WorldWideScience

Sample records for velocity dynamic range

  1. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  2. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  3. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  4. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content

    Science.gov (United States)

    Jody D. Gray; Shawn T. Grushecky; James P. Armstrong

    2008-01-01

    Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...

  5. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  6. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  7. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  8. Increasing the Dynamic Range of Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    images. The emissions for the two imaging modes are interleaved 1-to-1 ratio, providing a high frame rate equal to the effective pulse repetition frequency of each imaging mode. The direction of the flow is estimated, and the velocity is then determined in that direction. This method Works for all angles...... standard deviations are 1.59% and 6.12%, respectively. The presented method can improve the estimates by synthesizing a lower pulse repetition frequency, thereby increasing the dynamic range of the vector velocity imaging....

  9. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  10. Enhancing the dynamic range of Ultrasound Imaging Velocimetry using interleaved imaging

    NARCIS (Netherlands)

    Poelma, C.; Fraser, K.H.

    2013-01-01

    In recent years, non-invasive velocity field measurement based on correlation of ultrasound images has been introduced as a promising technique for fundamental research into disease processes, as well as a diagnostic tool. A major drawback of the method is the relatively limited dynamic range when

  11. Comparison of different methods for the determination of dynamic characteristics of low velocity anemometers

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Popiolek, Z.

    2004-01-01

    Three methods for determining the dynamic characteristics of low velocity thermal anemometers were compared. They were: step-up velocity change and step-down velocity change methods and a method based on sinusoidal type velocity fluctuations. Two low velocity thermal anemometers with omnidirectio......Three methods for determining the dynamic characteristics of low velocity thermal anemometers were compared. They were: step-up velocity change and step-down velocity change methods and a method based on sinusoidal type velocity fluctuations. Two low velocity thermal anemometers...... with omnidirectional velocity sensors were tested. The results identify differences in frequency response of low velocity anemometers determined by the three methods. The time constant and the response time determined by the step-up velocity change method and the step-down velocity change method may be substantially...... different and insufficient for describing the frequency response of all low velocity thermal anemometers. Therefore the upper frequency, determined in tests with sinusoidal velocity fluctuations, is recommended to be used in indoor climate standards as a single parameter describing the dynamic...

  12. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    Science.gov (United States)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  13. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  14. The MOLDY short-range molecular dynamics package

    Science.gov (United States)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  15. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-11-01

    Full Text Available In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV, this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment.

  16. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  17. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  18. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    Science.gov (United States)

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  19. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  20. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  1. The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy

    Science.gov (United States)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Robotham, Aaron S. G.; Driver, Simon P.

    2018-04-01

    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high-velocity Planetary Nebulae, establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galactocentric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40 km s-1 at a galactocentric distance of 15 kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 1012 M⊙ and 240 ± 10 kpc, respectively. Our M31 mass is on the low side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H I constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass-halo-mass and the dark matter halo concentration-virial mass correlation, and finding it to be an outlier to this relation.

  2. Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics

    OpenAIRE

    Lee, Heebum; Park, Mi Yeon; Park, Sunho; Rhee, Shin Hyung

    2016-01-01

    One of the most important factors in sailing yacht design is accurate velocity prediction. Velocity prediction programs (VPP's) are widely used to predict velocity of sailing yachts. VPP's, which are primarily based on experimental data and experience of long years, however suffer limitations when applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using computational fluid dynamics (CFD) was proposed. Using the developed method, velocity an...

  3. Detailed investigation on the effect of wall spring stiffness on velocity profile in molecular dynamics simulation

    International Nuclear Information System (INIS)

    Namvar, S; Karimian, S M H

    2012-01-01

    In this paper, motion of 576 monatomic argon molecules is studied in a channel with two 2-layered wall molecules. The effect of wall spring stiffness (K) on maximum value of velocity profile is investigated in the channel. It was observed that for K −2 , there is a decrease in the maximum value of velocity profile with an increase in K. This observation has been already reported by Sofos et al. To investigate a wider range of spring stiffness, in this paper the value of K was increased to more than 500εσ −2 . In this range of wall spring stiffness the behavior of maximum value of velocity profile changed; it increased with an increase in K. In a separate simulation the external force applied to the molecules was also increased and the same non-monotonic behavior of maximum value of velocity was observed. To clarify the reason of this behavior, the concepts of original and effective wall are introduced and through several test it is inferred that the mentioned concepts are not successful to demonstrate the reason of such behavior. It is suggested to obtain non-dimensional parameters governing the simulation in order to investigate the effect of every involved parameter on such a behavior. It is finally concluded that while wall spring stiffness affects the maximum velocity magnitude within the flow, the interaction of the two has not been clearly shown yet. The behavior of the maximum velocity is non-monotonic with the change of K. This is why no specific criterion has been reported for suitable value of wall spring stiffness in molecular dynamics simulation.

  4. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity...

  5. Dynamic response of SWEMAAIR 300 thermal anemometer with SWA-01 velocity transducer

    Energy Technology Data Exchange (ETDEWEB)

    Melikov, A K; Popiolek, Z

    1996-06-01

    The objective of this study is to identify the dynamic response of the SwemaAir 300 thermal anemometer to downward airflow with different amplitude and frequency of the velocity fluctuations and changing direction. An important aim is to find to what extend the accuracy of the velocity measurements is effected at the above described conditions. (au)

  6. Nonlinear dynamic range transformation in visual communication channels.

    Science.gov (United States)

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  7. Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming

    Using tools from algebraic graph theory and nonsmooth analysis in combination with ideas of collective potential functions, velocity consensus and navigation feedback, a distributed leader-follower flocking algorithm for multi-agent dynamical systems with time-varying velocities is developed where

  8. Influence of long-range Coulomb interaction in velocity map imaging.

    Science.gov (United States)

    Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C

    2017-07-07

    The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

  9. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    International Nuclear Information System (INIS)

    Meng, Jianxin; Mei, Deqing; Yang, Keji; Fan, Zongwei

    2014-01-01

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles

  10. Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Heebum Lee

    2016-01-01

    Full Text Available One of the most important factors in sailing yacht design is accurate velocity prediction. Velocity prediction programs (VPP's are widely used to predict velocity of sailing yachts. VPP's, which are primarily based on experimental data and experience of long years, however suffer limitations when applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using computational fluid dynamics (CFD was proposed. Using the developed method, velocity and attitude of a 30 feet sloop yacht, which was developed by Korea Research Institute of Ship and Ocean (KRISO and termed KORDY30, were predicted in upwind sailing condition.

  11. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  12. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  13. Numerical methodologies for investigation of moderate-velocity flow using a hybrid computational fluid dynamics - molecular dynamics simulation approach

    International Nuclear Information System (INIS)

    Ko, Soon Heum; Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel; Jha, Shantenu

    2014-01-01

    Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.

  14. Modulation of neuronal dynamic range using two different adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

  15. The analysis on dynamic range of industrial CT system

    International Nuclear Information System (INIS)

    Wang Huiqian; Wang Jue; Tan Hui

    2011-01-01

    Concerning the limitations of the definition of the dynamic range of industrial computed tomography (ICT) system, it researches the definition, measuring method and influencing factors of the dynamic range of industrial computed tomography (ICT) system from the concept of quantization and system. First, the character of the input-output curve was analyzed, and the method of obtaining the dynamic range of industrial computed tomography (ICT) system was proposed. Then, an experiment model was designed to gain dynamic range, based on 6 MeV high-energy industrial computed tomography (ICT) system. The results show that the larger the photosurface is, the smaller the dynamic range is, when the other parameters are unchanged. (authors)

  16. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  17. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Brenneis, Christian; Ungersboeck, Karl; Riet, Wilma van der; Buchfelder, Michael; Ganslandt, Oliver

    2012-01-01

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  18. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  19. The shape of velocity dispersion profiles and the dynamical state of galaxy clusters

    Science.gov (United States)

    Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.

    2018-01-01

    Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.

  20. Dynamic range meter for radiofrequency amplifiers

    Directory of Open Access Journals (Sweden)

    Drozd S. S.

    2009-04-01

    Full Text Available The new measurement setup having increased on 20…30 dB the own dynamic range in comparison with the standard circuit of the dynamic range meter is offered and the rated value of an error bringing by setup in the worst case does not exceed ± 2,8 dB. The measurement setup can be applied also to determinate levels of intermodulation components average power amplifiers and powerful amplifiers of a low-frequency at replacement of the quartz filter on meeting low-frequency the LC-filter and the spectrum analyzer.

  1. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range.......This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  2. HEVC for high dynamic range services

    Science.gov (United States)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  3. Climate change velocity since the Last Glacial Maximum and its importance for patterns of species richness and range size

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Arge, Lars Allan; Svenning, J.-C.

    to fully occupy suitable habitat, or when local diversification rates are depressed by local population extinctions and changing selective regimes. Locations with long-term climate instability should therefore show reduced species richness with small-ranged species particularly missing from the community...... these predictions using global data on mammal and amphibian distributions. Consistent with our predictions, richness of small-ranged species of both groups was negatively associated with velocity. Velocity generally explained more variation in richness than did the simple climate anomaly. Climate velocity appears...... to capture an important historical signal on current mammal and amphibian distributions....

  4. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    Directory of Open Access Journals (Sweden)

    Martin Kirchberger

    2016-02-01

    Full Text Available Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings.

  5. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners

    Science.gov (United States)

    Kirchberger, Martin

    2016-01-01

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955

  6. Dynamic Range Across Music Genres and the Perception of Dynamic Compression in Hearing-Impaired Listeners.

    Science.gov (United States)

    Kirchberger, Martin; Russo, Frank A

    2016-02-10

    Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. © The Author(s) 2016.

  7. Optimal Acceleration-Velocity-Bounded Trajectory Planning in Dynamic Crowd Simulation

    Directory of Open Access Journals (Sweden)

    Fu Yue-wen

    2014-01-01

    Full Text Available Creating complex and realistic crowd behaviors, such as pedestrian navigation behavior with dynamic obstacles, is a difficult and time consuming task. In this paper, we study one special type of crowd which is composed of urgent individuals, normal individuals, and normal groups. We use three steps to construct the crowd simulation in dynamic environment. The first one is that the urgent individuals move forward along a given path around dynamic obstacles and other crowd members. An optimal acceleration-velocity-bounded trajectory planning method is utilized to model their behaviors, which ensures that the durations of the generated trajectories are minimal and the urgent individuals are collision-free with dynamic obstacles (e.g., dynamic vehicles. In the second step, a pushing model is adopted to simulate the interactions between urgent members and normal ones, which ensures that the computational cost of the optimal trajectory planning is acceptable. The third step is obligated to imitate the interactions among normal members using collision avoidance behavior and flocking behavior. Various simulation results demonstrate that these three steps give realistic crowd phenomenon just like the real world.

  8. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  9. Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics

    Science.gov (United States)

    Luo, Lin; Fu, Zhijian; Cheng, Han; Yang, Lizhong

    2018-02-01

    Modeling pedestrian movement is an interesting problem both in statistical physics and in computational physics. Update schemes of cellular automaton (CA) models for pedestrian dynamics govern the schedule of pedestrian movement. Usually, different update schemes make the models behave in different ways, which should be carefully recalibrated. Thus, in this paper, we investigated the influence of four different update schemes, namely parallel/synchronous scheme, random scheme, order-sequential scheme and shuffled scheme, on pedestrian dynamics. The multi-velocity floor field cellular automaton (FFCA) considering the changes of pedestrians' moving properties along walking paths and heterogeneity of pedestrians' walking abilities was used. As for parallel scheme only, the collisions detection and resolution should be considered, resulting in a great difference from any other update schemes. For pedestrian evacuation, the evacuation time is enlarged, and the difference in pedestrians' walking abilities is better reflected, under parallel scheme. In face of a bottleneck, for example a exit, using a parallel scheme leads to a longer congestion period and a more dispersive density distribution. The exit flow and the space-time distribution of density and velocity have significant discrepancies under four different update schemes when we simulate pedestrian flow with high desired velocity. Update schemes may have no influence on pedestrians in simulation to create tendency to follow others, but sequential and shuffled update scheme may enhance the effect of pedestrians' familiarity with environments.

  10. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  11. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  12. Estimation of a melting probe's penetration velocity range to reach icy moons' subsurface ocean

    Science.gov (United States)

    Erokhina, Olga; Chumachenko, Eugene

    2014-05-01

    In modern space science one of the actual branches is icy satellites explorations. The main interest is concentrated around Jovian's moons Europa and Ganymede, Saturn's moons Titan and Enceladus that are covered by thick icy layer according to "Voyager1", "Voyager2", "Galileo" and "Cassini" missions. There is a big possibility that under icy shell could be a deep ocean. Also conditions on these satellites allow speculating about possible habitability, and considering these moons from an astrobiological point of view. One of the possible tasks of planned missions is a subsurface study. For this goal it is necessary to design special equipment that could be suitable for planetary application. One of the possible means is to use a melting probe which operates by melting and moves by gravitational force. Such a probe should be relatively small, should not weight too much and should require not too much energy. In terrestrial case such kind of probe has been successfully used for glaciers study. And it is possible to extrapolate the usage of such probe to extraterrestrial application. One of the tasks is to estimate melting probe's penetration velocity. Although there are other unsolved problems such as analyzing how the probe will move in low gravity and low atmospheric pressure; knowing whether hole will be closed or not when probe penetrate thick enough; and considering what order could be a penetration velocity. This study explores two techniques of melting probe's movement. One of them based on elasto-plastic theory and so-called "solid water" theory, and other one takes phase changing into account. These two techniques allow estimating melting probe's velocity range and study whole process. Based on these technique several cases of melting probe movement were considered, melting probe's velocity range estimated, influence of different factors studied and discussed and an easy way to optimize parameters of the melting probe proposed.

  13. Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity

    Directory of Open Access Journals (Sweden)

    Yongbing Wang

    2014-01-01

    Full Text Available Different from phased-array radar, frequency diverse array (FDA radar offers range-dependent beampattern and thus provides new application potentials. But there is a fundamental question: what estimation performance can achieve for an FDA radar? In this paper, we derive FDA radar Cramér-Rao lower bounds (CRLBs for estimating direction, range (time delay, and velocity (Doppler shift. Two different data models including pre- and postmatched filtering are investigated separately. As the FDA radar has range-angle coupling, we use a simple transmit subaperturing strategy which divides the whole array into two subarrays, each uses a distinct frequency increment. Assuming temporally white Gaussian noise and linear frequency modulated transmit signal, extensive simulation examples are performed. When compared to conventional phased-array radar, FDA can yield better CRLBs for estimating the direction, range, and velocity. Moreover, the impacts of the element number and frequency increment are also analyzed. Simulation results show that the CRLBs decrease with the increase of the elements number and frequency increment.

  14. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek; Lawes, Malcolm; Liu, Kexin; Mansour, Morkous S.

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  15. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  16. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    Science.gov (United States)

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  17. The terminal rise velocity of bubble in a liquid column

    International Nuclear Information System (INIS)

    Mario Ar Talaia

    2005-01-01

    Full text of publication follows: As it is know, buoyancy and drag forces govern bubble rising velocity in a liquid column. These forces strongly depend on fluid proprieties and gravity as well as bubble equivalent diameter. The present work reports about a set of experiments bubble rising velocity in a liquid column using liquid with different kinematics viscosity. Records of terminal velocity were obtained, over a wide range of dynamic viscosity. The results show that the terminal rise velocity of bubble is strongly influenced by the effect of kinematics viscosity. The interpretation of physical phenomenon is considered. The set data permit to have a game of terminal velocities of 7.96 - 32.86 cm.s -1 with Reynolds number of 0.8 - 7491. The bubble movement is recorded with a camera video, which will be presented. Our aim goal is to present an original set data and the results are discussed in light of theory of two-phase flow. Prediction of bubble terminal velocity is discussed, so as, the range of applicability. (author)

  18. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  19. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in O(logn/loglogn+t) worst case time and updates in O(logn/loglogn) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model....

  20. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    CERN Document Server

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  1. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    International Nuclear Information System (INIS)

    Pooja,; Ahluwalia, P. K.; Pathania, Y.

    2015-01-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow

  2. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    Science.gov (United States)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  3. ANALYZING THE VELOCITY OF URBAN DYNAMIC OVER NORTHEASTERN CHINA USING DMSP-OLS NIGHT-TIME LIGHTS

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2017-09-01

    Full Text Available Stable night-time lights (NTL data from the Defense Meteorological Satellite Program Operational Line-scan System (DMSPOLS can serve as a good proxy for anthropogenic development. Here DMSP-OLS NTL data was used to detect the urban development status in northeastern China. The spatial and temporal gradients are combined to depict the velocity of urban expanding process. This velocity index represents the instantaneous local velocity along the Earth’s surface needed to maintain constant NTL condition, and has a mean of 0.36 km/yr for northeastern China. The velocity change of NTL is lower in the urban center and its near regions, and the suburbs show a relatively high value. The connecting zones between satellite cities and metropolis have also a rapid rate of NTL evolution. The dynamic process of urbanization over the study area is mainly in a manner of spreading from urban cores to edges. The rank size of the velocity for the prefectures is analyzed and a long tail distribution is found. The velocity index can provide insights for the future pattern of urban sprawl.

  4. Analyzing the Velocity of Urban Dynamic Over Northeastern China Using Dmsp-Ols Night-Time Lights

    Science.gov (United States)

    Zhou, Y.

    2017-09-01

    Stable night-time lights (NTL) data from the Defense Meteorological Satellite Program Operational Line-scan System (DMSPOLS) can serve as a good proxy for anthropogenic development. Here DMSP-OLS NTL data was used to detect the urban development status in northeastern China. The spatial and temporal gradients are combined to depict the velocity of urban expanding process. This velocity index represents the instantaneous local velocity along the Earth's surface needed to maintain constant NTL condition, and has a mean of 0.36 km/yr for northeastern China. The velocity change of NTL is lower in the urban center and its near regions, and the suburbs show a relatively high value. The connecting zones between satellite cities and metropolis have also a rapid rate of NTL evolution. The dynamic process of urbanization over the study area is mainly in a manner of spreading from urban cores to edges. The rank size of the velocity for the prefectures is analyzed and a long tail distribution is found. The velocity index can provide insights for the future pattern of urban sprawl.

  5. Velocity dependent passive sampling for monitoring of micropollutants in dynamic stormwater discharges

    DEFF Research Database (Denmark)

    Birch, Heidi; Sharma, Anitha Kumari; Vezzaro, Luca

    2013-01-01

    Micropollutant monitoring in stormwater discharges is challenging because of the diversity of sources and thus large number of pollutants found in stormwater. This is further complicated by the dynamics in runoff flows and the large number of discharge points. Most passive samplers are non......-ideal for sampling such systems because they sample in a time-integrative manner. This paper reports test of a flow-through passive sampler, deployed in stormwater runoff at the outlet of a residential-industrial catchment. Momentum from the water velocity during runoff events created flow through the sampler...... resulting in velocity dependent sampling. This approach enables the integrative sampling of stormwater runoff during periods of weeks to months while weighting actual runoff events higher than no flow periods. Results were comparable to results from volume-proportional samples and results obtained from...

  6. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  7. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    Science.gov (United States)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  8. Time course of dynamic range adaptation in the auditory nerve

    Science.gov (United States)

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  9. Critical ionisation velocity and the dynamics of a coaxial plasma gun

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1978-01-01

    The dynamics of an ionising wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionisation velocity condition and in the second that the ionisation rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionisation within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (author)

  10. Digital signal processing for velocity measurements in dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Devlaminck, Julien; Luc, Jerome; Chanal, Pierre-Yves

    2014-01-01

    In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach- Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine. (authors)

  11. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  12. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  13. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    Science.gov (United States)

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  14. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  15. Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles

    Science.gov (United States)

    Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.

    2014-12-01

    For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.

  16. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  17. Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Giovanni Ramponi

    2007-01-01

    Full Text Available CMOS video cameras with high dynamic range (HDR output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study.

