDTL number used in the new procedure. (orig.) [de

  5. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi

    2013-01-01

    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10 5 CPUs) and runs on the largest current simulations (>10 10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper has shown ROCKSTAR to have excellent recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results that demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or substructure average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km s –1 at z = 0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar.

  6. Internal structure and interfacial velocity development for bubbly two-phase flow

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Huang, W.D.

    1994-01-01

    This paper describes an experimental study of the internal structure of air-water flowing horizontally. The double-sensor resistivity probe technique was applied for measurements of local interfacial parameters, including void fraction, interfacial area concentration, bubble size distributions, bubble passing frequency and bubble interface velocity. Bubbly flow patterns at several flow conditions were examined at three axial locations, L/D=25, 148 and 253, in which the first measurement represents the entrance region where the flow develops, and the second and third may represent near fully developed bubbly flow patterns. The experimental results are presented in three-dimensional perspective plots of the interfacial parameters over the cross-section. These multi-dimensional presentations showed that the local values of the void fraction, interfacial area concentration and bubble passing frequency were nearly constant over the cross-section at L/D=25, with slight local peaking close to the channel wall. Although similar local peakings were observed at the second and third locations, the internal flow structure segregation due to buoyancy appeared to be very strong in the axial direction. A simple comparison of profiles of the interfacial parameters at the three locations indicated that the flow pattern development was a continuous process. Finally, it was shown that the so-called ''fully developed'' bubbly two-phase flow pattern cannot be established in a horizontal pipe and that there was no strong correspondence between void fraction and interface velocity profiles. ((orig.))

  7. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities

    International Nuclear Information System (INIS)

    Lock, Edwin H

    2012-01-01

    Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ 0 /D (where λ 0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)

  8. On the use of nuclear magnetic resonance to measure velocity and its fluctuations in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Jullien, Pierre

    2013-01-01

    This work deals with the use of NMR to measure velocity and its fluctuations in single-phase and two-phase flows. PGSE and imaging sequences have been used to determine the velocity distributions in upward turbulent pipe flows. NMR signals have been analysed in detail and the main artifacts have been characterized and suppressed. The measuring technique has been validated by comparison with a reference published data. A first comparison to 'homemade' hot-wire results in single-phase flow of water is presented and is very promising. Preliminary NMR results in two-phase flows emphasize the interest of NMR to benchmark velocity measurements in two-phase flows. Prospects of research have been identified, which will pave the way for the sequel of this research. (author) [fr

  9. Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis.

    Science.gov (United States)

    Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain

    2008-12-01

    Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.

  10. One-dimensional transient unequal velocity two-phase flow by the method of characteristics

    International Nuclear Information System (INIS)

    Rasouli, F.

    1981-01-01

    An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed

  11. Divided attention can enhance early-phase memory encoding: the attentional boost effect and study trial duration.

    Science.gov (United States)

    Mulligan, Neil W; Spataro, Pietro

    2015-07-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result. (c) 2015 APA, all rights reserved.

  12. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    Science.gov (United States)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  13. Measurement of coronary flow response to cold pressor stress in asymptomatic women with cardiovascular risk factors using spiral velocity-encoded cine MRI at 3 Tesla

    International Nuclear Information System (INIS)

    Maroules, Christopher D.; Peshock, Ronald M.; Chang, Alice Y.; Kontak, Andrew; Dimitrov, Ivan; Kotys, Melanie

    2010-01-01

    Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years ± 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 ± 26 ml/min; peak stress, 152 ± 34 ml/min, P=0.01). CSFR to CPT was 1.31 ± 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress

  14. High-efficiency toroidal current drive using low-phase-velocity kinetic Alfven waves

    International Nuclear Information System (INIS)

    Puri, S.

    1991-09-01

    A method for obtaining efficient current drive in Tokamaks using low-phase-velocity (v ρ = ω/K parallel ∝ 0.1v te ) kinetic Alfen wave is proposed. The wave momentum, imparted primarily to the trapped electrons by Landau damping, is stored as the canonical angular momentum via the Ware pinch. In steady state, collisions restore the pinched electrons to their original phase-space configuration, in the process releasing the stored canonical angular momentum to the background ions and electrons in proportion to the respective collision frequencies. Despite the loss of a part of the original impulse to the plasma ions, well over half the wave momentum is ultimately delivered to the bulk-plasma electrons, resulting in an efficient current drive. A normalized current-drive efficiency γ = R 0 20 > I/P ∝ 2 would be feasible using the subthermal kinetic-Alfen-wave current drive in a Tokamak of reactor parameters. Optimum antenna loading conditions are described. The problem of accessibility is discussed. In an elongated, high-β plasma with a density dependence n e ∝ (1-ρ 2 ) Χn , accessibility is restricted to ρ > or approx. 3/(4A Χn ), where A is the aspect ratio. For current drive at still lower values of ρ, operation in conjunction with fast-wave current drive is suggested. (orig.)

  15. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations.

    Directory of Open Access Journals (Sweden)

    Josje van Houwelingen

    Full Text Available In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270° of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.

  16. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  17. Profilometry of discontinuous solids by means of co-phased demodulation of projected fringes with RGB encoding

    Science.gov (United States)

    Padilla, J. M.; Servin, M.; Garnica, G.

    2015-05-01

    Here we describe a 2-projectors and 1-camera setup for profilometry of discontinuous solids by means of co-phased demodulation of projected fringes and red, green, and blue (RGB) multichannel operation. The dual projection configuration for this profilometer is proposed to solve efficiently specular regions and self-occluding shadows due to discontinuities, which are the main drawbacks for a 1-projector 1-camera configuration. This is because the regions where shadows and specular reflections are generated, and the fringe contrast drops to zero, are in general different for each projection direction; thus, the resulting fringe patterns will have complementary phase information. Multichannel RGB operation allows us to work simultaneously with both projectors and to record independently the complementary fringe patterns phase-modulated by the 3D profile of the object under study. In other words, color encoding/decoding reduces the acquisition time respect to one-at-a-time grayscale operation and, in principle, enables the study of dynamic phenomena. The co-phased demodulation method implemented in this work benefits from the complex (analytic) nature of the output signals estimated with most phase demodulation methods (such as the Fourier method, and temporal phaseshifting algorithms). This allowed us to straightforwardly generate a single phase-map well-defined for the entire area of interest. Finally we assessed our proposed profilometry setup by measuring a fractured spherical cap made of (uncoated) expanded polystyrene. The results were satisfactory but in the authors' opinion this must be considered a preliminary report.

  18. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    Science.gov (United States)

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  19. Effects of resistance training using known vs unknown loads on eccentric-phase adaptations and concentric velocity.

    Science.gov (United States)

    Hernández-Davó, J L; Sabido, R; Behm, D G; Blazevich, A J

    2018-02-01

    The aims of this study were to compare both eccentric- and concentric-phase adaptations in highly trained handball players to 4 weeks of twice-weekly rebound bench press throw training with varying loads (30%, 50% and 70% of one-repetition maximum [1-RM]) using either known (KL) or unknown (UL) loads and to examine the relationship between changes in eccentric- and concentric-phase performance. Twenty-eight junior team handball players were divided into two experimental groups (KL or UL) and a control group. KL subjects were told the load prior each repetition, while UL were blinded. For each repetition, the load was dropped and then a rebound bench press at maximum velocity was immediately performed. Both concentric and eccentric velocity as well as eccentric kinetic energy and musculo-articular stiffness prior to the eccentric-concentric transition were measured. Results showed similar increases in both eccentric velocity and kinetic energy under the 30% 1-RM but greater improvements under 50% and 70% 1-RM loads for UL than KL. UL increased stiffness under all loads (with greater magnitude of changes). KL improved concentric velocity only under the 30% 1-RM load while UL also improved under 50% and 70% 1-RM loads. Improvements in concentric movement velocity were moderately explained by changes in eccentric velocity (R 2 =.23-.62). Thus, UL led to greater improvements in concentric velocity, and the improvement is potentially explained by increases in the speed (as well as stiffness and kinetic energy) of the eccentric phase. Unknown load training appears to have significant practical use for the improvement of multijoint stretch-shortening cycle movements. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of

  1. Relationship of activity in ascending paths with phase encoding in the lumbar spinal cord

    Directory of Open Access Journals (Sweden)

    O. O. Shugurov

    2012-02-01

    Full Text Available We studied the relationship of discharges phase characteristics in ascending column of spinal cord (SC and specificity of activation of neurones, which generate negative components of evoked potentials of SC. The discharges was recorded from SC at a level of a presence of dorsal column (DC, spinocervical and dorsal spinocerebellar tract in upper lumbar and thoracic segments at a stimulation of a nerve or DC. It is shown, that the phase of the discharges depends on the quantity of synaptic delays in generating chain of such signals. Thus, the phase of a signal can carry the additional information on specificity of activation of the sensory elements in CNS.

  2. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions

    Science.gov (United States)

    Li, Guoliang; Niu, Fenglin; Yang, Yingjie; Xie, Jun

    2018-02-01

    The time-frequency domain phase-weighted stacking (tf-PWS) technique based on the S transform has been employed in stacking empirical Green's functions (EGFs) derived from ambient noise data, mainly due to its superior power in enhancing weak signals. Questions such as the induced waveform distortion and the feasibility of phase-velocity extraction are yet to be thoroughly explored. In this study, we investigate these issues by conducting extensive numerical tests with both synthetic data and USArray transportable array (TA) ambient noise data. We find that the errors in the measured phase velocities associated with waveform distortion caused by the tf-PWS depend largely on the way of how the inverse S transform (IST) is implemented. If frequency IST is employed in tf-PWS, the corresponding errors are generally less than 0.1 per cent, sufficiently small that the measured phase velocities can be safely used in regular surface wave tomography. On the other hand, if a time IST is used in tf-PWS, then the extracted phase velocities are systematically larger than those measured from linearly stacked ones, and the discrepancy can reach as much as ˜0.4 per cent at some periods. Therefore, if tf-PWS is used in stacking EGFs, then frequency IST is preferred to transform the stacked S spectra back to the time domain for the stacked EGFs.

  3. Regularly incremented phase encoding - MR fingerprinting (RIPE-MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting.

    Science.gov (United States)

    Anderson, Christian E; Wang, Charlie Y; Gu, Yuning; Darrah, Rebecca; Griswold, Mark A; Yu, Xin; Flask, Chris A

    2018-04-01

    The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T 1 ) and transverse relaxation time (T 2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T 1 and T 2 mean and standard deviation, were compared between the two methods (n = 5). RIPE-MRF showed significant ANR reductions in regions of pulsatility (P Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Reliability of Phase Velocity Measurements of Flexural Acoustic Waves in the Human Tibia In-Vivo.

    Science.gov (United States)

    Vogl, Florian; Schnüriger, Karin; Gerber, Hans; Taylor, William R

    2016-01-01

    Axial-transmission acoustics have shown to be a promising technique to measure individual bone properties and detect bone pathologies. With the ultimate goal being the in-vivo application of such systems, quantification of the key aspects governing the reliability is crucial to bring this method towards clinical use. This work presents a systematic reliability study quantifying the sources of variability and their magnitudes of in-vivo measurements using axial-transmission acoustics. 42 healthy subjects were measured by an experienced operator twice per week, over a four-month period, resulting in over 150000 wave measurements. In a complementary study to assess the influence of different operators performing the measurements, 10 novice operators were trained, and each measured 5 subjects on a single occasion, using the same measurement protocol as in the first part of the study. The estimated standard error for the measurement protocol used to collect the study data was ∼ 17 m/s (∼ 4% of the grand mean) and the index of dependability, as a measure of reliability, was Φ = 0.81. It was shown that the method is suitable for multi-operator use and that the reliability can be improved efficiently by additional measurements with device repositioning, while additional measurements without repositioning cannot improve the reliability substantially. Phase velocity values were found to be significantly higher in males than in females (p < 10-5) and an intra-class correlation coefficient of r = 0.70 was found between the legs of each subject. The high reliability of this non-invasive approach and its intrinsic sensitivity to mechanical properties opens perspectives for the rapid and inexpensive clinical assessment of bone pathologies, as well as for monitoring programmes without any radiation exposure for the patient.

  5. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  6. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  7. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  8. Heat transfer and velocity characteristics of single- and two-phase flows in a subsonic model gun

    International Nuclear Information System (INIS)

    Bicen, A.F.; Khezzar, L.; Schmidt, M.; Whitelaw, J.H.

    1989-01-01

    Heat transfer and velocity measurements are reported for single- and two-phase flows in the wake of an in-bore projectile propelled by an inert gas at an initial gauge pressure of 8 bars to an exit velocity over 40 m/s in ∼ 33 ms. The results show that with the single phase the turbulent velocity boundary layers occupy over 20% of the barrel radius and that the wall heat transfer increases with distance from the breech and decreases with time during the shot. In the initial chamber, and later in the shot, the heat transfer results are close to those obtained from a convection correlation for a steady turbulent boundary layer, contrary to those at locations swept by the projectile, which are higher by up to 50% throughout the shot. The two-phase flow results show that 55-μm particles with loadings of 1.3% and 4% by volume initially lag the fluid and this lag increases with distance from the breech. Later in the shot the particles catch up and lead the decelerating fluid by an amount that is greater, with the higher particle loading and with a tendency for the particle velocity to increase around the edge of the boundary layer

  9. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  10. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  11. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    International Nuclear Information System (INIS)

    Chen, Jun-Xin; Fu, Chong; Zhu, Zhi-Liang; Zhang, Li-Bo; Zhang, Yushu

    2014-01-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption. (paper)

  12. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    Science.gov (United States)

    Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu

    2014-12-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.

  13. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  14. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    Science.gov (United States)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  15. 2-D blood vector velocity estimation using a phase shift estimator

    DEFF Research Database (Denmark)

    Udesen, Jesper

    are presented. Here the TO method is tested both in simulations using the Field II program and in flow phantom experiments using the RASMUS scanner. Both simulations and flow phantom experiments indicate that the TO method can estimate the 2-D vector velocity with an acceptable low bias and standard deviation...... velocity estimation is discussed. The TO method is introduced, and the basic theory behind the method is explained. This includes the creation of the acoustic fields, beamforming, echo-canceling and the velocity estimator. In the second part of the thesis the eight papers produced during this PhD project...... when the angle between the blood and the ultrasound beam is above $50^\\circ$. Furthermore, the TO method is tested in-vivo where the scannings are performed by skilled sonographers. The in-vivo scannings resulted in a sequence of 2-D vector CFM images which showed 2-D flow patterns in the bifurcation...

