Velocity Dispersions Across Bulge Types
International Nuclear Information System (INIS)
Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David
2010-01-01
We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.
Velocity Dispersion of Ionized Gas and Multiple Supernova Explosions
Directory of Open Access Journals (Sweden)
Vasiliev E. O.
2015-06-01
Full Text Available We use 3D numerical simulations to study the evolution of the Hα intensity and velocity dispersion for single and multiple supernova (SN explosions. We find that the IHα– σ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that colliding SN shells with significant difference in age are responsible for high velocity dispersion that reaches up to ≳ 100 km s−1. Such a high velocity dispersion could be hardly obtained for a single SN remnant. Peaks of velocity dispersion in the IHα– σ diagram may correspond to several isolated or merged SN remnants with moderately different ages. Degrading the spatial resolution in the Hα intensity and velocity dispersion maps makes the simulated IHα– σ diagrams close to those observed in dwarf galaxies not only in shape, but also quantitatively.
Evolution of velocity dispersion along cold collisionless flows
International Nuclear Information System (INIS)
Banik, Nilanjan; Sikivie, Pierre
2016-01-01
We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components
Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions
Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel
2017-08-01
We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, I.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .
A THEOREM ON CENTRAL VELOCITY DISPERSIONS
International Nuclear Information System (INIS)
An, Jin H.; Evans, N. Wyn
2009-01-01
It is shown that, if the tracer population is supported by a spherical dark halo with a core or a cusp diverging more slowly than that of a singular isothermal sphere (SIS), the logarithmic cusp slope γ of the tracers must be given exactly by γ = 2β, where β is their velocity anisotropy parameter at the center unless the same tracers are dynamically cold at the center. If the halo cusp diverges faster than that of the SIS, the velocity dispersion of the tracers must diverge at the center too. In particular, if the logarithmic halo cusp slope is larger than two, the diverging velocity dispersion also traces the behavior of the potential. The implication of our theorem on projected quantities is also discussed. We argue that our theorem should be understood as a warning against interpreting results based on simplifying assumptions such as isotropy and spherical symmetry.
Velocity dispersion profiles of clusters of galaxies
International Nuclear Information System (INIS)
Struble, M.F.
1979-01-01
Velocity dispersion as a function of radius, called sigma/sub ls/ profiles, is presented for 13 clusters of galaxies having > or =30 radial velocities from both published and unpublished lists. A list of probable new members and possible outlying members for these clusters is also given. chi 2 and Kolmogoroff--Smirnoff one-sample tests for the goodness of fit of power laws to portions of the profiles indicate two significant structures in some profiles: (1) a local minimum corresponding to the local minimum noted in surface density or surface brightness profiles, and (2) a decrease in sigma/sub ls/ toward the cores. Both of these features are discussed in terms of a comparison with Wielen's N-body simulations. The sigma/sub ls/ profiles are placed in a new classification scheme which lends itself to interpreting clusters in a dynamical age sequence. The velocity field of galaxies at large distances from cluster centers is also discussed
Dispersion of acoustic surface waves by velocity gradients
Kwon, S. D.; Kim, H. C.
1987-10-01
The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.
Age--velocity-dispersion relation in the solar neighborhood
International Nuclear Information System (INIS)
Carlberg, R.G.; Dawson, P.C.; Hsu, T.; VandenBerg, D.A.
1985-01-01
The age--velocity-dispersion relation for stars in the solar neighborhood is examined as an indicator of the dominant acceleration mechanism of the stars and the formation history of the local disk. Twarog's sample of F stars, for which ages and photometric distances can be determined, is combined with astrometric data to obtain tangential velocities of a set of stars with a large age range. The resulting age--velocity-dispersion relation rises fairly steeply for stars less than 6 Gyr old, thereafter becoming nearly constant with age. These data are consistent with a simple model in which no local disk is initially present, following which stars are born at a constant rate in time and heated by transient spiral waves. The corresponding age-metallicity relation complements this dynamical measure of the formation history of the disk. The use of new stellar models and a revised metallicity calibration leads to quantitative differences from previous work
The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy
Armandroff, T. E.; Da Costa, G. S.
1986-01-01
The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.
Dispersion upscaling from a pore scale characterization of Lagrangian velocities
Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy
2013-04-01
Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.
Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain
2008-12-01
Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.
Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo
2017-03-01
The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.
Attenuation and velocity dispersion in the exploration seismic frequency band
Sun, Langqiu
In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to
Accurate Recovery of H i Velocity Dispersion from Radio Interferometers
Energy Technology Data Exchange (ETDEWEB)
Ianjamasimanana, R. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Blok, W. J. G. de [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Heald, George H., E-mail: roger@mpia.de, E-mail: blok@astron.nl, E-mail: George.Heald@csiro.au [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV, Groningen (Netherlands)
2017-05-01
Gas velocity dispersion measures the amount of disordered motion of a rotating disk. Accurate estimates of this parameter are of the utmost importance because the parameter is directly linked to disk stability and star formation. A global measure of the gas velocity dispersion can be inferred from the width of the atomic hydrogen (H i) 21 cm line. We explore how several systematic effects involved in the production of H i cubes affect the estimate of H i velocity dispersion. We do so by comparing the H i velocity dispersion derived from different types of data cubes provided by The H i Nearby Galaxy Survey. We find that residual-scaled cubes best recover the H i velocity dispersion, independent of the weighting scheme used and for a large range of signal-to-noise ratio. For H i observations, where the dirty beam is substantially different from a Gaussian, the velocity dispersion values are overestimated unless the cubes are cleaned close to (e.g., ∼1.5 times) the noise level.
Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures
Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.
2017-12-01
Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.
Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements
Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III
2015-01-01
The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.
Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-01-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...
Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur
2017-04-01
Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.
Seismic wave attenuation and velocity dispersion in UAE carbonates
Ogunsami, Abdulwaheed Remi
Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact
Slow light with low group-velocity dispersion at the edge of photonic graphene
Energy Technology Data Exchange (ETDEWEB)
Ouyang Chunfang; Dong Biqin; Liu Xiaohan; Zi Jian [Department of Physics, Key Laboratory of Micro- and Nanophotonic Structures, Ministry of Education, and Key Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China); Xiong Zhiqiang; Zhao Fangyuan; Hu Xinhua [Department of Material Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China)
2011-07-15
We theoretically study the light propagation at the zigzag edges of a honeycomb photonic crystal (PC), or photonic graphene. It is found that the corresponding edge states have a sinusoidal dispersion similar to those found in PC coupled resonator optical waveguides [CROWs; M. Notomi et al., Nature Photon. 2, 741 (2008)]. The sinusoidal dispersion curve can be made very flat by carefully tuning edge parameters. As a result, low group velocity and small group velocity dispersion can be simultaneously obtained for light propagating at the zigzag edge of photonic graphene. Compared with PC CROWs, our slow-light system exhibits no intrinsic radiation loss and has a larger group velocity bandwidth product. Our results could find applications in on-chip optical buffers and enhanced light-matter interaction.
Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale
Kooshapur, Sheema; Manhart, Michael
2015-04-01
For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and
A constraint on the velocity dispersion of the missing mass in the solar neighborhood
International Nuclear Information System (INIS)
Nakamura, Takashi
1978-01-01
The stability of an N-component stellar disk with finite thickness is examined with the gas dynamical approximation. The dispersion relation for marginal stability is obtained. This dispersion relation for N = 2 is applied to the missing mass problem in the solar neighborhood, where two components represent the observed mass component and the missing mass component in the solar neighborhood. From the requirement that the Galactic disk should be locally stable, it is found that the velocity dispersion of the missing mass component should be greater than about 25km/sec. The stability of an infinitesimally thin disk is also investigated and compared with the disk of finite thickness. (auth.)
Zhu, Ming; Liu, Tingting; Zhang, Xiangqun; Li, Caiyun
2018-01-01
Recently, a decomposition method of acoustic relaxation absorption spectra was used to capture the entire molecular multimode relaxation process of gas. In this method, the acoustic attenuation and phase velocity were measured jointly based on the relaxation absorption spectra. However, fast and accurate measurements of the acoustic attenuation remain challenging. In this paper, we present a method of capturing the molecular relaxation process by only measuring acoustic velocity, without the necessity of obtaining acoustic absorption. The method is based on the fact that the frequency-dependent velocity dispersion of a multi-relaxation process in a gas is the serial connection of the dispersions of interior single-relaxation processes. Thus, one can capture the relaxation times and relaxation strengths of N decomposed single-relaxation dispersions to reconstruct the entire multi-relaxation dispersion using the measurements of acoustic velocity at 2N + 1 frequencies. The reconstructed dispersion spectra are in good agreement with experimental data for various gases and mixtures. The simulations also demonstrate the robustness of our reconstructive method.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Energy Technology Data Exchange (ETDEWEB)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Disperse reinforced concrete used in obtaining prefabricated elements for roads
Directory of Open Access Journals (Sweden)
Bogdan MEZEI
2014-07-01
Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.
Hydrocarbon saturation determination using acoustic velocities obtained through casing
Moos, Daniel
2010-03-09
Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Málek, Jiří; Brokešová, J.
2011-01-01
Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/
International Nuclear Information System (INIS)
Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki
2017-01-01
We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.
Energy Technology Data Exchange (ETDEWEB)
Shirakata, Hikari [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Kawaguchi, Toshihiro [Department of Economics, Management and Information Science, Onomichi City University, Onomichi, Hiroshima (Japan); Okamoto, Takashi [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Ishiyama, Tomoaki, E-mail: shirakata@astro1.sci.hokudai.ac.jp [Institute of Management and Information Technologies, Chiba University, Chiba (Japan)
2017-09-12
We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.