  18. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  19. Velocity map imaging of attosecond and femtosecond dynamics in atoms and small molecules in strong laser fields

    International Nuclear Information System (INIS)

    Kling, M.F.; Ni, Yongfeng; Lepine, F.; Khan, J.I.; Vrakking, M.J.J.; Johnsson, P.; Remetter, T.; Varju, K.; Gustafsson, E.; L'Huillier, A.; Lopez-Martens, R.; Boutu, W.

    2005-01-01

    Full text: In the past decade, the dynamics of atomic and small molecular systems in strong laser fields has received enormous attention, but was mainly studied with femtosecond laser fields. We report on first applications of attosecond extreme ultraviolet (XUV) pulse trains (APTs) from high-order harmonic generation (HHG) for the study of atomic and molecular electron and ion dynamics in strong laser fields utilizing the Velocity Map Imaging Technique. The APTs were generated in argon from harmonics 13 to 35 of a 35 fs Ti:sapphire laser, and spatially and temporally overlapped with an intense IR laser field (up to 5x10 13 W/cm 2 ) in the interaction region of a Velocity Map Imaging (VMI) machine. In the VMI setup, electrons and ions that were created at the crossing point of the laser fields and an atomic or molecular beam were accelerated in a dc-electric field towards a two-dimensional position-sensitive detector, allowing to reconstruct the full initial three-dimensional velocity distribution. The poster will focus on results that were obtained for argon atoms. We recorded the velocity distribution of electron wave packets that were strongly driven in the IR laser field after their generation in Ar via single-photon ionization by attosecond XUV pulses. The 3D evolution of the electron wave packets was observed on an attosecond timescale. In addition to earlier experiments with APTs using a magnetic bottle electron time-of-flight spectrometers and with single attosecond pulses, the angular dependence of the electrons kinetic energies can give further insight into the details of the dynamics. Initial results that were obtained for molecular systems like H 2 , D 2 , N 2 , and CO 2 using the same powerful approach will be highlighted as well. We will show, that detailed insight into the dynamics of these systems in strong laser fields can be obtained (e.g. on the alignment, above-threshold ionization, direct vs. sequential two-photon ionization, dissociation, and

  20. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  1. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  2. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  3. The design and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer Velocity map imaging spectrometer optimised for molecular photoionisation dynamics. Black-Right-Pointing-Pointer Kinetic energy distribution of O{sup +} fragments measured. Black-Right-Pointing-Pointer Effect of autoionisation on photoelectron vibrational populations studied. -- Abstract: The design, construction and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics is described. The spectrometer has been optimised for the efficient collection and detection of particles (electrons or positively charged ions) generated through the interaction of gas phase molecules with synchrotron radiation. A double Einzel lens, incorporated into the flight tube, enhances the collection efficiency of energetic particles. Computer modelling has been used to trace the trajectories of charged particles through the spectrometer and to assess the image quality. A time and position sensitive delay-line detector is used to record the images. Results from two experimental studies are presented to illustrate the capabilities of the spectrometer. In the first, the effect of electronic autoionisation on the vibrationally resolved photoelectron branching ratios of the N{sub 2}{sup +} X {sup 2}{Sigma}{sub g}{sup +} state has been investigated in an excitation range where prominent structure due to Rydberg states occurs in the ion yield curve. The results show that autoionisation leads to rotational branch populations that differ from those observed in direct, non-resonant, photoionisation. In the second, the kinetic energy distribution and the angular distribution of O{sup +} fragments formed in the dissociative photoionisation of molecular oxygen have been measured. The timing properties of the detector have allowed O{sup +} fragments to be separated from O{sub 2}{sup +} parent ions using time-of-flight techniques.

  4. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  5. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  6. Entanglement Growth in Quench Dynamics with Variable Range Interactions

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2013-09-01

    Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.

  7. Evaluation of the effect of media velocity on HEPA filter performance

    International Nuclear Information System (INIS)

    Alderman, Steven; Parsons, Michael; Hogancamp, Kristina; Norton, O. Perry; Waggoner, Charles

    2007-01-01

    Section FC of the ASME AG-1 Code addresses glass fiber HEPA filters and restricts the media velocity to a maximum of 2.54 cm/s (5 ft/min). Advances in filter media technology allow glass fiber HEPA filters to function at significantly higher velocities and still achieve HEPA performance. However, diffusional capture of particles < 100 nm is reduced at higher media velocities due to shorter residence times within the media matrix. Therefore, it is unlikely that higher media velocities for HEPA filters will be allowed without data to demonstrate the effect of media velocity on removal of particles in the smaller size classes. In order to address this issue, static testing has been conducted to generate performance related data and a range of dynamic testing has provided data regarding filter lifetimes, loading characteristics, changes in filter efficiency and the most penetrating particle size over time. Testing was conducted using 31 cm x 31 cm x 29 cm deep pleat HEPA filters supplied from two manufacturers. Testing was conducted at media velocities ranging from 2.0-4.5 cm/s with a solid aerosol challenge composed of potassium chloride. Two set of media velocity data were obtained for each filter type. In one set of evaluations, the maximum aerosol challenge particle size was limited to 3 μm, while particles above 3 μm were not constrained in the second set. This provided for considerable variability in the challenge mass mean diameter and overall mass loading rate. Results of this testing will be provided to the ASME AG-1 FC Committee for consideration in future versions of the HEPA standard. In general, the initial filter efficiency decreased with increasing media velocity. However, initial filter efficiencies were generally good in all cases. Filter efficiency values averaged over the first ten minute of the loading cycle ranged from 99.970 to 99.996 %. Additionally, the most penetrating particle size was observed to decrease with increasing media velocity

  8. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players.

    Science.gov (United States)

    Marques, Mario C; van den Tilaar, Roland; Vescovi, Jason D; Gonzalez-Badillo, Juan Jose

    2007-12-01

    The purpose of this study was to examine the relationship between ball-throwing velocity during a 3-step running throw and dynamic strength, power, and bar velocity during a concentric-only bench-press exercise in team-handball players. Fourteen elite senior male team-handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric-only bench-press test with 26, 36, and 46 kg, as well as having 1-repetition-maximum (1-RMBP) strength determined. Ball-throwing velocity was evaluated with a standard 3-step running throw using a radar gun. Ball-throwing velocity was related to the absolute load lifted during the 1-RMBP (r = .637, P = .014), peak power using 36 kg (r = .586, P = .028) and 46 kg (r = .582, P = .029), and peak bar velocity using 26 kg (r = .563, P = .036) and 36 kg (r = .625, P = .017). The results indicate that throwing velocity of elite team-handball players is related to maximal dynamic strength, peak power, and peak bar velocity. Thus, a training regimen designed to improve ball-throwing velocity in elite male team-handball players should include exercises that are aimed at increasing both strength and power in the upper body.

  10. Gyrokinetic full f analysis of electric field dynamics and poloidal velocity in the FT2-tokamak configuration

    International Nuclear Information System (INIS)

    Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.

    2008-01-01

    The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.

  11. Investigations into the influence of the tup velocity and the heat treatment on the dynamic fracture toughness of Inconel 625

    International Nuclear Information System (INIS)

    Krompholz, K.; Tipping, P.; Ullrich, G.

    1983-09-01

    Experiments were performed with an instrumented impact machine using different drop heights, on the nickel base alloy Inconel 625 in the as received state and after heat treatment for about 1000 h at 923 K. The absorbed impact energy can be obtained either by the direct dial reading, by the integration of the load versus load point displacement diagram or by the integration of the load versus time diagram, knowing the initial impact velocity of the tup. In all cases the agreement was excellent. It is shown that, (i) the dynamic fracture toughness is dependent on the tup velocity and as a consequence on the total energy of the hammer at the different drop heights; (ii) the embrittlement during heat treatment is not combined with a decrease in the fracture toughness although a strong decrease in the absorbed impact energy is observed; (iii) defining a dynamic stress from the velocity dependence of the fracture toughness, the stress is higher for the embrittled material - a tendency verified by tensile tests; (iv) the dynamic fracture toughness can be correlated with the absorbed impact energy up to the load maximum for the heat treated material while the as received material exhibits no such dependency. The change in the tup velocity during the impact process is only small for this type of material. (Auth.)

  12. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  13. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    International Nuclear Information System (INIS)

    Gražulevičiūtė, I; Garejev, N; Majus, D; Tamošauskas, G; A Dubietis; Jukna, V

    2016-01-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse. (paper)

  14. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    Science.gov (United States)

    Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.

    2016-02-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.

  15. Limitations on Inferring 3D Architecture and Dynamics From Surface Velocities in the India-Eurasia Collision Zone

    Science.gov (United States)

    Flesch, L.; Bendick, R.; Bischoff, S.

    2018-02-01

    Surface velocities derived from Global Positioning System observations and Quaternary fault slip rates measured throughout an extended region of high topography in South Asia vary smoothly over thousands of kilometers and are broadly symmetrical, with components of both north-south shortening and east-west extension relative to stable Eurasia. The observed velocity field does not contain discontinuities or steep gradients attributable to along-strike differences in collision architecture, despite the well-documented presence of a lithospheric slab beneath the Pamir but not the Tibetan Plateau. We use a modified Akaike information criterion (AICc) to show that surface velocities do not efficiently constrain 3D rheology, geometry, or force balance. Therefore, although other geophysical and geological observations may indicate the presence of mechanical or dynamic heterogeneities within the Indian-Asian collision, the surface Global Positioning System velocities contain little or no usable information about them.

  16. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  17. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  18. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  19. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  20. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  1. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    absence of a magnetic field-velocity correlation do not yet rule out any of the rocket models. However, the required amplitudes suggest that the core collapse process in a supernova is highly dynamic and aspherical and that the impulse delivered to the neutron star is larger than existing simulations of core collapse have achieved.

  2. High-velocity runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  3. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    Science.gov (United States)

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Age--velocity-dispersion relation in the solar neighborhood

    International Nuclear Information System (INIS)

    Carlberg, R.G.; Dawson, P.C.; Hsu, T.; VandenBerg, D.A.

    1985-01-01

    The age--velocity-dispersion relation for stars in the solar neighborhood is examined as an indicator of the dominant acceleration mechanism of the stars and the formation history of the local disk. Twarog's sample of F stars, for which ages and photometric distances can be determined, is combined with astrometric data to obtain tangential velocities of a set of stars with a large age range. The resulting age--velocity-dispersion relation rises fairly steeply for stars less than 6 Gyr old, thereafter becoming nearly constant with age. These data are consistent with a simple model in which no local disk is initially present, following which stars are born at a constant rate in time and heated by transient spiral waves. The corresponding age-metallicity relation complements this dynamical measure of the formation history of the disk. The use of new stellar models and a revised metallicity calibration leads to quantitative differences from previous work

  5. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-06-01

    A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.

  6. Optimization of the velocity of air providing dynamic containment at openings

    International Nuclear Information System (INIS)

    Laborde, J.C.; Berne, P.; Dupoux, N.

    1992-01-01

    The handling of toxic, radioactive or dangerous substances in industry of research laboratories necessitates the use of techniques for protecting the workers involved. The risks arise from these substances being airborne particles and from their transfer, essentially through turbulent diffusion. One way of limiting this risk is to employ the principle of dynamic containment, whereby a particular direction of air flow is imposed at inlets and outlets in order to prevent the back flow of the pollutant to areas where it may be breathed by the operators. The air velocity normally used to prevent back flow of pollutant is 0.5 m.s. The 'Service d'Etudes et de Recherches en Aerocontamination et en Confinement' (SERAC) has begun an evaluation of the effect of a reduction in air inlet velocity on the risk of pollutant back diffusion. This should lead to energy savings through the use of a minimum air flow rate concomitant with appropriate protection. The paper gives the results obtained with openings of different geometries and shapes. It is also proposed a simulation of this phenomenon using a calculation code of air flow in a ventilated room (the TRIO code), so that the results may be compared with the experimental data. (author). 5 refs., 10 figs., 1 tab

  7. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  8. Factors controlling floc settling velocity along a longitudinal estuarine transect

    Science.gov (United States)

    Manning, A.J.; Schoellhamer, D.H.

    2013-01-01

    A 147 km longitudinal transect of flocculated cohesive sediment properties in San Francisco Bay (SFB) was conducted on June 17th, 2008. Our aim was to determine the factors that control floc settling velocity along the longitudinal axis of the estuary. The INSSEV-LF video system was used to measure floc diameters and settling velocities at 30 stations at a distance of 0.7 m above the estuary bed. Floc sizes (D) ranged from 22 μm to 639 μm and settling velocities (Ws) ranged between 0.04 mm·s− 1 and 15.8 mm·s− 1 during the longitudinal transect. Nearbed turbulent shear stresses throughout the transect duration were within the 0.2–0.5 Pa range which typically stimulates flocculation growth. The individual D–Ws–floc density plots suggest the suspended sediments encountered throughout SFB were composed of both muddy cohesive sediment and mixed sediments flocs. Mass-weighted population mean settling velocity (Wsmass) ranged from 0.5 mm·s− 1 to 10 mm·s− 1. The macrofloc and microfloc (demarcation at 160 μm) sub-populations demonstrated parameterised settling velocities which spanned nearly double the range of the sample mean settling velocities (Wsmean). The macroflocs tended to dominate the suspended mass (up to 77% of the ambient suspended solid concentration; SSC) from San Pablo Bay to Carquinez Strait (the vicinity of the turbidity maximum zone). Microfloc mass was particularly significant (typically 60–100% of the SSC) in the northern section of South Bay and most of Central Bay. The transect took eleven hours to complete and was not fully synoptic. During slack tide, larger and faster settling flocs deposited, accounting for most of the longitudinal variability. The best single predictor of settling velocity was water velocity 39 min prior to sampling, not suspended-sediment concentration or salinity. Resuspension and settling lags are likely responsible for the lagged response of settling velocity to water velocity. The distribution of

  9. The velocities of type II solar radio bursts

    International Nuclear Information System (INIS)

    Tlamicha, A.; Karlicky, M.

    1976-01-01

    A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)

  10. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  11. Extending the Dynamic Range of a Time Projection Chamber

    Science.gov (United States)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  12. A new GPS velocity field in the south-western Balkans: insights for continental dynamics

    Science.gov (United States)

    D'Agostino, N.; Avallone, A.; Duni, L.; Ganas, A.; Georgiev, I.; Jouanne, F.; Koci, R.; Kuka, N.; Metois, M.

    2017-12-01

    The Balkans peninsula is an area of active distributed deformation located at the southern boundary of the Eurasian plate. Relatively low strain rates and logistical reasons have so far limited the characterization and definition of the active tectonics and crustal kinematics. The increasing number of GNSS stations belonging to national networks deployed for scientific and cadastral purposes, now provides the opportunity to improve the knowledge of the crustal kinematics in this area and to define a cross-national velocity field that illuminates the active tectonic deformation. In this work we homogeneously processed the data from the south western Balkans and neighbouring regions using available rinex files from scientific and cadastral networks (ALBPOS, EUREF, HemusNET, ITALPOS, KOPOS, MAKPOS, METRICA, NETGEO, RING, TGREF). In order to analyze and interpret station velocities relative to the Eurasia plate and to reduce the common mode signal, we updated the Eurasian terrestrial reference frame described in Métois et al. 2015. Starting from this dataset we present a new GPS velocity field covering the south western part of the Balkan Peninsula. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Our results (1) improve the picture of the general southward flow of the crust characterizing the south western Balkans behind the contractional belt at the boundary with Adriatic and (2) provide new key elements for the understanding of continental dynamics in this part of the Eurasian plate boundary.

  13. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    Science.gov (United States)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  14. A coaxial plasma gun with a controllable streaming velocity in the range of 2-90 km secsup(-1)

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1981-01-01

    A coaxial plasma gun capable of producing a plasma stream of velocity ranging between 2 and 90 km secsup(-1) is described. The velocity of the stream is controlled by a variable (0.2-25 Ω) NaCl salt solution resistor in the discharge path of the energy storage connected across the gun. The resistor dissipates an energy of 200 J in the gun discharge current pulse period of 25 μ sec and the consequent heating and dissociation of the electrolyte are insignificant. The electron density of the plasma stream ranges between 10 18 and 10 19 msup(-3) and the temperature is approximately 10 eV. The total number of ions per plasma pulse is approximately 10 18 . The energy transfer efficiency of the gun is approximately 10%. The low transfer efficiency is explained in terms of the experimental requirements and the performance of the valve which admits gas into the gun region. For evaluation of the performance of the gun, several diagnostics have been deployed. A specially designed high voltage capacitor probe is described. (author)

  15. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    OpenAIRE

    Mark Costello

    2001-01-01

    This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and...

  16. Dynamic range studies of the RCA streak tube in the LLL streak camera

    International Nuclear Information System (INIS)

    Thomas, S.W.; Phillips, G.E.

    1979-01-01

    As indicated by tests on several cameras, the dynamic range of the Lawrence Livermore Laboratory streak-camera system appears to be about two orders of magnitude greater than those reported for other systems for 10- to 200-ps pulses. The lack of a fine mesh grid in the RCA streak tube used in these cameras probably contributes to a lower system dynamic noise and therefore raises the dynamic range. A developmental tube with a mesh grid was tested and supports this conjecture. Order-of-magnitude variations in input slit width do not affect the spot size on the phosphor or the dynamic range of the RCA tube. (author)

  17. Dynamic range compression in a liquid argon calorimeter

    International Nuclear Information System (INIS)

    Cleland, W.E.; Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H.; Wingerter-Seez, I.

    1996-01-01

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV

  18. Dynamic range extension of BPM at the NSLS

    International Nuclear Information System (INIS)

    Bordoley, M.

    1993-01-01

    In order to overcome range limitations, the existing Beam Position Monitor (BPM) receiver was modified, extending the dynamic range from 35 dB to 60 dB. The modifications include the insertion of an RF PIN attenuator, RF amplifier, and control circuitry in line with the RF link to add an extra 25dB to the existing AGC loop. This stand alone 25dB RF gain control stage is integrated into the present system without any change to the existing receiver

  19. Ramifications of projectile velocity on the ballistic dart penetration of sand

    Science.gov (United States)

    Sable, Peter Anthony

    With the advent of novel in-situ experimental measurement techniques, highly resolved quantitative observations of dynamic events within granular media can now be made. In particular, high speed imagery and digital analysis now allow for the ballistic behaviors of sand to be examined not only across a range of event velocities but across multiple length scales. In an attempt to further understand the dynamic behavior of granular media, these new experimental developments were implemented utilizing high speed photography coupled with piezo-electric stress gauges to observe visually accessible ballistic events of a dart penetrating Ottawa sand. Projectile velocities ranged from 100 to over 300 meters per second with two distinct chosen fields of view to capture bulk and grain-scale behaviors. Each event was analyzed using the digital image correlation technique, particle image velocimetry from which two dimensional, temporally resolved, velocity fields were extracted, from which bulk granular flow and compaction wave propagation were observed and quantified. By comparing bulk, in situ, velocity field behavior resultant from dart penetration, momentum transfer could be quantified measuring radius of influence or dilatant fluid approximations from which a positive correlation was found across the explored velocity regime, including self similar tendencies. This was, however, not absolute as persistent scatter was observed attributed to granular heterogeneous effects. These were tentatively measured in terms of an irreversible energy amount calculated via energy balance. Grain scale analysis reveals analogous behavior to the bulk response with more chaotic structure, though conclusions were limited by the image processing method to qualitative observations. Even so, critical granular behaviors could be seen, such as densification, pore collapse, and grain fracture from which basic heterogeneous phenomena could be examined. These particularly dominated near nose

  20. Dynamical arrest in dense short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P

    2004-01-01

    We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter

  1. Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rahul; Verth, Gary; Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2017-05-10

    Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity components using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.

  2. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  3. Rotating Hele-Shaw cell with a time-dependent angular velocity

    Science.gov (United States)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  4. Hierarchical tone mapping for high dynamic range image visualization

    Science.gov (United States)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  5. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Correia de Verdier, Maria; Wikstroem, Johan

    2016-01-01

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  6. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  7. Experimental and numerical studies of high-velocity impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Grady, D.E.; Swegle, J.W.