  16. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  17. Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems

    International Nuclear Information System (INIS)

    Hsu, C.T.; Keshock, E.G.; McGill, R.N.

    1983-01-01

    A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations

  18. Determining the most stable breathing phase for respiratory gating using velocity deformable registration in patients with lung cancer

    International Nuclear Information System (INIS)

    Aarons, Y.; Wightman, F.; Roxby, P.; Kron, T.

    2011-01-01

    Full text: Respiratory gated radiotherapy is a high-precision technique where the treatment beam is turned on during a predetermined phase of the breathing cycle in order to minimise dose to surrounding healthy dose sensitive structures. We aim to compare inspiration and expiration phases to determine which is more stable in the breathing cycle to perform respiratory gating. Methods Nine patients underwent a planning time resolved 4DCT (Philips Brilliance 16-multislice widebore) and repeat 4DCT during weeks I, 3 and 5 of a radical course of radiotherapy for lung cancer. Inspiration scans were co-registered to the same phase image of the original planning CT using rigid and then deformable registration with Velocity software. The process was repeated for scans at exhalation phase. The deformation matrix for the diaphragm was used to compare the reproducibility of breathing phases. In the majority of patients (seven of nine) the expiration phase was found to be the more stable compared with inspiration. The maximum diaphragm displacement exceeded 3 cm in one case for the registered inhalation images while the deformation was typically half of that in the exhalation images. Interestingly, several patients showed significant differences in deformation for the left and right diaphragm. Conclusions In a group of lung cancer patients we found the expiration phase to be more reproducible for delivering respiratory gated RT, when compared with inspiration.

  19. Heat transfer to a dispersed two-phase flow and detailed quench front velocity research

    International Nuclear Information System (INIS)

    Boer, T.C. de; Molen, S.B. van der

    1985-01-01

    A programme to obtain a data base for 'Boildown and Reflood' computer code development and to obtain information on the influence of non-uniform temperature and/or power profile on the quench front velocity and prequench heat transfer, including unheated wall and grid effects, has been undertaken. It is in two parts. In the first (for the tube, annulus and a 4-rod bundle) an early wetting of the unheated shroud is shown. This leads to an increase in quench front velocity and in liquid transport downstream from the quench front. For the inverted annular flow regime the extended Bromley correlation gives good agreement with the experimental data. In the second part (36-rod bundle reflood test programme) the wall-temperature differences in the radial direction gives rise to heat transfer processes which are described and explained. (U.K.)

  20. Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry.

    Science.gov (United States)

    Alatrash, Abubaker; Matida, Edgar

    2016-12-01

    Particle size and velocity are two of the most significant factors that impact the deposition of pressurized metered-dose inhaler (pMDI) sprays in the mouth cavity. pMDIs are prominently used around the world in the treatment of patients suffering from a variety of lung diseases such as asthma and chronic obstructive pulmonary disease. Since their introduction in the field, and as a result of their effectiveness and simplicity of usage, pMDIs are considered to be the most widely prescribed medical aerosol delivery system. In the current study, particle velocity and size distribution were measured at three different locations along the centerline of a pMDI spray using Phase Doppler Anemometry. pMDIs from four different pharmaceutical companies were tested, each using salbutamol sulfate as the medication. Measurements along at the pMDI centerline (at 0, 75, and 100 mm downstream of the inhaler mouthpiece) showed that the spray velocities were bimodal in time for all four pMDI brands. The first peak occurred as the spray was leaving the mouthpiece, while the second peak (at the same location, 0 mm) occurred at around 60, 95, 95, and 115 milliseconds later, respectively, for the four tested inhalers, with a drop in the velocity between the two peaks. Three probability density functions (PDFs) were tested, and the Rosin-Rammler PDF best fit the empirical data, as determined using a chi-squared test. These results suggest that there is a difference in the mean particle velocities at the centerline for the tested pMDIs and the diameter of released particles varied statistically for each brand.

  1. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  2. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  3. Void fraction and interfacial velocity in gas-liquid upward two-phase flow across tube bundles

    International Nuclear Information System (INIS)

    Ueno, T.; Tomomatsu, K.; Takamatsu, H.; Nishikawa, H.

    1997-01-01

    Tube failures due to flow-induced vibration are a major problem in heat exchangers and many studies on the problem of such vibration have been carried out so far. Most studies however, have not focused on two-phase flow behavior in tube bundles, but have concentrated mainly on tube vibration behavior like fluid damping, fluid elastic instability and so on. Such studies are not satisfactory for understanding the design of heat exchangers. Tube vibration behavior is very complicated, especially in the case of gas-liquid two-phase flow, so it is necessary to investigate two-phase flow behavior as well as vibration behavior before designing heat exchangers. This paper outlines the main parameters that characterize two-phase behavior, such as void fraction and interfacial velocity. The two-phase flow analyzed here is gas-liquid upward flow across a horizontal tube bundle. The fluids tested were HCFC-123 and steam-water. HCFC-123 stands for Hydrochlorofluorocarbon. Its chemical formula is CHCl 2 CF 3 , which has liquid and gas densities of 1335 and 23.9 kg/m 3 at a pressure of 0.40 MPa and 1252 and 45.7 kg/m 3 at a pressure of 0.76 MPa. The same model tube bundle was used in the two tests covered in this paper, to examine the similarity law of two-phase flow behavior in tube bundles using HCFC-123 and steam-water two-phase flow. We also show numerical simulation results for the two fluid models in this paper. We do not deal with vibration behavior and the relationship between vibration behavior and two-phase flow behavior. (author)

  4. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  5. Magnetic phase diagram of Ba3CoSb2O9 as determined by ultrasound velocity measurements

    Science.gov (United States)

    Quirion, G.; Lapointe-Major, M.; Poirier, M.; Quilliam, J. A.; Dun, Z. L.; Zhou, H. D.

    2015-07-01

    Using high-resolution sound velocity measurements we have obtained a very precise magnetic phase diagram of Ba3CoSb2O9 , a material that is considered to be an archetype of the spin-1/2 triangular-lattice antiferromagnet. Results obtained for the field parallel to the basal plane (up to 18 T) show three phase transitions, consistent with predictions based on simple two-dimensional isotropic Heisenberg models and previous experimental investigations. The phase diagram obtained for the field perpendicular to the basal plane clearly reveals an easy-plane character of this compound and, in particular, our measurements show a single first-order phase transition at Hc 1=12.0 T which can be attributed to a spin flop between an umbrella-type configuration and a coplanar V -type order where spins lie in a plane perpendicular to the a b plane. At low temperatures, softening of the lattice within some of the ordered phases is also observed and may be a result of residual spin fluctuations.

  6. Flow velocity and volume measurement of superior and inferior mesenteric artery with cine phase contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Cooper, T.G.; Jenner, G.; Potchen, E.J.; Ishigaki, Takeo.

    1994-01-01

    The flow velocity and volume of the superior and inferior mesenteric arteries (SMA, IMA) were measured with cine phase contrast magnetic resonance (MR) imaging in five healthy volunteers. Each volunteer was first measured in a fasting state, and then one, two, and three hours after a meal. The average SMA flow volume of the volunteers was 230.3±46.8 ml/min (mean±standard error) during the fasting state, and 714.7±207.7 ml/min, 339.2±85.7 ml/min, and 263.8±21.0 ml/min, respectively, at one, two, and three hours postmeal. The increase at one hour postmeal was statistically significant (p<0.05). The corresponding flow measurements in the IMA were 63.1±11.2 ml/min, 67.6±11.2 ml/min, 57.9±8.6 ml/min, and 53.2±6.8 ml/min. These values do not represent a statistically significant flow volume change in the IMA. In all volunteers, the SMA volumetric flow increased the most one hour after the food challenge (72-400% relative to baseline). Diastolic velocity in the SMA increased significantly one hour postmeal, but systolic velocity did not change significantly. The IMA did not demonstrate a significant change in either systolic or diastolic velocity. The difference between the SMA and IMA in the way of reacting against the food challenge is thought to represent the difference between the requirements of small and large intestine for blood supply after the food challenge. These data demonstrate the possibility of this modality for the assessment of conditions such as chronic mesenteric ischemia. (author)

  7. Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides

    NARCIS (Netherlands)

    Gersen, H.; Karle, T.J.; Engelen, R.J.P.; Engelen, R.J.P.; Bogaerts, W.; Korterik, Jeroen P.; van Hulst, N.F.; Krauss, T.F.; Kuipers, L.

    2005-01-01

    The eigenfield distribution and the band structure of a photonic crystal waveguide have been measured with a phase-sensitive near-field scanning optical microscope. Bloch modes, which consist of more than one spatial frequency, are visualized in the waveguide. In the band structure, multiple

  8. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    Science.gov (United States)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  9. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Arne [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany); Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr [Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Sebastiani, Daniel, E-mail: daniel.sebastiani@chemie.uni-halle.de [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany)

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d{sub 2}-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  10. Exploring Capabilities of Electrical Capacitance Tomography Sensor and Velocity Analysis of Two-Phase R-134A Flow Through a Sudden Expansion

    Science.gov (United States)

    2017-05-01

    area ratio φ angle of rod density of liquid phase (kg/m3) density of vapor phase (kg/m3) ...heat transfer in order to manage the ever-increasing airframe and engine heat loads. Two-phase liquid -vapor refrigerant systems are one solution for...the heat removal from these systems. However, they require more study before implementation. This study examines the velocities of two-phase liquid

  11. Color-coded MR imaging phase velocity mapping with the Pixar image processor

    International Nuclear Information System (INIS)

    Singleton, H.R.; Cranney, G.B.; Pohost, G.M.

    1989-01-01

    The authors have developed a graphic interaction technique in which a mouse and cursor are used to assign colors to phase-sensitive MR images of the heart. Two colors are used, one for flow in the positive direction, another for flow in the negative direction. A lookup table is generated interactively by manipulating lines representing ramps superimposed on an intensity histogram. Intensity is made to vary with flow magnitude in each color's direction. Coded series of the ascending and descending aorta, and of two- and four-chamber views of the heart, have been generated. In conjunction with movie display, flow dynamics, especially changes in direction, are readily apparent

  12. Heat transfer to a dispersed two phase flow and detailed quench front velocity research

    International Nuclear Information System (INIS)

    De Boer, T.C.; Van der Molen, S.B.

    1985-01-01

    During the blow-down phase of a loss-off coolant accident (LOCA) in a pressurized water reactor the core will heat up dramatically. Water will be injected in the system, and by bottom flooding the core will be cooled. The use of one-dimensional computer models for the calculation of the reflood process in a bundle needs a better justification. The influence of an unheated shroud on prequench heat transfer is investigated in a tube, an annulus and a 4 rod bundle. By using a glass shroud for the annulus, optical analysis of the dispersed two-phase flow regime has been performed. The ECN 36-rod bundle tests as performed with axial uniform power profile are reflood and boil-down at 0.2 MPa pressure executed for different conditions. The experiment yield a data base suitable for code validation and development. Better understanding is obtained for the influence of the radial non-uniform temperature and/or power distributions on the reflood process. Heat transfer improvement induced by the presence of spacer grids is observed. 72 refs.; 220 figs.

  13. An improved phase-control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  14. An improved phase-controlled system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the RF eigenfrequency of supeconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the RF energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the RF power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs

  15. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  16. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  17. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N [Sao Paulo Univ., SP (Brazil); Clifft, B E; Shepard, K W [Argonne National Lab., IL (United States)

    1992-11-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs.

  18. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.; Clifft, B.E.; Shepard, K.W.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs

  19. Upgraded phase control system for superconducting low-velocity accelerating structures

    International Nuclear Information System (INIS)

    Added, N.

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K

  20. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  1. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)

    1992-09-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  2. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  3. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of)

    2012-08-15

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  4. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    International Nuclear Information System (INIS)

    Lee, Kang Il

    2012-01-01

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  5. Precise zero-sound velocity measurements in the A and A1 phases of 3He near T/sub c/

    International Nuclear Information System (INIS)

    Berg, R.F.; Ihas, G.G.

    1983-01-01

    The authors have made phase-velocity change measurements for 5 and 15 MHz zero sound within a few microkelvin of the 3 He superfluid transition, T/sub c/, at 31.1 bar. The results show no marked feature at homega = 2Δ(T). However, there is a marked reduction in the slope of dc/dT upon passing from the A-phase into the Al-phase. 2 references

  6. Noncommutative nature of the addition of noncollinear velocities in special relativity and the geometric phase method (commemorating the publication centennial of A Sommerfeld's work)

    International Nuclear Information System (INIS)

    Malykin, Grigorii B

    2010-01-01

    In 1909, Arnold Sommerfeld used geometric calculations to show that the relativistic addition of two noncollinear velocities on an imaginary-radius sphere is a noncommutative operation. Sommerfeld was the first to use the geometric phase method to calculate the angle between the resulting velocities depending on the order in which they are added. For this, he related the value of this angle to the excess of the spherical triangle formed by the two original velocities and their sum. In 1931, Sommerfeld applied his method to analyze the Thomas precession. (from the history of physics)

  7. Analysis of two-phase flow velocity measurements by cross-correlation techniques and the applicability of the drift flux model for their interpretation

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1982-11-01

    An extensive and detailed investigation of two-phase flow velocity measurements by cross-correlating noise signals of information carriers (neutrons, gammas, visible light) modulated by the two-phase flow and registered by two axially placed detectors outside the flow is pursued. To this end, a detailed analysis of velocity measurements in experimental loops and a large number of velocity measurements in a commercial BWR is undertaken, and the applicability and limitations of the drift flux model for their interpretation is investigated. On the basis of this extensive analysis, the authors propose a physically plausible explanation for the deviations in the upper part of the core, expound on why the drift flux model is, to a great extent, not suitable for interpreting two-phase flow velocity measurements by cross-correlation techniques reported in the present work, and conclude that due to the large number of uncertainties and the lack of detailed knowledge about the kind of microstructures of the flow which the detectors prefer to ''sample'', one can safely assume that at least in the lower half of the core the velocity measured can be well approximated by the velocity of the centre of volume, from which the mass fluxes can readily be computed. (Auth.)