The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters
Energy Technology Data Exchange (ETDEWEB)
Becker, M.R.; McKay, T.A.; /Michigan U.; Koester, B.; /Chicago U., Astron. Astrophys. Ctr.; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.; Rozo, E.; /Ohio State U.; Evrard, A.; /Michigan U. /Michigan U., MCTP; Johnston, D.; /Caltech, JPL; Sheldon, E.; /New York U.; Annis, J.; /Fermilab; Lau, E.; /Chicago U., Astron. Astrophys. Ctr.; Nichol, R.; /Portsmouth U., ICG; Miller, C.; /Michigan U.
2007-06-05
The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.
Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-06-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.
Energy Technology Data Exchange (ETDEWEB)
Krause, W.J.; Krinitzky, T.; Cremer, M. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany)
2003-07-01
Since 1980, the Federal Institute of Hydrology has performed dispersion investigations with tritium as a tracer on Federal Waterways. The aim was to establish dispersion prognoses, i.e. forecasts of the longitudinal dispersion of concentrations of noxious substances in the water column. Characteristic parameters like discharge-relevant flow velocities, dispersion and elimination constants of emittent sites and selected river sections will be determined. They will serve as basis for a mathematical model permitting to forecast discharge-relevant flow velocities, expected impact times, concentration maxima and the duration of critical concentration increases. In the following, the results obtained at the Moselle river and the investigations carried out on the Weser river will be shortly described. (orig.)
The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models
Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.
1997-05-01
We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the
Faroughi, S. A.; Huber, C.
2015-12-01
Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with
International Nuclear Information System (INIS)
Foster, Jonathan B.; Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Arce, Héctor G.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Zasowski, Gail
2015-01-01
The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s –1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s –1 . Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse
International Nuclear Information System (INIS)
Sanchez Gacita, Madeleine; Turtos Carbonell, Leonor; Rivero Oliva, Jose de Jesus
2005-01-01
The present work is aimed to improve externalities assessment using Simplified Methodologies, through the obtaining of depletion velocities for primary pollutants SO 2 , NO X and TSP (Total Suspended Particles) and for sulfate and nitrate aerosols, the secondary pollutants created from the first ones. The main goal proposed was to estimate these values for different cases, in order to have an ensemble of values for the geographic area, among which the most representative could be selected for using it in future studies that appeal to a simplified methodology for the regional dispersion assessment, taking into account the requirements of data, qualified manpower and time for a detailed approach. The results where obtained using detailed studies of the regional dispersion that were conduced for six power facilities, three from Cuba (at the localities of Mariel, Santa Cruz and Tallapiedra) and three from Mexico (at the localities of Tuxpan, Tula and Manzanillo). The depletion velocity for SO 2 was similar for all cases. Results obtained for Tallapiedra, Santa Cruz, Mariel and Manzanillo were similar. For Tula and Tuxpan a high uncertainty was found
Energy Technology Data Exchange (ETDEWEB)
Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Atlanta, GA 30303 (United States); Onken, Christopher A. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bershady, Matthew A., E-mail: batiste@astro.gsu.edu [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States)
2017-02-01
We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.
Directory of Open Access Journals (Sweden)
Hikari Shirakata
2017-09-01
Full Text Available We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016. We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.
Velocity dispersions in galaxies. V. The nuclei of M31 and M32
International Nuclear Information System (INIS)
Morton, D.C.; Elmergreen, B.G.
1976-01-01
Stigmatic spectra between 4160 and 4385 A with 0.7 A resolution have been obtained of the central regions of M31 and M32, including their starlike nuclei, and the KO III star 51 Ori using an SEC TV sensor and the coude spectrograph of the Hale telescope. Line-of-sight velocity dispersions of sigma=130 +- 20 and 55(+10, -15) km s -1 have been determined for the nuclei of M31 and M32, respectively, by direct comparision with the star spectrum broadened by various Gaussian widths. This KO III star is a poor match in the nucleus of M31, but represents rather well the spectrum of the nucleus of M32 and the bulge of M31 at 10'' from the center
International Nuclear Information System (INIS)
Moran, T.G.
1986-12-01
Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-01-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-05-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Application of Depth-Averaged Velocity Profile for Estimation of Longitudinal Dispersion in Rivers
Directory of Open Access Journals (Sweden)
Mohammad Givehchi
2010-01-01
Full Text Available River bed profiles and depth-averaged velocities are used as basic data in empirical and analytical equations for estimating the longitudinal dispersion coefficient which has always been a topic of great interest for researchers. The simple model proposed by Maghrebi is capable of predicting the normalized isovel contours in the cross section of rivers and channels as well as the depth-averaged velocity profiles. The required data in Maghrebi’s model are bed profile, shear stress, and roughness distributions. Comparison of depth-averaged velocities and longitudinal dispersion coefficients observed in the field data and those predicted by Maghrebi’s model revealed that Maghrebi’s model had an acceptable accuracy in predicting depth-averaged velocity.
Ultrasonic absorption and velocity dispersion of binary mixture liquid crystal MBBA/EBBA
International Nuclear Information System (INIS)
Choi, K.
1979-01-01
The effect of phase transitions and the partial magnetic alignment for liquid crystal molecules on the ultrasonic absorption and velocity dispersion has been investigated. The binary mixture of Shiff base liquid crystals MBBA/EBBA (55:45 mole %) showed anomalous ultrasonic absorption and velocity dispersion at eutectic (Tsub(m) = -20 0 C) and clearing point (Tsub(c) = 50 0 C) at the frequency range of 5 MHz, 10MHz, 15MHz and 30 MHz. The experimental data were analyzed in terms of relaxation time and Fixman theory. The anisotropy of the propagation velocity due to the magnetic alignment was about 0.9% (the deviation between velocities propagating parallel and perpendicular to the applied field). (author)
International Nuclear Information System (INIS)
Thomas, G.F.
1994-01-01
This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)
International Nuclear Information System (INIS)
de Vaucouleurs, G.; Olson, D.W.
1982-01-01
The Faber-Jackson relation between absolute magnitude M/sub T/ 0 and central velocity dispersion sigma/sub upsilon/ is reexamined for a sample of 157 normal, noninteracting galaxies, 82 ellipticals (T = -5, -4), and 75 lenticulars (T = -3, -2, -1). The values of sigma/sub upsilon/ are weighted means from various sources reduced to a uniform system
COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES
International Nuclear Information System (INIS)
Fan, L.; Lapi, A.; Bressan, A.; De Zotti, G.; Danese, L.; Bernardi, M.
2010-01-01
Massive (stellar mass M * ∼> 3 x 10 10 M sun ), passively evolving galaxies at redshifts z ∼> 1 exhibit on average physical sizes smaller, by factors ∼3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ∼ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (∼ H (z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ∼ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M * ∼ 10 M sun ) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.
International Nuclear Information System (INIS)
Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.; Valtonen, E.
2015-01-01
To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA
Kessels, W.; Wuttke, M. W.
2007-05-01
A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric
Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion
International Nuclear Information System (INIS)
Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki
2002-01-01
We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index
Terminal velocity of liquids and granular materials dispersed by a high explosive
Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.
2018-04-01
The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.
Terminal velocity of liquids and granular materials dispersed by a high explosive
Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.
2018-05-01
The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.
All-optical control of group velocity dispersion in tellurite photonic crystal fibers.
Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2012-12-15
We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.
Baumgardt, H.; Hilker, M.
2018-05-01
We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.
Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.
2017-09-01
High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.
Travel Times, Streamflow Velocities, and Dispersion Rates in the Yellowstone River, Montana
McCarthy, Peter M.
2009-01-01
The Yellowstone River is a vital natural resource to the residents of southeastern Montana and is a primary source of water for irrigation and recreation and the primary source of municipal water for several cities. The Yellowstone River valley is the primary east-west transportation corridor through southern Montana. This complex of infrastructure makes the Yellowstone River especially vulnerable to accidental spills from various sources such as tanker cars and trucks. In 2008, the U.S. Geological Survey (USGS), in cooperation with the Montana Department of Environmental Quality, initiated a dye-tracer study to determine instream travel times, streamflow velocities, and dispersion rates for the Yellowstone River from Lockwood to Glendive, Montana. The purpose of this report is to describe the results of this study and summarize data collected at each of the measurement sites between Lockwood and Glendive. This report also compares the results of this study to estimated travel times from a transport model developed by the USGS for a previous study. For this study, Rhodamine WT dye was injected at four locations in late September and early October 2008 during reasonably steady streamflow conditions. Streamflows ranged from 3,490 to 3,770 cubic feet per second upstream from the confluence of the Bighorn River and ranged from 6,520 to 7,570 cubic feet per second downstream from the confluence of the Bighorn River. Mean velocities were calculated for each subreach between measurement sites for the leading edge, peak concentration, centroid, and trailing edge at 10 percent of the peak concentration. Calculated velocities for the centroid of the dye plume for subreaches that were completely laterally mixed ranged from 1.83 to 3.18 ft/s within the study reach from Lockwood Bridge to Glendive Bridge. The mean of the completely mixed centroid velocity for the entire study reach, excluding the subreach between Forsyth Bridge and Cartersville Dam, was 2.80 ft/s. Longitudinal
Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur
International Nuclear Information System (INIS)
Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.
2008-01-01
Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru
International Nuclear Information System (INIS)
Hovsepyan, A.H.; Israyelyan, S.M.
2009-01-01
The technology of obtaining pure and disperse molybdenum disulfide is worked out. The processes of refinement from the flotation reagents and deslimation by means of decantation, refinement of molybdenite concentrate from impurities by selective leaching methods are studied. The optimal regime of technological process is chosen
International Nuclear Information System (INIS)
Palacios, Sergio L.
2004-01-01
We propose two simple ansaetze that allow us to obtain different analytical solutions of the high dispersive cubic and cubic-quintic nonlinear Schroedinger equations. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media
Barreyre, Thibaut; Soule, S. Adam; Sohn, Robert A.