    1993-08-01

    Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

  8. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    Science.gov (United States)

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Cellular automaton simulation of pedestrian counter flow with different walk velocities

    International Nuclear Information System (INIS)

    Weng, W. G.; Chen, T.; Yuan, H. Y.; Fan, W. C.

    2006-01-01

    This paper presents a cellular automaton model without step back for pedestrian dynamics considering the human behaviors which can make judgments in some complex situations. This model can simulate pedestrian movement with different walk velocities through update at different time-step intervals. Two kinds of boundary conditions including periodic and open boundary for pedestrian counter flow are considered, and their dynamical characteristics are discussed. Simulation results show that for periodic boundary condition there are three phases of pedestrian patterns, i.e., freely moving phase, lane formation phase, and perfectly stopped phase at some certain total density ranges. In the stage of lane formation, the phenomenon that pedestrians exceed those with lower walk velocity through a narrow walkway can be found. For open boundary condition, at some certain entrance densities, there are two steady states of pedestrian patterns; but the first is metastable. Spontaneous fluctuations can break the first steady state, i.e., freely moving phase, and run into the second steady state, i.e., perfectly stopped phase

  10. Dynamical evolution of star-forming regions - II. Basic kinematics

    Science.gov (United States)

    Parker, Richard J.; Wright, Nicholas J.

    2016-04-01

    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir and thus assess the virial state (σ/σvir) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25-50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation.

  11. Wide dynamic range beam profile monitor

    International Nuclear Information System (INIS)

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1

  12. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  13. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  15. A sextupole-magnet as variable velocity selector for paramagnetic atomic beams in the thermal range

    International Nuclear Information System (INIS)

    Spindler, G.; Ebinghaus, H.; Steffens, E.

    1974-01-01

    The possibility of employing a sextupole-magnet as a velocity selector on account of its velocity dependent focusing properties for paramagnetic atomic beams is investigated. In comparison with a traditional velocity selector with rotating disks, a sextupole-magnet as velocity selector has the advantage of additional focusing and polarizing the atomic beam. Moreover it suppresses polymer molecules without an effective magnetic momentum of the electronic shell

  16. Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain

    Science.gov (United States)

    Dutta, Anirban; Dutta, Amit

    2017-09-01

    We study the role of long-range interactions (more precisely, the long-range superconducting gap term) on the nonequilibrium dynamics considering a long-range p -wave superconducting chain in which the superconducting term decays with distance between two sites in a power-law fashion characterized by an exponent α . We show that the Kibble-Zurek scaling exponent, dictating the power-law decay of the defect density in the final state reached following a slow (in comparison to the time scale associated with the minimum gap in the spectrum of the Hamiltonian) quenching of the chemical potential μ across a quantum critical point, depends nontrivially on the exponent α as long as α 2 , we find that the exponent saturates to the corresponding well-known value of 1 /2 expected for the short-range model. Furthermore, studying the dynamical quantum phase transitions manifested in the nonanalyticities in the rate function of the return possibility I (t ) in subsequent temporal evolution following a sudden change in μ , we show the existence of a new region; in this region, we find three instants of cusp singularities in I (t ) associated with a single sector of Fisher zeros. Notably, the width of this region shrinks as α increases and vanishes in the limit α →2 , indicating that this special region is an artifact of the long-range nature of the Hamiltonian.

  17. Increasing Linear Dynamic Range of a CMOS Image Sensor

    Science.gov (United States)

    Pain, Bedabrata

    2007-01-01

    A generic design and a corresponding operating sequence have been developed for increasing the linear-response dynamic range of a complementary metal oxide/semiconductor (CMOS) image sensor. The design provides for linear calibrated dual-gain pixels that operate at high gain at a low signal level and at low gain at a signal level above a preset threshold. Unlike most prior designs for increasing dynamic range of an image sensor, this design does not entail any increase in noise (including fixed-pattern noise), decrease in responsivity or linearity, or degradation of photometric calibration. The figure is a simplified schematic diagram showing the circuit of one pixel and pertinent parts of its column readout circuitry. The conventional part of the pixel circuit includes a photodiode having a small capacitance, CD. The unconventional part includes an additional larger capacitance, CL, that can be connected to the photodiode via a transfer gate controlled in part by a latch. In the high-gain mode, the signal labeled TSR in the figure is held low through the latch, which also helps to adapt the gain on a pixel-by-pixel basis. Light must be coupled to the pixel through a microlens or by back illumination in order to obtain a high effective fill factor; this is necessary to ensure high quantum efficiency, a loss of which would minimize the efficacy of the dynamic- range-enhancement scheme. Once the level of illumination of the pixel exceeds the threshold, TSR is turned on, causing the transfer gate to conduct, thereby adding CL to the pixel capacitance. The added capacitance reduces the conversion gain, and increases the pixel electron-handling capacity, thereby providing an extension of the dynamic range. By use of an array of comparators also at the bottom of the column, photocharge voltages on sampling capacitors in each column are compared with a reference voltage to determine whether it is necessary to switch from the high-gain to the low-gain mode. Depending upon

  18. Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption

    Directory of Open Access Journals (Sweden)

    NEGRINI A. L.

    1999-01-01

    Full Text Available Air flow through packed beds was analyzed experimentally under conditions ranging from those that reinforce the effect of the wall on the void fraction to those that minimize it. The packing was spherical particles, with a tube-to-particle diameter ratio (D/dp between 3 and 60. Air flow rates were maintained between 1.3 and 4.44 m3/min, and gas velocity was measured with a Pitot tube positioned above the bed exit. Measurements were made at various radial and angular coordinate values, allowing the distribution of air flow across the bed to be described in detail. Comparison of the experimentally observed radial profiles with those derived from published equations revealed that at high D/dp ratios the measured and calculated velocity profiles behaved similarly. At low ratios, oscillations in the velocity profiles agreed with those in the voidage profiles, signifying that treating the porous medium as a continuum medium is questionable in these cases.

  19. Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers.

    Science.gov (United States)

    Sinhuber, Michael; Bewley, Gregory P; Bodenschatz, Eberhard

    2017-09-29

    Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 10^{10} samples of the turbulent fluctuating velocity, which corresponds to O(10^{7}) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from R_{λ}=110 up to R_{λ}=1600, using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.

  20. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    KAUST Repository

    Gabriel, A.-A.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  1. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    KAUST Repository

    Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, Paul Martin

    2012-01-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  2. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  3. Gamut mapping in a high-dynamic-range color space

    Science.gov (United States)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  4. Dynamics of the Davydov–Scott soliton with location or velocity mismatch of its high-frequency component

    Energy Technology Data Exchange (ETDEWEB)

    Blyakhman, L.G.; Gromov, E.M.; Onosova, I.V.; Tyutin, V.V., E-mail: vtyutin@hse.ru

    2017-05-03

    The dynamics of a two-component Davydov–Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg–de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton's component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations. - Highlights: • The dynamics of the Davydov–Scott soliton with initial location or velocity mismatch of the HF component was investigated. • The study was performed within the framework of coupled linear Schrödinger and KdV equations for the HF and LF fields. • Analytical and numerical approaches were used. • The frequency of the DS soliton component oscillation was found. • Stability of the perturbed DS solitons was demonstrated.

  5. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  6. GALAXIES IN ΛCDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY-VELOCITY RELATION, BARYONIC MASS-VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING

    International Nuclear Information System (INIS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Primack, Joel; Romanowsky, Aaron J.

    2011-01-01

    It has long been regarded as difficult if not impossible for a cosmological model to account simultaneously for the galaxy luminosity, mass, and velocity distributions. We revisit this issue using a modern compilation of observational data along with the best available large-scale cosmological simulation of dark matter (DM). We find that the standard cosmological model, used in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits—at least on average—all basic statistics of galaxies with circular velocities V circ > 80 km s –1 calculated at a radius of ∼10 kpc. Our primary observational constraint is the luminosity-velocity (LV) relation—which generalizes the Tully-Fisher and Faber-Jackson relations in allowing all types of galaxies to be included, and provides a fundamental benchmark to be reproduced by any theory of galaxy formation. We have compiled data for a variety of galaxies ranging from dwarf irregulars to giant ellipticals. The data present a clear monotonic LV relation from ∼50 km s –1 to ∼500 km s –1 , with a bend below ∼80 km s –1 and a systematic offset between late- and early-type galaxies. For comparison to theory, we employ our new ΛCDM 'Bolshoi' simulation of DM, which has unprecedented mass and force resolution over a large cosmological volume, while using an up-to-date set of cosmological parameters. We use HAM to assign rank-ordered galaxy luminosities to the DM halos, a procedure that automatically fits the empirical luminosity function and provides a predicted LV relation that can be checked against observations. The adiabatic contraction of DM halos in response to the infall of the baryons is included as an optional model ingredient. The resulting predictions for the LV relation are in excellent agreement with the available data on both early-type and late-type galaxies for the luminosity range from M r = –14 to M r = –22. We also compare our predictions for the 'cold' baryon mass (i

  7. Extending the dynamic range of silicon photomultipliers without increasing pixel count

    International Nuclear Information System (INIS)

    Johnson, Kurtis F.

    2010-01-01

    A silicon photomultiplier, sometimes called 'multipixel photon counter', which we here refer to as a 'SiPM', is a photo-sensitive device built from an avalanche photodiode array of pixels on a common silicon substrate, such that it can detect single photon events. The dimensions of a pixel may vary from 20 to 100 μm and their density can be greater than 1000 per square millimeter. Each pixel in a SiPM operates in Geiger mode and is coupled to the output by a quenching resistor. Although each pixel operates in digital mode, the SiPM is an analog device because all the pixels are read in parallel, making it possible to generate signals within a dynamic range from a single photon to a large number of photons, ultimately limited by the number of pixels on the chip. In this note we describe a simple and general method of increasing the dynamic range of a SiPM beyond that one may naively assume from the shape of the cumulative distribution function of the SiPM response to the average number of photons per pixel. We show that by rendering the incoming flux of photons to be non-uniform in a prescribed manner, a significant increase in dynamic range is achievable. Such re-distribution of the incoming flux may be accomplished with simple, non-focusing lenses, prisms, interference films, mirrors or attenuating films. Almost any optically non-inert interceding device can increase the dynamic range of the SiPM.

  8. Velocity Controller for a Class of Vehicles

    Directory of Open Access Journals (Sweden)

    Herman Przemyslaw

    2017-02-01

    Full Text Available This paper addresses the problem of velocity tracking control for various fully-actuated robotic vehicles. The presented method, which is based on transformation of equations of motion allows one to use, in the control gain matrix, the dynamical couplings existing in the system. Consequently, the dynamics of the vehicle is incorporated into the control process what leads to fast velocity error convergence. The stability of the system under the controller is derived based on Lyapunov argument. Moreover, the robustness of the proposed controller is shown too. The general approach is valid for 6 DOF models as well as other reduced models of vehicles. Simulation results on a 6 DOF indoor airship validate the described velocity tracking methodology.

  9. Binaural model-based dynamic-range compression.

    Science.gov (United States)

    Ernst, Stephan M A; Kortlang, Steffen; Grimm, Giso; Bisitz, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2018-01-26

    Binaural cues such as interaural level differences (ILDs) are used to organise auditory perception and to segregate sound sources in complex acoustical environments. In bilaterally fitted hearing aids, dynamic-range compression operating independently at each ear potentially alters these ILDs, thus distorting binaural perception and sound source segregation. A binaurally-linked model-based fast-acting dynamic compression algorithm designed to approximate the normal-hearing basilar membrane (BM) input-output function in hearing-impaired listeners is suggested. A multi-center evaluation in comparison with an alternative binaural and two bilateral fittings was performed to assess the effect of binaural synchronisation on (a) speech intelligibility and (b) perceived quality in realistic conditions. 30 and 12 hearing impaired (HI) listeners were aided individually with the algorithms for both experimental parts, respectively. A small preference towards the proposed model-based algorithm in the direct quality comparison was found. However, no benefit of binaural-synchronisation regarding speech intelligibility was found, suggesting a dominant role of the better ear in all experimental conditions. The suggested binaural synchronisation of compression algorithms showed a limited effect on the tested outcome measures, however, linking could be situationally beneficial to preserve a natural binaural perception of the acoustical environment.

  10. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  11. Sensitivity and Dynamic Range Considerations for Homodyne Detection Systems

    DEFF Research Database (Denmark)

    Jaggard, Dwight L.; King, Ray J

    1973-01-01

    The effects of modulation frequency, RF reference power, and external bias upon the sensitivity and dynamic range of microwave homodyne detection systems was measured for point contact diodes and low l/f noise Schottky and backward diodes. The measurements were made at 4.89 GHz using a signal...... to noise ratio of 3 dB and a detection system bandwidth of 10 Hz. Maximum sensitivities of -135, -150, and -145 dBm, and dynamic ranges of 92, 110, and 124 dB were measured for the point contact, Schottky, and backward diodes at modulation frequencies of 30, 30, and 3 kHz, respectively. It was found...... that the level of RF reference signal needed to obtain the maximum sensitivity was equal to or somewhat above the point where the diode changes from square law to linear detection. The results are significant in that previously reported homodyne sensitivities (not necessarily maximum) were on the order of -90...

  12. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  13. On the velocity distributions of granular gases

    International Nuclear Information System (INIS)

    Polito, A.M.M.; Rocha Filho, T.M.; Figueiredo, A.

    2009-01-01

    We present a new approach to determine velocity distributions in granular gases to improve the Sonine polynomial expansion of the velocity distribution function, at higher inelasticities, for the homogeneous cooling regime of inelastic hard spheres. The perturbative consistency is recovered using a new set of dynamical variables based on the characteristic function and we illustrate our approach by computing the first four Sonine coefficients for moderate and high inelasticities. The analytical coefficients are compared with molecular dynamics simulations results and with a previous approach by Huthmann et al.

  14. Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography

    Science.gov (United States)

    Li, Peng; Thurber, Clifford

    2018-06-01

    We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.

  15. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  16. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  17. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  18. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    Science.gov (United States)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  19. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  20. A deterministic and stochastic velocity model for the Salton Trough/Basin and Range transition zone and constraints on magmatism during rifting

    Science.gov (United States)

    Larkin, Steven P.; Levander, Alan; Okaya, David; Goff, John A.

    1996-12-01

    As a high resolution addition to the 1992 Pacific to Arizona Crustal Experiment (PACE), a 45-km-long deep crustal seismic reflection profile was acquired across the Chocolate Mountains in southeastern California to illuminate crustal structure in the transition between the Salton Trough and the Basin and Range province. The complex seismic data are analyzed for both large-scale (deterministic) and fine-scale (stochastic) crustal features. A low-fold near-offset common-midpoint (CMP) stacked section shows the northeastward lateral extent of a high-velocity lower crustal body which is centered beneath the Salton Trough. Off-end shots record a high-amplitude diffraction from the point where the high velocity lower crust pinches out at the Moho. Above the high-velocity lower crust, moderate-amplitude reflections occur at midcrustal levels. These reflections display the coherency and frequency characteristics of reflections backscattered from a heterogeneous velocity field, which we model as horizontal intrusions with a von Kármán (fractal) distribution. The effects of upper crustal scattering are included by combining the mapped surface geology and laboratory measurements of exposed rocks within the Chocolate Mountains to reproduce the upper crustal velocity heterogeneity in our crustal velocity model. Viscoelastic finite difference simulations indicate that the volume of mafic material within the reflective zone necessary to produce the observed backscatter is about 5%. The presence of wavelength-scale heterogeneity within the near-surface, upper, and middle crust also produces a 0.5-s-thick zone of discontinuous reflections from a crust-mantle interface which is actually a first-order discontinuity.

  1. Dynamic behaviour of “Collapsible” concrete

    Directory of Open Access Journals (Sweden)

    Caverzan Alessio

    2015-01-01

    Full Text Available In this work a particular cement composite material for protection of structures and infrastructures against accidental actions, such as blast or impact, has been investigated. An experimental procedure has been developed in order to assess static and dynamic behaviour of energy absorbing cementitious composites. The granular cementitious composite has been studied focusing attention to compressive strength, high deformation and energy dissipation capacity which are important characteristics for an absorber material. An experimental characterization of the material behaviour under compressive static and dynamic loadings has been carried out. Different deformation velocities have been studied in order to define the material behaviour in a wide range of strain rates. The velocity range up to 0.1 m/s is investigated by means of a universal servo-hydraulic MTS 50 kN testing machine. Some preliminary results have been reported and discussed in the present work.

  2. Effect of velocity variation on secondary-ion-emission probability: Quantum stationary approach

    International Nuclear Information System (INIS)

    Goldberg, E.C.; Ferron, J.; Passeggi, M.C.G.

    1989-01-01

    The ion-velocity dependence of the ionization probability for an atom ejected from a surface is examined by using a quantum approach in which the coupled motion between electrons and the outgoing nucleus is followed along the whole trajectory by solving the stationary Schroedinger equation. We choose a very-small-cluster-model system in which the motion of the atom is restricted to one dimension, and with energy potential curves corresponding to the involved channels varying appreciably with the atom position. We found an exponential dependence on the inverse of the asymptotic ion velocity for high emission energies, and a smoother behavior with slight oscillations at low energies. These results are compared with those obtained within a dynamical-trajectory approximation using either a constant velocity equal to the asymptotic ionic value, or expressions for the velocity derived from the eikonal approximation and from the classical limit of the current vector. Both approaches give similar results provided the velocity is allowed to adjust self-consistently to potential energies and transition-amplitude variations. Strong oscillations are observed in the low-emission-energy range either if the transitions are neglected, or a constant velocity along the whole path is assumed for the ejected particle

  3. A dynamic range upgrade for neutron backscattering spectroscopy

    International Nuclear Information System (INIS)

    Cook, J.C.; Petry, W.; Heidemann, A.; Barthelemy, J.F.

    1992-01-01

    We report on an instrumental development of the cold neutron backscattering spectrometer IN10 at the Institut Laue-Langevin which has led to a significant increase in its dynamic range. Thermal expansion of a variety of neutron monochromator crystals is used instead of a mechanical oscillation of the monochromator, yielding an increase in the energy transfer range by nearly two orders of magnitude in an elastic wave vector transfer range of 0.07≤Q (A -1 )≤2.0. Using this new configuration, first inelastic measurements have been performed using the (200) reflections from KCl and NaCl monochromators with crystal temperatures between 80 K and 700 K. The thermal expansion of these crystals in this temperature range gives rise to energy transfer ranges (neutron energy gain) of -16<ℎω(μeV)<+83 for KCl and -530<ℎω(μeV)<-420 for NaCl with energy resolution (FWHM) of around 0.6 and 1.4 μeV for KCl and NaCl respectively. These figures represent the highest energy resolution currently available at these energy and wave vector transfers. (orig.)

  4. Some investigations on the mean and fluctuating velocities of an oscillating Taylor bubble

    International Nuclear Information System (INIS)

    Madani, Sara; Caballina, Ophelie; Souhar, Mohamed

    2012-01-01

    Highlights: ► The unsteady motion of an oscillating Taylor bubble has been studied. ► A non-dimensionalized velocity differential equation is numerically solved. ► The role of dimensionless numbers on the dynamics of the bubble is highlighted. ► Mean and fluctuating velocities and the phase shift are experimentally investigated. ► Correlations allowing the prediction of these latter parameters are proposed. - Abstract: The slug flow characterized by large elongated bubbles also called Taylor bubbles is widely encountered in nuclear reactor steam generators, cooling plants, reboilers, etc. The analysis of slug flow is very important as the instability caused by such flows can affect the safety features of nuclear reactors and other two-phase flow equipments. In this paper, we study the motion of a Taylor bubble rising in stagnant fluids in a vertical oscillating pipe. The investigation is restricted to high Reynolds numbers and to an intermediate range of Bond numbers where the effects of surface tension can be considered. The Froude number ranged between 0.22 and 0.33. Firstly, detailed analysis of models proposed in the literature for the motion of a Taylor bubble in an unsteady acceleration field is realized. The velocity differential equation obtained in the case of potential and axisymmetric flow without surface tension given in the literature is first non-dimensionalized to highlight dimensionless numbers. Then, the instantaneous velocity of the bubble is numerically determined. Mean and fluctuating velocities as well as the phase shift (U ¯ b , U f and φ) are estimated by using a technique based on the nonlinear least squares method. Results enable a discussion on the role played by dimensionless numbers on the dynamics of the bubble. It is found that the two parameters, the relative acceleration and the Bond number (a and Bo) have a governing role on the evolution of mean and fluctuating velocities while the ratio of the oscillation amplitude to

  5. Transmission dynamic range in chest radiology

    International Nuclear Information System (INIS)

    Lemmers, H.E.A.S.J.; Schultze Kool, L.J.; van Elburg, H.J.; Boelens, F.