  8. Divided Attention Can Enhance Early-Phase Memory Encoding: The Attentional Boost Effect and Study Trial Duration

    Science.gov (United States)

    Mulligan, Neil W.; Spataro, Pietro

    2015-01-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better…

  9. Intercomparison of principal hydrometric instruments; Third phase, Evaluation of ultrasonic velocity meters for flow measurement in streams, canals, and estuaries

    Science.gov (United States)

    Melching, Charles S.; Meno, Michael W.

    1998-01-01

    As part of the World Meteorological Organization (WMO) project Intercomparison of Principal Hydrometric Instruments, Third Phase, a questionnaire was prepared by the U.S. Geological Survey (USGS) on the application of Ultrasonic Velocity Meters (UVM's) for flowmeasurement in streams, canals, and estuaries. In 1996, this questionnaire was distributed internationally by the WMO and USGS, and distributed within the United States by the USGS. Completed questionnaires were returned by 26 agencies in 7 countries (Canada, France, Germany, The Netherlands, Switzerland, the United Kingdom, and the United States). The completed questionnaires described geometric and streamflow conditions, system configurations, and reasons for applying UVM systems for 260 sites, thus providing information on the applicability of UVM systems throughout the world. The completed questionnaires also provided information on operational issues such as (1) methods used to determine and verify UVM ratings, (2) methods used to determine the mean flow velocity for UVM systems, (3) operational reliability of UVM systems, (4) methods to estimate missing data, (5) common problems with UVM systems and guidelines to mitigate these problems, and (6) personnel training issues. The completed questionnaires also described a few unique or novel applications of UVM systems. In addition to summarizing the completed questionnaires, this report includes a brief overview of UVM application and operation, and a short summary of current (1998) information from UVM system manufacturers regarding system cost and capabilities. On the basis of the information from the completed questionnaires and provided by the manufacturers, the general applicability of UVM systems is discussed. In the finalisation of this report the financial support provided by the US National Committee for Scientific Hydrology is gratefully acknowledged.

  10. Efficacy of double arterial phase dynamic magnetic resonance imaging with the sensitivity encoding technique versus dynamic multidetector-row helical computed tomography for detecting hypervascular hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi; Uemura, Masahiko; Haraikawa, Toyoaki; Hirata, Masaaki; Kikuchi, Keiichi; Mochizuki, Teruhito; Kim, Tonsok

    2009-01-01

    The aim of this study was to evaluate the efficacy of double arterial phase dynamic magnetic resonance imaging (MRI) with the sensitivity encoding technique (SENSE dynamic MRI) for detection of hypervascular hepatocellular carcinoma (HCC) in comparison with double arterial phase dynamic multidetector-row helical computed tomography (dynamic MDCT). A total of 28 patients with 66 hypervascular HCCs underwent both double arterial SENSE dynamic MRI and dynamic MDCT. The diagnosis of HCC was based on surgical resection (n=7), biopsy (n=10), or a combination of CT during arterial portography (CTAP), CT during hepatic arteriography (CTA), and/or the 6-month follow-up CT (n=49). Based on alternative-free response receiving operating characteristic (ROC) analysis, the diagnostic performance for detecting HCC was compared between double arterial phase SENSE dynamic MRI and double arterial phase dynamic MDCT. The mean sensitivity, positive predictive value, and mean A Z values for hypervascular HCCs were 72%, 80%, and 0.79, respectively, for SENSE dynamic MRI and 66%, 92%, and 0.78, respectively, for dynamic MDCT. The mean sensitivity for double arterial phase SENSE dynamic MRI was higher than that for double arterial phase dynamic MDCT, but the difference was not statistically significant. Double arterial phase SENSE dynamic MRI is as valuable as double arterial phase dynamic MDCT for detecting hypervascular HCCs. (author)

  11. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs.

    Science.gov (United States)

    Canitano, Andrea; Venturi, Giulietta; Borghi, Martina; Ammendolia, Maria Grazia; Fais, Stefano

    2013-09-01

    EBV is a human herpesvirus associated with a number of malignancies. Both lymphoblastoid cell lines (LCLs), and EBV-infected nasopharyngeal carcinoma (NPC) cells have been demonstrated to release exosomes containing the EBV-encoded latent membrane protein 1 (LMP1), and mature micro-RNAs (EBV-miRNAs). Here we analyze the EBV protein and nucleic acid content of exosomes from different EBV-infected cells (LCL, 721 and Daudi) and we show for the first time that exosomes released from LCLs and 721 also contain EBV-encoded latent phase mRNAs. This confirms and strengthens exosomes pathogenetic potential, and might provide insights for development of novel diagnostic and therapeutic strategies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    Science.gov (United States)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce

  13. Theory of the acoustic instability and behavior of the phase velocity of acoustic waves in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Torosyan, O.S.; Mkrtchyan, A.R.

    2003-01-01

    The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neutral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic instability (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy, which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the energy transferred to neutral gas in elastic electron-atom collisions is substantially lower than the threshold energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a positive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of sound waves in the presence of acoustic instability are investigated

  14. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    Science.gov (United States)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to

  16. Phase Velocity Estimation of a Microstrip Line in a Stoichiometric Periodically Domain-Inverted LiTaO3 Modulator Using Electro-Optic Sampling Technique

    Directory of Open Access Journals (Sweden)

    Shintaro Hisatake

    2008-01-01

    Full Text Available We estimate the phase velocity of a modulation microwave in a quasi-velocity-matched (QVM electro-optic (EO phase modulator (QVM-EOM using EO sampling which is accurate and the most reliable technique for measuring voltage waveforms at an electrode. The substrate of the measured QVM-EOM is a stoichiometric periodically domain-inverted LiTaO3 crystal. The electric field of a standing wave in a resonant microstrip line (width: 0.5 mm, height: 0.5 mm is measured by employing a CdTe crystal as an EO sensor. The wavelength of the traveling microwave at 16.0801 GHz is determined as 3.33 mm by fitting the theoretical curve to the measured electric field distribution. The phase velocity is estimated as vm=5.35×107 m/s, though there exists about 5% systematic error due to the perturbation by the EO sensor. Relative dielectric constant of εr=41.5 is led as the maximum likelihood value that derives the estimated phase velocity.

  17. Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge

    International Nuclear Information System (INIS)

    Andreev, A. G.; Bazelyan, E. M.; Bulatov, M. U.; Kuzhekin, I. P.; Makalsky, L. M.; Sukharevskij, D. I.; Syssoev, V. S.

    2008-01-01

    A positive leader in air at gap lengths of up to 8 m was studied experimentally on an open experimental stand. The voltage source was a 6-MV pulsed voltage generator or an artificial charged aerosol cloud. The dependence of the leader velocity on the current in the range 0.2-8 A was determined by simultaneously recording the optical picture and electric parameters of the discharge. Particular attention was paid to the final-jump phase of the discharge, when the gap was completely bridged by the streamer zone of the leader. It is shown that the character of the dependence of the leader velocity on the current in this phase remains unchanged; hence, the final-jump phase can be used in experiments in which the current has to be varied within a wide range. For this purpose, one can use a damping resistance, which is inefficient in the initial phase. The parameters of the power-law dependence of the leader velocity on the current at currents of a few amperes are established reliably. It is found that the power-law dependence with constant parameters is inapplicable to calculate the leader velocity at currents of about 0.1 A, which correspond to the lower limit of the leader viability.

  18. Analytical and numerical studies of approximate phase velocity matching based nonlinear S0 mode Lamb waves for the detection of evenly distributed microstructural changes

    International Nuclear Information System (INIS)

    Wan, X; Xu, G H; Tao, T F; Zhang, Q; Tse, P W

    2016-01-01

    Most previous studies on nonlinear Lamb waves are conducted using mode pairs that satisfying strict phase velocity matching and non-zero power flux criteria. However, there are some limitations in existence. First, strict phase velocity matching is not existed in the whole frequency bandwidth; Second, excited center frequency is not always exactly equal to the true phase-velocity-matching frequency; Third, mode pairs are isolated and quite limited in number; Fourth, exciting a single desired primary mode is extremely difficult in practice and the received signal is quite difficult to process and interpret. And few attention has been paid to solving these shortcomings. In this paper, nonlinear S0 mode Lamb waves at low-frequency range satisfying approximate phase velocity matching is proposed for the purpose of overcoming these limitations. In analytical studies, the secondary amplitudes with the propagation distance considering the fundamental frequency, the maximum cumulative propagation distance (MCPD) with the fundamental frequency and the maximum linear cumulative propagation distance (MLCPD) using linear regression analysis are investigated. Based on analytical results, approximate phase velocity matching is quantitatively characterized as the relative phase velocity deviation less than a threshold value of 1%. Numerical studies are also conducted using tone burst as the excitation signal. The influences of center frequency and frequency bandwidth on the secondary amplitudes and MCPD are investigated. S1–S2 mode with the fundamental frequency at 1.8 MHz, the primary S0 mode at the center frequencies of 100 and 200 kHz are used respectively to calculate the ratios of nonlinear parameter of Al 6061-T6 to Al 7075-T651. The close agreement of the computed ratios to the actual value verifies the effectiveness of nonlinear S0 mode Lamb waves satisfying approximate phase velocity matching for characterizing the material nonlinearity. Moreover, the ratios derived

  19. A Centerless Circular Array Method: Extracting Maximal Information on Phase Velocities of Rayleigh Waves From Microtremor Records From a Simple Seismic Array

    Science.gov (United States)

    Cho, I.; Tada, T.; Shinozaki, Y.

    2005-12-01

    We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given

  20. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  1. Gene encoding gamma-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti N; Tripathi, Anil K

    2010-07-04

    Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (gamma-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only gamma-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one beta-CA and two gamma-CAs. One of the putative gamma-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-gamma-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a gamma-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized gamma-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  2. Velocity navigator for motion compensated thermometry.

    Science.gov (United States)

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  3. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  4. Performance Analysis of Spectral-Phase-Encoded Optical CDMA System Using Two-Photon-Absorption Receiver Structure for Asynchronous and Slot-Level Synchronous Transmitters

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2007-06-01

    In this paper, we analyze the performance of a nonlinear two-photon-absorption (TPA) receiver and compare its performance with that of a single-photon-absorption (SPA) receiver in the context of spectral-phase-encoded optical code-division multiple access (CDMA) technique. The performances for the above systems are evaluated for two different transmission scenarios, namely, asynchronous and slot-level synchronous transmitters. Performance evaluation includes different sources of degradation such as multiple-access interference, noise due to optical amplification, shot noise, and thermal noise. In obtaining the performance, the mean and variance of the received signal in each of the above techniques are derived, and bit error rate is obtained using Gaussian approximation. In general, it is shown that TPA receivers are superior in performance with respect to SPA receivers when the receiver employs a much slower photodetector in comparison with the laser's transmitted pulse duration. This, indeed, is the reason behind the choice of nonlinear receivers, such as TPA, in most spectral-phase-encoded optical CDMA systems.

  5. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  6. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    Science.gov (United States)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  7. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    International Nuclear Information System (INIS)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Mansoor Hameed Inayat; Iqbal Hussain Khan

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and 99m Tc in the form of sodium pertechnetate eluted from a 99 Mo/ 99m Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer 99m Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  8. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....

  9. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  10. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Science.gov (United States)

    2010-01-01

    Background Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs) are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam) has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1). Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration. PMID:20598158

  11. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  12. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  13. Does the application of gadolinium-DTPA have an impact on magnetic resonance phase contrast velocity measurements? Results from an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Heverhagen, J.T. E-mail: heverhag@post.med.uni-marburg.de; Hoppe, M.; Klose, K.-J.; Wagner, H.-J

    2002-10-01

    Introduction/objective: To evaluate the potential influence of various concentrations of gadolinium (Gd)-DTPA on magnetic resonance phase contrast (MR PC) velocimetry. Material and methods: Imaging was done with a 1.0 T scanner using a standard Flash 2D sequence and a circular polarized extremity coil. In a validated flow phantom with a defined 75% area stenosis different concentrations of Gd-DTPA, diluted in a 10:1 water-yogurt mixture, MR PC measurements were correlated with a Doppler guide wire as gold standard. Results: MR PC measurements correlated well with the Doppler derived data (r=0.99; P<0.01; maximum pre-stenotic velocity: 21.6{+-}0.5 cm/s; maximum intra-stenotic velocity: 81.7{+-}0.6 cm/s). Following Gd-DTPA administration no significant (P>0.05; Student's t-test) flow measurement changes were noted (maximum pre-stenotic velocity: 21.3{+-}1.3 cm/s; maximum intra-stenotic velocity: 84.0{+-}3.6 cm/s). However, delineation of the perfused lumen was enhanced after the application of Gd-DTPA. Discussions and conclusion: The application of Gd-DTPA does not affect MR PC velocimetry. However, the application of contrast media allowed a more accurate vessel segmentation. MR PC measurements can be reliably carried out after application of Gd-DTPA.

  14. Aharonov-Casher phase shift and the change in velocity of a moving magnet traversing an electric field

    International Nuclear Information System (INIS)

    March, N.H.

    2006-08-01

    Motivated by the theoretical work of Boyer [J. Phys. A: Math. Gen. 39 (2006) 3455] plus the quite recent interferometric experiment of Shinohara, Aoki and Morinaga [Phys. Rev. A66 (2002) 042106] in which the scalar Aharonov-Bohm effect was studied, we re-open the extension to neutral particles carrying a magnetic moment and passing through a region of intense electric field, treated theoretically by Aharonov and Casher (AC) and independently by Anandan. An alternative interpretation of results on (a) neutrons and (b) TlF molecules to that afforded by AC is shown to involve only (i) the de Broglie wavelength of matter waves and (ii) the prediction from Maxwell's equations for the change in velocity of a neutral moving magnet as it enters or leaves an electric field. The exquisite sensitivity of experiment (b) allows a fractional change in velocity of order 10 -15 to be quantitatively determined. (author)

  15. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    Science.gov (United States)

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  16. Inversion of Love wave phase velocity using smoothness-constrained least-squares technique; Heikatsuka seiyakutsuki saisho jijoho ni yoru love ha iso sokudo no inversion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, S [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1996-10-01

    Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.