2011-08-01
We use tank experiments to measure settling rates of deep-sea volcaniclastic material recovered from the Arctic (85°E Gakkel Ridge) and Pacific (Juan de Fuca Ridge, Loihi seamount) Oceans. We find that clast size and shape exert a strong influence on settling velocity, with velocities of ~ 30 cm/s for large (~ 8 mm), blocky clasts, compared to velocities of ~ 2.5 cm/s for small (Pele) entrained in a megaplume could be advected as far as a few kilometers from a source region. These results indicate that entrainment in buoyant seawater plumes during an eruption may play an important role in clast dispersal, but it is not clear if this mechanism can explain the distribution of volcaniclastic material at the sites on the Gakkel and Juan de Fuca Ridges where our samples were acquired. In order to understand the dispersal of volcaniclastic material in the deep-sea it will be necessary to rigorously characterize existing deposits, and develop models capable of incorporating explosive gas phases into the eruption plume.
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
International Nuclear Information System (INIS)
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
2017-01-01
We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.
The shape of velocity dispersion profiles and the dynamical state of galaxy clusters
Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.
2018-01-01
Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
2017-12-01
Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.
The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data
Yu, Jincheng; Liu, Chao
2018-03-01
We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.
DEFF Research Database (Denmark)
Rishøj, Lars Søgaard; Svane, Ask Sebastian; Lund-Hansen, Toke
2014-01-01
A numerical model for parametric amplifiers, which include stochastic variations of the group velocity dispersion (GVD), is presented. The impact on the gain is investigated, both with respect to the magnitude of the variations and by the effect caused by changing the wavelength of the pump. It i....... It is demonstrated that the described model is able to predict the experimental results and thereby provide a quantitative evaluation of the standard deviation of the GVD. For the investigated fibre, a standard deviation of 0.01 ps/(nm km) was found....
A new approach to obtaining the roots of the dispersion equation for slab geometry multiplying media
International Nuclear Information System (INIS)
Silva, Davi J.M.; Barros, Ricardo C.; Alves Filho, Hermes
2013-01-01
In this work we describe an alternative approach for obtaining the roots of the dispersion equation. For the mathematical model, we used the slab-geometry neutron transport equation in the discrete ordinates (S N ), formulation, considering isotropic scattering and monoenergetic model. The basic idea is to find a basis for the kernel of the S N differential operator, whose elements are exponential eigenfunctions corresponding to distinct eigenvalues which are the roots of the dispersion equation. That strategy yields a gain in programming computational codes, including the strategy used to obtain the purely imaginary eigenvalues and their associated complex eigenfunctions, that appear in the spectral analysis of the S N equations in multiplying media. These eigenvalues and corresponding eigenfunctions are used to obtain the parameters of the auxiliary equations of the spectral nodal methods, e.g., the spectral diamond (SD) auxiliary equation. (author)
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping
2014-08-01
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.
Energy Technology Data Exchange (ETDEWEB)
Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)
2013-08-20
We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.
Li, Ming-Hua; Zhu, Weishan; Zhao, Dong
2018-05-01
The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.
Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari
2018-01-01
We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from: https://github.com/Hamzeh-Sadeghi/GSpecDisp
Dosso, S. E.; Molnar, S.; Cassidy, J.
2010-12-01
Bayesian inversion of microtremor array dispersion data is applied, with evaluation of data errors and model parameterization, to produce the most-probable shear-wave velocity (VS) profile together with quantitative uncertainty estimates. Generally, the most important property characterizing earthquake site response is the subsurface VS structure. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and nonlinear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a nonlinear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parameterization. A Bayesian formulation represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parameterization is determined using the Bayesian information criterion (BIC), which provides the simplest model consistent with the resolving power of the data. Parameter uncertainties are found to be under-estimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance) parameters are fixed in the inversion. Bayesian inversion of microtremor array data is applied at two sites in British Columbia, the area of highest seismic risk in
Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space
International Nuclear Information System (INIS)
Ju, Heongkyu; Lee, Euncheol
2010-01-01
Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.
Heat transfer to a dispersed two-phase flow and detailed quench front velocity research
International Nuclear Information System (INIS)
Boer, T.C. de; Molen, S.B. van der
1985-01-01
A programme to obtain a data base for 'Boildown and Reflood' computer code development and to obtain information on the influence of non-uniform temperature and/or power profile on the quench front velocity and prequench heat transfer, including unheated wall and grid effects, has been undertaken. It is in two parts. In the first (for the tube, annulus and a 4-rod bundle) an early wetting of the unheated shroud is shown. This leads to an increase in quench front velocity and in liquid transport downstream from the quench front. For the inverted annular flow regime the extended Bromley correlation gives good agreement with the experimental data. In the second part (36-rod bundle reflood test programme) the wall-temperature differences in the radial direction gives rise to heat transfer processes which are described and explained. (U.K.)
In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.
Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M
2014-01-01
Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.
Ammirati, J. B.; Alvarado, P. M.; Beck, S. L.
2014-12-01
Receiver Function (RF) analyses using teleseismic P waveforms is a technique to isolate P to S conversions from seismic discontinuities in the lithosphere. Using earthquakes with a good azimuthal distribution, RFs recorded at a three-component seismic station can be inverted to obtain detailed lithospheric velocity structures. The technique, however presents a velocity-depth trade-off, which results in a non-unique model because RFs do not depend on the absolute seismic velocities but rather on relative velocity contrasts. Unlike RF, surface wave dispersion is sensitive to the average shear-wave velocity which makes it well suited for studying long period variations of the lithospheric seismic velocities. We performed a joint inversion of RF and Rayleigh-wave phase velocity dispersion to investigate the structure beneath the SIEMBRA network, a 43-broadband-seismic-station array deployed in the Pampean flat slab region of Argentina. Our results indicate: 1) The presence of several mid-crustal discontinuities probably related with terrane accretion; 2) A high seismic velocity in the lower crust suggesting partial eclogitization; 3) A thicker crust (> 50 km) beneath the western Sierras Pampeanas with an abrupt change in the relative timing of the Moho signal indicating a thinner crust to the east; 4) The presence of the subducting oceanic crust lying at ~100 km depth. We then built a 1D regional velocity model for the flat slab region of Argentina and used it for regional moment tensor inversions for local earthquakes. This technique is notably dependent on small-scale variations of Earth structure when modeling higher frequency seismic waveforms. Eighteen regional focal mechanisms have been determined. Our solutions are in good agreement with GCMT source estimations although our solutions for deep earthquakes systematically resulted in shallower focal depths suggesting that the slab seismicity could be concentrated at the top of the subducting Nazca plate. Solutions
International Nuclear Information System (INIS)
Whitmore, B.C.; Kirshner, R.P.
1981-01-01
We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L proportional sigma 4 , but with velocity dispersions that are 17 +- 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L proportional sigma 4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. we also find that the bulge components of SO galaxies follow a L proportional sigma 4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar
Directory of Open Access Journals (Sweden)
Kovalevska, I. V.
2018-04-01
Full Text Available Introduction. Thioctic acid is used in the treatment of diseases that are characterized by lack of mitochondrial activity, which is responsible for the formation of free radicals. Widespread use of thioctic acid is due to the chemical structure. The thioctic acid exhibits biological activity in both hydrophilic and hydrophobic environments. Thioctic acid is an enzyme cofactor and a powerful antioxidant, it regulates the transcription of numerous genes, participates in regulation of glucose and lipid metabolism, increases insulin sensitivity, and forms complexes with heavy metals. Thioctic acid has a high pharmacological potential, which is confirmed by the evidence base of clinical trials. An analysis of the literature on the oral use of thioctic acid indicates that solid dosage forms can be used for long-term therapy. This route of administration is limited by factors such as reduced solubility in acidic environments and enzymatic degradation. For this reason, the search for various compositions of auxiliary substances and methods of obtaining drugs is an urgent task of pharmaceutical technology. Material & methods. Objects of study were solid dispersions of thioctic acid (SDTA on the basis of cellulose derivatives: microcrystalline (MCC, HPMC (hydroxypropyl methylcellulose and polyvinylpyrrolidone (PVP as compared to thioctic acid (TA. The samples were made by solid phase method using micronization in a laboratory shredder at a ratio of 1: 1. Pharmacological and technological parameters were determined according to generally accepted methods. Results & discussion. In appearance the resulting mixtures had lemon color, without inclusions and the formation of conglomerates, with homogeneous sized particles According to the pharmaco-technological studies, the samples do not have a satisfactory flowability. The values of the Carr index and the ratio of Hausner make it possible to conclude that there is a large force of cohesion between the
Obtaining and characterization catalyst Ki/Al_2O_3 by physical dispersion process via wet
International Nuclear Information System (INIS)
Silva, M.C. da; Dantas, J.; Costa, A.C.F.M.; Costa, N.C.O.; Freitas, N.L. de
2014-01-01
The aim of this study is the Obtention and characterization of catalysts being supported alumina impregnated with KI by physical dispersion in wet via attritor mill in periods of 30 and 60 minutes. Before and after impregnation the catalysts were characterized by XRD, X ray fluorescence, particle size distribution, textural analysis (BET). The results show the presence of the stable crystalline phase Al_2O_3 in all samples after impregnation and the second phase formed from KI and K_2O. There was a decrease in the agglomerates incorporated with the potassium due to the milling process. It was observed that the highest specific surface area was obtained by the impregnated sample into a 60 min. (author)
Loubser, S. I.; Hoekstra, H.; Babul, A.; O'Sullivan, E.