    1989-01-01

    Due to the large difference in transmission between the lung area and the mediastinum, the human chest is a challenging object for radiographic imaging. This study is performed in order to define the dynamic range needed for a chest imaging chain. Eight hundred seventy-five consecutive outpatients were imaged with a prototype AMBER (advanced multiple beam equalization radiography) unit at 141 kVp. The equalization facility was disabled, allowing for the simultaneous capture of a film image and a digital dataset representing the local patient transmission in fields of approximately 2x2 cm. The datasets were analyzed to obtain the relation between the average transmission distribution in a subset of the population and physical parameters characterizing this subset, such as body weight or length

  6. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  7. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  8. Territorial dynamics and stable home range formation for central place foragers.

    Directory of Open Access Journals (Sweden)

    Jonathan R Potts

    Full Text Available Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as shown for urban foxes (Vulpes vulpes. For certain other species, however, home ranges reach a stable state. The present work shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a central place forager. That is, the animal's movement has a random aspect but is also biased towards a fixed location, such as a den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal's probability density function are derived. A programme is given for using these expressions to quantify both the strength of the animal's movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the mechanisms behind allometric scaling laws of animal space use are also given.

  9. Model-assisted measurements of suspension-feeding flow velocities.

    Science.gov (United States)

    Du Clos, Kevin T; Jones, Ian T; Carrier, Tyler J; Brady, Damian C; Jumars, Peter A

    2017-06-01

    Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis , measured using a direct method based on particle image velocimetry (PIV). Past uses of PIV in suspension-feeding studies have been limited by strong laser reflections that interfere with velocity measurements proximate to the siphon. We used a new approach based on fitting PIV-based velocity profile measurements to theoretical profiles from computational fluid dynamic (CFD) models, which allowed us to calculate inhalant siphon Reynolds numbers ( Re ). We used these inhalant Re and measurements of siphon diameters to calculate exhalant Re , pumping rates, and mean inlet and outlet velocities. For the three species studied, inhalant Re ranged from 8 to 520, and exhalant Re ranged from 15 to 1073. Volumetric pumping rates ranged from 1.7 to 7.4 l h -1 for M . arenaria , 0.3 to 3.6 l h -1 for M . m ercenaria and 0.07 to 0.97 l h -1 for C . intestinalis We also used CFD models based on measured pumping rates to calculate capture regions, which reveal the spatial extent of pumped water. Combining PIV data with CFD models may be a valuable approach for future suspension-feeding studies. © 2017. Published by The Company of Biologists Ltd.

  10. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2017-06-01

    Full Text Available We report the design of a sensitive, electrochemical aptasensor for detection of ochratoxin A (OTA with an extraordinary tunable dynamic sensing range. This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement. The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system. Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10−8 to 102 ng/g. Of great significance, the signal response in all OTA concentration ranges is at the same current scale, demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification. Finally, OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions. This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.

  11. Seasonal source-sink dynamics at the edge of a species' range

    Science.gov (United States)

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  12. Seasonal source-sink dynamics at the edge of a species' range.

    Science.gov (United States)

    Kanda, L Leann; Fuller, Todd K; Sievert, Paul R; Kellogg, Robert L

    2009-06-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations.

  13. Non-exponential dynamic relaxation in strongly nonequilibrium nonideal plasmas

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E

    2003-01-01

    Relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics method for nonideal two-component non-degenerate plasmas. Three limiting examples of initial states of strongly nonequilibrium plasma are considered: zero electron velocities, zero ion velocities and zero velocities of both electrons and ions. The initial non-exponential stage, its duration τ nB and subsequent exponential stages of the relaxation process are studied for a wide range of the nonideality parameter and the ion mass

  14. IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE

    International Nuclear Information System (INIS)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Foster, Jonathan B.; Tan, Jonathan C.; Rio, Nicola da; Nidever, David L.; Chojnowski, S. Drew; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2015-01-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2–6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s −1 (or 0.64 ± 0.08 km s −1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s −1 arcmin −1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial

  15. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  16. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  17. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  18. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  19. Estimation of position and velocity for a low dynamic vehicle in near space using nonresolved photometric and astrometric data.

    Science.gov (United States)

    Jing, Nan; Li, Chuang; Chong, Yaqin

    2017-01-20

    An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.

  20. Perceptual Effects of Dynamic Range Compression in Popular Music Recordings

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Walther-Hansen, Mads

    2014-01-01

    There is a widespread belief that the increasing use of dynamic range compression in music mastering (the loudnesswar) deteriorates sound quality but experimental evidence of perceptual effects is lacking. In this study, normal hearing listeners were asked to evaluate popular music recordings in ...

  1. The velocity ellipsoid in the Galactic disc using Gaia DR1

    Science.gov (United States)

    Anguiano, Borja; Majewski, Steven R.; Freeman, Kenneth C.; Mitschang, Arik W.; Smith, Martin C.

    2018-02-01

    The stellar velocity ellipsoid of the solar neighbour (d Standard of Rest in Galactic rotation to be V⊙ = 13.9 ± 3.4 km s-1. A relation is found between the vertex deviation and the chemical abundances for the thin disc, ranging from -5 to +40° as iron abundance increases. For the thick disc we find a vertex deviation of luv ˜- 15°. The tilt angle (luw) in the U-W plane for the thin disc groups ranges from -10 to +15°, but there is no evident relation between luw and the mean abundances. However, we find a weak relation for luw as a function of iron abundances and α-elements for most of the groups in the thick disc, where the tilt angle decreases from -5 to -20° when [Fe/H] decreases and [α/Fe] increases. The velocity anisotropy parameter is independent of the chemical group abundances and its value is nearly constant for both discs (β ˜ 0.5), suggesting that the combined disc is dynamically relaxed.

  2. Velocity distribution of fragments of catastrophic impacts

    Science.gov (United States)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  3. Relationship Between the Range of Motion and Isometric Strength of Elbow and Shoulder Joints and Ball Velocity in Women Team Handball Players.

    Science.gov (United States)

    Schwesig, René; Hermassi, Souhail; Wagner, Herbert; Fischer, David; Fieseler, Georg; Molitor, Thomas; Delank, Karl-Stefan

    2016-12-01

    Schwesig, R, Hermassi, S, Wagner, H, Fischer, D, Fieseler, G, Molitor, T, and Delank, K-S. Relationship between the range of motion and isometric strength of elbow and shoulder joints and ball velocity in women team handball players. J Strength Cond Res 30(12): 3428-3435, 2016-The aims of this study were to investigate relationships between isometric strength and range of motion (ROM) of shoulder and elbow joints and compare 2 different team handball throwing techniques in women team handball. Twenty highly experienced women team handball players (age: 20.7 ± 2.9 years; body mass: 68.4 ± 6.0 kg; and height: 1.74 ± 0.06 m) participated in this study. The isometric strength (hand-held dynamometer) and ROM (goniometer) of shoulder and elbow joints were measured at the beginning of the preseasonal training. After clinical examination, the subjects performed 3 standing throws with run-up (10 m) and 3 jump throws over a hurdle (0.20 m). The mean ball velocity was calculated from 3 attempts and measured using a radar gun. The results showed that the ball velocity of the standing throw with run-up (vST) was significantly higher than that of the jump throw (vJT) (25.5 ± 1.56 vs. 23.2 ± 1.31 m·s; p handball players.

  4. Multi-input wide dynamic range ADC system for use with nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R W [National Aeronautics and Space Administration, Huntsville, Ala. (USA). George C. Marshall Space Flight Center

    1976-04-15

    A wide dynamic range, eight input analog-to-digital converter system has been developed for use in nuclear experiments. The system consists of eight dual-range sample and hold modules, an eight input multiplexer, a ten-bit analog-to-digital converter, and the associated control logic.

  5. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    Science.gov (United States)

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  6. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  7. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  8. Multi-exposure high dynamic range image synthesis with camera shake correction

    Science.gov (United States)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  9. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, Majid [University of Tehran, Tehran (Iran, Islamic Republic of); Sanaeifar, Alireza [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-08-15

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  10. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    International Nuclear Information System (INIS)

    Yaghoubi, Majid; Sanaeifar, Alireza

    2015-01-01

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  11. Optimizing velocities and transports for complex coastal regions and archipelagos

    OpenAIRE

    Haley, Patrick; Agarwal, Arpit; Lermusiaux, Pierre

    2015-01-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry,...

  12. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  13. New integrable problems in a rigid body dynamics with cubic integral in velocities

    Science.gov (United States)

    Elmandouh, A. A.

    2018-03-01

    We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.

  14. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  15. Anomalous diffusion and q-Weibull velocity distributions in epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Tatiane Souza Vilela Podestá

    Full Text Available In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, the control of cell motion is a major demand in the creation of artificial tissues and organs. Here, cell migration assays on plastic 2D surfaces involving normal (MDCK and tumoral (B16F10 epithelial cell lines were performed varying the initial density of plated cells. Through time-lapse microscopy quantities such as speed distributions, velocity autocorrelations and spatial correlations, as well as the scaling of mean-squared displacements were determined. We find that these cells exhibit anomalous diffusion with q-Weibull speed distributions that evolves non-monotonically to a Maxwellian distribution as the initial density of plated cells increases. Although short-ranged spatial velocity correlations mark the formation of small cell clusters, the emergence of collective motion was not observed. Finally, simulational results from a correlated random walk and the Vicsek model of collective dynamics evidence that fluctuations in cell velocity orientations are sufficient to produce q-Weibull speed distributions seen in our migration assays.

  16. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  17. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  18. High-definition velocity-space tomography of fast-ion dynamics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Jacobsen, A.S.

    2016-01-01

    Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography...... information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI...

  19. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    Science.gov (United States)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  20. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    Science.gov (United States)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  1. Fast Slip Velocity in a High-Entropy Alloy

    Science.gov (United States)

    Rizzardi, Q.; Sparks, G.; Maaß, R.

    2018-04-01

    Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au and an Al0.3CoCrFeNi high-entropy alloy, but much faster than in Nb. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity-size distributions. The results are discussed in view of the underlying dislocation mobility.

  2. In Situ Test Study of Characteristics of Coal Mining Dynamic Load

    Directory of Open Access Journals (Sweden)

    Jiang He

    2015-01-01

    Full Text Available Combination of coal mining dynamic load and high static stress can easily induce such dynamic disasters as rock burst, coal and gas outburst, roof fall, and water inrush. In order to obtain the characteristic parameters of mining dynamic load and dynamic mechanism of coal and rock, the stress wave theory is applied to derive the relation of mining dynamic load strain rate and stress wave parameters. The in situ test was applied to study the stress wave propagation law of coal mine dynamic load by using the SOS microseismic monitoring system. An evaluation method for mining dynamic load strain rate was proposed, and the statistical evaluation was carried out for the range of strain rate. The research results show that the loading strain rate of mining dynamic load is in direct proportion to the seismic frequency of coal-rock mass and particle peak vibration velocity and is in inverse proportion to wave velocity. The high-frequency component damps faster than the low-frequency component in the shockwave propagating process; and the peak particle vibration velocity has a power functional relationship with the transmitting distance. The loading strain rate of mining dynamic load is generally less than class 10−1/s.

  3. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  4. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  5. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  6. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    Science.gov (United States)

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  7. Photonic limiters with enhanced dynamic range

    Science.gov (United States)

    Kononchuk, Rodion; Limberopoulos, Nicholaos; Anisimov, Igor; Vitebskiy, Ilya; Chabanov, Andrey

    2018-02-01

    Optical limiters transmit low intensity input light while blocking input light with the intensity exceeding certain limiting threshold. Conventional passive limiters utilize nonlinear optical materials, which are transparent at low light intensity and turn absorptive at high intensity. Strong nonlinear absorption, though, can result in over- heating and destruction of the limiter. Another problem is that the limiting threshold provided by the available optical material with nonlinear absorption is too high for many applications. To address the above problems, the nonlinear material can be incorporated in a photonic structure with engineered dispersion. At low intensity, the photonic structure can display resonant transmission via localized mode(s), while at high intensity the resonant transmission can disappear, and the entire stack can become highly re ective (not absorptive) within a broad frequency range. In the proposed design, the transition from the resonant transmission at low intensity to nearly total re ectivity at high intensity does not rely on nonlinear absorption; instead, it requires only a modest change in the refractive index of the nonlinear material. The latter implies a dramatic increase in the dynamic range of the limiter. The main idea is to eliminate the high-intensity resonant transmission by decoupling the localized (resonant) modes from the input light, rather than suppressing those modes using nonlinear absorption. Similar approach can be used for light modulation and switching.

  8. WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819

    International Nuclear Information System (INIS)

    Tabetha Hole, K.; Geller, Aaron M.; Mathieu, Robert D.; Meibom, Soeren; Platais, Imants; Latham, David W.

    2009-01-01

    We present the current results from our ongoing radial-velocity (RV) survey of the intermediate-age (2.4 Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry, we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11 ≤V≤ 16.5 and an approximate mass range of 1.1-1.6 M sun . Our sample covers a 23 arcminute (13 pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4 km s -1 for most narrow-lined stars. We use our RV data to calculate membership probabilities for stars with ≥3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster. Using our single cluster members, we find a cluster average RV of 2.34 ± 0.05 km s -1 . We use our kinematic cluster members to construct a cleaned color-magnitude diagram from which we identify rich giant, subgiant, and blue straggler populations and a well defined red clump. The cluster displays a morphology near the cluster turnoff clearly indicative of core convective overshoot. Finally, we discuss a few stars of note, one of which is a short-period red-clump binary that we suggest may be the product of a dynamical encounter.

  9. Influence and applicability of wire-mesh sensor to acquire two phase flow dynamics

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    Wire-mesh sensors (WMS) are able to measure void distributions and velocity profile at high speed. Immersing the wire-mesh affects the structure of two-phase flow. Experiments were performed for single rising air bubble in a vertical pipe of i.d. 50 mm and 224 mm at water velocities ranging from 0.05 to 0.52 m/s and 0.42 to 0.83 m/s. Distortion of a relatively large bubble with the wire-mesh was small in the water velocity over 0.25 m/s and confirmed by cross-correlation analysis as well. Bubble rising velocity acquired by WMS is in good agreement with that estimated high-speed camera in the experimental range. WMS has applicability to acquire two phase flow dynamics in the water velocity over 0.25 m/s. (author)

  10. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  11. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  12. Climate Velocity Can Inform Conservation in a Warming World.

    Science.gov (United States)

    Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J

    2018-06-01

    Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  14. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    Science.gov (United States)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  15. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    OpenAIRE

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability fo...

  16. Optimal velocity difference model for a car-following theory

    International Nuclear Information System (INIS)

    Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.

    2011-01-01

    In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.

  17. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    Science.gov (United States)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; hide

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  18. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  19. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  20. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    Science.gov (United States)

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  1. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-of-charge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  2. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  3. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  4. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    Science.gov (United States)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  5. Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene

    International Nuclear Information System (INIS)

    Ardenghi, J.S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.

    2014-01-01

    The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ 2 )

  6. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  7. Drift velocity of free electrons in liquid argon

    International Nuclear Information System (INIS)

    Walkowiak, W.

    2000-01-01

    A measurement of the drift velocity of free electrons in liquid argon has been performed. Free electrons have been produced by photoelectric effect using laser light in a so-called 'laser chamber'. The results on the drift velocity v d are given as a function of the electric field strength in the range 0.5 kV/cm≤|E|≤12.6 kV/cm and the temperature in the range 87 K≤T≤94 K. A global parametrization of v d (|E|,T) has been fitted to the data. A temperature dependence of the electron drift velocity is observed, with a mean value of Δv d /(ΔT v d )=(-1.72±0.08)%/K in the range of 87-94 K

  8. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  9. Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence

    Science.gov (United States)

    Danish, Mohammad; Meneveau, Charles

    2018-04-01

    Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial

  10. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  11. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  12. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  13. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  14. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  15. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)

    2012-11-01

    We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.

  16. Technique for increasing dynamic range of space-borne ion composition instruments

    International Nuclear Information System (INIS)

    Burch, J.L.; Miller, G.P.; Santos, A. de los; Pollock, C.J.; Pope, S.E.; Valek, P. W.; Young, D.T.

    2005-01-01

    The dynamic range of ion composition spectrometers is limited by several factors, including saturation of particle counters and spillover of signals from highly dominant species into channels tuned to minor species. Instruments designed for composition measurements of hot plasmas in space can suffer greatly from both of these problems because of the wide energy range required and the wide disparity in fluxes encountered in various regions of interest. In order to detect minor ions in regions of very weak fluxes, geometry factors need to be as large as possible within the mass and volume resources available. As a result, problems with saturation by the dominant fluxes and spillover to minor-ion channels in plasma regions with intense fluxes become especially acute. This article reports on a technique for solving the dynamic-range problem in the few eV to several keV energy/charge range that is of central importance for space physics research where the dominant ion is of low mass/charge (typically H + ), and the minor ions are of higher mass/charge (typically O + ). The technique involves employing a radio-frequency modulation of the deflection electric field in the back section of an electrostatic analyzer in a time-of-flight instrument. This technique is shown to reduce H + counts by a controllable amount of up to factors of 1000 while reducing O + counts by only a few percent that can be calibrated

  17. The effect of fog on radionuclide deposition velocities

    International Nuclear Information System (INIS)

    Gibb, R.; Carson, P.; Thompson, W.

    1997-01-01

    Current nuclear power station release models do not evaluate deposition under foggy atmospheric conditions. Deposition velocities and scavenging coefficients of radioactive particles entrained in fog are presented for the Point Lepreau area of the Bay of Fundy coast. It is recommended to calculate deposition based on fog deposition velocities. The deposition velocities can be calculated from common meteorological data. The range of deposition velocities is approximately 1 - 100 cm/s. Fog deposition is surface roughness dependent with forests having larger deposition and deposition velocities than soil or grasses. (author)

  18. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  19. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    Science.gov (United States)

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  20. Spin-selected velocity dependence of the associative ionization cross section in Na(3p)+Na(3p) collisions over the collision energy range from 2.4 to 290 meV

    International Nuclear Information System (INIS)

    Wang, M.; Keller, J.; Boulmer, J.; Weiner, J.

    1987-01-01

    We report new results on the direct measurement of the associative ionization (AI) cross section in collisions between velocity-selected and spin-oriented Na(3p) atoms. Improvements in the Doppler-shift velocity-selection technique permit measurement over an energy range spanning more than two orders of magnitude from subthermal to suprathermal regions. Spin orientations, parallel and antiparallel, enable determination of the excitation function (velocity dependence of the AI cross section) for the separate singlet and triplet manifolds of Na 2 states contributing to the AI process

  1. UMER: An analog computer for dynamics of swarms interacting via long-range forces

    International Nuclear Information System (INIS)

    Kishek, R.A.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T.F.; Haber, I.; O'Shea, P.G.; Quinn, B.; Papadopoulos, C.; Reiser, M.; Stratakis, D.; Tian, K.; Tobin, C.J.; Walter, M.