  17. High-order-harmonic generation from solids: The contributions of the Bloch wave packets moving at the group and phase velocities

    Science.gov (United States)

    Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.

  18. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  19. Velocity control in three-phase induction motors using PIC; Controle de velocidade de motor de inducao trifasico usando PIC

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino, M.A.; Silva, G.B.S.; Grandinetti, F.J. [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia; Universidade de Taubate (UNITAU), SP (Brazil)], Emails: abud@feg.unesp.br, gabonini@yahoo.com.br, grandinetti@unitau.br

    2009-07-01

    This paper presents a technique for speed control three-phase induction motor using the pulse width modulation (PWM), in open loop while maintaining the tension for constant frequency. The technique is adapted from a thesis entitled 'Control of the three-phase induction motor, using discrete PWM generation, optimized and synchronized', where studies are presented aimed at their application in home appliances, to eliminate mechanical parts, replaced by low cost electronic control, thus having a significant reduction in power consumption. Initially the experiment was done with the Intel 80C31 micro controller. In this paper, the PWM modulation is implemented using a PIC micro controller, and the speed control kept a low profile, based on tables, synchronized with transitions and reduced generation of harmonics in the network. Confirmations were made using the same process of building tables, but takes advantage of the program of a RISC device.

  20. Analysis of two-phase flow instability in vertical boiling channels I: development of a linear model for the inlet velocity perturbation

    International Nuclear Information System (INIS)

    Hwang, D.H.; Yoo, Y.J.; Kim, K.K.

    1998-08-01

    A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs

  1. Evidence for small-scale convection in the Pacific and Atlantic upper mantle from joint analysis of surface wave phase velocity and seafloor bathymetry

    Science.gov (United States)

    Ma, Z.; Dalton, C. A.

    2017-12-01

    It has been long observed that the rate of seafloor subsidence in the Pacific Ocean is lower than predicted by half-space cooling at ages older than 70 Myr. The magnitude, geographical distribution, onset time, and physical origin of the flattening are fundamental to our understanding of the evolution of oceanic lithosphere, and give important constraints on the Earth's heat budget and ocean volume throughout its history. However, none of these quantities is well established even after a long history of debates. Here, we present evidence from bathymetry and seismic tomography for the wide-scale operation of small-scale convection in the Pacific and Atlantic upper mantle. We track the temporal evolution of surface wave phase velocity and seafloor topography along age trajectories, which connect each piece of seafloor with the ridge segment that created it. The half-space cooling model (HSCM) and plate cooling model are used to predict the age dependence of phase velocity and bathymetry and to identify, for each age trajectory, the age at which the HSCM fails to explain the observations. The phase velocity and bathymetry are analyzed independently and yet yield identical results for more than 80% of points. We observe a wide range of ages at which the HSCM fails in the Atlantic and a much narrower range in the Pacific. We find that the age at which the HSCM fails is anti-correlated with the present-day depth of the ridge axis, with younger failure ages corresponding to deeper ridge axes and therefore colder mantle beneath the ridge.Such dependence is best explained by the small-scale convection model in which the effective viscosity of the lithosphere is regulated by the dehydration process that happens at the mid-ocean ridges. Decompression melting at a ridge removes water from the mantle and generates a depleted, dehydrated, and viscous layer. Since high mantle potential temperatures cause decompression melting to begin at greater depths, the thickness of the

  2. Does the application of gadolinium-DTPA have an impact on magnetic resonance phase contrast velocity measurements? Results from an in vitro study

    International Nuclear Information System (INIS)

    Heverhagen, J.T.; Hoppe, M.; Klose, K.-J.; Wagner, H.-J.

    2002-01-01

    Introduction/objective: To evaluate the potential influence of various concentrations of gadolinium (Gd)-DTPA on magnetic resonance phase contrast (MR PC) velocimetry. Material and methods: Imaging was done with a 1.0 T scanner using a standard Flash 2D sequence and a circular polarized extremity coil. In a validated flow phantom with a defined 75% area stenosis different concentrations of Gd-DTPA, diluted in a 10:1 water-yogurt mixture, MR PC measurements were correlated with a Doppler guide wire as gold standard. Results: MR PC measurements correlated well with the Doppler derived data (r=0.99; P 0.05; Student's t-test) flow measurement changes were noted (maximum pre-stenotic velocity: 21.3±1.3 cm/s; maximum intra-stenotic velocity: 84.0±3.6 cm/s). However, delineation of the perfused lumen was enhanced after the application of Gd-DTPA. Discussions and conclusion: The application of Gd-DTPA does not affect MR PC velocimetry. However, the application of contrast media allowed a more accurate vessel segmentation. MR PC measurements can be reliably carried out after application of Gd-DTPA

  3. Coma Berenices: The First Evidence for Incomplete Vertical Phase-mixing in Local Velocity Space with RAVE—Confirmed with Gaia DR2

    Science.gov (United States)

    Monari, G.; Famaey, B.; Minchev, I.; Antoja, T.; Bienaymé, O.; Gibson, B. K.; Grebel, E. K.; Kordopatis, G.; McMillan, P.; Navarro, J.; Parker, Q. A.; Quillen, A. C.; Reid, W.; Seabroke, G.; Siebert, A.; Steinmetz, M.; Wyse, R. F. G.; Zwitter, T.

    2018-05-01

    Before the publication of the Gaia DR2 we confirmed with RAVE and TGAS an observation recently made with the GALAH survey by Quillen ey al. concerning the Coma Berenices moving group in the Solar neighbourhood, namely that it is only present at negative Galactic latitudes. This allowed us to show that it is coherent in vertical velocity, providing a first evidence for incomplete vertical phase-mixing. We estimated for the first time from dynamical arguments that the moving group must have formed at most ~ 1.5 Gyr ago, and related this to a pericentric passage of the Sagittarius dwarf satellite galaxy. The present note is a rewritten version of the original arXiv post on this result now also including a confirmation of our finding with Gaia DR2.

  4. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  5. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Correia de Verdier, Maria; Wikstroem, Johan

    2016-01-01

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  6. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  7. Application of velocity imaging and gradient-recalled echo in neuroimaging

    International Nuclear Information System (INIS)

    Boyko, O.B.; Pelc, N.J.; Shimakawa, A.

    1990-01-01

    This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients

  8. Tradeoff between insensitivity to depth-induced spherical aberration and resolution of 3D fluorescence imaging due to the use of wavefront encoding with a radially symmetric phase mask

    Science.gov (United States)

    Doblas, Ana; Dutta, Ananya; Saavedra, Genaro; Preza, Chrysanthe

    2018-02-01

    Previously, a wavefront encoded (WFE) imaging system implemented using a squared cubic (SQUBIC) phase mask has been verified to reduce the sensitivity of the imaging system to spherical aberration (SA). The strength of the SQUBIC phase mask and, as consequence, the performance of the WFE system are controlled by a design parameter, A. Although the higher the A-value, the more tolerant the WFE system is to SA, this is accomplished at the expense of the effective imaging resolution. In this contribution, we investigate this tradeoff in order to find an optimal A-value to balance the effect of SA and loss of resolution.

  9. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    International Nuclear Information System (INIS)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L

    2016-01-01

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  10. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  11. Range of wavelengths possible to estimate phase velocities of surface waves in microtremors; Bido tansaho ni okeru suitei kanona bidochu no hyomenha iso sokudo no hacho han`i

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, K; Okada, H; Ling, S [Hokkaido University, Sapporo (Japan)

    1996-05-01

    To specify the maximum wavelength of the phase velocities that can be estimated by the spatial autocorrelation (SPAC) method or F-K method in microtremor exploration, investigations were conducted using numerical simulation. In view of feasibility, an equilateral triangle array was employed, the maximum radius of the array having 7 observation points being 0.10km. The dispersion curve of the Rayleigh wave basic mode was calculated from an underground structure model. White noise was used as the incident wave, and, in case the waves came in from multiple directions, a different phase spectrum was assigned to each direction. In searching for the maximum wave length of phase velocities that could be estimated, a limit was imposed upon estimation, and it was prescribed that the wavelength be the limit if the difference between the theoretical value and estimated phase velocity was 5% or higher. As the result, it was found that it is possible to estimate the phase velocity when the wavelength is up to approximately 10 times longer than the array maximum radius in the SPAC method, and up to approximately 5 times longer in case of the F-K method. 10 refs., 5 figs., 1 tab.

  12. Comparison by magnetic resonance phase contrast imaging of pulse-wave velocity in patients with single ventricle who have reconstructed aortas versus those without.

    Science.gov (United States)

    Fogel, Mark A; Li, Christine; Nicolson, Susan C; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Yoganathan, Ajit P; Whitehead, Kevin K

    2014-12-15

    Pulse-wave velocity (PWV), a measure of arterial stiffness, is a known independent risk factor for cardiovascular events. Patients with single ventricle who undergo aortic to pulmonary anastomosis (recon) have noncompliant patch material inserted into the neoaorta, possibly increasing vessel stiffness and afterload. The purpose of this study is to determine if PWV in patients with single ventricle differed between those who did and those who did not undergo aortic reconstruction (nonrecon). We retrospectively reviewed cardiac magnetic resonance anatomic, cine, and phase contrast evaluations in the ascending aorta and descending aorta (DAo) at the level of the diaphragm data from 126 patients with single ventricle (8.6 ± 8.0 years) from January 2012 to May 2013. Significance = p 13 years old had a higher PWV than those 13 years old, PWV of those with recon was higher than nonrecon DAo distensibility was similar between both groups. There was no difference in age, body surface area, or cardiac index between recon and nonrecon. No correlations between various hemodynamic and ventricular function parameters with PWV were noted. In conclusion, PWV in recon is higher than in nonrecon with similar DAo distensibility implicating the aortic reconstruction as a possible cause of increased afterload; older recon patients have stiffer aortas than younger ones, possibly imposing an additional cardiovascular risk in the future. Other biomaterials may potentially moderate PWV if clinical outcome is adversely affected. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Comparison by Magnetic Resonance Phase Contrast of Pulse Wave Velocity in Patients with Single Ventricle and Reconstructed Aortas versus Those Without

    Science.gov (United States)

    Fogel, Mark A.; Li, Christine; Nicolson, Susan C; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S.; Harris, Matthew A.; Yoganathan, Ajit P; Whitehead, Kevin K.

    2015-01-01

    Pulse wave velocity (PWV), a measure of arterial stiffness, is a known independent risk factor for cardiovascular events. Single ventricle patients who undergo aortic to pulmonary anastomosis (recon) have non-compliant patch material inserted into the neo-aorta, possibly increasing vessel stiffness and afterload. The purpose of this study is to determine if PWV differed in single ventricle patients who did and did not undergo aortic reconstruction (no-recon). We retrospectively reviewed cardiac magnetic resonance anatomic, cine and phase contrast evaluations in the ascending (AAo) and descending aorta (DAo) at the level of the diaphragm data from 126 single ventricle patients (8.6±8.0 years) from January 2012 to May, 2013. Significance = P 13 years had a higher PWV than those < 7 years (4.5±0.6 vs 3.5±0.7 m/s, P=0.004). DAo distensibility was similar between both groups. There was no difference in age, body surface area or cardiac index between recon and no-recon. No correlations between various hemodynamic and ventricular function parameters with PWV were noted. In conclusion, PWV in recon is higher than in no-recon with similar DAo distensibility implicating the aortic reconstruction as a possible cause of increased afterload; older recon have stiffer aortas than younger ones possibly imposing an additional cardiovascular risk in the future. Other biomaterials may potentially moderate PWV if clinical outcome is adversely affected. PMID:25432153

  14. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  15. Multi-dimensional modeling of two-phase flow in rod bundles and interpretation of velocities measured in BWRs by the cross-correlation technique

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1984-04-01

    The authors present an as precise as possible interpretation of velocity measurements in BWRs by the cross-correlation technique, which is based on the radially non-uniform quality and velocity distribution in BWR type bundles, as well as on our knowledge about the spatial 'field of view' of the in-core neutron detectors. After formulating the three-dimensional two-fluid model volume/time averaged equations and pointing out some problems associated with averaging, they expound a little on the turbulence mixing and void drift effects, as well as on the way they are modelled in advanced subchannel analysis codes like THERMIT or COBRA-TF. Subsequently, some comparisons are made between axial velocities measured in a commercial BWR by neutron noise analysis, and the steam velocities of the four subchannels nearest to the instrument tube of one of the four bundles as predicted by COBRA-III and by THERMIT. Although as expected, for well-known reasons, COBRA-III predicts subchannel steam velocities which are close to each other, THERMIT correctly predicts in the upper half of the core three largely different steam velocities in the three different types of BW0 subchannels (corner, edge and interior). (Auth.)