2018-06-01
We analyse spatially resolved deep optical spectroscopy of brightestcluster galaxies (BCGs) located in 32 massive clusters with redshifts of 0.05 ≤ z ≤ 0.30 to investigate their velocity dispersion profiles. We compare these measurements to those of other massive early-type galaxies, as well as central group galaxies, where relevant. This unique, large sample extends to the most extreme of massive galaxies, spanning MK between -25.7 and -27.8 mag, and host cluster halo mass M500 up to 1.7 × 1015 M⊙. To compare the kinematic properties between brightest group and cluster members, we analyse similar spatially resolved long-slit spectroscopy for 23 nearby brightest group galaxies (BGGs) from the Complete Local-Volume Groups Sample. We find a surprisingly large variety in velocity dispersion slopes for BCGs, with a significantly larger fraction of positive slopes, unique compared to other (non-central) early-type galaxies as well as the majority of the brightest members of the groups. We find that the velocity dispersion slopes of the BCGs and BGGs correlate with the luminosity of the galaxies, and we quantify this correlation. It is not clear whether the full diversity in velocity dispersion slopes that we see is reproduced in simulations.
Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Valenta, Jan; Málek, Jiří
2014-01-01
Roč. 18, č. 3 (2014), s. 617-635 ISSN 1383-4649 R&D Projects: GA ČR GA205/09/1244; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * surface waves * phase-velocity * dispersion curve Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.386, year: 2014
Ghislandi, M.G.; Tkalya, E.; Schillinger, S.; Koning, C.E.; With, de G.
2013-01-01
The concept of liquid-phase dispersion was applied for the preparation of well-dispersed suspensions of MWCNTs and graphene in chloroform, using long-time ultra-sonication without the use of surfactants. The dispersions with pre-defined filler concentration (0.5 mg/ml) were monitored via UV–Vis
N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique.
Korotych, O; Samchenko, Yu; Boldeskul, I; Ulberg, Z; Zholobak, N; Sukhodub, L
2013-03-01
Thermosensitive hydrogels with magnetic properties (ferrogels) are very promising for medical application, first of all, for the design of targeted delivery systems with controlled release of drugs and for magnetic hyperthermia and chemotherapy treatment of cancer. These magnetic hydrogels could be obtained using diverse techniques: ex- and in-situ syntheses. The present work is devoted to the study of magnetite (Fe(3)O(4)) formation inside the nanoreactors of (co)polymeric hydrogels. Polymeric templates (hydrogel films and fine-dispersed hydrogels) used for obtaining ferrogels were based on acrylic monomers: thermosensitive N-isopropylacrylamide, and hydrophilic acrylamide. Covalent cross-linking was accomplished using bifunctional monomer N,N'-methylenebisacrylamide. Influence of hydrophilic-lipophilic balance of polymeric templates and concentration of iron cations on the magnetite formation were investigated along with the development of ferrogel preparation technique. Cytotoxicity, physical and chemical properties of obtained magnetic hydrogels have been studied in this work. Copyright © 2012 Elsevier B.V. All rights reserved.
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Using velocity dispersion to estimate halo mass: Is the Local Group in tension with ΛCDM?
Elahi, Pascal J.; Power, Chris; Lagos, Claudia del P.; Poulton, Rhys; Robotham, Aaron S. G.
2018-06-01
Satellite galaxies are commonly used as tracers to measure the line-of-sight (LOS)velocity dispersion (σLOS) of the dark matter halo associated with their central galaxy, and thereby to estimate the halo's mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest σ ˜50 km s-1, which is surprisingly low when compared to the theoretical expectation of σ ˜100 km s-1 for systems of their mass. Does this pose a problem for Lambda cold dark matter (ΛCDM)? We explore this tension using the SURFS suite of N-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxy's host halo velocity dispersion can be recovered by sampling σLOS of subhaloes and surrounding haloes. Our results demonstrate that σLOS is biased mass proxy. We define an optimal window in vLOS and projected distance (Dp) - 0.5 ≲ Dp/Rvir ≲ 1.0 and vLOS ≲ 0.5Vesc, where Rvir is the virial radius and Vesc is the escape velocity - such that the scatter in LOS to halo dispersion is minimized - σLOS = (0.5 ± 0.1)σv, H. We argue that this window should be used to measure LOS dispersions as a proxy for mass, as it minimises scatter in the σLOS-Mvir relation. This bias also naturally explains the results from McConnachie (2012), who used similar cuts when estimating σLOS, LG, producing a bias of σLG = (0.44 ± 0.14)σv, H. We conclude that the Local Group's velocity dispersion does not pose a problem for ΛCDM and has a mass of log M_{LG, vir}/M_{⊙}=12.0^{+0.8}_{-2.0}.
Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.
Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan
2016-01-05
The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.
Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry
Directory of Open Access Journals (Sweden)
Cristina Lavinia Nistor
2016-01-01
Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.
International Nuclear Information System (INIS)
Van de Sande, Jesse; Franx, Marijn; Labbe, Ivo; Kriek, Mariska; Van Dokkum, Pieter G.; Bezanson, Rachel; Whitaker, Katherine E.; Brammer, Gabriel; Groot, Paul J.; Kaper, Lex
2011-01-01
Recent photometric studies have shown that early-type galaxies at fixed stellar mass were smaller and denser at earlier times. In this Letter, we assess that finding by deriving the dynamical mass of such a compact quiescent galaxy at z = 1.8. We have obtained a high-quality spectrum with full UV-NIR wavelength coverage of galaxy NMBS-C7447 using X-Shooter on the Very Large Telescope. We determined a velocity dispersion of 294 ± 51 km s -1 . Given this velocity dispersion and the effective radius of 1.64 ± 0.15 kpc (as determined from Hubble Space Telescope Wide Field Camera 3 F160W observations) we derive a dynamical mass of (1.7 ± 0.5) x 10 11 M sun . Comparison of the full spectrum with stellar population synthesis models indicates that NMBS-C774 has a relatively young stellar population (0.40 Gyr) with little or no star formation and a stellar mass of M * ∼ 1.5 x 10 11 M sun . The dynamical and photometric stellar masses are in good agreement. Thus, our study supports the conclusion that the mass densities of quiescent galaxies were indeed higher at earlier times, and this earlier result is not caused by systematic measurement errors. By combining available spectroscopic measurements at different redshifts, we find that the velocity dispersion at fixed dynamical mass was a factor of ∼1.8 higher at z = 1.8 compared with z = 0. Finally, we show that the apparent discrepancies between the few available velocity dispersion measurements at z > 1.5 are consistent with the intrinsic scatter of the mass-size relation.
Chemical and phase composition of powders obtained by electroerosion dispersion from alloys WC-Co
International Nuclear Information System (INIS)
Putintseva, M.N.
2004-01-01
A consideration is given to the dependence of chemical and phase compositions of dispersed powders on the conditions, the medium of electroerosion dispersing and the content of cobalt in an initial alloy. It is shown that dissociation of carbon from tungsten carbide proceeds even on dispersing in liquid hydrocarbon-containing media (kerosene and machine oil). The phase composition is determined to a large extent by a medium of dispersing and a cobalt content in the initial alloy. In all powders complex tungsten-cobalt carbides and even Co 7 W 6 intermetallic compounds are found [ru
Chemical and Phase Composition of Powders Obtained by Electroerosion Dispersion from WC - Co Alloys
Putintseva, M. N.
2004-03-01
The dependence of the chemical and phase composition of dispersed powders on the mode and medium of electroerosion dispersion and the content of cobalt in the initial alloy is considered. It is shown that the dissociation of carbon from tungsten carbide occurs even in dispersion in liquid hydrocarbon-bearing media (kerosene and industrial oils). The phase composition is primarily determined by the dispersion medium and the content of cobalt in the initial alloy. Compound tungsten-cobalt carbides and even a Co7W6 intermetallic are determined in all the powders.
THEORY OF DISPERSED FIXED-DELAY INTERFEROMETRY FOR RADIAL VELOCITY EXOPLANET SEARCHES
International Nuclear Information System (INIS)
Van Eyken, Julian C.; Ge Jian; Mahadevan, Suvrath
2010-01-01
The dispersed fixed-delay interferometer (DFDI) represents a new instrument concept for high-precision radial velocity (RV) surveys for extrasolar planets. A combination of a Michelson interferometer and a medium-resolution spectrograph, it has the potential for performing multi-object surveys, where most previous RV techniques have been limited to observing only one target at a time. Because of the large sample of extrasolar planets needed to better understand planetary formation, evolution, and prevalence, this new technique represents a logical next step in instrumentation for RV extrasolar planet searches, and has been proven with the single-object Exoplanet Tracker (ET) at Kitt Peak National Observatory, and the multi-object W. M. Keck/MARVELS Exoplanet Tracker at Apache Point Observatory. The development of the ET instruments has necessitated fleshing out a detailed understanding of the physical principles of the DFDI technique. Here we summarize the fundamental theoretical material needed to understand the technique and provide an overview of the physics underlying the instrument's working. We also derive some useful analytical formulae that can be used to estimate the level of various sources of error generic to the technique, such as photon shot noise when using a fiducial reference spectrum, contamination by secondary spectra (e.g., crowded sources, spectroscopic binaries, or moonlight contamination), residual interferometer comb, and reference cross-talk error. Following this, we show that the use of a traditional gas absorption fiducial reference with a DFDI can incur significant systematic errors that must be taken into account at the precision levels required to detect extrasolar planets.
International Nuclear Information System (INIS)
Bezanson, Rachel; Van Dokkum, Pieter; Franx, Marijn
2012-01-01
We measure stellar masses and structural parameters for 5500 quiescent and 20,000 star-forming galaxies at 0.3 < z ≤ 1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and determine how the number density of galaxies at fixed inferred dispersion, or the velocity dispersion function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of ∼4 since z = 1.5. This buildup leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
Energy Technology Data Exchange (ETDEWEB)
Campbell, James E; Longsine, Dennis E [Sandia National Laboratories, Albuquerque, New Mexico (United States); Reeves, Mark [INTERA Environmental Consultants, Inc. Houston, TX (United States)
1980-06-01
A new method is proposed for treating convective-dispersive transport. The motivation for developing this technique arises from the demands of performing a risk assessment for a nuclear waste repository. These demands include computational efficiency over a relatively large range of Peclet numbers and the ability to handle chains of decaying radionuclides with rather extreme contrasts in both solution velocities and half lives. To the extent it has been tested to date, the Distributed Velocity Method (DVM) appears to satisfy these demands. Included in this paper are the mathematical theory, numerical implementation, an error analysis employing statistical sampling and regression analysis techniques, and comparisons of DVM with other methods for convective-dispersive transport. (author)
Energy Technology Data Exchange (ETDEWEB)
Durazo, R.; Hernandez, X.; Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264 C.P. 04510 México D.F., México (Mexico); Sodi, B. Cervantes [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)
2017-03-10
For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversity of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.