    2006-01-01

    Some of the most challenging and interesting problems in nature involve large numbers of objects or particles mutually interacting through long-range forces. Examples range from galaxies and plasmas to flocks of birds and traffic flow on a highway. Even in cases where the form of the interacting force is precisely known, such as the 1/r 2 -dependent Coulomb and gravitational forces, such problems present a formidable theoretical and modeling challenge for large numbers of interacting bodies. This paper reports on a newly constructed, scaled particle accelerator that will serve as an experimental testbed for the dynamics of swarms interacting through long-range forces. Primarily designed for intense beam dynamics studies for advanced accelerators, the University of Maryland Electron Ring (UMER) design is described in detail and an update on commissioning is provided. An example application to a system other than a charged particle beam is discussed

  2. A Universal Velocity Dispersion Profile for Pressure Supported Systems: Evidence for MONDian Gravity across Seven Orders of Magnitude in Mass

    Energy Technology Data Exchange (ETDEWEB)

    Durazo, R.; Hernandez, X.; Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264 C.P. 04510 México D.F., México (Mexico); Sodi, B. Cervantes [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-03-10

    For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversity of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.

  3. Characteristic wave velocities in spherical electromagnetic cloaks

    International Nuclear Information System (INIS)

    Yaghjian, A D; Maci, S; Martini, E

    2009-01-01

    We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.

  4. Sensitivity of the Speech Intelligibility Index to the Assumed Dynamic Range

    Science.gov (United States)

    Jin, In-Ki; Kates, James M.; Arehart, Kathryn H.

    2017-01-01

    Purpose: This study aims to evaluate the sensitivity of the speech intelligibility index (SII) to the assumed speech dynamic range (DR) in different languages and with different types of stimuli. Method: Intelligibility prediction uses the absolute transfer function (ATF) to map the SII value to the predicted intelligibility for a given stimuli.…

  5. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    Science.gov (United States)

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  6. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  7. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  8. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  9. A review of velocity-type PSO variants

    OpenAIRE

    Ivo Sousa-Ferreira; Duarte Sousa

    2017-01-01

    This paper presents a review of the particular variants of particle swarm optimization, based on the velocity-type class. The original particle swarm optimization algorithm was developed as an unconstrained optimization technique, which lacks a model that is able to handle constrained optimization problems. The particle swarm optimization and its inapplicability in constrained optimization problems are solved using the dynamic-objective constraint-handling method. The dynamic-objective constr...

  10. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    Science.gov (United States)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  11. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    Directory of Open Access Journals (Sweden)

    Risto K Heikkinen

    Full Text Available Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina and one generalist (Issoria lathonia. Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity, with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.

  12. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  13. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  14. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    Science.gov (United States)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  15. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...

  16. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  17. Range expansions transition from pulled to pushed waves with increasing cooperativity in an experimental microbial population

    Science.gov (United States)

    Gandhi, Saurabh; Yurtsev, Eugene; Korolev, Kirill; Gore, Jeff

    Range expansions are becoming more frequent due to environmental changes and rare long distance dispersal, often facilitated by anthropogenic activities. Simple models in theoretical ecology explain many emergent properties of range expansions, such as a constant expansion velocity, in terms of organism-level properties such as growth and dispersal rates. Testing these quantitative predictions in natural populations is difficult because of large environmental variability. Here, we used a controlled microbial model system to study range expansions of populations with and without intra-specific cooperativity. For non-cooperative growth, the expansion dynamics were dominated by population growth at the low-density front, which pulled the expansion forward. We found these expansions to be in close quantitative agreement with the classical theory of pulled waves by Fisher and Skellam, suitably adapted to our experimental system. However, as cooperativity increased, the expansions transitioned to being pushed, i.e. controlled by growth in the bulk as well as in the front. Although both pulled and pushed waves expand at a constant velocity and appear otherwise similar, their distinct dynamics leads to very different evolutionary consequences. Given the prevalence of cooperative growth in nature, understanding the effects of cooperativity is essential to managing invading species and understanding their evolution.

  18. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    Science.gov (United States)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  19. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  20. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    Science.gov (United States)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  1. Inter-relationship between CSF dynamics and CSF to-and-fro movement in the cervical region as assessed by MR velocity imaging with phase encoding in hydrocephalic and normal patients

    International Nuclear Information System (INIS)

    Kudo, Sumio; Wachi, Akihiko; Sato, Kiyoshi; Sumie, Hirotoshi.

    1992-01-01

    The to-and-fro velocity of cerebrospinal fluid (CSF) at C-1 and C-2 spinal-cord levels was measured by means of MR velocity-imaging technique, and the correlation of changes in velocity and various biophysical factors influencing the intracranial pressure environment were analyzed. Eight hydrocephalic patients, male and female, of different ages (both infants and adults), and 11 normal volunteers with a similar age range were investigated. The to-and-fro CSF movement was measured by means of phase-shift techniques with a bipolar gradient pulse. The cerebrospinal opening pressure was also recorded in 6 of the 8 hydrocephalic patients, either through a ventricular catheter reservoir or a spinal catheter inserted in the lumbosacral subarachnoid space; the CSF pulse amplitude, the pressure volume index (PVI), and the CSF outflow resistance (Ro) were also evaluated during the procedure. CSF flowed towards caudally in the early systolic phase of a cardiac stroke, but the flow direction was reversed in the early diastolic phase when the maximum flow rate was reached. Although such a flow pattern was commonly observed in all normal and hydrocephalic subjects, whatever the age, there was a marked difference in flow rate between the infants and the pediatric-adults groups, -i.e., it was 5-10 mm/sec for the former and 10-20 mm/sec for the latter. An abnormally high flow rate (33.0 mm/sec) was observed in the hydrocephalic patients when there was a malfunction of the ventriculoperitoneal shunt. A close correlation was found to exist among the changes in the CSF flow velocity, the CSF pressure amplitude, and the CSF outflow resistance (Ro), but not in the PVI. The measurement of the CSF flow velocity by MR velocity imaging appears to have an important role not only in the investigation of CSF dynamics, but also in the diagnosis and treatment of such pathologies as hydrocephalus and ventriculoperitoneal shunt malfunction. (author)

  2. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  3. Shear wave velocity structure of northern and North-Eastern Ethiopia

    International Nuclear Information System (INIS)

    Kebede, F.; Mammo, T.; Panza, G.F.; Vuan, A.; Costa, G.

    1995-10-01

    The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs

  4. Measuring the Alfvénic nature of the interstellar medium: Velocity anisotropy revisited

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Leão, I. C.; De Medeiros, J. R.; Esquivel, A.

    2014-01-01

    The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel and Lazarian method to estimate the Alfvén Mach number using the structure function anisotropy in velocity centroid data from Position-Position-Velocity maps. We utilize three-dimensional magnetohydrodynamic simulations of fully developed turbulence, with a large range of sonic and Alfvénic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfvén Mach number dependency found in Esquivel and Lazarian might change when taking the second moment of the Position-Position-Velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e., Alfvén Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line of sight is parallel to up to ≈45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvénic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.

  5. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  6. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  7. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  8. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  9. Paintball velocity as a function of distance traveled

    Directory of Open Access Journals (Sweden)

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient.

  10. Paintball velocity as a function of distance traveled

    Directory of Open Access Journals (Sweden)

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient

  11. POTENTIALS OF IMAGE BASED ACTIVE RANGING TO CAPTURE DYNAMIC SCENES

    Directory of Open Access Journals (Sweden)

    B. Jutzi

    2012-09-01

    Full Text Available Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility of capturing range information by images with a single measurement. With this new technique image-based active ranging is possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen from the recent development of highly specialized (far-range imaging sensors – so called flash-light lasers – that most of the limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded operating range. The presented work is a first step towards the development of methods capable for application of range images in outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the experimental setup a measurement campaign was carried out and first results will be presented within this paper.

  12. P--V--T and sound velocity data for fluid n-D2 in the range 75-300 K and 2-20 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-11-01

    Simultaneous static measurements of pressure, volume, temperature, and sound velocity are reported in deuterium fluid in the range 75 less than or equal to T less than or equal to 300K and 2 less than or equal to P less than or equal to 20 kbar [0.2 to 2.0 GPa]. The 1340 sets of data points along the 33 different isotherms are presented so that they may be available for use in equation-of-state development

  13. On the possibility of high-velocity tidal sterams as dynamic barriers to longshore sediment transport: evidence from the continental shelf off the Gulf of Kutch, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.; Rao, V.P

    and clay minerals. The distinct differences have resulted because the high-velocity (2 to 2.5 knots) tidal stream at the gulf mouth acts as a dynamic barrier inhibiting sediment transport across the month. Differences in the distribution of sand size...

  14. First full dynamic range calibration of the JUNGFRAU photon detector

    Science.gov (United States)

    Redford, S.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Vetter, S.; Zhang, J.

    2018-01-01

    The JUNGFRAU detector is a charge integrating hybrid silicon pixel detector developed at the Paul Scherrer Institut for photon science applications, in particular for the upcoming free electron laser SwissFEL. With a high dynamic range, analogue readout, low noise and three automatically switching gains, JUNGFRAU promises excellent performance not only at XFELs but also at synchrotrons in areas such as protein crystallography, ptychography, pump-probe and time resolved measurements. To achieve its full potential, the detector must be calibrated on a pixel-by-pixel basis. This contribution presents the current status of the JUNGFRAU calibration project, in which a variety of input charge sources are used to parametrise the energy response of the detector across four orders of magnitude of dynamic range. Building on preliminary studies, the first full calibration procedure of a JUNGFRAU 0.5 Mpixel module is described. The calibration is validated using alternative sources of charge deposition, including laboratory experiments and measurements at ESRF and LCLS. The findings from these measurements are presented. Calibrated modules have already been used in proof-of-principle style protein crystallography experiments at the SLS. A first look at selected results is shown. Aspects such as the conversion of charge to number of photons, treatment of multi-size pixels and the origin of non-linear response are also discussed.

  15. Atmospheric kinematics of high velocity long period variables

    International Nuclear Information System (INIS)

    Willson, L.A.

    1982-01-01

    Radial velocities of atomic absorption lines of three long period variables, RT Cyg, Z Oph and S Car, have been analysed in order to understand velocity gradients and discontinuities in their atmospheres. Phase coverage is from five days before maximum to 73 days after maximum for RT Cyg, from 17 days before to 44 days after maximum for Z Oph, and at 9 days before maximum for S Car. On a few spectrograms double lines were seen. All spectrograms were analysed by a four-parameter regression programme to yield the dependence of the radial velocity on the excitation potential, first ionization potential, wavelength and line strength, as indicators of the depth of line formation. The data were analysed to yield the velocity discontinuity across shock waves and velocity gradients between shock waves. Near maximum light the radial velocities cannot be understood by the presence of one shock only but rather require two shocks. The lower shock becomes apparent at the longer wavelengths. Consistent parameters are obtained if these stars are fundamental mode pulsators with total masses in the range of 0.5 to 1.0 solar mass and effective radii in the range of 0.85 to 1.5 x 10 13 cm. (author)

  16. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  17. A THEOREM ON CENTRAL VELOCITY DISPERSIONS

    International Nuclear Information System (INIS)

    An, Jin H.; Evans, N. Wyn

    2009-01-01

    It is shown that, if the tracer population is supported by a spherical dark halo with a core or a cusp diverging more slowly than that of a singular isothermal sphere (SIS), the logarithmic cusp slope γ of the tracers must be given exactly by γ = 2β, where β is their velocity anisotropy parameter at the center unless the same tracers are dynamically cold at the center. If the halo cusp diverges faster than that of the SIS, the velocity dispersion of the tracers must diverge at the center too. In particular, if the logarithmic halo cusp slope is larger than two, the diverging velocity dispersion also traces the behavior of the potential. The implication of our theorem on projected quantities is also discussed. We argue that our theorem should be understood as a warning against interpreting results based on simplifying assumptions such as isotropy and spherical symmetry.

  18. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  19. Kernel optimization for short-range molecular dynamics

    Science.gov (United States)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  20. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    Science.gov (United States)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  1. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  2. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  3. Detecting signatures of stochastic self-organization in US money and velocity measures

    Science.gov (United States)

    Serletis, Apostolos; Uritskaya, Olga Y.

    2007-11-01

    In this paper, we continue the research by Serletis [Random walks, breaking trend functions, and the chaotic structure of the velocity of money, J. Bus. Econ. Stat. 13 (1995) 453-458] and Serletis and Shintani [Chaotic monetary dynamics with confidence, J. Macroeconomics 28 (2006) 228-252] by applying the method of detrended fluctuation analysis (DFA)-introduced by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685-1689] and adapted to the analysis of long-range correlations in economic data by Uritskaya [Forecasting of magnitude and duration of currency crises based on analysis of distortions of fractal scaling in exchange rate fluctuations, Noise and fluctuations in econophysics and finance, Proc. SPIE 5848 (2005) 17-26; Fractal methods for modeling and forecasting of currency crises, in: Proceedings of the fourth International Conference on Modeling and Analysis of Safety and Risk in Complex Systems, SPbSU Press, St.Petersburg, 2005, pp. 210-215]-to investigate the dynamical structure of United States money and velocity measures. We use monthly data over the time period from 1959:1 to 2006:2, at each of the four levels of monetary aggregation, M1, M2, M3, and MZM, making comparisons among simple-sum, Divisia, and currency equivalent (CE) methods of aggregation. The results suggest that the sum and Divisia monetary aggregates are more appropriate for measuring long-term tendencies in money supply dynamics while the CE aggregates are more sensitive measures of short-term processes in the economy.

  4. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  5. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    1987-01-01

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  6. Clinical evaluation of a medical high dynamic range display

    International Nuclear Information System (INIS)

    Marchessoux, Cedric; Paepe, Lode de; Vanovermeire, Olivier; Albani, Luigi

    2016-01-01

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study used a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM HDR is slightly higher than FoM LDR with 0.09% of difference. For the difficult nodules, the averaged FoM HDR is slightly higher than FoM LDR with 1.38% of difference. The averaged FoM HDR is slightly higher than FoM LDR with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in

  7. Effect of Inlet Velocity on Heat Transfer Process in a Novel Photo-Fermentation Biohydrogen Production Bioreactor using Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2014-11-01

    Full Text Available Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB. Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.

  8. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  9. Fracture dynamics in implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Massy, D.; Tardif, S.; Penot, J. D.; Ragani, J.; Rieutord, F. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SP2M, F-38000 Grenoble (France); Mazen, F.; Madeira, F. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Landru, D.; Kononchuk, O. [SOITEC, Parc Technologique des Fontaines, 38190 Bernin (France)

    2015-08-31

    Crack propagation in implanted silicon for thin layer transfer is experimentally studied. The crack propagation velocity as a function of split temperature is measured using a designed optical setup. Interferometric measurement of the gap opening is performed dynamically and shows an oscillatory crack “wake” with a typical wavelength in the centimetre range. The dynamics of this motion is modelled using beam elasticity and thermodynamics. The modelling demonstrates the key role of external atmospheric pressure during crack propagation. A quantification of the amount of gas trapped inside pre-existing microcracks and released during the fracture is made possible, with results consistent with previous studies.

  10. Contamination control in HVAC systems for aseptic processing area. Part I: Case study of the airflow velocity in a unidirectional airflow workstation with computational fluid dynamics.

    Science.gov (United States)

    Ogawa, M

    2000-01-01

    A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.

  11. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    International Nuclear Information System (INIS)

    Robbins, D.L.; Kelly, A.M.; Alexander, D.J.; Hanrahan, R.J.; Snow, R.C.; Gehr, R.J.; Rupp, Ted Dean; Sheffield, S.A.; Stahl, D.B.

    2001-01-01

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurements of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.

  12. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2018-01-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  13. Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

    Directory of Open Access Journals (Sweden)

    Jiajia Zhou

    2018-05-01

    Full Text Available This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances. Keywords: Dynamic velocity regulation, Bio-inspired model, Backstepping, Underactuated AUV, Three-dimensional trajectory tracking

  14. An operating principle of the turtle utricle to detect wide dynamic range.

    Science.gov (United States)

    Nam, Jong-Hoon

    2018-03-01

    The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from 2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Abstract of Dynamic Range: When Game Design and Narratives Unite

    OpenAIRE

    Arsenault, Dominic

    2005-01-01

    This paper proposes a tool and methodology for measuring the degree of freedom given to a player in any resource-driven game (that is, any game in which managing resources is an integral part of the gameplay). This concept, which I call the Dynamic Range, can be used namely to evaluate a given game system’s potential for developing emergent narratives, as defined by Henry Jenkins in his publication Game Design as Narrative Architecture. While Jenkins places at the heart of the creation of nar...

  16. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  17. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  18. Optimizing velocities and transports for complex coastal regions and archipelagos

    Science.gov (United States)

    Haley, Patrick J.; Agarwal, Arpit; Lermusiaux, Pierre F. J.

    2015-05-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry, coastline and divergence strong constraints. A weak constraint towards the minimum inter-island transports that are in accord with the first-guess velocities provides important velocity corrections in complex archipelagos. In the optimization weights, the minimum distance and vertical area between pairs of coasts are computed using a Fast Marching Method. Additional information on velocity and transports are included as strong or weak constraints. We apply our methodology around the Hawaiian islands of Kauai/Niihau, in the Taiwan/Kuroshio region and in the Philippines Archipelago. Comparisons with other common initialization strategies, among hindcasts from these initial conditions (ICs), and with independent in situ observations show that our optimization corrects transports, satisfies boundary conditions and redirects currents. Differences between the hindcasts from these different ICs are found to grow for at least 2-3 weeks. When compared to independent in situ observations, simulations from our optimized ICs are shown to have the smallest errors.

  19. Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vitanov, Nikolay K.; Yankulova, Elka D.

    2006-01-01

    By means of the multifractal detrended fluctuation analysis (MFDFA) we investigate long-range correlations in the interbeat time series of heart activity of Drosophila melanogaster-the classical object of research in genetics. Our main investigation tool are the fractal spectra f(α) and h(q) by means of which we trace the correlation properties of Drosophila heartbeat dynamics for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healthy Drosophila do not have scaling properties. Time series from species with genetic defects can be long-range correlated. Different kinds of genetic heart defects lead to different shape of the fractal spectra. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation

  20. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  1. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  2. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    Science.gov (United States)

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  3. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  4. Shear Wave Velocity for Evaluation of State of Cohesionless Soils with Fines

    Science.gov (United States)

    Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz

    2017-10-01

    The paper concerns evaluation of cohesionless soils containing fines. In clean sands, state of soil is usually quantified by relative density DR with use of field techniques like static or dynamic probes. However, in cohesionless soils containing considerable amount of fines, relative density alone, which is based solely on void ratio values, is not representative. This results from the fact that in case of cohesionless soil there is no unique intrinsic compressibility line, like it is in case of cohesive soils. Thus state of soil depends not only on void ratio but also state of stress. For this reason it is necessary to look for an alternative means to quantify state of soils with fines. The paper concerns possibility of evaluation of state of soil containing various amount of fines on the basis of shear wave velocity measurement. The idea rests on the fact that void ratio and state of stress are the major factors which contribute to a state of soil and shear wave velocity as well. When measured shear wave velocities are normalised with respect to stresses the resulting values might be strictly correlated to void ratio. To validate this approach, an experimental test programme (based on series of sophisticated triaxial tests) was carried out on four kinds of sandy material containing various amount of fines up to 60%. The experimental data made possible to establish basic correlation between soil states and shear wave velocity for each kind of soil. Normalized shear wave velocity was compared with void ratio and state parameter as well. The obtained results revealed that determination of void ratio on the basis of shear wave velocity in a certain range of fines can be much more adequate than for clean sands. However, if the fines content exceeds certain value, the obtained correlation is no longer as good.

  5. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  6. Dynamical effects of the spiral arms on the velocity distribution of disc stars

    Science.gov (United States)

    Hattori, Kohei; Gouda, Naoteru; Yano, Taihei; Sakai, Nobuyuki; Tagawa, Hiromichi

    2018-04-01

    Nearby disc stars in Gaia DR1 (TGAS) and RAVE DR5 show a bimodal velocity distribution in the metal-rich region (characterized by the Hercules stream) and mono-modal velocity distribution in the metal-poor region. We investigate the origin of this [Fe/H] dependence of the local velocity distribution by using 2D test particle simulations. We found that this [Fe/H] dependence can be well reproduced if we assume fast rotating bar models with Ωbar ~= 52 km s-1 kpc-1. A possible explanation for this result is that the metal-rich, relatively young stars are more likely to be affected by bar's outer Lindblad resonance due to their relatively cold kinematics. We also found that slowly rotating bar models with Ωbar ~= 39 km s-1 kpc-1 can not reproduce the observed data. Interestingly, when we additionally consider spiral arms, some models can reproduce the observed velocity distribution even when the bar is slowly rotating.