  16. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2013-01-01

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share

  17. Instantaneous axial velocity of a radioactive tracer determined with radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fraguio, Maria Sol; Cassanello, Miryan C., E-mail: miryan@di.fcen.uba.a [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Programa de Investigacion y Desarrollo de Fuentes Alternativas de Materias Primas y Energia (PINMATE); Cardona, Maria Angelica; Hojman, Daniel, E-mail: cardona@tandar.cnea.gov.a [CONICET, Buenos Aires (Argentina); Somacal, Hector [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Centro Atomico Constituyentes. Dept. de Fisica

    2009-07-01

    Radioactive Particle Tracking (RPT) is a technique that has been successfully used to get features of the liquid and/or the solid motion in multiphase contactors. It is one of the rare techniques able to provide experimental data in dense and strongly turbulent multiphase media. Validation of the technique has always been based on comparing the estimated mean velocity to an imposed mean velocity although the extracted features are frequently related to the instantaneous velocities. The present work pursues the analysis, through calibration experiments, of the ability of RPT to get the actual tracer instantaneous velocities. With this purpose, the motion of a radioactive tracer attached to a moving rod driven by a pneumatic system is reconstructed from the combined response of an array of 10 NaI(Tl) scintillation detectors. Simultaneously, the tracer motion is registered through an encoder able to establish the axial tracer coordinate with high precision and high time resolution. The tracer is a gold particle, activated by neutron bombardment. The rod is moved at different velocities and it travels upwards and downwards close to the column centre. A mini-pilot scale bubble column is used as the test facility. The model liquid is tap water in batch mode and the gas is air, flowing at different gas velocities, spanning the homogeneous and the heterogeneous flow regimes. Time series of the entirety response of all the detectors, while the rod is moving at different imposed velocities within the two phase emulsion, are measured with a sampling period of 0.03 s during about 2 minutes. The instantaneous tracer positions and velocities reconstructed from RPT and the one obtained from the encoder response are compared under different operating conditions and for different tracer velocities. (author)

  18. Velocity of a single gas plug rising through a particle-gas-liquid three-phase flow (In the case that particles updrift in a stagnant liquid column)

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Shimada, Jun; Ohtake, Hiroyasu

    1999-01-01

    The velocity of a single air plug rising through a stagnant water column in a pipe with updrifting particles has been examined at atmospheric pressure and room temperature. The particles used were polymer balls with a diameter of 3.18 mm and a density of 0.835 x 10 -3 kg/m 3 . The water velocity in a film around the plug and a wake region behind the plug was measured by a laser Doppler velocimeter. The thickness of the film was also measured with a dye-fluoresce-method by a laser ray. When the updrifting particles were introduced, the rising velocity of the plug became fast a little. However, the velocity was considerably slower than that in the falling particle case and independent on the particle introduction rate. The film around the plug was thicker a little than that in the no particle case, however considerably thinner than that in the falling particle case. The water velocity in the film around the plug was slower a little than that in the no particle case, and not dependent on the particle introduction rate contrary to that in the falling particle case. The vortex size behind the plug was almost the same as that in the no particle case although the vortex region was spread downward in the falling particle case. (author)

  19. Investigating the Relationship between Sprint and Jump Performances with Velocity and Power Parameters during Propulsive Phase of the Loaded-Squat Jump Exercise

    Science.gov (United States)

    Can, Ibrahim

    2018-01-01

    The purpose of this study was to investigate the relationship between sprint and jump performance with velocity parameters in the loaded-squat jump exercise (SQ[subscript Loaded]). In accordance with this purpose, a total of 13 athletes competing in martial sports have participated in this study voluntarily. In this study, sprint tests, vertical…

  20. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  1. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Puntel, Mariana [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Ghulam, Muhammad A.K.M. [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Farrokhi, Catherine [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Kroeger, Kurt M.; Salem, Alireza [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Lacayo, Liliana [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Pechnick, Robert N. [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, CA (United States); Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Palmer, Donna; Ng, Philip [Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 (United States); and others

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation study at

  2. A metronome for controlling the mean velocity during the bench press exercise.

    Science.gov (United States)

    Moras, Gerard; Rodríguez-Jiménez, Sergio; Busquets, Albert; Tous-Fajardo, Julio; Pozzo, Marco; Mujika, Iñigo

    2009-05-01

    Lifting velocity may have a great impact on strength training-induced adaptations. The purpose of this study was to validate a method including a metronome and a measurement tape as inexpensive tools for the estimation of mean lifting velocity during the bench press exercise. Fifteen subjects participated in this study. After determining their one repetition maximum (1RM) load, we estimated the maximum metronome rhythm (R) that each subject could maintain in the concentric phase for loads of 40 and 60% of 1RM. To estimate R, the 3 repetitions with highest concentric power, as measured by means of a linear encoder, were selected, and their average duration was calculated and converted to lifting rhythm in beats per minute (bpm) for each subject. The range of motion was measured using a regular tape and kept constant during all exercises. Subjects were instructed to begin with the barbell at arm lengths and lower it in correspondence with the metronome beep. They subsequently performed 5 repetitions at 3 different rhythms relative to R (50, 70, and 90% R) for each training load (40 and 60% of 1RM). A linear encoder was attached to the bar and used as a criterion to measure the vertical displacement over time. For each rhythm, the mean velocity was calculated with the metronome (time) and the reference distance and compared with that recorded by the linear encoder. The SEM for velocity between both testing methods ranged from 0.02 to 0.05 m.s (coefficient of variation, 4.0-6.4%; Pearson's correlation, 0.8-0.95). The present results showed that the use of a metronome and a measurement tape may be a valid method to estimate the mean velocity of execution during the bench press exercise. This simple method could help coaches and athletes achieve their strength training goals, which are partly determined by lifting velocity.

  3. A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.

    Science.gov (United States)

    Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M

    2014-10-01

    Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.

  4. THE LOCATION OF NON-THERMAL VELOCITY IN THE EARLY PHASES OF LARGE FLARES—REVEALING PRE-ERUPTION FLUX ROPES

    International Nuclear Information System (INIS)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. L.; Cheung, Mark C. M.; Kontar, Eduard P.; Hara, Hirohisa

    2013-01-01

    Non-thermal velocity measurements of the solar atmosphere, particularly from UV and X-ray emission lines have demonstrated over the decades that this parameter is important in understanding the triggering of solar flares. Enhancements have often been observed before intensity enhancements are seen. However, until the launch of Hinode, it has been difficult to determine the spatial location of the enhancements to better understand the source region. The Hinode EUV Imaging Spectrometer has the spectral and spatial resolution to allow us to probe the early stages of flares in detail. We analyze four events, all of which are GOES M- or X-classification flares, and all are located toward the limb for ease of flare geometry interpretation. Three of the flares were eruptive and one was confined. In all events, pre-flare enhancement in non-thermal velocity at the base of the active region and its surroundings has been found. These enhancements seem to be consistent with the footpoints of the dimming regions, and hence may be highlighting the activation of a coronal flux rope for the three eruptive events. In addition, pre-flare enhancements in non-thermal velocity were found above the looptops for the three eruptive events

  5. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  6. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  7. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  8. Blind encoding into qudits

    International Nuclear Information System (INIS)

    Shaari, J.S.; Wahiddin, M.R.B.; Mancini, S.

    2008-01-01

    We consider the problem of encoding classical information into unknown qudit states belonging to any basis, of a maximal set of mutually unbiased bases, by one party and then decoding by another party who has perfect knowledge of the basis. Working with qudits of prime dimensions, we point out a no-go theorem that forbids 'shift' operations on arbitrary unknown states. We then provide the necessary conditions for reliable encoding/decoding

  9. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  10. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    Science.gov (United States)

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  11. Comparison of high group velocity accelerating structures

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  12. On-site processing systems for determination of the phase velocity of Rayleigh waves in microtremors using the spatial autocorrelation method; Kukan jiko sokanho wo mochiita bidochu no Rayleigh ha iso sokudo no genba kettei system

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T; Umezawa, N [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1996-05-01

    To render the spatial autocorrelation (SAC) method easier to use, a system has been constructed that can be used with ease on the site for the calculation of phase velocities. This system can perform two observation methods of the same frequency characteristics, that is, the simultaneous multi-point observation and one-point independent observation. The pickup is a velocity type seismograph of a natural period of 1 second that has been so electrically adjusted as to work on an apparent natural period of 7 seconds. Among the frequency characteristics, those related to phase are regarded as important because the SAC method is based on the measurement of coherence between two points. The analysis software runs on a waveform processing software DADiSP/WIN designed for personal computers. To know the operability of this system on the site and to accumulate records using the SAC method, observations were made at the depth of 100-500m at 6 locations in Saitama Prefecture where the underground structure was known thanks to prior PS logging. As the result, a dispersion curve was obtained by use of an array of appropriate dimensions at every location agreeing with the underground structure. 9 refs., 10 figs.

  13. Experiment for estimating phase velocity and power fraction of Love wave from three component microtremor array observation in Morioka area; Moriokashiiki deno bido no sanseibun array kansoku ni yoru love ha no iso sokudo oyobi power hi suitei no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yakuwa, A; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.

  14. Characteristic wave velocities in spherical electromagnetic cloaks

    International Nuclear Information System (INIS)

    Yaghjian, A D; Maci, S; Martini, E

    2009-01-01

    We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.

  15. Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP-1)

    Science.gov (United States)

    Allen, M. J.; Tatham, D.; Faulkner, D. R.; Mariani, E.; Boulton, C.

    2017-08-01

    The Alpine Fault, a transpressional plate boundary between the Australian and Pacific plates, is known to rupture quasiperiodically with large magnitude earthquakes (Mw 8). The hydraulic and elastic properties of fault zones are thought to vary over the seismic cycle, influencing the nature and style of earthquake rupture and associated processes. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements performed on fault lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1), which sampled principal slip zone (PSZ) gouges, cataclasites, and fractured ultramylonites, with all recovered lithologies overprinted by abundant secondary mineralization, recording enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down-core axis and, when present, foliation. Measurements were conducted with pore pressure (H2O) held at 5 MPa over an effective pressure (Peff) range of 5-105 MPa. Permeabilities and seismic velocities decrease with proximity to the PSZ with permeabilities ranging from 10-17 to 10-21 m2 and Vp and Vs ranging from 4400 to 5900 m/s in the ultramylonites/cataclasites and 3900 to 4200 m/s at the PSZ. In comparison with intact country rock protoliths, the highly variable cataclastic structures and secondary phyllosilicates and carbonates have resulted in an overall reduction in permeability and seismic wave velocity, as well as a reduction in anisotropy within the fault core. These results concur with other similar studies on other mature, tectonic faults in their interseismic period.

  16. Modelling of P-waves velocity function from the PKiKP and PKIKP phases; Modelizacion de la funcion velocidad para las ondas P a partir de las fases PKiKP y PKIKP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Nicolas, M.

    2011-07-01

    The structure of the Earth is characterized by a number of regions which have different physical properties. For their study one uses models such PREM or IASPEI91. These models describe the internal structure of the Earth providing us the theoretical values of the velocity of the waves that pass through each of these regions. In this paper we focus on the waves that cross the inner core (PKIKP), and the reflected waves on the surface of the inner core (PKiKP). The aim of this study is to identify the PKiKP and PKIKP phases in a seismogram and compare them with the theoretical values obtained from the models. Another objective of this work is to propose an expression for the propagation velocity of seismic waves at the discontinuity between the outer and inner core from the minimization of waste of time (time difference between the arrival of the wave PKIKP and PKiKP). For this study we have selected two earthquakes, one occurred in Colombia, 04/26/1999 (Mw 5.9) and the other in Peru-Ecuador 16/11/2007 (Mw = 6.8). We have analyzed only the seismograms from stations with epicentral distances between 130 degree centigrade and 140 degree centigrade, because of the interference phenomena between the PKIKP and the PKiKP for epicentral distances less than 130 degree centigrade. (Author) 14 refs.

  17. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  18. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  19. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  20. A segmented K-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding

    DEFF Research Database (Denmark)

    Thomsen, C; Cortsen, M; Söndergaard, L

    1995-01-01

    for renal artery flow determination. The protocol uses 16 phase-encoding lines per heart beat during 16 heart cycles and gives a temporal velocity resolution of 160 msec. Comparison with a conventional ECG-triggered velocity mapping protocol was made in phantoms as well as in volunteers. In our study, both...... methods showed sufficient robustness toward complex flow in a phantom model. In comparison with the ECG technique, the segmentation technique reduced vessel blurring and pulsatility artifacts caused by respiratory motion, and average flow values obtained in vivo in the left renal artery agreed between......Two important prerequisites for MR velocity mapping of pulsatile motion are synchronization of the sequence execution to the time course of the flow pattern and robustness toward loss of signal in complex flow fields. Synchronization is normally accomplished by using either prospective ECG...

  1. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  2. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  3. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  4. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  5. Distinguishing zero-group-velocity modes in photonic crystals

    International Nuclear Information System (INIS)

    Ghebrebrhan, M.; Ibanescu, M.; Johnson, Steven G.; Soljacic, M.; Joannopoulos, J. D.

    2007-01-01

    We examine differences between various zero-group-velocity modes in photonic crystals, including those that arise from Bragg diffraction, anticrossings, and band repulsion. Zero-group velocity occurs at points where the group velocity changes sign, and therefore is conceptually related to 'left-handed' media, in which the group velocity is opposite to the phase velocity. We consider this relationship more quantitatively in terms of the Fourier decomposition of the modes, by defining a measure of how much the ''average'' phase velocity is parallel to the group velocity--an anomalous region is one in which they are mostly antiparallel. We find that this quantity can be used to qualitatively distinguish different zero-group-velocity points. In one dimension, such anomalous regions are found never to occur. In higher dimensions, they are exhibited around certain zero-group-velocity points, and lead to unusual enhanced confinement behavior in microcavities

  6. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  7. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  8. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  9. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  10. Electron velocity and momentum density

    International Nuclear Information System (INIS)

    Perkins, G.A.

    1978-01-01

    A null 4-vector eta + sigma/sub μ/based on Dirac's relativistic electron equation, is shown explicitly for a plane wave and various Coulomb states. This 4-vector constitutes a mechanical ''model'' for the electron in those staes, and expresses the important spinor quantities represented conventionally by n, f, g, m, j, kappa, l, and s. The model for a plane wave agrees precisely with the relation between velocity and phase gradient customarily used in quantum theory, but the models for Coulomb states contradict that relation

  11. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  12. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  13. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  14. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  15. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  16. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  17. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  18. Contributions of Feature Binding During Encoding and Functional Connectivity of the Medial Temporal Lobe Structures to Episodic Memory Deficits Across the Prodromal and First-Episode Phases of Schizophrenia.

    Science.gov (United States)

    Haut, Kristen M; van Erp, Theo G M; Knowlton, Barbara; Bearden, Carrie E; Subotnik, Kenneth; Ventura, Joseph; Nuechterlein, Keith H; Cannon, Tyrone D

    2015-03-01

    Patients with and at risk for psychosis may have difficulty using associative strategies to facilitate episodic memory encoding and recall. In parallel studies, patients with first-episode schizophrenia ( n = 27) and high psychosis risk ( n = 28) compared with control participants ( n = 22 and n = 20, respectively) underwent functional MRI during a remember-know memory task. Psychophysiological interaction analyses, using medial temporal lobe (MTL) structures as regions of interest, were conducted to measure functional connectivity patterns supporting successful episodic memory. During encoding, patients with first-episode schizophrenia demonstrated reduced functional coupling between MTL regions and regions involved in stimulus representations, stimulus selection, and cognitive control. Relative to control participants and patients with high psychosis risk who did not convert to psychosis, patients with high psychosis risk who later converted to psychosis also demonstrated reduced connectivity between MTL regions and auditory-verbal and visual-association regions. These results suggest that episodic memory deficits in schizophrenia are related to inefficient recruitment of cortical connections involved in associative memory formation; such deficits precede the onset of psychosis among those individuals at high clinical risk.