Heat transfer to a dispersed two phase flow and detailed quench front velocity research
International Nuclear Information System (INIS)
De Boer, T.C.; Van der Molen, S.B.
1985-01-01
During the blow-down phase of a loss-off coolant accident (LOCA) in a pressurized water reactor the core will heat up dramatically. Water will be injected in the system, and by bottom flooding the core will be cooled. The use of one-dimensional computer models for the calculation of the reflood process in a bundle needs a better justification. The influence of an unheated shroud on prequench heat transfer is investigated in a tube, an annulus and a 4 rod bundle. By using a glass shroud for the annulus, optical analysis of the dispersed two-phase flow regime has been performed. The ECN 36-rod bundle tests as performed with axial uniform power profile are reflood and boil-down at 0.2 MPa pressure executed for different conditions. The experiment yield a data base suitable for code validation and development. Better understanding is obtained for the influence of the radial non-uniform temperature and/or power distributions on the reflood process. Heat transfer improvement induced by the presence of spacer grids is observed. 72 refs.; 220 figs.
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)
2014-09-15
We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.
Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis
2018-02-01
A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.
Energy Technology Data Exchange (ETDEWEB)
Morikawa, Y.; Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). Faculty of Science and Engineering; Nakayama, T. [Kobe Steel Ltd., Kobe (Japan)
1996-11-01
We developed a new laser surface acoustic wave (SAW) system and applied this to estimate the mechanical properties of the wear-resistant Ni-P layer electroplated on a stainless steel. The velocity dispersions of Rayleigh wave of the as -plated and heat-treated Ni-P layer were obtained by the one point time domain signal processing. The Ni-P layers with excellent wear resistance produced by the heated treatment higher than 725K were found to show higher Rayleigh velocities than that of the substrate steel, while the Ni-P layer with poor wear resistance showed lower velocities. Young`s moduli of the Ni-P layer, estimated so as the computed velocity dispersion agreed with the measured one, increased with the increase of wear resistance. 10 refs., 9 figs., 2 tabs.
On the possibility of high-dispersed composite material obtaining in impulsive high-enthalpy flow
International Nuclear Information System (INIS)
Blinkov, I.V.; Brodyagin, A.G.; Ivanov, A.V.
1987-01-01
Thermodynamic possibility for the formation of TiC-Mo composite dispersed material in 1200-2800 K temperature interval and effect of H/Cl, C/Ti relation on the composite material composition are demonstrated. Investigation into the plasmo-chemical process of producing high-dispersed composite material in the pulsed regime has pointed out to a possibility of the product chemical composition regulation by changing the energy, flow-rate parameters and by conditions of component introduction into the plasmochemical reactor. Molybdenum-carbide composition powders produced are characterized by the particle size of ∼ 10 nm and high Mo and TiC distribution steadyness which allows one to exclude the stage of a long-term component mixing under the composition production
Determination of dispersion coefficients and average flow velocities in rivers radioactive tracers
International Nuclear Information System (INIS)
Carvalho, M.A.G. de; Moreira, R.M.
1984-01-01
The determination of the dispersion characteristics and residence time distribution in a series of adjoining stretches of a river with one single tracer injection, are presented. The method allows minimizing the amount of work and tracer expenditure in the measurement of fluvial transport over long or heterogeneous river courses. (M.A.C.) [pt
Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito
2018-01-01
We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Energy Technology Data Exchange (ETDEWEB)
Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)
2012-11-15
The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)
Nironi, Chiara; Salizzoni, Pietro; Marro, Massimo; Mejean, Patrick; Grosjean, Nathalie; Soulhac, Lionel
2015-09-01
The prediction of the probability density function (PDF) of a pollutant concentration within atmospheric flows is of primary importance in estimating the hazard related to accidental releases of toxic or flammable substances and their effects on human health. This need motivates studies devoted to the characterization of concentration statistics of pollutants dispersion in the lower atmosphere, and their dependence on the parameters controlling their emissions. As is known from previous experimental results, concentration fluctuations are significantly influenced by the diameter of the source and its elevation. In this study, we aim to further investigate the dependence of the dispersion process on the source configuration, including source size, elevation and emission velocity. To that end we study experimentally the influence of these parameters on the statistics of the concentration of a passive scalar, measured at several distances downwind of the source. We analyze the spatial distribution of the first four moments of the concentration PDFs, with a focus on the variance, its dissipation and production and its spectral density. The information provided by the dataset, completed by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be very well approximated by a Gamma distribution, irrespective of the emission conditions and the distance from the source. Concentration measurements are complemented by a detailed description of the velocity statistics, including direct estimates of the Eulerian integral length scales from two-point correlations, a measurement that has been rarely presented to date.
Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-02-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
International Nuclear Information System (INIS)
Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-01-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
2010-08-31
.... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372
International Nuclear Information System (INIS)
Constain Aragon, A.; Lemos Ruiz, R.
2011-01-01
It is very well known the basic equation of hydraulics discovered by Antoine de Chezy in 1769, which relates in a quadratic from the mean velocity of flow with the slope of energy line and the hydraulic radius, in a uniform regime. This equation has been the central axis of development of hydro metrics as science that faces the huge challenges of penetrating the knowledge of earths streams every time more contaminated. In virtue of that, its mathematical structure and the relationship with other related formulas have been carefully examined, despite the limitation due to constancy of velocity. Starting from chemical considerations rather than dynamic ones as was used to obtain chezys relationship it is possible to establish a second equation for mean velocity of fluid in a non uniform regime that corresponds to averaged movement of a solute poured to steam. This equation will go to relate in an accurate way several aspects hydraulics and mass transport, sight as a single thing, allowing a vital tool for a depth study of water contaminations. to arrive this equation it was reviewed the foundations of mass transport theory in flows, stating a time dependent nature for coefficient currently used in describing dispersion phenomena allowing to interpret properly certain inconsistencies detected long time ago in this theory. It is presented the detailed results of application of this new approach to a small steam and a larger river in Colombia. (Author) 23 refs.
International Nuclear Information System (INIS)
Jorda, Michel.
1976-01-01
The dissolution of a solid in an aqueous phase is studied, the solid consisting of dispersed particles. A continuous colorimetric analysis method is developed to study the dissolution process and a two-parameter optimization method is established to investigate the kinetic curves obtained. This method is based on the differential equation dx/dt=K(1-x)sup(n). (n being the decrease in the dissolution velocity when the dissolved part increases and K a velocity parameter). The dissolution of SO 4 Cu and MnO 4 K in water and UO 3 in SO 4 H 2 is discussed. It is shown that the dissolution velocity of UO 3 is proportional to the concentration of the H + ions in the solution as far as this one is not higher than 0.25N. The study of the temperature dependence of the UO 3 dissolution reaction shows that a transition phase takes place from 25 to 65 0 C between a phase in which the dissolution is controlled by the diffusion of the H + ions and the chemical reaction at the interface and a phase in which the kinetics is only controlled by the diffusion [fr
Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Miniewicz, A., E-mail: andrzej.miniewicz@pwr.edu.pl [Advanced Materials Engineering and Modelling, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Tomkowicz, M.; Karpinski, P.; Sznitko, L. [Advanced Materials Engineering and Modelling, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Mossety-Leszczak, B. [Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 12, 35-959 Rzeszow (Poland); Dutkiewicz, M. [Faculty of Chemistry, Adam Mickiewicz University of Poznan, Umultowska 89 B, 61-614 Poznan (Poland)
2015-07-29
Highlights: • Nanocomposite material PMMA containing azo-functionalized POSS has been prepared. • Surface topographies of prepared films are porous and dependent on azo-POSS content. • Photo-induced optical anisotropies both static and dynamic have been characterized. - Abstract: Hybrid inorganic–organic nanoparticles based on cubic siloxane cage (RSiO{sub 3/2}){sub 8}, known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process.
Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles
International Nuclear Information System (INIS)
Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M.
2015-01-01
Highlights: • Nanocomposite material PMMA containing azo-functionalized POSS has been prepared. • Surface topographies of prepared films are porous and dependent on azo-POSS content. • Photo-induced optical anisotropies both static and dynamic have been characterized. - Abstract: Hybrid inorganic–organic nanoparticles based on cubic siloxane cage (RSiO 3/2 ) 8 , known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process
DEFF Research Database (Denmark)
Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.
2015-01-01
-DLA samples and compare the measured stellar masses for the four hosts where stellar masses have been determined from SED fits. We find excellent agreement and conclude that, on basis of all available data and tests, long duration GRB-DLA hosts and intervening QSO-DLAs are consistent with being drawn from...... away from the metallicity in the centre of the galaxy, second the path of the sightline through different parts of the potential well of the dark matter halo will cause different velocity fields to be sampled. We report evidence suggesting that this second effect may have been detected....
Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.
2017-11-01
In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.