  7. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  8. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  9. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  10. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  11. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  12. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server

    2012-01-01

    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  13. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  14. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  15. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images

    NARCIS (Netherlands)

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute

  16. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  17. Effects of dynamic-range compression on temporal acuity

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian

    2016-01-01

    Some of the challenges that hearing-aid listeners experience with speech perception in complex acoustic environments may originate from limitations in the temporal processing of sounds. To systematically investigate the influence of hearing impairment and hearing-aid signal processing on temporal...... processing, temporal modulation transfer functions (TMTFs) and “supra-threshold” modulation-depth discrimination (MDD) thresholds were obtained in normal-hearing (NH) and hearing-impaired (HI) listeners with and without wide-dynamic range compression (WDRC). The TMTFs were obtained using tonal carriers of 1...... with the physical compression of the modulation depth due to the WDRC. Indications of reduced temporal resolution in the HI listeners were observed in the TMTF patterns for the 5 kHz carrier. Significantly higher MDD thresholds were found for the HI group relative to the NH group. No relationship was found between...

  18. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  19. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    Energy Technology Data Exchange (ETDEWEB)

    Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it

    2015-08-14

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced

  20. Characterizing the original ejection velocity field of the Koronis family

    Science.gov (United States)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  1. A survey of high-velocity H I in the Cetus region

    International Nuclear Information System (INIS)

    Cohen, R.J.

    1982-01-01

    The region 02sup(h) 16sup(m) 0 0 surrounding the Cohen and Davies complex of high-velocity clouds has been surveyed in the 21-cm line of H I using the Jodrell Bank MK II radio telescope (beamwidth 31 x 34 arcmin). The high-velocity cloud complex was sampled every 2sup(m) in right ascension and every 0 0 .5 in declination. The observations cover a velocity range of 2100 km s -1 with a resolution of 7.3 km s -1 and an rms noise level of 0.025 K. No HVCs were found outside the velocity range -400 to +100 km s -1 . The data are presented on microfiche as a set of contour maps showing 21-cm line temperature as a function of declination and radial velocity at constant values of right ascension. Discussion is centred on the very-high-velocity clouds at velocities of -360 to -190 km s -1 . It is concluded that they are probably debris from the tidal interaction between our Galaxy and the Magellanic Clouds. (author)

  2. Threshold velocity for environmentally-assisted cracking in low alloy steels

    International Nuclear Information System (INIS)

    Wire, G.L.; Kandra, J.T.

    1997-01-01

    Environmentally Assisted Cracking (EAC) in low alloy steels is generally believed to be activated by dissolution of MnS inclusions at the crack tip in high temperature LWR environments. EAC is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs in high temperature LWR environments. A steady state theory developed by Combrade, suggested that EAC will initiate only above a critical crack velocity and cease below this same velocity. A range of about twenty in critical crack tip velocities was invoked by Combrade, et al., to describe data available at that time. This range was attributed to exposure of additional sulfides above and below the crack plane. However, direct measurements of exposed sulfide densities on cracked specimens were performed herein and the results rule out significant additional sulfide exposure as a plausible explanation. Alternatively, it is proposed herein that localized EAC starting at large sulfide clusters reduces the calculated threshold velocity from the value predicted for a uniform distribution of sulfides. Calculations are compared with experimental results where the threshold velocity has been measured, and the predicted wide range of threshold values for steels of similar sulfur content but varying sulfide morphology is observed. The threshold velocity decreases with the increasing maximum sulfide particle size, qualitatively consistent with the theory. The calculation provides a basis for a conservative minimum velocity threshold tied directly to the steel sulfur level, in cases where no details of sulfide distribution are known

  3. Measurement bias of fluid velocity in molecular simulations

    International Nuclear Information System (INIS)

    Tysanner, Martin W.; Garcia, Alejandro L.

    2004-01-01

    In molecular simulations of fluid flow, the measurement of mean fluid velocity is considered to be a straightforward computation, yet there is some ambiguity in its definition. We show that in systems far from equilibrium, such as those with large temperature or velocity gradients, two commonly used definitions give slightly different results. Specifically, a bias can arise when computing the mean fluid velocity by measuring the mean particle velocity in a cell and averaging this mean over samples. We show that this bias comes from the correlation of momentum and density fluctuations in non-equilibrium fluids, obtain an analytical expression for predicting it, and discuss what system characteristics (e.g., number of particles per cell, temperature gradients) reduce or magnify the error. The bias has a physical origin so although we demonstrate it by direct simulation Monte Carlo (DSMC) computations, the same effect will be observed with other particle-based simulation methods, such as molecular dynamics and lattice gases

  4. Observation of Resonant Behavior in the Energy Velocity of Diffused Light

    International Nuclear Information System (INIS)

    Sapienza, R.; Garcia, P. D.; Blanco, A.; Lopez, C.; Bertolotti, J.; Wiersma, D. S.; Martin, M. D.; Vina, L.

    2007-01-01

    In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior

  5. Distribution of motor unit potential velocities in short static and prolongd dynamic contractions at low forces: Use of the within-subject's skewness and standard deviation variables

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Henriquez, N.R.; Oosterloo, Sebe J.; Klaver, P.; Bos, J.M.; Zwarts, M.J.

    2007-01-01

    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as

  6. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  7. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  8. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  9. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  10. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  11. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  12. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  13. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    Science.gov (United States)

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  14. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  15. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  16. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    Science.gov (United States)

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-12-01

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cochlear function tests in estimation of speech dynamic range.

    Science.gov (United States)

    Han, Jung Ju; Park, So Young; Park, Shi Nae; Na, Mi Sun; Lee, Philip; Han, Jae Sang

    2016-10-01

    The loss of active cochlear mechanics causes elevated thresholds, loudness recruitment, and reduced frequency selectivity. The problems faced by hearing-impaired listeners are largely related with reduced dynamic range (DR). The aim of this study was to determine which index of the cochlear function tests correlates best with the DR to speech stimuli. Audiological data on 516 ears with pure tone average (PTA) of ≤55 dB and word recognition score of ≥70% were analyzed. PTA, speech recognition threshold (SRT), uncomfortable loudness (UCL), and distortion product otoacoustic emission (DPOAE) were explored as the indices of cochlear function. Audiometric configurations were classified. Correlation between each index and the DR was assessed and multiple regression analysis was done. PTA and SRT demonstrated strong negative correlations with the DR (r = -0.788 and -0.860, respectively), while DPOAE sum was moderately correlated (r = 0.587). UCLs remained quite constant for the total range of the DR. The regression equation was Y (DR) = 75.238 - 0.719 × SRT (R(2 )=( )0.721, p equation.

  18. Crystal growth velocity in deeply undercooled Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  19. Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas

    Science.gov (United States)

    Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.

  20. Dynamically consistent hydrography and absolute velocity in the eastern North Atlantic Ocean

    Science.gov (United States)

    Wunsch, Carl

    1994-01-01

    The problem of mapping a dynamically consistent hydrographic field and associated absolute geostrophic flow in the eastern North Atlantic between 24 deg and 36 deg N is related directly to the solution of the so-called thermocline equations. A nonlinear optimization problem involving Needler's P equation is solved to find the hydrography and resulting flow that minimizes the vertical mixing above about 1500 m in the ocean and is simultaneously consistent with the observations. A sharp minimum (at least in some dimensions) is found, apparently corresponding to a solution nearly conserving potential vorticity and with vertical eddy coefficient less than about 10(exp -5) sq m/s. Estimates of `residual' quantities such as eddy coefficients are extremely sensitive to slight modifications to the observed fields. Boundary conditions, vertical velocities, etc., are a product of the optimization and produce estimates differing quantitatively from prior ones relying directly upon observed hydrography. The results are generally insensitive to particular elements of the solution methodology, but many questions remain concerning the extent to which different synoptic sections can be asserted to represent the same ocean. The method can be regarded as a practical generalization of the beta spiral and geostrophic balance inverses for the estimate of absolute geostrophic flows. Numerous improvements to the methodology used in this preliminary attempt are possible.

  1. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  2. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  3. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    Science.gov (United States)

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  4. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  5. Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2017-12-01

    Full Text Available Velocity profiles originated by a pump as turbine (PAT were measured using an ultrasonic doppler velocimetry (UDV. PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated flow velocity variations were investigated. This research focuses, particularly, on the velocity profiles achieved for different rotational speeds and discharge values along the impeller since that is where the available hydraulic power is transformed into the mechanical power. Comparisons were made between experimental test results and computational fluid dynamics (CFD simulations. The used CFD model was calibrated and validated using the same conditions as the experimental facility. The numerical simulations showed good approximation with the velocity measurements for different cross-sections along the PAT system. The application of this CFD numerical model and experimental tests contributed to better understanding the system behavior and to reach the best efficiency operating conditions. Improvements in the knowledge about the hydrodynamic flow behavior associated with the velocity triangles contribute to improvements in the PAT concept and operation.

  6. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  7. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  8. Velocity dispersion profiles of clusters of galaxies

    International Nuclear Information System (INIS)

    Struble, M.F.

    1979-01-01

    Velocity dispersion as a function of radius, called sigma/sub ls/ profiles, is presented for 13 clusters of galaxies having > or =30 radial velocities from both published and unpublished lists. A list of probable new members and possible outlying members for these clusters is also given. chi 2 and Kolmogoroff--Smirnoff one-sample tests for the goodness of fit of power laws to portions of the profiles indicate two significant structures in some profiles: (1) a local minimum corresponding to the local minimum noted in surface density or surface brightness profiles, and (2) a decrease in sigma/sub ls/ toward the cores. Both of these features are discussed in terms of a comparison with Wielen's N-body simulations. The sigma/sub ls/ profiles are placed in a new classification scheme which lends itself to interpreting clusters in a dynamical age sequence. The velocity field of galaxies at large distances from cluster centers is also discussed

  9. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  10. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  11. Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.

    Science.gov (United States)

    Soto, R; Piasecki, J; Mareschal, M

    2001-09-01

    Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].

  12. Measurement of the burning velocity of propane-air mixtures using soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yukio

    1988-12-20

    By filling a soap bubble with propane-air mixture of spacified equivalence ratio and by igniting it at the center, the flame propagation velocity was measured applying multiplex exposure Schlieren method. And the flow velocity of the unburnt propane-air mixture was also measured by a hot-wire anemometer. From the differences of the above two velocities, the burning velocity was obtained. The values of the burning velocity agreed well with the highly accurate results of usual measurements. The maximum value of the burning velocity, which exists at an equivalence ratio of 1.1, was 50cm/s. This value agreed well with the theoretical calculation result on the on-dimensional flame by Warnatz. The burning velocity in the range of from 0.7 to 1.5 equivalence ratios decreases symmetrically with the maximum value at the center. The velocity decrease in the excessive concentration range of fuel is only a little and converges between 7 and 10 cm/s. To evade the influence of the flame-front instability, measurements were done from 2 to 5cm from the ignition center. Thus accurate values were obtained. 23 refs., 5 figs.

  13. Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion

    DEFF Research Database (Denmark)

    Støve, Morten Pallisgaard; Palsson, Thorvaldur Skuli; Hirata, Rogerio Pessoto

    2018-01-01

    Introduction: Measurement of static joint range of motion is used extensively in orthopaedic and rehabilitative communities to benchmark treatment efficacy. Static measures are, however, insufficient in providing detailed information about patient impairments. Dynamic range of motion measures cou...

  14. Testing of dynamic multileaf collimator by dynamic log file

    International Nuclear Information System (INIS)

    Ono, Kaoru; Nakamura, Tetsuji; Yamato, Shinichirou; Miyazawa, Masanori

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy. In the dynamic multileaf collimator (MLC) method of IMRT delivery, because of the relatively small gaps between opposed leaves and because most regions are shielded by leaves most of the time, the delivered dose is very sensitive to MLC leaf positional accuracy. A variation of ±0.2 mm in the gap width can result in a dose variation of ±3% for each clinical dynamic MLC field. Most often the effects of leaf motion are inferred from dose deviations on film or from variations in ionization measurements. These techniques provide dosimetric information but do not provide detailed information for diagnosing delivery problems. Therefore, a dynamic log file (Dynalog file) was used to verify dynamic MLC leaf positional accuracy. Measuring for narrow gaps using the thickness gauge could detect a log file accuracy of approximately 0.1 mm. The accuracy of dynamic MLC delivery depends on the accuracy with which the velocity of each leaf is controlled. We studied the relationship between leaf positional accuracy and leaf velocity. Leaf velocity of 0.7 cm/sec caused approximately 0.2 mm leaf positional variation. We then analyzed leaf positional accuracy for the clinical dynamic MLC field using Dynalog File Viewer (Varian Medical Systems, Inc., Palo Alto, California (CA)), and developed a new program that can analyze more detailed leaf motions. Using this program, we can obtain more detailed information, and therefore can determine the source of dose uncertainties for the dynamic MLC field. (author)

  15. When and where to move: Dynamic occupancy models explain the range dynamics of a food nomadic bird under climate and land cover change.

    Science.gov (United States)

    Kalle, Riddhika; Ramesh, Tharmalingam; Downs, Colleen T

    2018-01-01

    Globally, long-term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long-term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002-2014) of citizen science-driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75-0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human-modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high-quality forest patches is essential for long-term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long-term citizen

  16. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  17. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  18. Determining glacier velocity with single frequency GPS receivers

    NARCIS (Netherlands)

    Reijmer, C.H.; van de Wal, R.S.W.; Boot, W.

    2011-01-01

    A well-known phenomenon in glacier dynamics is the existence of a relation between the glacier velocity and available amount of melt water (Zwally et al., 2002; Van de Wal et al., 2008). This relation is of particular importance when estimating the reaction of glaciers and ice sheets to climate

  19. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  20. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    Science.gov (United States)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  1. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    Science.gov (United States)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  2. A Velocity-Aware Handover Trigger in Two-Tier Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Asmae Ait Mansour

    2018-01-01

    Full Text Available The unexpected change in user equipment (UE velocity is recognized as the primary explanation for poor handover quality. In order to resolve this issue, while limiting ping-pong (PP events we carefully and dynamically optimized handover parameters for each UE unit according to its velocity and the coverage area of the access point (AP. In order to recognize any variations in velocity, we applied Allan variance (AVAR to the received signal strength (RSS from the serving AP. To assess our approach, it was essential to configure a heterogeneous network context (LTE-WiFi and interconnect Media-Independent Handover (MIH and Proxy Mobile IPv6 (PMIPv6 for seamless handover. Reproduction demonstrated that our approach does not only result in a gain in relatively accurate velocity but in addition reduces the number of PP and handover failures (HOFs.

  3. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  4. Low-velocity impact damage of woven fabric composites: Finite element simulation and experimental verification

    International Nuclear Information System (INIS)

    Hassan, M.A.; Naderi, S.; Bushroa, A.R.

    2014-01-01

    Highlights: • Low-velocity impact test on GFRP with different energy levels and thicknesses. • Using force–deflection curve to determine critical energy for penetration threshold. • Reflection of damage processes to different type of diagrams. • Significant influence of Initial energy and thickness on dynamic response of plates. • Good agreements between experimental and FEM models for the force history data. - Abstract: This paper addresses the response of Glass Fiber Reinforced Plastic laminates (GFRPs) under low-velocity impact. Experimental tests were performed according to ASTM: D5628 for different initial impact energy levels ranging from 9.8 J to 29.4 J and specimen thicknesses of 2, 3 and 4 mm. The impact damage process and contact stiffness were studied incrementally until a perforation phase of the layered compounds occurred, in line with a force–deflection diagram and imaging of impacted laminates. The influence that impact parameters such as velocity and initial energy had on deflection and damage of the test specimens was investigated. Finite Element Simulation (FES) was done using MSC. MARC® was additionally carried out to understand the impact mechanism and correlation between these parameters and the induced damage. The simulation and experimental results reached good accord regarding maximum contact force and contact time with insignificant amount of damage

  5. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  6. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  7. The Systemic Velocity and Internal Kinematics of the Dwarf Galaxy LGS 3: An Optical Foray beyond the Milky Way

    International Nuclear Information System (INIS)

    Cook, K.H.; Mateo, M.; Olszewski, E.W.; Vogt, S.S.; Stubbs, C.; Diercks, A.

    1999-01-01

    We have obtained radial velocities of three K giants and one faint carbon star in LGS 3, a dwarf companion of M31, based on 12 individual spectra obtained with the HIRES spectrograph on the Keck I telescope. The mean precision of these measurements is 3.8 km s -1 . The mean systemic velocity of LGS 3 is -282.2±3.5 km s -1 . Monte Carlo simulations that take into account the individual velocity uncertainties and the maximum observed velocity difference reveal that the central velocity dispersion of LGS 3 is in the range 2.6 - 30.5 km s -1 , with 95% confidence; the most likely value for the central dispersion is 7.9 +5.3 -2.9 km s -1 . These results agree with the kinematics of H i gas in LGS 3. This contrasts with the tendency for the gas and stars in other low-luminosity Local Group dwarfs to exhibit distinct spatial and kinematic properties. Taking into account the relative youth of LGS 3, we conclude that the 'asymptotic' M/L ratio the value the galaxy would exhibit if it were composed only of ancient stars is M/L V,LGS3 ≥11 (at a 97.5% confidence level), with a most probable value of 95 +175 -56 . These values are consistent with the M/L V ratios observed in other well-studied early-type dwarfs of the Local Group. We have also estimated the mass of LGS 3 using modified Newtonian dynamics. These data represent the first moderately high precision optical spectra of giants in a dwarf system beyond the Galactic halo. We suggest future studies that are now feasible to study the dynamics of dwarf galaxies throughout the Local Group and beyond. copyright copyright 1999. The Astronomical Society of the Pacific

  8. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  9. Theoretical study of laser feedback interferometry for dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Le-Barbier, Laura

    2017-01-01

    The purpose of this thesis is to study the feasibility of optical feedback interferometry (OFI) for measuring velocities for dynamical material's behaviour studies. Dynamical material's behaviour studies permit to analyse the shocked material when subjects to shocks (laser shocks, isentropic compression, projectiles, etc.). In these conditions, we seek to measure velocities up to 10 km/s. The OFI technique is regularly used as an embedded system to measure slow velocities in various fields. However, very few studies have been performed for determining velocities measurement limits for this system. As a matter of fact, the optical feedback induces nonlinear effects into the laser's cavity: it disrupts the laser's emitted optical power. Depending on the optical feedback strength, the laser can show chaotic behaviour, then it is no longer possible to get the information for the target's velocity or displacement regarding the signal. In this study, we have been developing mathematical models and performing a wide range of numerical simulations to study the performances and the limits of the OFI technique. We have been also studying the influence of the targets reflectivity, the length and the modulation frequency of the external cavity. (author) [fr

  10. Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints

    OpenAIRE

    Hilaire , Thibault

    2009-01-01

    This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...

  11. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.

    Science.gov (United States)

    Richards, Christopher T

    2008-10-01

    The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward

  12. Leg strength or velocity of movement: which is more influential on the balance of mobility limited elders?

    Science.gov (United States)

    Mayson, Douglas J; Kiely, Dan K; LaRose, Sharon I; Bean, Jonathan F

    2008-12-01

    To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01-1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance (BERG 14.23 [1.84-109.72], performance-oriented mobility assessment 33.92 [3.69-312.03], and Dynamic Gait Index 35.80 [4.77-268.71]). Strength was only associated with the BERG 1.08 (1.01-1.14). Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity.

  13. Acoustic velocity investigation and density calculation in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Belyaeva, O.V.; Nikolaev, V.A.; Timofeev, B.D.