  19. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  20. From Boltzmann equations to steady wall velocities

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA

    2014-07-01

    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.

  1. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  2. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging

    KAUST Repository

    Xiong, Jinhui

    2017-07-21

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a

  3. Phase Vocoder

    Directory of Open Access Journals (Sweden)

    J.L. Flanagan

    2013-08-01

    Full Text Available A vocoder technique is described in which speech signals are represented by their short-time phase and amplitude spectra. A complete transmission system utilizing this approach is simulated on a digital computer. The encoding method leads to an economy in transmission bandwidth and to a means for time compression and expansion of speech signals.

  4. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  5. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  6. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  7. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  8. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  9. Analysis of flow dynamics of main pulmonary artery by cine phase contrast MR angiography

    International Nuclear Information System (INIS)

    Honda, Norinari; Machida, Kikuo; Mamiya, Toshio

    1996-01-01

    Nineteen studies of cine phase contrast MR angiography (PCMRA) of main pulmonary artery (MPA) entered the study. Cine PCMRA was obtained by a 1.5T MR imager with a gradient echo sequence coupled with velocity encoding bipolar pulses. Retrospective EKG gating was used. Mean velocity, maximum velocity, and maximum flow rate of MPA were 6.2 to 28 cm/s (mean/SD 13/5.1, n=18), 61 to 148 cm/s (mean/SD 102/30, n=13), and 12,561 to 30,113 ml/min (mean/SD 18,730/5,464, n=18), respectively. Retrograde flow in the MPA was noted to begin at late-to mid-systole. Retrograde flow occurred first in the posterior part (15/19) or occurred from periphery (4/19). Thus hemodynamic parameters and velocity maps of MPA can be obtained by cine PCMRA. (author)

  10. Surface wave velocity tracking by bisection method

    International Nuclear Information System (INIS)

    Maeda, T.

    2005-01-01

    Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)

  11. An evaluation of state-of-the-art two-velocity two-phase flow models and their applicability to nuclear reactor transient analysis. Volume 2. Theoretical bases. Final report

    International Nuclear Information System (INIS)

    Hughes, E.D.; Lyczkowski, R.W.; McFadden, J.H.

    1976-02-01

    A state-of-the-art review was conducted in order to provide the nuclear industry with a publicly available assessment of two velocity thermal-hydraulic models and their applicability to nuclear reactor technology. The two major objectives of this state-of-the-art evaluation were: (1) document the basic theory in a consistent self-contained report; and (2) apply a prototype 'two-velocity' code (UVUT) to a limited number of separate effect tests. The theoretical basis of the two-velocity models given in Volume 2 is divided into three parts; Part I is the derivation of the basic differential equations; Part II describes in detail, the constitutive models required for closure of the system of equations; and Part III presents the numerical solution schemes

  12. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  13. An evaluation of state-of-the-art two-velocity two-phase flow models and their applicability to nuclear reactor transient analysis. Volume 3. Data comparisons. Final report

    International Nuclear Information System (INIS)

    McFadden, J.H.; Lyczkowski, R.W.; Niederauer, G.F.

    1976-02-01

    A state-of-the-art review is conducted in order to provide the nuclear industry with a publicly available assessment of two-velocity thermal-hydraulic models and their applicability to nuclear reactor technology. The two major objectives of this state-of-the-art evaluation were: (1) document the basic theory in a consistent self-contained report; and (2) apply a prototype 'two-velocity' code (UVUT) to a limited number of separate effect tests. Volume 3 presents the data comparisons

  14. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  15. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  16. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  17. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer.

    Science.gov (United States)

    Morse, Michael A; Niedzwiecki, Donna; Marshall, John L; Garrett, Christopher; Chang, David Z; Aklilu, Mebea; Crocenzi, Todd S; Cole, David J; Dessureault, Sophie; Hobeika, Amy C; Osada, Takuya; Onaitis, Mark; Clary, Bryan M; Hsu, David; Devi, Gayathri R; Bulusu, Anuradha; Annechiarico, Robert P; Chadaram, Vijaya; Clay, Timothy M; Lyerly, H Kim

    2013-12-01

    To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).

  18. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  19. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    International Nuclear Information System (INIS)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Duk Young; Kim, Dongmin

    2013-01-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm

  20. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)

    2013-12-15

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  1. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.

    Science.gov (United States)

    Fontaine, A A; Heinrich, R S; Walker, P G; Pedersen, E M; Scheidegger, M B; Boesiger, P; Walton, S P; Yoganathan, A P

    1996-01-01

    The non-invasive, in-vivo assessment of prosthetic valve function is compromised by the lack of accurate measurements of the transvalvular flow fields or hemodynamics by current techniques. Short echo time magnetic resonance imaging (MRI) may provide a method for the non-invasive, in vivo assessment of prosthetic valve function by accurately measuring changes in the transvalvular flow fields associated with normal and dysfunctional prosthetic valves. The objectives of these in vitro experiments were to investigate the potential for using MRI as a tool to measure the complex flow fields distal to replacement heart valves, and to assess the accuracy of MRI velocity measurements by comparison with Laser Doppler Anemometry (LDA), a gold standard. The velocity fields downstream of tilting disc, bileaflet, ball and cage, and pericardial tissue valves were measured using both three-component LDA and MRI phase velocity encoding under a steady flow rate of 22.8 l/min, simulating peak systolic flow. The valves were tested under normal and stenotic conditions to assess the MRI capabilities under a wide range of local flow conditions, velocities and turbulence levels. A new short echo time MRI technique (FAcE), which allowed velocity measurements in stenotic jets with high turbulence, was tested. Good overall agreement was obtained between the MRI velocity measurements and the LDA data. The MRI velocity measurements adequately reproduced the spatial structure of the flow fields. In most cases peak velocities were accurately measured to within 15%. The results indicate that the FAcE MRI method has the potential to be used as a diagnostic tool to assess prosthetic valve function.

  2. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  3. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  4. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  5. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D., E-mail: megevand@mdp.edu.ar, E-mail: membiela@mdp.edu.ar, E-mail: sanchez@mdp.edu.ar [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  6. Lower bound on the electroweak wall velocity from hydrodynamic instability

    International Nuclear Information System (INIS)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-01-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis

  7. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  8. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    Science.gov (United States)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  9. Non-deterministic quantum CNOT gate with double encoding

    Science.gov (United States)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2013-09-01

    We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.

  10. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  11. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  12. Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations

    NARCIS (Netherlands)

    Prince, S.E.; Daselaar, S.M.; Cabeza, R.

    2005-01-01

    Using event-related functional magnetic resonance imaging, we identified brain regions involved in successful relational memory (RM) during encoding and retrieval for semantic and perceptual associations or in general, independent of phase and content. Participants were scanned while encoding and

  13. Distinctiveness and encoding effects in online sentence comprehension

    Directory of Open Access Journals (Sweden)

    Philip eHofmeister

    2014-12-01

    Full Text Available In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color. Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases --- here, a green word in a sentence with words colored white --- does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects.

  14. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  15. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase ...

  16. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    Science.gov (United States)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  17. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  18. The new INRIM rotating encoder angle comparator (REAC)

    International Nuclear Information System (INIS)

    Pisani, Marco; Astrua, Milena

    2017-01-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given. (paper)

  19. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  20. Overcoming pitfalls in the diagnosis of aortic dissection with phase-contrast cine MR imaging

    International Nuclear Information System (INIS)

    Herfkens, R.J.; Trefelner, E.C.; Jeffrey, R.B.; Pelc, N.J.; Steiner, R.M.; Francis, I.R.

    1991-01-01

    This paper evaluates whether phase contrast cine MR imaging improves the diagnostic accuracy in aortic dissection. Fifty-five MR examinations in 49 patients were analyzed. Gated coronal and axial spin-echo (SE) images and axial velocity encoded cine images were collected through the thoracic aorta. Blinded interpretations were obtained by first evaluating SE images, then SE and cine (magnitude) images, and finally with the addition of the velocity data for whether there was increase or decreased diagnostic confidence of aortic dissection. Comparisons were made with CT, angiography, and follow-up (including surgery). Fisher discriminant analysis showed that a statistically significant improvement in diagnostic accuracy was made by the addition of the velocity data in cases where a definite diagnosis of aortic dissection could not be made from the SE images alone

  1. Control rod velocity limiter

    International Nuclear Information System (INIS)

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  2. Velocity Dispersions Across Bulge Types

    International Nuclear Information System (INIS)

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-01-01

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  3. STARE velocities: 2. Evening westward electron flow

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2004-04-01

    Full Text Available Four evening events and one morning event of joint EISCAT/STARE observations during ~22h are considered and the differences between observed STARE line-of-sight (l-o-s velocities and EISCAT electron drift velocities projected onto the STARE beams are studied. We demonstrate that the double-pulse technique, which is currently in use in the STARE routine data handling, typically underestimates the true phase velocity as inferred from the multi-pulse STARE data. We show that the STARE velocities are persistently smaller (1.5–2 times than the EISCAT velocities, even for the multi-pulse data. The effect seems to be more pronounced in the evening sector when the Finland radar observes at large flow angles. We evaluate the performance of the ion-acoustic approach (IAA, Nielsen and Schlegel, 1985 and the off-orthogonal fluid approach (OOFA, Uspensky et al., 2003 techniques to predict the true electron drift velocity for the base event of 12 February 1999. The IAA technique predicts the convection reasonably well for enhanced flows of >~1000m/s, but not so well for slower ones. By considering the EISCAT N(h profiles, we derive the effective aspect angle and effective altitude of backscatter, and use this information for application of the OOFA technique. We demonstrate that the OOFA predictions for the base event are superior over the IAA predictions and thus, we confirm that OOFA predicts the electron velocities reasonably well in the evening sector, in addition to the morning sector, as concluded by Uspensky et al. (2003. To check how "robust" the OOFA model is and how successful it is for convection estimates without the EISCAT support, we analysed three additional evening events and one additional morning event for which information on N(h profiles was intentionally ignored. By accepting the mean STARE/EISCAT velocity ratio of 0.55 and the mean azimuth rotation of 9° (derived for the basic event, we show that the OOFA performs

  4. On linear relationship between shock velocity and particle velocity

    International Nuclear Information System (INIS)

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  5. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    Science.gov (United States)

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  6. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  7. Short-term effects of a standardized glucose load on region-specific aortic pulse wave velocity assessed by MRI

    NARCIS (Netherlands)

    Jonker, J.T.; Tjeerdema, N.; Hensen, L.C.; Lamb, H.J.; Romijn, J.A.; Smit, J.W.; Westenberg, J.J.; Roos, A. de

    2014-01-01

    PURPOSE: To assess the short-term effects of a standardized oral glucose load on regional aortic pulse wave velocity (PWV) using two-directional in-plane velocity encoded MRI. MATERIALS AND METHODS: A randomized, controlled intervention was performed in 16 male subjects (mean +/- standard deviation:

  8. Phase-contrast MR angiography of intracranial dural arteriovenous fistulae

    International Nuclear Information System (INIS)

    Cellerini, M.; Mascalchi, M.; Mangiafico, S.; Ferrito, G.P.; Scardigli, V.; Pellicano, G.; Quilici, N.

    1999-01-01

    MRI and phase-contrast MR angiography (PC MRA) were obtained in 13 patients with angiographically confirmed intracranial dural arteriovenous fistulae (DAVF). Three- and two-dimensional PC MRA was obtained with low (6-20 cm/s) and high (>40 cm/s) velocity encoding along the three main body axes. MRI showed focal or diffuse signal abnormalities in the brain parenchyma in six patients, dilated cortical veins in seven, venous pouches in four with type IV DAVF and enlargement of the superior ophthalmic vein in three patients with DAVF of the cavernous sinus. However, it showed none of the fistula sites and did not allow reliable identification of feeding arteries. 3D PC MRA enabled identification of the fistula and enlarged feeding arteries in six cases each. Stenosis or occlusion of the dural sinuses was detected in six of eight cases on 3D PC MRA with low velocity encoding. In six patients with type II DAVF phase reconstruction of 2D PC MRA demonstrated flow reversal in the dural sinuses or superior ophthalmic vein. (orig.)

  9. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...

  10. Effects of superficial gas velocity and fluid property on the ...

    African Journals Online (AJOL)

    In the present study, the influence of superficial gas velocity and fluid properties on gas holdup and liquid circulation velocity in a three-phase external loop airlift column using polystyrene (0.0036 m diameter and 1025.55 kg/m3 density) and nylon-6 (0.0035 m diameter and 1084.24 kg/m3 density) particles with aqueous ...

  11. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  12. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2017-06-01

    Full Text Available SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  13. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; Lopez, Pablo E. Martinez

    2003-01-01

    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter...... is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones......-optimal, modulo an encoding. The representation shift amounts to reading the type tags as constructors for higherorder abstract syntax. We substantiate our observation by considering a typed self-interpreter whose input syntax is higher-order. Specializing this interpreter with respect to a source program yields...

  14. Generation of the auroral electron velocity distribution by stochastic acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de.

    1990-07-01

    In a further development of the wave theory of the aurora, it is demonstrated, using a Monte-Carlo numerical model, that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions between an initially monotonic distribution and lower-hybrid electrostatic turbulence. The principal requirement is that the velocity spectrum of resonant waves has a sharp cut-off at high velocity. It is then shown that a cut-off is expected as a natural consequence of the difference between the phase and group velocities of lower-hybrid waves. The possibility is considered that a second peak, sometimes observed at lower velocities, is due to the same statistical mechanism, arising from the damping of waves of low phase velocity. An enhancement of wave intensity is found at higher velocities, where momentum flows preferentially from electrons to waves. The relation between the wave theory and the currently prevailing potential-difference theory emerges clearly from the analysis. (author)

  15. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution...... remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the −55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array...