International Nuclear Information System (INIS)
Ares, Alicia Esther; Gueijman, Sergio Fabian; Schvezov, Carlos E
2004-01-01
Previous studies determined that in directionally solidified lead-tin alloys, the position in which the transition occurs from columnar to equiaxial structure depending on the distribution of temperatures in the system, occurs when a minimum and critical thermal gradient value is attained in the liquid before the interphase that separates the (liquid) phase from the (solid + liquid) phase and this critical gradient value is independent from the solute concentration, natural convection, degree of overheating, the mold geometry and the number of columnar and equiaxial grains that form. The study now includes aluminum-copper alloys, for which the temperature gradient test values in the liquid before the (liquid)/(solid + liquid) interphase and the speeds of the (liquid)/(solid+liquid)/(solid) interphases are determined. The values of interphase gradients and velocities contrast with the values predicted by the Hunt model for the same alloy system. The velocities of the interphases are also compared with those calculated with the Lipton equation and used in the Wang and Beckermann model for dendritic equiaxial growth. The results are compared with those obtained previously in the lead-tin system (CW)
Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.
2018-03-01
The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.
Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells
DEFF Research Database (Denmark)
Überall, Herbert; Claude Ahyi, A.; Raju, P. K.
2001-01-01
Our earlier studies regarding acoustic scattering resonances and the dispersive phase velocities of the surface waves that generate them, have demonstrated the effectiveness of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies, and their accuracy. This possi...
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
Energy Technology Data Exchange (ETDEWEB)
Avila, Humar A.; Reboredo, Maria M.; Castro, Miriam; Parra, Rodrigo, E-mail: havila@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales - INTEMA, Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Universidad Nacional de Mar del Plata - UNMdP, Mar del Plata (Argentina)
2013-11-01
Barium titanate particles (100-300 nm) synthesized by hydrothermal method were dispersed in both polyvinyl alcohol (PVA) and ethylcellulose (EC) solutions. These suspensions were processed by electrospinning. When no particles were added, homogeneous polymeric nanofibers were obtained. Under certain conditions, polymeric suspensions of barium titanate particles were electrospun generating polymeric fibers with BT particles. The effect of a surfactant was also assessed over the formation of nanofibers. The BaTiO{sub 3} particles synthesized by hydrothermal method were characterized by X-Ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Fibers were characterized by scanning electron microscopy (SEM). (author)
Energy Technology Data Exchange (ETDEWEB)
Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)
2014-07-01
Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.
Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal
2009-01-01
Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.
International Nuclear Information System (INIS)
Ghiyas Ud Din; Imran Rafiq Chughtai; Mansoor Hameed Inayat; Iqbal Hussain Khan
2009-01-01
Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and 99m Tc in the form of sodium pertechnetate eluted from a 99 Mo/ 99m Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer 99m Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.
DEFF Research Database (Denmark)
Onken, Christopher A.; Ferrarese, Laura; Merritt, David
2004-01-01
We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...
Energy Technology Data Exchange (ETDEWEB)
Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.; Pepin, H.
1985-11-01
In 0.26 ..mu..m wavelength laser experiments that were performed in planar geometry with irradiances between 10/sup 13/ and 10/sup 15/ W/cm/sup 2/, the ablation pressure and the target velocity have been measured using a shock-velocity measurement and the double foil technique, respectively. The conditions are discussed that must be satisfied if the double-foil technique is to give an accurate measurement of the velocity of the dense part of the target. The rocket model has also been improved using a time-dependent applied pressure pulse, in order to accurately describe the relation between ablation pressure, target velocity, and ablated fraction. Pressures up to 50 Mbar have been easily generated since lateral energy transport is rather low with a 0.26 ..mu..m wavelength laser.
International Nuclear Information System (INIS)
Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.
1980-01-01
The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es
International Nuclear Information System (INIS)
Deruaz, Daniel.
1974-01-01
The precise determination of ionization potentials, fragment ion appearance potentials and different excited state levels of the positive ions formed, together with phenomena due to an electron impact, were studied from ionization efficiency curves obtained by mass spectrometry. A standard ion source and an analytical method of electron energy dispersion reduction were used to study fine structures of ionization efficiency curves. Since the mass spectrometer was not adapted for the acquisition of ionization efficiency curve data an electronic system was designed to record these curves automatically. A precise stepwise potential variation of 45+-0.04mV was obtained, and for each step an intensity proportional to the number of ions created by the fragment considered, the additional gain being 4.4 and the linearity greater than 1% over a 13-volt region. Before each set of measurements the scattering was determined by calculation of the second derivative of a logistic function deduced from the cubic regression of the experimental helium function ionization efficiency curve values. The precision, given by the variance analysis SNEDECOR F test, is higher than 1/1000. For each series of recordings the numerical values were processed by a computer to raise by twenty the signal to noise ratio and calculate the ionization efficiency curve values by the energy difference method and the iterative unfolding method. In this way a high sensitivity was obtained for the determination of the curves near the ionization threshold, and a precision below 50MeV (at least equivalent to that given by ionization cells with quasi-monoenergetic electron beams) for the values of the ionization potentials, the appearance potentials and the excited state energy levels. In order to judge the reliability of the technique the ionization potentials of a set of eleven complex molecules were determined and compared with the results obtained by photoionization and photoelectron spectrometry [fr
Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.
2013-01-01
Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.
International Nuclear Information System (INIS)
Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Foster, Jonathan B.; Tan, Jonathan C.; Rio, Nicola da; Nidever, David L.; Chojnowski, S. Drew; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.
2015-01-01
Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2–6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s −1 (or 0.64 ± 0.08 km s −1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s −1 arcmin −1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial
International Nuclear Information System (INIS)
Krause, J.; Mundschenk, H.
1994-01-01
Flow times, flow velocities and parameters describing the longitudinal dispersion in the Middle and Lower Rhine river under natural conditions were determined by use of intermittent emissions of tritated wastewater from nuclear power plants during normal operation situated on the Upper Rhine. In cases of accidental releases of radioactive materials, these data would be the basis of prognoses by which the dispersion behaviour of contaminated sections along the course of river Rhine can be described and radiological consequences within the socalled critical impact areas estimated. (orig.) [de
Kerdi, Fatmé
2011-04-01
The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Володимир Олександрович Маслов
2016-11-01
Full Text Available Graphite processing into intercalation compounds followed by thermoshock heating is known in literature. The result is an ultra-light dispersed graphite (thermographenit used in lots of industries. Graphite intercalation compounds are formed as a result of the introduction of atomic and molecular layers of different chemical particles between the layers of graphite plates. The object of this work is to obtain a new material by intercalation of graphite followed by thermoshock heating, which could be used for products protecting biological and technical facilities from electromagnetic and thermal radiation. In the present work the parameters of oxidation and of graphite thermoshock expansion in order to obtain graphite intercalation compounds and thermographenit were investigated. The experiments were performed under laboratory non-isothermal conditions. Graphite GAK-2 obtained from metallurgical wastes was used. First the fraction of +0,16 mm with the ash content of 0,3% was extracted by scattering. The oxidation of graphite was carried out by potassium bichromate dissolved in concentrated sulphuric acid. The original sample of graphite was mixed with finely grounded potassium bichromate. Then this mass was poured over with 98% concentrated sulphuric acid when being actively stirred and kept. Then the capacitance for oxidation was filled with distilled water. Decantation was carried out until pH=7 in the waste water was got. Separation of the oxidized graphite from the main mass of water was carried out by means of a suction filter until pH=7 was got. Experiments were performed at different ratios of potassium bichromate, sulphuric acid and graphite. The optimum ratio of the components (sulphuric acid : (dichromate of potash : (graphite = 2,8 : 0,15 : 1 was found. The oxidation time was 4–5 minutes. The oxidized graphite turned into thermographenit with bulk density of 2,7–9,5 kg/m3.upon subsequent heating up to 1000oC within the regime of
An improved estimation and focusing scheme for vector velocity estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Munk, Peter
1999-01-01
to reduce spatial velocity dispersion. Examples of different velocity vector conditions are shown using the Field II simulation program. A relative accuracy of 10.1 % is obtained for the lateral velocity estimates for a parabolic velocity profile for a flow perpendicular to the ultrasound beam and a signal...
Talla Mbé, Jimmi H.; Milián, Carles; Chembo, Yanne K.
2017-07-01
We use the generalized Lugiato-Lefever model to investigate the phenomenon of Kerr optical frequency comb generation when group-velocity dispersion is null. In that case, the first dispersion term that plays a leading role is third-order dispersion. We show that this term is sufficient to allow for the existence of both bright and dark solitons. We identify the areas in the parameter space where both kind of solitons can be excited inside the resonator. We also unveil a phenomenon of hysteretic switching between these two types of solitons when the power of the pump laser is cyclically varied. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R.; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.
2016-01-01
Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narr...
Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.