    1979-01-01

    Acoustic velocity in liquid nitrogen tetroxide was investigated on an ultrasonic interferometer, which represents a tube with the 30x2.5 mm diameter, at the ends of which ultrasonic sensors are located. The sensors and the interferometer tube are fabricated of the Kh18N9T stainless steel. The calibration tests were carried out on twice-distilled water at the pressure from 1 to 80 bar in the operational range of temperatures from 283 to 360 K. The relative mean square error in experimental data on the acoustic velocity in liquid nitrogen tetroxide is 0.17%. The experimental data are described by the interpolation polynom in the investigated range of state parameters. On the basis of experimental data on the density of liquid nitrogen tetroxide near the saturation line and the experimental values of acoustic velocity, an interpolation equation is suggested to calculate the substance density under investigation in the range of 290-360 K from pressures corresponding to the saturation line, to 300 bar

  14. Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control

    International Nuclear Information System (INIS)

    Joyce, Bryan S; Tarazaga, Pablo A

    2014-01-01

    The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity. (papers)

  15. Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control

    Science.gov (United States)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2014-07-01

    The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity.

  16. Sediment motion and velocity in a glacier-fed stream

    Science.gov (United States)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  17. Velocity Statistics and Spectra in Three-Stream Jets

    Science.gov (United States)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.; Henderson, Brenda; Leib, Stewart

    2016-01-01

    Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.

  18. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  19. An interferometric velocity calibrator for 73Ge Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Chow, L.; Kimble, T.

    1987-01-01

    A velocity calibrator based on a laser driven Michelson interferometer was designed for a 73 Ge Moessbauer spectrometer in the range of 100 to 500 μm/sec. The conventional method of counting the interference fringes cannot be used in this case because the displacement only spans about 3 to 15 μm and only a few fringes can be observed during one velocity sweep. The velocity calibration obtained this way was compared with the calibration obtained from 57 Fe measurement, and excellent agreement was found between the two methods. (orig.)

  20. On relative velocity in very young asteroid families

    Science.gov (United States)

    Rosaev, A.; Plávalová, E.

    2018-04-01

    Asteroid families are groups of minor planets that have a common origin in catastrophic breakup events. The very young compact asteroid clusters are a natural laboratory in which to study impact processes and the dynamics of asteroid orbits. In the first part of the paper, we define the term very young asteroid families (VYF), that is to say, younger than 1.6 Myrs, and explain why we have defined this group as being separate from young families (younger than 100 Myr), due to specific characteristics, in particularly, non-gravitational forces which have a very small effect (which could be negligible) on their dynamics and the role of the initial conditions in VYFs as being more significant. Due to these facts, the way we study VYFs may be different relative to young families. For the most part, the calculation of VYFs' normal component of relative velocity using backward numerical integration, exhibited a clear, deep minimum, which was close to the breakup epoch. The age estimations found while employing this method were in excellent agreement with the established age estimations used by other authors. We confirmed our results with the established age estimation of the Hobson family (365 ± 67 kyrs). Concerning the Emilkowalsky family, we confirmed the results of Nesvorný and Vokrouhlický (2006) (220 ± 30 kyrs), obtaining a far clearer result using the relative velocity method rather than single-orbital element convergence. The case of the Datura family is more complex to study, mainly due to its 9:16 resonance with Mars. We have exemplified that the z-component of relative velocity may prove to be a powerful and useful criterion for VYF age estimations. The studied value of relative velocity may contain information about the ejection velocity. As an additional outcome of this paper, we have introduced two new members of two different VYFs; one new member of the Emilkowalsky family and one of the Hobson family.

  1. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  2. Velocity Dependence of Friction of Confined Hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence of the f......We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence...... of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (∼3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  3. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    Science.gov (United States)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  4. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  5. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  6. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  7. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  8. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    Science.gov (United States)

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  9. Correlation Water Velocity and TSS with Natural Radionuclides Activity

    International Nuclear Information System (INIS)

    Tri Harningsih; Muzakky; Agus Taftazani

    2007-01-01

    Correlation water velocity and TSS with natural radionuclides activity has been studied. For that purpose, the study is to correlation water velocity and TSS with radionuclides on water and sediment samples in alongside river Code Yogyakarta. This research selected radionuclides, for examples Ra-226, Pb-212, Ac- 228, and K-40. Election of this radionuclides to spread over gamma gross composition alongside river of Code. Gamma gross influenced by water velocity and TSS, so that require to correct between water velocity and TSS to radionuclides. Sampling water and sediment conducted when dry season of August, 2006 at 11 locations, start from Boyong Bridge until Pacar Bridge. Result of analysis showed that water velocity range from 8-1070 L/dt and TSS range from 2.81 E-06 - 8.02 E-04 mg/L. The accumulation of radionuclides in water samples non correction water velocity for Ra-226: 0.302-2.861 Bq/L, Pb-212: 0.400-3.390 Bq/L, Ac- 228: 0.0029-0.0047 Bq/L and K-40: 0.780-9.178 Bq/L. The accumulation of radionuclide in water samples correction water velocity for Ra-226: 1.112-70.454 Bq/L, Pb-212: 0.850-77.113 Bq/L, Ac-228: 0.7187- 60.859 Bq/L and K-40: 2.420-208.8 Bq/L. While distribution of radionuclide in sediment for the Ra-226: 0.0012-0.0211 Bq/kg, Pb-212: 0.0017-0.0371 Bq/kg, Ac-228: 0.0021-0.0073 Bq/kg and K-40: 0.0006-0.0084 Bq/kg. (author)

  10. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  11. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    Science.gov (United States)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  12. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-01-01

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  13. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-01

    Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  14. Dynamic range of atomically thin vibrating nanomechanical resonators

    International Nuclear Information System (INIS)

    Wang, Zenghui; Feng, Philip X.-L.

    2014-01-01

    Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E Y 3/2 ρ 3D -1/2 rtε 5/2 ) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies

  15. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass

    NARCIS (Netherlands)

    Ide, K.; Pott, F.; van Lieshout, J. J.; Secher, N. H.

    1998-01-01

    We tested the hypothesis that pharmacological reduction of the increase in cardiac output during dynamic exercise with a large muscle mass would influence the cerebral blood velocity/perfusion. We studied the relationship between changes in cerebral blood velocity (transcranial Doppler), rectus

  16. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  17. In-vivo evaluation of three ultrasound vector velocity techniques with MR angiography

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Oddershede, Niels

    2008-01-01

    In conventional Doppler ultrasound (US) the blood velocity is only estimated along the US beam direction. The estimate is angle corrected assuming laminar flow parallel to the vessel boundaries. As the now in the vascular system never is purely laminar, the velocities estimated with conventional...... additionally constructed and mean differences for the three comparisons were: DB/MRA = 0.17 ml; STA/MRA = 0.07 ml; TO/MRA = 0.24 ml. The three US vector velocity techniques yield quantitative insight in to flow dynamics and can potentially give the clinician a powerful tool in cardiovascular disease assessment....

  18. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a ne...

  19. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

    Science.gov (United States)

    Koziol, Conrad P.; Arnold, Neil

    2018-03-01

    Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.

  20. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  1. Analysis of the swimming velocity of cadmium-stressed Daphnia magna

    International Nuclear Information System (INIS)

    Baillieul, M.; Blust, R.

    1999-01-01

    The swimming velocity of the waterflea Daphnia magna is dependent on its body size. Therefore, environmental factors like toxic stress that influence growth also influence swimming velocity. An experiment was set up to test whether exposure to cadmium would reduce only growth, with a concomitant decrease in velocity, or whether it would reduce velocity below the swimming velocity of similarly-sized control animals. Daphnids were exposed for 10 days to free cadmium ion concentrations ranging from 1x10 -8 to 1x10 -7 M Cd 2+ , and body size and swimming velocity were measured every 2 days. The results showed that cadmium decreased both growth and velocity, i.e. exposed daphnids swam slower than similarly-sized control daphnids. Swimming velocity provided no indication of successful acclimation in any cadmium treatment. Food consumption and assimilation were reduced by exposure to cadmium. This reduced food intake may have, at least partially, caused the decreased growth rates. However, since reduced food intake does not affect swimming velocity, the reduced swimming velocity must be attributed to toxic effects of cadmium, other than those on food intake. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Upper mantle low velocity heterogeneities beneath NE China revealed by source- and receiver-side converted waves

    Science.gov (United States)

    Guan, Z.; Niu, F.

    2017-12-01

    Common-conversion-point (CCP) stacking of receiver function is a powerful tool in mapping upper mantle heterogeneities. However, reverberations from shallow boundaries with large velocity contrast could contaminate the imaging profiles severely. Applying the refined Slowness Weighted CCP (SWCCP) stacking technique (Guan and Niu, 2017) on NECESSArray data, we eliminated the multiple effects and systematically imaged the upper mantle low velocity heterogeneities in NE China where there exist rich unconsolidated sediments. The SWCCP profiles reveal a 350 km low velocity heterogeneity which is possibly associated with the Changbai Mountain volcanism and interpreted as a negatively buoyant silicate melt lying atop of the 410 km discontinuity. Besides, the imaging results are also suggestive of a sporadic 580-620 km low velocity heterogeneity locating in the easternmost part of NE China with a velocity contrast comparable with the 660-km discontinuity. In addition, between 42º N and 45º N, we also found a double 660-km discontinuity at the two sides of the localized depression in the longitudinal range of 128º E to 131º E. On the other hand, we gathered USArray and Alaska regional array seismic data of deep earthquakes occurring beneath NE China and the surrounding areas and employed stacking technique to study the source side S-to-P conversions. The source-side stacking also showed a strong S-to-P conversion at 600 km deep, consistent with the SWCCP stacks. Meanwhile, we also confirmed the double 660-km discontinuity feature from the source-side conversions. The receiver- and source-side observations provide strong constraints on these low velocity anomalies that may offer insights on the subduction dynamics of the Pacific plate.

  3. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  4. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  5. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  6. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  7. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  8. Leg Strength or Velocity of Movement Which Is More Influential on the Balance of Mobility Limited Elders?

    Science.gov (United States)

    Mayson, Douglas J.; Kiely, Dan K.; LaRose, Sharon I.; Bean, Jonathan F.

    2009-01-01

    Objective To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. Design In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Results Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01–1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance [BERG 14.23 (1.84–109.72), performance-oriented mobility assessment 33.92 (3.69–312.03), and Dynamic Gait Index 35.80 (4.77–268.71))]. Strength was only associated with the BERG 1.08 (1.01–1.14). Conclusions Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity. PMID:19033758

  9. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  10. Burning velocity measurements of nitrogen-containing compounds.

    Science.gov (United States)

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  11. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  12. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  13. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    Science.gov (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  14. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Science.gov (United States)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  15. A very sensitive nonintercepting beam average velocity monitoring system for the TRIUMF 300-keV injection line

    International Nuclear Information System (INIS)

    Yin, Y.; Laxdal, R.E.; Zelenski, A.; Ostroumov, P.

    1997-01-01

    A nonintercepting beam velocity monitoring system has been installed in the 300-keV injection line of the TRIUMF cyclotron to reproduce the injection energy for beam from different ion sources and to monitor any beam energy fluctuations. By using a programmable beam signal leveling method the system can work with a beam current dynamic range of 50 dB. Using synchronous detection, the system can detect 0.5 eV peak-to-peak energy modulation of the beam, sensitivity is 1.7x10 -6 . The paper will describe the principle and beam measurement results. copyright 1997 American Institute of Physics

  16. A Photographic study of subcooled flow boiling burnout at high heat flux and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, National Institute of Thermal-Fluid Dynamics, Rome (Italy); Cumo, M. [University of Rome (Italy); Gallo, D. [University of Palermo (Italy). Department of Nuclear Engineering

    2007-01-15

    The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross section annular geometry (formed by a central heater rod contained in a duct characterized by a square cross section). The coolant velocity is in the range 3-10m/s. High speed movies of flow pattern in subcooled flow boiling of water from the onset of nucleate boiling up to physical burnout of the heater are recorded. From video images (single frames taken with a stroboscope light and an exposure time of 1{mu}s), the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a type of elongated bubble called vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions are given as a function of thermal-hydraulic tested conditions for the whole range of velocity until the burnout region. A qualitative analysis of the behaviour of four stainless steel heater wires with different macroscopic surface finishes is also presented, showing the importance of this parameter on the dynamics of the bubbles and on the critical heat flux. (author)

  17. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  18. An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

    Science.gov (United States)

    Sekaran, Aarthi; Varghese, Philip; Goldstein, David

    2018-07-01

    The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.

  19. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    Science.gov (United States)

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the

  20. Evaluation and analysis of the factors influencing the electron beam dynamics through the buncher of LINAC

    International Nuclear Information System (INIS)

    Ghasemi, F.; Abbasi, F.; Lamehi, M.; Shaker, H.

    2013-01-01

    In this paper, the importance of the buncher in linear electron accelerators is discussed and two types of bunchers, velocity-modulation and disk-loaded, are introduced. Higher bunching factor, larger initial phase range, and smaller final phase range are favorable in the disk-loaded buncher. Our investigations showed that the aforementioned situations can be met by appropriate changes in the field strength and the phase velocity. In this study, factors affecting the bunching of electrons have been surveyed using the equations of electron motion. The dynamics of the electron movement through the buncher has been simulated. The results of simulation and calculations revealed that: (1) in order to deliver the maximum energy to the electrons, phase velocity should vary so that a phase of - 90 degrees is achieved by the electrons after the bunching, (2) reducing the initial field strength also increases the initial phase range. If the field strength is large from the beginning, the phase velocity variations will be large and rapidly reach a value of 1. In this case, the initial phase range will become small, (3) the electron gun voltage changes the initial phase; the larger the value of the gun voltage, the wider the initial phase range, and vice versa. The result of this study is going to be applied for design and fabrication of the first Iranian linear accelerator that is under construction.

  1. Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity

    Science.gov (United States)

    Manfredi, S.; Di Tucci, E.; Latora, V.

    2018-02-01

    Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.

  2. The KMOS Deep Survey: Dynamical Measurements of Star-Forming Galaxies at z 3.5

    Science.gov (United States)

    Turner, Owen; Cirasuolo, Michele; Harrison, Chris; McLure, Ross; Dunlop, James; Swinbank, Mark; Johnson, Helen; Sobral, David; Matthee, Jorryt; Sharples, Ray

    2017-07-01

    This poster present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 78 typical star-forming galaxies at z = 3.5 in the mass range 9.0 isolated. The results suggest that the rotation-dominated galaxies in the sample are offset to lower velocities at fixed stellar mass and have higher velocity dispersions than star-forming galaxies in the local and intermediate redshift universe. Only 1/3 of the galaxies in the sample are dominated by rotation, which hints that random motions are playing an increasingly significant role in supporting the dynamical mass in the systems. When searching for evolution in scaling relations, such as the stellar mass Tully-Fisher relation, it is important to take these random motions into account.

  3. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    Science.gov (United States)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, I.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  4. Advances in constant-velocity Moessbauer instrumentation

    International Nuclear Information System (INIS)

    Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.

    2006-01-01

    A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.

  5. The dynamical evolution of the Orion Trapezium

    Science.gov (United States)

    Allen, C.; Costero, R.; Ruelas-Mayorga, A.; Sánchez, L.

    2018-01-01

    Using recent observational data on transverse and radial velocities of the bright Orion Trapezium stars we study the dynamical evolution of ensembles of systems mimicking the Trapezium. To this end we perform numerical N-body integrations using the observed planar positions and velocities, the radial velocities, and random z-positions for all components. We include perturbations in these quantities compatible with the observational errors. We discuss the dynamical outcome of the evolution of such systems and the properties of the resulting binaries.

  6. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    Science.gov (United States)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  7. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  8. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  9. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Arne [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany); Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr [Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Sebastiani, Daniel, E-mail: daniel.sebastiani@chemie.uni-halle.de [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany)

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d{sub 2}-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  10. Dynamics of the solar magnetic field. V. Velocities associated with changing magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.; Nakagawa, Y.

    1975-01-01

    Methods of determining horizontal velocities from the magnetic induction equation on the basis of a time series of magnetogram observations are discussed. For the flare of 1972 August 7, it is shown that a previously developed method of predicting positions of likely flare activity provides reasonable agreement with observations. Limitations to this type of solution of the magnetic induction equation are pointed out, and unambiguous solutions, corresponding to phenomenological determinations of velocity patterns under various physical circumstances, are presented for simple magnetic configurations. Implications for the analysis of changes in a series of magnetogram observations are discussed

  11. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  12. Measurements of electron drift velocity in pure isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  13. Measurements of electron drift velocity in pure isobutane

    International Nuclear Information System (INIS)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2009-01-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  14. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  15. Nonlinear dynamic model for skidding behavior of angular contact ball bearings

    Science.gov (United States)

    Han, Qinkai; Chu, Fulei

    2015-10-01

    A three-dimensional nonlinear dynamic model is proposed to predict the skidding behavior of angular contact ball bearings under combined load condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, Hertz contact between the ball and inner/outer races, discontinuous contact between the ball and cage and elastohydrodynamic lubrication are considered in the model. Through comparisons with the tested results of the reference, the dynamic model is verified. Based upon these, variations of ball slipping speed with time and space are discussed for the bearing under combined load condition. It is shown that radial load leads to the fluctuations in the slipping velocity of the ball contacting with inner/outer races, especially for the ball in load-decreasing regions. Adding the radial load would significantly increase the amplitude and range of slipping velocity, indicating that the skidding becomes more serious. As the ball still withstands contact load in the load-decreasing region, large slipping velocity would increase the temperature of both bearing and lubricant oil, intensify the wear and then might shorten the bearing service life. Therefore, the radial load should be considered carefully in the design and monitoring of rotating machinery.

  16. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  17. Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist

    Directory of Open Access Journals (Sweden)

    Bharti Chawre

    2018-06-01

    Full Text Available Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist (QMS rocks in a cost-effective manner by establishing correlations between non-destructive and destructive tests. Using simple regression analysis, good correlations were obtained between the pulse wave velocities and the properties of QMS rocks. The results were further improved by using multiple regression analysis as compared to those obtained by the simple linear regression analysis. The results were also compared to the ones obtained by other empirical equations available. The general equations encompassing all types of rocks did not give reliable results of rock properties and showed large relative errors, ranging from 23% to 1146%. It is suggested that empirical correlations must be investigated separately for different types of rocks. The general empirical equations should not be used for the design and planning purposes before they are verified at least on one rock sample from the project site, as they may contain large unacceptable errors. Keywords: Pulse wave velocity, Physico-mechanical properties, Quartz-mica schist (QMS rocks, Non-destructive methods, Static elastic constants, Dynamic elastic constants

  18. Preamplifier development for high count-rate, large dynamic range readout of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Keshelashvili, Irakli; Erni, Werner; Steinacher, Michael; Krusche, Bernd; Collaboration: PANDA-Collaboration

    2013-07-01

    Electromagnetic calorimeter are central component of many experiments in nuclear and particle physics. Modern ''trigger less'' detectors run with very high count-rates, require good time and energy resolution, and large dynamic range. In addition photosensors and preamplifiers must work in hostile environments (magnetic fields). Due to later constraints mainly Avalanche Photo Diodes (APD's), Vacuum Photo Triodes (VPT's), and Vacuum Photo Tetrodes (VPTT's) are used. A disadvantage is their low gain which together with other requirements is a challenge for the preamplifier design. Our group has developed special Low Noise / Low Power (LNP) preamplifier for this purpose. They will be used to equip PANDA EMC forward end-cap (dynamic range 15'000, rate 1MHz), where the PWO II crystals and preamplifier have to run in an environment cooled down to -25{sup o}C. Further application is the upgrade of the Crystal Barrel detector at the Bonn ELSA accelerator with APD readout for which special temperature comparison of the APD gain and good time resolution is necessary. Development and all test procedures after the mass production done by our group during past several years in Basel University will be reported.

  19. Molecular dynamics simulations of short-range force systems on 1024-node hypercubes

    International Nuclear Information System (INIS)

    Plimpton, S.J.