  16. Secure quantum private information retrieval using phase-encoded queries

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Lukasz [CERN, 1211 Geneva 23, Switzerland and Poznan Supercomputing and Networking Center, Noskowskiego 12/14, PL-61-704 Poznan (Poland)

    2011-08-15

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  17. Secure quantum private information retrieval using phase-encoded queries

    International Nuclear Information System (INIS)

    Olejnik, Lukasz

    2011-01-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  18. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.; Wang, X.; Huang, Y.; Dai, W.; Boonyasiriwat, Chaiwoot

    2011-01-01

    shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both

  19. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  20. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  1. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  2. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  3. Southern high-velocity stars

    International Nuclear Information System (INIS)

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  4. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  5. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  6. Settling velocities in batch sedimentation

    International Nuclear Information System (INIS)

    Fricke, A.M.; Thompson, B.E.

    1982-10-01

    The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles

  7. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  8. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  9. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    International Nuclear Information System (INIS)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus

  10. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Contribution of stress and sex hormones to memory encoding.

    Science.gov (United States)

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  13. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  14. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  15. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  16. Velocity Estimate Following Air Data System Failure

    National Research Council Canada - National Science Library

    McLaren, Scott A

    2008-01-01

    .... A velocity estimator (VEST) algorithm was developed to combine the inertial and wind velocities to provide an estimate of the aircraft's current true velocity to be used for command path gain scheduling and for display in the cockpit...

  17. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  18. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  19. Physical exercise during encoding improves vocabulary learning in young female adults: a neuroendocrinological study.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Deusser, Marie; Thiel, Christian; Otterbein, Sascha; Montag, Christian; Reuter, Martin; Banzer, Winfried; Kaiser, Jochen

    2013-01-01

    Acute physical activity has been repeatedly shown to improve various cognitive functions. However, there have been no investigations comparing the effects of exercise during verbal encoding versus exercise prior to encoding on long-term memory performance. In this current psychoneuroendocrinological study we aim to test whether light to moderate ergometric bicycling during vocabulary encoding enhances subsequent recall compared to encoding during physical rest and encoding after being physically active. Furthermore, we examined the kinetics of brain-derived neurotrophic factor (BDNF) in serum which has been previously shown to correlate with learning performance. We also controlled for the BDNF val66met polymorphism. We found better vocabulary test performance for subjects that were physically active during the encoding phase compared to sedentary subjects. Post-hoc tests revealed that this effect was particularly present in initially low performers. BDNF in serum and BDNF genotype failed to account for the current result. Our data indicates that light to moderate simultaneous physical activity during encoding, but not prior to encoding, is beneficial for subsequent recall of new items.

  20. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  1. Cosmic string induced peculiar velocities

    International Nuclear Information System (INIS)

    van Dalen, A.; Schramm, D.N.

    1987-02-01

    We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab

  2. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  3. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)

    2017-05-15

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  4. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar

    2016-01-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  5. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey (Turkey)

    2016-04-18

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  6. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    Science.gov (United States)

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  7. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Attenuation and velocity dispersion in the exploration seismic frequency band

    Science.gov (United States)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to

  9. Encoding entanglement-assisted quantum stabilizer codes

    International Nuclear Information System (INIS)

    Wang Yun-Jiang; Bai Bao-Ming; Li Zhuo; Xiao He-Ling; Peng Jin-Ye

    2012-01-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n 2 ) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

  10. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  11. Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.

    Science.gov (United States)

    Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S

    2015-06-01

    Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.

  12. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  13. Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    International Nuclear Information System (INIS)

    Rabinovich, M.; Volkovskii, A.; Lecanda, P.; Huerta, R.; Abarbanel, H. D. I.; Laurent, G.

    2001-01-01

    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1) ! , i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

  14. Gas-rise velocities during kicks

    Energy Technology Data Exchange (ETDEWEB)

    White, D.B. (Sedco Forex (FR))

    1991-12-01

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is caused by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.

  15. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  16. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  18. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  19. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  20. Superconducting magnetic Wollaston prism for neutron spin encoding

    Energy Technology Data Exchange (ETDEWEB)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  1. Superconducting magnetic Wollaston prism for neutron spin encoding

    Science.gov (United States)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  2. Quantum Logical Operations on Encoded Qubits

    International Nuclear Information System (INIS)

    Zurek, W.H.; Laflamme, R.

    1996-01-01

    We show how to carry out quantum logical operations (controlled-not and Toffoli gates) on encoded qubits for several encodings which protect against various 1-bit errors. This improves the reliability of these operations by allowing one to correct for 1-bit errors which either preexisted or occurred in the course of operation. The logical operations we consider allow one to carry out the vast majority of the steps in the quantum factoring algorithm. copyright 1996 The American Physical Society

  3. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  4. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  5. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  6. Improvement of the bubble rise velocity model in the pressurizer using ALMOD 3 computer code to calculate evaporation

    International Nuclear Information System (INIS)

    Madeira, A.A.

    1985-01-01

    It's studied the improvement for the calculation of bubble rise velocity, by adding two different ways to estimate this velocity, one of which more adequate to pressures normally found in the Reactor Cooling System. Additionally, a limitation in bubble rise velocity growth was imposed, to account for the actual behavior of bubble rise in two-phase mixtures. (Author) [pt

  7. Atmospheric kinematics of high velocity long period variables

    International Nuclear Information System (INIS)

    Willson, L.A.

    1982-01-01

    Radial velocities of atomic absorption lines of three long period variables, RT Cyg, Z Oph and S Car, have been analysed in order to understand velocity gradients and discontinuities in their atmospheres. Phase coverage is from five days before maximum to 73 days after maximum for RT Cyg, from 17 days before to 44 days after maximum for Z Oph, and at 9 days before maximum for S Car. On a few spectrograms double lines were seen. All spectrograms were analysed by a four-parameter regression programme to yield the dependence of the radial velocity on the excitation potential, first ionization potential, wavelength and line strength, as indicators of the depth of line formation. The data were analysed to yield the velocity discontinuity across shock waves and velocity gradients between shock waves. Near maximum light the radial velocities cannot be understood by the presence of one shock only but rather require two shocks. The lower shock becomes apparent at the longer wavelengths. Consistent parameters are obtained if these stars are fundamental mode pulsators with total masses in the range of 0.5 to 1.0 solar mass and effective radii in the range of 0.85 to 1.5 x 10 13 cm. (author)

  8. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  9. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  10. The terminal rise velocity of bubble in a liquid column

    International Nuclear Information System (INIS)

    Mario Ar Talaia

    2005-01-01

    Full text of publication follows: As it is know, buoyancy and drag forces govern bubble rising velocity in a liquid column. These forces strongly depend on fluid proprieties and gravity as well as bubble equivalent diameter. The present work reports about a set of experiments bubble rising velocity in a liquid column using liquid with different kinematics viscosity. Records of terminal velocity were obtained, over a wide range of dynamic viscosity. The results show that the terminal rise velocity of bubble is strongly influenced by the effect of kinematics viscosity. The interpretation of physical phenomenon is considered. The set data permit to have a game of terminal velocities of 7.96 - 32.86 cm.s -1 with Reynolds number of 0.8 - 7491. The bubble movement is recorded with a camera video, which will be presented. Our aim goal is to present an original set data and the results are discussed in light of theory of two-phase flow. Prediction of bubble terminal velocity is discussed, so as, the range of applicability. (author)

  11. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  12. Confinement of light in periodic structures with negative phase velocity

    International Nuclear Information System (INIS)

    Driss Bria; Abdelmajid Essadqui; Bahram Djafari-Rouhani; Mohamed Azizi; Abdellah Daoudi; Abdelkrim Nougaoui

    2008-08-01

    We discuss unusual features of wave propagation in periodic arrays of slabs made of transparent left-handed metamaterials with simultaneously negative dielectric permittivity and magnetic permeability, and demonstrate the possibility of light confinement due to the appearance of complete photonic band-gaps in such one-dimensional structures. With an appropriate choice of the parameters, we show that it is possible to realize an absolute (or omnidirectional) band gap for either transverse electric (TE) or transverse magnetic (TM) polarizations of the electromagnetic waves. A combination of two multilayer structures composed of right-handed material (RHM) and left-handed metamaterials LHM is proposed to realize, in a certain range of frequency, an omnidirectional reflector of light for both polarizations. (author)

  13. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    Science.gov (United States)

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  14. Improvement of encoding and retrieval in normal and pathological aging with word-picture paradigm.

    Science.gov (United States)

    Iodice, Rosario; Meilán, Juan José G; Carro, Juan

    2015-01-01

    During the aging process, there is a progressive deficit in the encoding of new information and its retrieval. Different strategies are used in order to maintain, optimize or diminish these deficits in people with and without dementia. One of the classic techniques is paired-associate learning (PAL), which is based on improving the encoding of memories, but it has yet to be used to its full potential in people with dementia. In this study, our aim is to corroborate the importance of PAL tasks as instrumental tools for creating contextual cues, during both the encoding and retrieval phases of memory. Additionally, we aim to identify the most effective form of presenting the related items. Pairs of stimuli were shown to healthy elderly people and to patients with moderate and mild Alzheimer's disease. The encoding conditions were as follows: word/word, picture/picture, picture/word, and word/picture. Associative cued recall of the second item in the pair shows that retrieval is higher for the word/picture condition in the two groups of patients with dementia when compared to the other conditions, while word/word is the least effective in all cases. These results confirm that PAL is an effective tool for creating contextual cues during both the encoding and retrieval phases in people with dementia when the items are presented using the word/picture condition. In this way, the encoding and retrieval deficit can be reduced in these people.

  15. One-loop fluctuation-dissipation formula for bubble-wall velocity

    International Nuclear Information System (INIS)

    Arnold, P.

    1993-01-01

    The limiting bubble wall velocity during a first-order electroweak phase transition is of interest in scenarios for electroweak baryogenesis. Khlebnikov has recently proposed an interesting method for computing this velocity based on the fluctuation-dissipation theorem. It is demonstrated that at one-loop order this method is identical to simple, earlier techniques for computing the wall velocity based on computing the friction from particles reflecting off or transmitting through the wall in the ideal gas limit

  16. One-loop fluctuation-dissipation formula for bubble-wall velocity

    International Nuclear Information System (INIS)

    Arnold, P.

    1993-01-01

    The limiting bubble-wall velocity during a first-order electroweak phase transition is of interest in scenarios for electroweak baryogenesis. Khlebnikov has recently proposed an interesting method for computing this velocity based on the fluctuation-dissipation theorem. I demonstrate that at one-loop order this method is identical to simple, earlier techniques for computing the wall velocity based on computing the friction from particles reflecting off or transmitting through the wall in the ideal gas (''thin-wall'') limit

  17. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-08-20

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the en- coded shots have unique non-overlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Since the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is compara- ble to conventional RTM for both the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM.

  18. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  20. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  1. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  2. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    Science.gov (United States)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  4. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  5. Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. The Scandinavian Flow Group

    DEFF Research Database (Denmark)

    Thomsen, C; Ståhlberg, F; Stubgaard, M

    1990-01-01

    images. The phase information in the resultant image was converted to flow velocity with a calibration curve with the slope 26.5 radian.m-1.sec. The velocity versus time function was Fourier transformed and a continuous curve was fitted to the measured data with use of the first three harmonics...

  6. Encoding and immediate retrieval tasks in patients with epilepsy: A functional MRI study of verbal and visual memory.

    Science.gov (United States)

    Saddiki, Najat; Hennion, Sophie; Viard, Romain; Ramdane, Nassima; Lopes, Renaud; Baroncini, Marc; Szurhaj, William; Reyns, Nicolas; Pruvo, Jean Pierre; Delmaire, Christine

    2018-05-01

    Medial lobe temporal structures and more specifically the hippocampus play a decisive role in episodic memory. Most of the memory functional magnetic resonance imaging (fMRI) studies evaluate the encoding phase; the retrieval phase being performed outside the MRI. We aimed to determine the ability to reveal greater hippocampal fMRI activations during retrieval phase. Thirty-five epileptic patients underwent a two-step memory fMRI. During encoding phase, subjects were requested to identify the feminine or masculine gender of faces and words presented, in order to encourage stimulus encoding. One hour after, during retrieval phase, subjects had to recognize the word and face. We used an event-related design to identify hippocampal activations. There was no significant difference between patients with left temporal lobe epilepsy, patients with right temporal lobe epilepsy and patients with extratemporal lobe epilepsy on verbal and visual learning task. For words, patients demonstrated significantly more bilateral hippocampal activation for retrieval task than encoding task and when the tasks were associated than during encoding alone. Significant difference was seen between face-encoding alone and face retrieval alone. This study demonstrates the essential contribution of the retrieval task during a fMRI memory task but the number of patients with hippocampal activations was greater when the two tasks were taken into account. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    Science.gov (United States)

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  8. SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh

    2011-09-01

    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  9. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    International Nuclear Information System (INIS)

    Rout, G C; Panda, S

    2009-01-01

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  10. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  11. Velocity distribution of fragments of catastrophic impacts

    Science.gov (United States)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  12. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  13. Indirect Encoding in Neuroevolutionary Ship Handling

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2018-03-01

    Full Text Available In this paper the author compares the efficiency of two encoding schemes for artificial intelligence methods used in the neuroevolutionary ship maneuvering system. This may be also be seen as the ship handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units, created with an artificial neural network. The helmsman observes input signals derived form an enfironment and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of this project is to evolve a population of helmsmen with indirect encoding and compare results of simulation with direct encoding method.