2003-03-01
It has recently come to our attention that there are axis scale errors in three of the figures presented in Dull et al. (1997, hereafter D97). This paper presented Fokker-Planck models for the collapsed-core globular cluster M15 that include a dense, centrally concentrated population of neutron stars and massive white dwarfs. These models do not include a central black hole. Figure 12 of D97, which presents the predicted mass-to-light profile, is of particular interest, since it was used by Gerssen et al. (2002) as an input to their Jeans equation analysis of the Hubble Space Telescope (HST) STIS velocity measurements reported by van der Marel et al. (2002). On the basis of the original, incorrect version of Figure 12, Gerssen et al. (2002) concluded that the D97 models can fit the new data only with the addition of an intermediate-mass black hole. However, this is counter to our previous finding, shown in Figure 6 of D97, that the Fokker-Planck models predict the sort of moderately rising velocity dispersion profile that Gerssen et al. (2002) infer from the new data. Baumgardt et al. (2003) have independently noted this apparent inconsistency. We appreciate the thoughtful cooperation of Roeland van der Marel in resolving this issue. Using our corrected version of Figure 12 (see below), Gerssen et al. (2003) now find that the velocity dispersion profile that they infer from the D97 mass-to-light ratio profile is entirely consistent with the velocity dispersion profile presented in Figure 6 of D97. Gerssen et al. (2003) further find that there is no statistically significant difference between the fit to the van der Marel et al. (2002) velocity measurements provided by the D97 intermediate-phase model and that provided by their model, which supplements this D97 model with a 1.7+2.7-1.7×103Msolar black hole. Thus, the choice between models with and without black holes will require additional model predictions and observational tests. We present corrected versions of
Energy Technology Data Exchange (ETDEWEB)
Erb, Dawn K. [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Steidel, Charles C.; Trainor, Ryan F.; Strom, Allison L.; Konidaris, Nicholas P.; Matthews, Keith [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, MS 249-17, Pasadena, CA 91125 (United States); Bogosavljević, Milan [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Shapley, Alice E.; Nestor, Daniel B.; Mace, Gregory; McLean, Ian S. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Kulas, Kristin R. [NASA Ames Research Center, Bldg. 211, Room 112, Moffett Field, CA 94035-1000 (United States); Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Rudie, Gwen C. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Reddy, Naveen A. [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Pettini, Max, E-mail: erbd@uwm.edu [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)
2014-11-01
We study the Lyα profiles of 36 spectroscopically detected Lyα-emitters (LAEs) at z ∼ 2-3, using Keck MOSFIRE to measure systemic redshifts and velocity dispersions from rest-frame optical nebular emission lines. The sample has a median optical magnitude R=26.0, and ranges from R≃23 to R>27, corresponding to rest-frame UV absolute magnitudes M {sub UV} ≅ –22 to M {sub UV} > –18.2. Dynamical masses range from M {sub dyn} < 1.3 × 10{sup 8} M {sub ☉} to M {sub dyn} = 6.8 × 10{sup 9} M {sub ☉}, with a median value of M {sub dyn} = 6.3 × 10{sup 8} M {sub ☉}. Thirty of the 36 Lyα emission lines are redshifted with respect to the systemic velocity with at least 1σ significance, and the velocity offset with respect to systemic Δv {sub Lyα} is correlated with the R-band magnitude, M {sub UV}, and the velocity dispersion measured from nebular emission lines with >3σ significance: brighter galaxies with larger velocity dispersions tend to have larger values of Δv {sub Lyα}. We also make use of a comparison sample of 122 UV-color-selected R<25.5 galaxies at z ∼ 2, all with Lyα emission and systemic redshifts measured from nebular emission lines. Using the combined LAE and comparison samples for a total of 158 individual galaxies, we find that Δv {sub Lyα} is anti-correlated with the Lyα equivalent width with 7σ significance. Our results are consistent with a scenario in which the Lyα profile is determined primarily by the properties of the gas near the systemic redshift; in such a scenario, the opacity to Lyα photons in lower mass galaxies may be reduced if large gaseous disks have not yet developed and if the gas is ionized by the harder spectrum of young, low metallicity stars.
Tavares Estevam, Adriana Carneiro; de Almeida, Michele Correia; de Oliveira, Tiago Almeida; Florentino, Eliane Rolim; Alonso Buriti, Flávia Carolina; Porto, Ana Lúcia Figueiredo
2017-09-20
Dairy desserts have emerged as interesting options for the incorporation of probiotics, bioactive ingredients and alternative sources of thickeners. This shows an opportunity to investigate the use of Gracilaria seaweeds in the formulation of potentially probiotic dairy desserts. This study aimed to compare the effects of dispersions obtained from Gracilaria domingensis and Gracilaria birdiae used as thickening agents on texture properties of dairy desserts fermented with SAB 440-A, composed of the starter Streptococcus thermophilus and the potential probiotics Bifidobacterium animalis and Lactobacillus acidophilus, and also to study their physicochemical characteristics, microbial viability and sensory acceptability. No significant differences between desserts with G. birdiae or G. domingensis dispersions regarding total solids, ash and fat content, as well as pH, titratable acidity, the viability of the microorganisms of the mixed culture and sensory acceptability were verified (P > 0.05). Nonetheless, the dessert with G. domingensis dispersion showed higher dietary fibre content and significantly increased firmness than the one produced with G. birdiae (P desserts, in the presence of either G. birdiae or G. domingensis dispersions, despite the fact that L. acidophilus has shown low viability in the final products. Therefore, the G. domingensis dispersion is suitable to be used as a thickening agent to produce dairy desserts with enhanced firmness and good sensory acceptability, it being also advisable to use only B. animalis as a probiotic for this product.
International Nuclear Information System (INIS)
Hsu, C.T.; Keshock, E.G.; McGill, R.N.
1983-01-01
A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations
Bykov, N. V.
2014-12-01
Numerical modelling of a ballistic setup with a tapered adapter and plastic piston is considered. The processes in the firing chamber are described within the framework of quasi- one-dimensional gas dynamics and a geometrical law of propellant burn by means of Lagrangian mass coordinates. The deformable piston is considered to be an ideal liquid with specific equations of state. The numerical solution is obtained by means of a modified explicit von Neumann scheme. The calculation results given show that the ballistic setup with a tapered adapter and plastic piston produces increased shell muzzle velocities by a factor of more than 1.5-2.
Lestage, David J; Urban, Marek W
2004-07-20
The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society
Posacki, Silvia; Cappellari, Michele; Treu, Tommaso; Pellegrini, Silvia; Ciotti, Luca
2015-01-01
We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens Advanced Camera for Surveys (SLACS). We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed Hubble Space Telescope photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ) within the Sloan Digital Sky Survey fibres. Comparing the dynamically-derived stellar mass-to-light ratios (M*/L)dyn, obtained for an assumed halo slope ρh ∝ r-1, to the stellar population ones (M*/L)Salp, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high-σ galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ for both the SLACS and atlas3D samples, which explore quite different σ ranges. The two samples are highly complementary, the first being essentially σ selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form log α = (0.38 ± 0.04) × log (σe/200 km s-1) + ( - 0.06 ± 0.01), where α = (M*/L)dyn/(M*/L)Salp and σe is the luminosity averaged σ within one effective radius Re. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe ≈ 90-270 km s-1.
Directory of Open Access Journals (Sweden)
L. A. Samofalova
2016-01-01
Full Text Available The article dealswith the search for the unification of technological approaches to increase the efficiency of separation of the protein complex and stability of the plant foundations from seed dicotyledonous economically important crops of soybean, hemp, buckwheat. Uneven localization of nitrogenous substances in the seed largely determines the accessibility of protein complexes for extraction. Natural fermentation of spare proteins in cellular structures when the germination process starts leads to the accumulation of soluble nitrogen, and the change in the salt composition of protoplasm facilitates the transition in the solution of insoluble complexes in the form of colloids. It is shown that fine grinding of dry seeds increases the efficiency of extraction by 1.3–1.6 times, while rough grinding increases bioactivity by 1.6–1.8 times. The dispersion containing 8.1±0.7% of dry matter at buckwheat bases and 9.5±1,3% at hemp and soy bases with the water ratio 1:4 to 1:7 satisfy the requirements of taste sensations and fullness of the chemical composition. Based on the results of the extraction of protein of buckwheat seeds the conclusion has been drawn that there is a need for a differentiated approach to selecting conditions for the creation of food framework. Taking into consideration the fact that the amount of calcium in buckwheat seeds is17–25 times smaller than in oil seeds and the quantity of phosphorus is 1.6–2 times smaller, the contribution of electrostatic forces in the protein solubility is small and the additional actions to activate the protein complex are required. To predict the properties of vegetable bases of bioactivated soybean seeds and hemp, the central composite uniform-rotatable planning was applied and the full factorial experiment with factorial scheme 3×3×3 (33 was selected. The preferred combination of values of the input parameters X1, X2, X3 was discovered. They provide for the maximum of Y
Refaeli, Zaharit; Shamir, Yariv; Ofir, Atara; Marcus, Gilad
2018-02-01
We report a simple robust and broadly spectral-adjustable source generating near fully compressed 1053 nm 62 fs pulses directly out of a highly-nonlinear photonic crystal fiber. A dispersion-nonlinearity balance of 800 nm Ti:Sa 20 fs pulses was obtained initially by negative pre-chirping and then launching the pulses into the fibers' normal dispersion regime. Following a self-phase modulation spectral broadening, some energy that leaked below the zero dispersion point formed a soliton whose central wavelength could be tuned by Self-Frequency-Raman-Shift effect. Contrary to a common approach of power, or, fiber-length control over the shift, here we continuously varied the state of polarization, exploiting the Raman and Kerr nonlinearities responsivity for state of polarization. We obtained soliton pulses with central wavelength tuned over 150 nm, spanning from well below 1000 to over 1150 nm, of which we could select stable pulses around the 1 μm vicinity. With linewidth of > 20 nm FWHM Gaussian-like temporal-shape pulses with 62 fs duration and near flat phase structure we confirmed high quality pulse source. We believe such scheme can be used for high energy or high power glass lasers systems, such as Nd or Yb ion-doped amplifiers and systems.
Analytical solutions of advection-dispersion equation for varying ...
African Journals Online (AJOL)
Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a semi-infinite domain while in the second case the dispersion and the velocity ...
González, O'Leary; Clouard, Valerie; Tait, Stephen; Panza, Giuliano F.
2018-06-01
We present an overview of S-wave velocities (Vs) within the crust and upper mantle of the Lesser Antilles as determined with 19 seismic broadband stations. Receiver functions (RF) have been computed from teleseismic recordings of earthquakes, and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. Local smoothness optimization (LSO) procedure has been applied, combined with an H-K stacking method, the spatial distribution of hypocenters of local earthquakes and of the energy they released, in order to identify an optimum 1D model of Vs below each station. Several features of the Caribbean plate and its interaction with the Atlantic subducting slab are visible in the resulting models: (a) relatively thick oceanic crust below these stations ranges from 21 km to 33 km, being slight thinner in the middle of the island arc; (b) crustal low velocity zones are present below stations SABA, SEUS, SKI, SMRT, CBE, DSD, GCMP and TDBA; (c) lithospheric thickness range from 40 km to 105 km but lithosphere-asthenosphere boundary was not straightforward to correlate between stations; (d) the aseismic mantle wedge between the Caribbean seismic lithosphere and the subducted slab varies in thickness as well as Vs values which are, in general, lower below the West of Martinique than below the West of Guadeloupe; (e) the depth of the subducted slab beneath the volcanic arc, appears to be greater to the North, and relatively shallower below some stations (e.g. DLPL, SAM, BIM and FDF) than was estimated in previous studies based on the depth-distribution of seismicity; f) the WBZ is >10-15 km deeper than the top of the slab below the Central Lesser Antilles (Martinique and Dominica) where the presence of partial melt in the mantle wedge seems also to be more evident.