    1990-01-01

    In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined

  20. What controls the population dynamics of the invasive thistle Carduus nutans in its native range?

    NARCIS (Netherlands)

    Jongejans, E.; Sheppard, A.W.; Shea, K.

    2006-01-01

    1. The invasive thistle Carduus nutans causes major economic losses in the Americas, Australia and New Zealand. For the first time, we have modelled its population dynamics in its native range, Eurasia, where it rarely reaches problematic densities, in order to identify ways to improve management

  1. An improved method to estimate reflectance parameters for high dynamic range imaging

    Science.gov (United States)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  2. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  3. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Electron-impact-ionization dynamics of S F6

    Science.gov (United States)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  6. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  7. Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Andrew P [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Li, Jan-Mou [ORNL

    2016-01-01

    Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then, experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.

  8. THE VELOCITY DISTRIBUTION OF NEARBY STARS FROM HIPPARCOS DATA. II. THE NATURE OF THE LOW-VELOCITY MOVING GROUPS

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.

    2010-01-01

    The velocity distribution of nearby stars (∼<100 pc) contains many overdensities or 'moving groups', clumps of comoving stars, that are inconsistent with the standard assumption of an axisymmetric, time-independent, and steady-state Galaxy. We study the age and metallicity properties of the low-velocity moving groups based on the reconstruction of the local velocity distribution in Paper I of this series. We perform stringent, conservative hypothesis testing to establish for each of these moving groups whether it could conceivably consist of a coeval population of stars. We conclude that they do not: the moving groups are neither trivially associated with their eponymous open clusters nor with any other inhomogeneous star formation event. Concerning a possible dynamical origin of the moving groups, we test whether any of the moving groups has a higher or lower metallicity than the background population of thin disk stars, as would generically be the case if the moving groups are associated with resonances of the bar or spiral structure. We find clear evidence that the Hyades moving group has higher than average metallicity and weak evidence that the Sirius moving group has lower than average metallicity, which could indicate that these two groups are related to the inner Lindblad resonance of the spiral structure. Further, we find weak evidence that the Hercules moving group has higher than average metallicity, as would be the case if it is associated with the bar's outer Lindblad resonance. The Pleiades moving group shows no clear metallicity anomaly, arguing against a common dynamical origin for the Hyades and Pleiades groups. Overall, however, the moving groups are barely distinguishable from the background population of stars, raising the likelihood that the moving groups are associated with transient perturbations.

  9. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  10. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    Science.gov (United States)

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  11. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  12. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  13. Dispersion of acoustic surface waves by velocity gradients

    Science.gov (United States)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  14. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  16. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  17. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    Science.gov (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  18. Dynamic moduli and damping ratios of soil evaluated from pressuremeter test

    International Nuclear Information System (INIS)

    Yoshida, Yasuo; Ezashi, Yasuyuki; Kokusho, Takaji; Nishi, Yoshikazu

    1984-01-01

    Dynamic and static properties of soils are investigated using the newly developed equipment of in-situ test, which imposes dynamic repeated pressure on borehole wall at any depth covering a wide range of strain amplitude. This paper describes mainly the shear modulus and damping characteristics of soils obtained by using the equipment in several sites covering wide variety of soils. The test results are compared and with those obtained by other test methods such as the dynamic triaxial test, the simple shear test and the shear wave velocity test, and discussions are made with regard to their relation ships to each other, which demonstrates the efficiency of this in-situ test. (author)

  19. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  20. Range use and dynamics in the agropastoral system of ...

    African Journals Online (AJOL)

    Occurrence of equilibrium and non equilibrium system dynamics in semiarid environments present serious management challenges. In these areas, resource management strategies are increasingly based on equilibrium rather than non equilibrium dynamics that assume simple system dynamics and strong coupling of ...

  1. Calibration techniques for the hot wire anemometer in a low velocity region

    International Nuclear Information System (INIS)

    Fujimura, Kaoru; Kawamura, Hiroshi

    1980-03-01

    In connection with experiments on coolant flow in the core of multi-purpose VHTR, a low-velocity calibration wind tunnel was made, and techniques for the hot wire anemometer in the air were investigated. Following are the results. 1) A technique using the frequency of von Karman vortex street is not recommended because of the irregular mode in a low velocity region. 2) A Pitot tube is valid only for the flow velocities larger than 1 m/s. 3) The thermal trace technique is suitable in a relatively wide range of velocity, if velocity defect in the wake is compensated for. When flow velocity is larger than 1 m/s, the thermal trace technique is consistent with the Pitot tube method. (author)

  2. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  3. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  4. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  5. Cosmic string induced peculiar velocities

    International Nuclear Information System (INIS)

    van Dalen, A.; Schramm, D.N.

    1987-02-01

    We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab

  6. Velocity storage contribution to vestibular self-motion perception in healthy human subjects.

    Science.gov (United States)

    Bertolini, G; Ramat, S; Laurens, J; Bockisch, C J; Marti, S; Straumann, D; Palla, A

    2011-01-01

    Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.

  7. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a passenger vehicle magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies the geometric dimensions of the damper that minimize an objective function. The objective function consists of the damping force, the dynamic range, and the inductive time constant of the damper. After describing the configuration of the MR damper, the damping force and dynamic range are obtained on the basis of the Bingham model of an MR fluid. Then, the control energy (power consumption of the damper coil) and the inductive time constant are derived. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initial damper. Subsequently, the optimization procedure, using a golden-section algorithm and a local quadratic fitting technique, is constructed via commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR damper, which are constrained in a specific cylindrical volume defined by its radius and height, are determined and a comparative work on damping force and inductive time constant between the initial and optimal design is undertaken

  8. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  9. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  10. Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors.

    Science.gov (United States)

    Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2017-11-09

    Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.

  11. Supercritical droplet dynamics and emission in low speed cross-flows

    International Nuclear Information System (INIS)

    Chae, J. W.; Yang, H. S.; Yoon, W. S.

    2008-01-01

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  12. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  13. High velocity electromagnetic particle launcher for aerosol production studies

    International Nuclear Information System (INIS)

    Benson, D.A.; Rader, D.J.

    1986-05-01

    This report describes the development of a new device for study of metal combustion, breakup and production of aerosols in a high velocity environment. Metal wires are heated and electromagnetically launched with this device to produce molten metal droplets moving at velocities ranging up to about Mach 1. Such tests are presently intended to simulate the behavior of metal streamers ejected from a high-explosive detonation. A numerical model of the launcher performance in terms of sample properties, sample geometry and pulser electrical parameters is presented which can be used as a tool for design of specific test conditions. Results from several tests showing the range of sample velocities accessible with this device are described and compared with the model. Photographic measurements showing the behavior of tungsten and zirconium metal droplets are presented. Estimates of the Weber breakup and drag on the droplets, as well as calculations of the droplet trajectories, are described. Such studies may ultimately be useful in assessing environmental hazards in the handling and storage of devices containing metallic plutonium

  14. Dynamic plasma screening effects on atomic collisions in dense plasmas

    International Nuclear Information System (INIS)

    Young-Dae Jung

    1999-01-01

    Dynamic plasma screening effects are investigated on electron-ion collisional excitation and Coulomb Bremsstrahlung processes in dense plasmas. The electron-ion interaction potential is considered by introduction of the plasma dielectric function. The straight-ling trajectory method is applied to the path of the projectile electron. The transition probability including the dynamic plasma screening effect is found to be always greater than that including the static plasma screening effects. It is found that the differential Bremsstrahlung radiation cross section including the dynamic plasma screening effect is also greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. However, when the projectile velocity is greater than the electron thermal velocity, the interaction potential is almost unshielded

  15. Optimal Balance Between Force and Velocity Differs Among World-Class Athletes.

    Science.gov (United States)

    Giroux, Caroline; Rabita, Giuseppe; Chollet, Didier; Guilhem, Gaël

    2016-02-01

    Performance during human movements is highly related to force and velocity muscle capacities. Those capacities are highly developed in elite athletes practicing power-oriented sports. However, it is still unclear whether the balance between their force and velocity-generating capacities constitutes an optimal profile. In this study, we aimed to determine the effect of elite sport background on the force-velocity relationship in the squat jump, and evaluate the level of optimization of these profiles. Ninety-five elite athletes in cycling, fencing, taekwondo, and athletic sprinting, and 15 control participants performed squat jumps in 7 loading conditions (range: 0%-60% of the maximal load they were able to lift). Theoretical maximal power (Pm), force (F0), and velocity (v0) were determined from the individual force-velocity relationships. Optimal profiles were assessed by calculating the optimal force (F0th) and velocity (v0th). Athletic sprinters and cyclists produced greater force than the other groups (P balanced force-velocity profiles. Moreover, the differences between measured and optimal force-velocity profiles raise potential sources of performance improvement in elite athletes.

  16. Initial results from the NSTX Real-Time Velocity diagnostic

    Science.gov (United States)

    Podesta, M.; Bell, R. E.

    2011-10-01

    A new diagnostic for fast measurements of plasma rotation through active charge-exchange recombination spectroscopy (CHERS) was installed on NSTX. The diagnostic infers toroidal rotation from carbon ions undergoing charge-exchange with neutrals from a heating Neutral Beam (NB). Each of the 4 channels, distributed along the outer major radius, includes active views intercepting the NB and background views missing the beam. Estimated uncertainties in the measured velocity are system. Signals are acquired on 2 CCD detectors, each controlled by a dedicated PC. Spectra are fitted in real-time through a C++ processing code and velocities are made available to the Plasma Control System for future implementation of feedback on velocity. Results from the initial operation during the 2011 run are discussed, emphasizing the fast dynamics of toroidal rotation, e . g . during L-H mode transition and breaking caused by instabilities and by externally-imposed magnetic perturbations. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  17. Dark matter or the other dynamics

    Directory of Open Access Journals (Sweden)

    Y. Sobouti

    2005-09-01

    Full Text Available   Allowing the energy of a gravitational field to serve partially as its own source allows gravitating bodies to exhibit stronger fields, as if they were more massive. Depending on degree of compaction of the body, the field could be one to five times larger than the Newtonian field. This is a comfortable range of increase in field strength and may prove to be of convenience in the study of velocity curves of spirals, of velocity dispersions in clusters of galaxies and in interpreting the Tully-Fisher or Faber-Jackson relations in galaxies or systems of galaxies. The revised gravitation admits of superposition principle but only approximately in systems whose components are widely separated. The revised dynamics admits of the equivalence principle in that, the effective force acting on a test particle is derived from a potential, and could be elimhnated in a freely falling frame of reference.

  18. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Sorensen, Line C; Riera, Joan

    2011-01-01

    We compared absolute values of regional tissue hemoglobin saturation (StO(2)), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial occlus...

  19. Magnetospheric Multiscale (MMS) Observation of Plasma Velocity-Space Cascade Processes

    Science.gov (United States)

    Parashar, T. N.; Servidio, S.; Matthaeus, W. H.; Chasapis, A.; Perrone, D.; Valentini, F.; Veltri, P.; Gershman, D. J.; Schwartz, S. J.; Giles, B. L.; Fuselier, S. A.; Phan, T.; Burch, J.

    2017-12-01

    Plasma turbulence is investigated using high-resolution ion velocity distributions, measured by theMagnetospheric Multiscale Mission (MMS) in the Earth's magnetosheath. The particle distributionmanifests large fluctuations, suggesting a cascade-like process in velocity space, invoked by theoristsfor many years. This complex velocity space structure is investigated using a three-dimensional Hermitetransform that reveals a power law distribution of moments. A Kolmogorov approach leads directlyto a range of predictions for this phase-space cascade. The scaling theory is in agreement withobservations, suggesting a new path for the study of plasma turbulence in weakly collisional spaceand astrophysical plasmas.

  20. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  1. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  2. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  3. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  4. Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.

    Science.gov (United States)

    Mouri, Hideaki

    2015-12-01

    For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.

  5. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  6. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  7. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    Science.gov (United States)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  8. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  9. Observation of plasma-facing-wall via high dynamic range imaging

    International Nuclear Information System (INIS)

    Villamayor, Michelle Marie S.; Rosario, Leo Mendel D.; Viloan, Rommel Paulo B.

    2013-01-01

    Pictures of plasmas and deposits in a discharge chamber taken by varying shutter speeds have been integrated into high dynamic range (HDR) images. The HDR images of a graphite target surface of a compact planar magnetron (CPM) discharge device have clearly indicated the erosion pattern of the target, which are correlated to the light intensity distribution of plasma during operation. Based upon the HDR image technique coupled to colorimetry, a formation history of dust-like deposits inside of the CPM chamber has been recorded. The obtained HDR images have shown how the patterns of deposits changed in accordance with discharge duration. Results show that deposition takes place near the evacuation ports during the early stage of the plasma discharge. Discoloration of the plasma-facing-walls indicating erosion and redeposition eventually spreads at the periphery after several hours of operation. (author)

  10. OBSERVATIONAL DETECTION OF DRIFT VELOCITY BETWEEN IONIZED AND NEUTRAL SPECIES IN SOLAR PROMINENCES

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, Elena; Collados, Manuel [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Díaz, Antonio J., E-mail: khomenko@iac.es, E-mail: mcv@iac.es, E-mail: aj.diaz@uib.es [Universitat de les Illes Balears, 07122, Crta Valldemossa, km 7.5, Palma de Mallorca (Spain)

    2016-06-01

    We report the detection of differences in the ion and neutral velocities in prominences using high-resolution spectral data obtained in 2012 September at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). A time series of scans of a small portion of a solar prominence was obtained simultaneously with high cadence using the lines of two elements with different ionization states, namely, Ca ii 8542 Å and He i 10830 Å. The displacements, widths, and amplitudes of both lines were carefully compared to extract dynamical information about the plasma. Many dynamical features are detected, such as counterstreaming flows, jets, and propagating waves. In all of the cases, we find a very strong correlation between the parameters extracted from the lines of both elements, confirming that both lines trace the same plasma. Nevertheless, we also find short-lived transients where this correlation is lost. These transients are associated with ion-neutral drift velocities of the order of several hundred m s{sup −1}. The patches of non-zero drift velocity show coherence in time–distance diagrams.

  11. Analytically calculated post-Keplerian range and range-rate perturbations: the solar Lense-Thirring effect and BepiColombo

    Science.gov (United States)

    Iorio, Lorenzo

    2018-05-01

    We analytically calculate the time series for the perturbations Δ ρ \\left(t\\right), Δ \\dot{ρ }\\left(t\\right) induced by a general disturbing acceleration A on the mutual range ρ and range-rate \\dot{ρ } of two test particles A, B orbiting the same spinning body. We apply it to the general relativistic Lense-Thirring effect, due to the primary's spin S, and the classical perturbation arising from its quadrupole mass moment J2 for arbitrary orbital geometries and orientation of the source's symmetry axis {\\hat{S}}. The Earth-Mercury range and range-rate are nominally affected by the Sun's gravitomagnetic field to the 10 m, 10-3 cm s-1 level, respectively, during the extended phase (2026-2028) of the forthcoming BepiColombo mission to Mercury whose expected tracking accuracy is of the order of ≃0.1 m, 2 × 10-4 cm s-1. The competing signatures due to the solar quadrupole J_2^{\\odot }, if modelled at the σ _{J_2^{\\odot }}˜eq 10^{-9} level of the latest planetary ephemerides INPOP17a, are nearly 10 times smaller than the relativistic gravitomagnetic effects. The position and velocity vectors \\boldsymbol {r}, \\boldsymbol {v} of Mercury and Earth are changed by the solar Lense-Thirring effect by about 10 m, 1.5 m and 10-3 cm s-1, 10-5 cm s-1, respectively, over 2 yr; neglecting such shifts may have an impact on long-term integrations of the inner Solar system dynamics over ˜Gyr time-scales.

  12. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  13. Electron drift velocity in argon-methane mixture

    International Nuclear Information System (INIS)

    Hakeem, N.El; Mathieson, E.

    1978-01-01

    Described are the results of a series of measurements of electron drift velocity taken with samples of chemically pure grade gas mixture of Ar-10% CH 4 (N 2 2 2 2 O<2 ppm). The measured drift velocity is plotted as a function of the ratio of electric field to pressure in the range from 0.05 to 0.8 V/cmxtorr. The measurements are reproducible only to within 4%. The results of numerical calculations employing the well-established argon elastic and methane elastic and inelastic cross sections are also included. The disagreement from the present experimental results, and from those obtained elsewhere, is rather puzzling

  14. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  15. Experimental study of the spatial distribution of the velocity field of sedimenting particles: mean velocity, pseudo-turbulent fluctuations, intrinsic convection

    International Nuclear Information System (INIS)

    Bernard-Michel, G.

    2001-01-01

    This work follows previous experiments from Nicolai et al. (95), Peysson and Guazzelli (98) and Segre et al. (97), which consisted in measures of the velocity of particles sedimenting in a liquid at low particular Reynolds numbers. Our goal, introduced in the first part with a bibliographic study, is to determinate the particles velocity fluctuations properties. The fluctuations are indeed of the same order as the mean velocity. We are proceeding with PIV Eulerian measures. The method is described in the second part. Its originality comes from measures obtained in a thin laser light sheet, from one side to the other of the cells, with a square section: the measures are therefore spatially localised. Four sets of cells and three sets of particles were used, giving access to ratios 'cell width over particle radius' ranging from about 50 up to 800. In the third part, we present the results concerning the velocity fluctuations structure and their spatial distribution. The intrinsic convection between to parallel vertical walls is also studied. The velocity fluctuations are organised in eddy structures. Their size (measured with correlation length) is independent of the volume fraction, contradicting the results of Segre et al. (97). The results concerning the velocity fluctuations spatial profiles - from one side to the other of the cell - confirm those published by Peysson and Guazzelli (98) in the case of stronger dilution. The evolution of the spatial mean velocity fluctuations confirms the results obtained by Segre et al. (97). The intrinsic convection is also observed in the case of strong dilutions. (author)

  16. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  17. Damage in woven CFRP laminates subjected to low velocity impacts

    International Nuclear Information System (INIS)

    Ullah, H; Abdel-Wahab, A A; Harland, A R; Silberschmidt, V V

    2012-01-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  18. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  19. NEAR-BLOWOFF DYNAMICS OF BLUFF-BODY-STABILIZED PREMIXED HYDROGEN/AIR FLAMES IN A NARROW CHANNEL

    KAUST Repository

    Lee, Bok Jik

    2015-06-07

    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  20. The fluid dynamics of Balanus glandula barnacles: Adaptations to sheltered and exposed habitats.

    Science.gov (United States)

    Vo, Maureen; Mehrabian, Sasan; Villalpando, Fernando; Etienne, Stephane; Pelletier, Dominique; Cameron, Christopher B

    2018-04-11

    Suspension feeders use a wide range of appendages to capture particles from the surrounding fluid. Their functioning, either as a paddle or a sieve, depends on the leakiness, or amount of fluid that passes through the gaps between the appendages. Balanus glandula is the most common species of barnacle distributed along the Pacific coast of North America. It shows a strong phenotypic response to water flow velocity. Individuals from exposed, high flow sites have short and robust cirral filters, whereas those from sheltered, low velocity sites have long, spindly appendages. Computational fluid dynamics (CFD) simulations of these two ecophenotypes were done using a finite volume method. Leakiness was determined by simulating flow velocity fields at increasing Reynolds numbers, results that have been unattainable at higher velocities by observation. CFD also allowed us to characterize flow in hard to see regions of the feeding legs (rami). Laser-illumination experiments were performed at low to medium flow velocities in a flume tank and corroborated results from CFD. Barnacle filters from a sheltered site become completely leaky at Re=2.24(0.16m/s), well above the maximum habitat velocity, suggesting that this ecophenotype is not mechanically optimized for feeding. Barnacles from exposed environments become fully leaky within the range of habitat velocities Re=3.50(0.18m/s). Our CFD results revealed that the drag force on exposed barnacles feeding appendages are the same as the sheltered barnacles feeding appendages despite their shape difference and spacing ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.