  14. An Information Theoretic Characterisation of Auditory Encoding

    Science.gov (United States)

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  15. Quantitative measurement of hemodynamics of inferior vena in healthy volunteers with phase-contrast MR imaging at 3.0 T

    International Nuclear Information System (INIS)

    Ruan Zhibing; Fan Guangming; Jiao Jun; Min Dingyu

    2014-01-01

    Objective: To explore the feasibility of quantitative hemodynamics measurement of inferior vena cava (IVC) in healthy volunteers with phase-contrast sequence on 3.0 T MR system (3.0 T PC-MRI), and to evaluate the relationship between IVC lumen area, blood flow, and velocity. Methods: Fifty healthy adult volunteers prospective underwent IVC PC-MRI at 3.0 T MR system. All volunteers were from our hospital for the routine chest or abdomen examinations, no heart disease and lung disease always, heart rate, blood pressure, electrocardiogram was in normal range, no abnormalities were found in clinical and abdominal imaging examinations, and IVC disease was excluded by ultrasonic examination. The area (A), mean velocity (MV), mean flux (MF), regurgitant fraction (RF) and time-flow curve of upper and middle segments of IVC during one cardiac cycle were observed. Independent samples t test was used to compare IVC lumen area and blood flow, velocity between different genders, different age groups (18 to 30 years old group, more than 30 years old group) and different phase velocity encoding value of IVC middle segment, one-way ANOVA was used to compare different phase velocity encoding value of IVC upper segment [(60, 80, 100)cm/s]. Pearson correlation coefficient and regression equation were used to evaluate the relationships between area, blood flow, and velocity. Results: Among 50 patients with successful completion of the examination, significant difference was found in A, MV, MF and RF between the different IVC segments. MF of the IVC middle segment were (37.94 ± 7.32) and (33.68 ± 6.65) ml/s in male (n=24) and female (n=26), respectively; significant difference was found in different genders (t=2.49, P=0.017). MF of upper segment and middle segments of IVC were (54.89 ± 10.98) and (38.29 ± 7.54) ml/s in 18 to 30 years old group (n=27), while MF of upper segment and the middle of IVC were (44.96 ± 8.49) and (32.65 ± 5.59) ml/s in older than 30 years old group (n=23

  16. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  17. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Incremental phonological encoding during unscripted sentence production

    Directory of Open Access Journals (Sweden)

    Florian T Jaeger

    2012-11-01

    Full Text Available We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multiword production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer, they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact.

  19. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Lutenberg, Ariel; Perez-Quintian, Fernando; Rebollo, Maria A.

    2008-01-01

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  20. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  1. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  2. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  3. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  4. Application of Vectors to Relative Velocity

    Science.gov (United States)

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  5. Questions Students Ask: About Terminal Velocity.

    Science.gov (United States)

    Meyer, Earl R.; Nelson, Jim

    1984-01-01

    If a ball were given an initial velocity in excess of its terminal velocity, would the upward force of air resistance (a function of velocity) be greater than the downward force of gravity and thus push the ball back upwards? An answer to this question is provided. (JN)

  6. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  7. Intracyclic Velocity Variation of the Center of Mass and Hip in Breaststroke Swimming With Maximal Intensity.

    Science.gov (United States)

    Gourgoulis, Vassilios; Koulexidis, Stylianos; Gketzenis, Panagiotis; Tzouras, Grigoris

    2018-03-01

    Gourgoulis, V, Koulexidis, S, Gketzenis, P, and Tzouras, G. Intra-cyclic velocity variation of the center of mass and hip in breaststroke swimming with maximal intensity. J Strength Cond Res 32(3): 830-840, 2018-The aim of the study was to compare the center of mass (CM) and hip (HIP) intracyclic velocity variation in breaststroke swimming using 3-dimensional kinematic analysis. Nine male breaststrokes, of moderate performance level, swam 25-m breaststroke with maximal intensity, and their movements were recorded, both under and above the water surface, using 8 digital cameras. Their CM and HIP velocities and their intracyclic variations were estimated after manual digitization of 28 selected points on the body in a complete arm and leg breaststroke cycle. Paired sample t-tests or Wilcoxon tests, when the assumption of normality was broken, were used for statistical analyses. In both, CM and HIP velocity-time curves, the results revealed a similar pattern of 2 clear peaks associated with the leg and arm propulsive phases and 2 minimal velocities that corresponded to the arm and leg recovery phase and the lag time between the leg and arm propulsive phases, respectively. However, despite this similar general pattern, the HIP minimum resultant velocity was significantly lower, whereas its maximal value was significantly greater, than the corresponding CM values. Consequently, the HIP intracyclic swimming velocity fluctuation significantly overestimates the actual variation of the swimmer's velocity in breaststroke swimming.

  8. Calculation of the mean-square velocities of atom oscillations in the Moessbauer experiment

    International Nuclear Information System (INIS)

    Semenov, Ya.S.; Lebedev, M.P.

    2005-01-01

    To study mechanical and physical properties of solid bodies, it is important to know the behavior of rms velocities of atomic oscillations. Binary iron alloys in the vicinity of phase transition temperatures were investigated using the Moessbauer spectroscopy. The rms velocities of atomic oscillations demonstrate that 3d-3p direct chemical bonds for Si and 3d-4p direct chemical bonds for Ge are broken (formed) at the phase transition temperature; as a consequence, the velocities of atomic oscillations increase abruptly [ru

  9. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  10. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  11. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  12. 47 CFR 11.32 - EAS Encoder.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Equipment Requirements § 11... operation. (vi) Indicator Display. The encoder shall be provided with a visual and/or aural indicator which... to +50 degrees C and a range of relative humidity of up to 95%. (c) Primary Supply Voltage Variation...

  13. Toward Chemical Implementation of Encoded Combinatorial Libraries

    DEFF Research Database (Denmark)

    Nielsen, John; Janda, Kim D.

    1994-01-01

    The recent application of "combinatorial libraries" to supplement existing drug screening processes might simplify and accelerate the search for new lead compounds or drugs. Recently, a scheme for encoded combinatorial chemistry was put forward to surmount a number of the limitations possessed...

  14. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging

    KAUST Repository

    Xiong, Jinhui

    2017-04-11

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. We evaluate our method with both simulations and an experimental prototype setup.

  15. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  16. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  17. Cryptographic analysis on the key space of optical phase encryption algorithm based on the design of discrete random phase mask

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Li, Zengyan

    2013-07-01

    The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.

  18. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  19. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  20. Superluminal velocities. Illusion or reality?

    International Nuclear Information System (INIS)

    Pereyra, P.; Simanjuntak, H.P.

    2005-10-01

    We study the time-evolution of electromagnetic wave packets through optical superlattices. We follow the time evolution (described by Maxwell equations) of Gaussian packets with centroid in different energy regions. The time spent by the wave packet inside an optical structure agrees extremely well with the superluminal experimental results and the phase time predictions. (author)

  1. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    Science.gov (United States)

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by

  2. Cardiovascular change during encoding predicts the nonconscious mere exposure effect.

    Science.gov (United States)

    Ladd, Sandra L; Toscano, William B; Cowings, Patricia S; Gabrieli, John D E

    2014-01-01

    These studies examined memory encoding to determine whether the mere exposure effect could be categorized as a form of conceptual or perceptual implicit priming and, if it was not conceptual or perceptual, whether cardiovascular psychophysiology could reveal its nature. Experiment 1 examined the effects of study phase level of processing on recognition, the mere exposure effect, and word identification implicit priming. Deep relative to shallow processing improved recognition but did not influence the mere exposure effect for nonwords or word identification implicit priming for words. Experiments 2 and 3 examined the effect of study-test changes in font and orientation, respectively, on the mere exposure effect and word identification implicit priming. Different study-test font and orientation reduced word identification implicit priming but had no influence on the mere exposure effect. Experiments 4 and 5 developed and used, respectively, a cardiovascular psychophysiological implicit priming paradigm to examine whether stimulus-specific cardiovascular reactivity at study predicted the mere exposure effect at test. Blood volume pulse change at study was significantly greater for nonwords that were later preferred than for nonwords that were not preferred at test. There was no difference in blood volume pulse change for words at study that were later either identified or not identified at test. Fluency effects, at encoding or retrieval, are an unlikely explanation for these behavioral and cardiovascular findings. The relation of blood volume pulse to affect suggests that an affective process that is not conceptual or perceptual contributes to the mere exposure effect.

  3. Alpha oscillations and early stages of visual encoding

    Directory of Open Access Journals (Sweden)

    Wolfgang eKlimesch

    2011-05-01

    Full Text Available For a long time alpha oscillations have been functionally linked to the processing of visual information. Here we propose an new theory about the functional meaning of alpha. The central idea is that synchronized alpha reflects a basic processing mode that controls access to information stored in a complex long-term memory system, which we term knowledge system (KS in order to emphasize that it comprises not only declarative memories but any kind of knowledge comprising also procedural information. Based on this theoretical background, we assume that during early stages of perception, alpha ‘directs the flow of information’ to those neural structures which represent information that is relevant for encoding. The physiological function of alpha is interpreted in terms of inhibition. We assume that alpha enables access to stored information by inhibiting task irrelevant neuronal structures and by timing cortical activity in task relevant neuronal structures. We discuss a variety findings showing that evoked alpha and phase locking reflect successful encoding of global stimulus features in an early poststimulus interval of about 0 - 150 ms.

  4. ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists.

    Science.gov (United States)

    Pan, Yafeng; Li, Xianchun; Chen, Xi; Ku, Yixuan; Dong, Yujie; Dou, Zheng; He, Lin; Hu, Yi; Li, Weidong; Zhou, Xiaolin

    2017-10-01

    Previous studies have consistently demonstrated that superior mnemonists (SMs) outperform normal individuals in domain-specific memory tasks. However, the neural correlates of memory-related processes remain unclear. In the current EEG study, SMs and control participants performed a digit memory task during which their brain activity was recorded. Chinese SMs used a digit-image mnemonic for encoding digits, in which they associated 2-digit groups with images immediately after the presentation of each even-position digit in sequences. Behaviorally, SMs' memory of digit sequences was better than the controls'. During encoding in the study phase, SMs showed an increased right central P2 (150-250ms post onset) and a larger right posterior high-alpha (10-14Hz, 500-1720ms) oscillation on digits at even-positions compared with digits at odd-positions. Both P2 and high-alpha oscillations in the study phase co-varied with performance in the recall phase, but only in SMs, indicating that neural dynamics during encoding could predict successful retrieval of digit memory in SMs. Our findings suggest that representation of a digit sequence in SMs using mnemonics may recruit both the early-stage attention allocation process and the sustained information preservation process. This study provides evidence for the role of dynamic and efficient neural encoding processes in mnemonists. Copyright © 2017. Published by Elsevier Inc.

  5. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  6. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Mainak J. Patel

    2018-06-01

    Full Text Available Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells. TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation and velocity (through synchrony of the TC population spikes of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the

  7. An Intensional Concurrent Faithful Encoding of Turing Machines

    Directory of Open Access Journals (Sweden)

    Thomas Given-Wilson

    2014-10-01

    Full Text Available The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.

  8. Spatial Specificity in Spatiotemporal Encoding and Fourier Imaging

    Science.gov (United States)

    Goerke, Ute

    2015-01-01

    Purpose Ultrafast imaging techniques based on spatiotemporal-encoding (SPEN), such as RASER (rapid acquisition with sequential excitation and refocusing), is a promising new class of sequences since they are largely insensitive to magnetic field variations which cause signal loss and geometric distortion in EPI. So far, attempts to theoretically describe the point-spread-function (PSF) for the original SPEN-imaging techniques have yielded limited success. To fill this gap a novel definition for an apparent PSF is proposed. Theory Spatial resolution in SPEN-imaging is determined by the spatial phase dispersion imprinted on the acquired signal by a frequency-swept excitation or refocusing pulse. The resulting signal attenuation increases with larger distance from the vertex of the quadratic phase profile. Methods Bloch simulations and experiments were performed to validate theoretical derivations. Results The apparent PSF quantifies the fractional contribution of magnetization to a voxel’s signal as a function of distance to the voxel. In contrast, the conventional PSF represents the signal intensity at various locations. Conclusion The definition of the conventional PSF fails for SPEN-imaging since only the phase of isochromats, but not the amplitude of the signal varies. The concept of the apparent PSF is shown to be generalizable to conventional Fourier- imaging techniques. PMID:26712657

  9. Temporal information encoding in dynamic memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wen; Chen, Lin; Du, Chao; Lu, Wei D., E-mail: wluee@eecs.umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-11-09

    We show temporal and frequency information can be effectively encoded in memristive devices with inherent short-term dynamics. Ag/Ag{sub 2}S/Pd based memristive devices with low programming voltage (∼100 mV) were fabricated and tested. At weak programming conditions, the devices exhibit inherent decay due to spontaneous diffusion of the Ag atoms. When the devices were subjected to pulse train inputs emulating different spiking patterns, the switching probability distribution function diverges from the standard Poisson distribution and evolves according to the input pattern. The experimentally observed switching probability distributions and the associated cumulative probability functions can be well-explained using a model accounting for the short-term decay effects. Such devices offer an intriguing opportunity to directly encode neural signals for neural information storage and analysis.

  10. DNA-Encoded Dynamic Combinatorial Chemical Libraries.

    Science.gov (United States)

    Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin

    2015-06-26

    Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Storing data encoded DNA in living organisms

    Science.gov (United States)

    Wong,; Pak C. , Wong; Kwong K. , Foote; Harlan, P [Richland, WA

    2006-06-06

    Current technologies allow the generation of artificial DNA molecules and/or the ability to alter the DNA sequences of existing DNA molecules. With a careful coding scheme and arrangement, it is possible to encode important information as an artificial DNA strand and store it in a living host safely and permanently. This inventive technology can be used to identify origins and protect R&D investments. It can also be used in environmental research to track generations of organisms and observe the ecological impact of pollutants. Today, there are microorganisms that can survive under extreme conditions. As well, it is advantageous to consider multicellular organisms as hosts for stored information. These living organisms can provide as memory housing and protection for stored data or information. The present invention provides well for data storage in a living organism wherein at least one DNA sequence is encoded to represent data and incorporated into a living organism.

  12. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  13. Nucleic acid compositions and the encoding proteins

    Science.gov (United States)

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  14. Optimal Achievable Encoding for Brain Machine Interface

    Science.gov (United States)

    2017-12-22

    dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy

  15. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  16. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  17. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  18. Group Velocity for Leaky Waves

    Science.gov (United States)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  19. 3D shear wave velocity structure revealed with ambient noise tomography on a DAS array

    Science.gov (United States)

    Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.

    2017-12-01

    An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and

  20. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.