Energy Technology Data Exchange (ETDEWEB)
Constain Aragon, A.; Lemos Ruiz, R.
2011-07-01
It is very well known the basic equation of hydraulics discovered by Antoine de Chezy in 1769, which relates in a quadratic from the mean velocity of flow with the slope of energy line and the hydraulic radius, in a uniform regime. This equation has been the central axis of development of hydro metrics as science that faces the huge challenges of penetrating the knowledge of earths streams every time more contaminated. In virtue of that, its mathematical structure and the relationship with other related formulas have been carefully examined, despite the limitation due to constancy of velocity. Starting from chemical considerations rather than dynamic ones as was used to obtain chezys relationship it is possible to establish a second equation for mean velocity of fluid in a non uniform regime that corresponds to averaged movement of a solute poured to steam. This equation will go to relate in an accurate way several aspects hydraulics and mass transport, sight as a single thing, allowing a vital tool for a depth study of water contaminations. to arrive this equation it was reviewed the foundations of mass transport theory in flows, stating a time dependent nature for coefficient currently used in describing dispersion phenomena allowing to interpret properly certain inconsistencies detected long time ago in this theory. It is presented the detailed results of application of this new approach to a small steam and a larger river in Colombia. (Author) 23 refs.
International Nuclear Information System (INIS)
Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.
2015-01-01
We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg 2 of the survey along with 63 velocity dispersion (σ v ) and 16 X-ray Y X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ v and Y X are consistent at the 0.6σ level, with the σ v calibration preferring ∼16% higher masses. We use the full SPT CL data set (SZ clusters+σ v +Y X ) to measure σ 8 (Ω m /0.27) 0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m ν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m ν further reconciles the results. When we combine the SPT CL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y X calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω m = 0.299 ± 0.009 and σ 8 = 0.829 ± 0.011. Within a νCDM model we find ∑m ν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the
Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan
2017-01-01
We present spatially resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (ETGs; MK ≲ -25.7 mag, stellar mass M* ≳ 1011.8 M⊙) of the volume-limited (D McDonald Observatory, covering a 107 arcsec × 107 arcsec field of view (often reaching 2 to 3 effective radii). We measure the 2D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80 per cent) of slow and non-rotators with λ ≲ 0.2. When combined with the lower mass ETGs in the ATLAS3D survey, we find the fraction of slow rotators to increase dramatically with galaxy mass, reaching ˜50 per cent at MK ˜ -25.5 mag and ˜90 per cent at MK ≲ -26 mag. All of our fast rotators show a clear anticorrelation between h3 and V/σ, and the slope of the anticorrelation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven `isolated' galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05, while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.
DEFF Research Database (Denmark)
Israelsen, Stine Møller; Usuga Castaneda, Mario A.; Rottwitt, Karsten
2017-01-01
By knowing the electric field distribution of a guided mode in an optical fiber, we are able to evaluate the group velocity dispersion in a weakly guiding step-index fiber for a pure mode in the LP0X, LP1X, and LP2X mode groups independently of the fiber length. We demonstrate the method numerica...
International Nuclear Information System (INIS)
Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.
2014-01-01
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.
Energy Technology Data Exchange (ETDEWEB)
Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others
2014-11-10
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.
International Nuclear Information System (INIS)
Gražulevičiūtė, I; Garejev, N; Majus, D; Tamošauskas, G; A Dubietis; Jukna, V
2016-01-01
We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse. (paper)
Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.
2016-02-01
We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador
2017-12-18
This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.
Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando
2009-02-15
Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.
Energy Technology Data Exchange (ETDEWEB)
Bocquet, S.; Saro, A.; Mohr, J. J.; Bazin, G.; Chiu, I.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A. [Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 (United States); Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A. [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); De Haan, T., E-mail: bocquet@usm.lmu.de [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); and others
2015-02-01
We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg{sup 2} of the survey along with 63 velocity dispersion (σ {sub v}) and 16 X-ray Y {sub X} measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ {sub v} and Y {sub X} are consistent at the 0.6σ level, with the σ {sub v} calibration preferring ∼16% higher masses. We use the full SPT{sub CL} data set (SZ clusters+σ {sub v}+Y {sub X}) to measure σ{sub 8}(Ω{sub m}/0.27){sup 0.3} = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m {sub ν} = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m {sub ν} further reconciles the results. When we combine the SPT{sub CL} and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y {sub X} calibration and 0.8σ higher than the σ {sub v} calibration. Given the scale of these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ω{sub m} = 0.299 ± 0.009 and σ{sub 8} = 0.829 ± 0.011. Within a νCDM model we find ∑m {sub ν} = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation
International Nuclear Information System (INIS)
Jog, C.J.; Solomon, P.M.
1984-01-01
We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the entire disk and for the stability and form of the gas in the disk. We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the gas) makes it much harder to stabilize the entire two-fluid disk. (C/sub s/,min)/sub 2-f/, the critical stellar velocity dispersion for a two-fluid disk in an increasing function of μ/sub g//μ/sub s/, the gas fraction, and μ/sub t//kappa, where μ/sub g/, μ/sub s/, and μ/sub t/ are the gaseous, stellar, and total disk surface densities and kappa is the epicyclic frequency. In the Galaxy, we find that (C/sub s/,min)/sub 2-f/ as a function of R peaks when μ/sub t//kappa peaks-at galactocentric radii of Rapprox.5-7 kpc; two-fluid instabilities are most likely to occur in this region. This region is coincident with the peak in the molecular cloud distribution in the Galaxy. At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become unstble, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability in the inner galaxy is approx.400 pc, and it contains approx.10 7 M/sub sun/ of interstellar matter; these instabilities may be identified with clusters of giant molecular clouds. We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm segments resulting from sheared two-fluid gravitational instabilities. The analysis presented here is applicable to any general disk galaxy consisting of stars and gas
Relativistic energy loss in a dispersive medium
DEFF Research Database (Denmark)
Houlrik, Jens Madsen
2002-01-01
The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....
International Nuclear Information System (INIS)
Satoh, Akira; Hayasaka, Ryo; Majima, Tamotsu
2008-01-01
We have treated a dilute dispersion composed of ferromagnetic rodlike particles with a magnetic moment normal to the particle axis, such as hematites, to investigate the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution of rodlike particles and also on transport coefficients, such as viscosity and diffusion coefficient. In the present analysis, these rodlike particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The results obtained here are summarized as follows. In the case of a strong magnetic field and a smaller shear rate, the rodlike particle can freely rotate in the xy-plane with the magnetic moment continuing to point the magnetic field direction. On the other hand, for a strong shear flow, the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. In the case of the magnetic field applied normal to the direction of the sedimentation, the diffusion coefficient gives rise to smaller values than expected, since the rodlike particle sediments with the particle axis inclining toward directions normal to the movement direction and, of course, toward the direction along that direction
International Nuclear Information System (INIS)
Ramos, Daniel; Zadora, Grzegorz
2011-01-01
Highlights: → A selection of the best features for multivariate forensic glass classification using SEM-EDX was performed. → The feature selection process was carried out by means of an exhaustive search, with an Empirical Cross-Entropy objective function. → Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows or containers. - Abstract: In this work, a selection of the best features for multivariate forensic glass classification using Scanning Electron Microscopy coupled with an Energy Dispersive X-ray spectrometer (SEM-EDX) has been performed. This has been motivated by the fact that the databases available for forensic glass classification are sparse nowadays, and the acquisition of SEM-EDX data is both costly and time-consuming for forensic laboratories. The database used for this work consists of 278 glass objects for which 7 variables, based on their elemental compositions obtained with SEM-EDX, are available. Two categories are considered for the classification task, namely containers and car/building windows, both of them typical in forensic casework. A multivariate model is proposed for the computation of the likelihood ratios. The feature selection process is carried out by means of an exhaustive search, with an Empirical Cross-Entropy (ECE) objective function. The ECE metric takes into account not only the discriminating power of the model in use, but also its calibration, which indicates whether or not the likelihood ratios are interpretable in a probabilistic way. Thus, the proposed model is applied to all the 63 possible univariate, bivariate and trivariate combinations taken from the 7 variables in the database, and its performance is ranked by its ECE. Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows (from cars or buildings) or containers
Agrawal, M.; Pulliam, J.; Sen, M. K.
2013-12-01
The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.
Directory of Open Access Journals (Sweden)
Cabanas-Polo, S.
2014-12-01
Full Text Available Ni/Al₂O₃ composites have been fabricated by slip casting of concentrated Ni(OH₂/Al₂O₃ suspensions and subsequent in situ reduction to metallic nickel during sintering. For that, the synthesis assisted by ultrasound of both α- and β-Ni(OH₂ polymorphs, as well as their colloidal stability, have been studied. The structural differences between both polymorphs have been thoroughly studied by means of XRD, FTIR, DTA-TG, SSA, SEM and TEM, in order to optimize the starting suspensions. This way, the IEP of both polymorphs have been established (9.7 y 12 for β- and α-Ni(OH₂, respectively, as well as the optimal content of an anionic dispersant (PAA to stabilize the particles (0.8 wt. % for beta phase and 3.0 wt. % for alpha phase. Three different Ni/Al₂O₃ composites, with a high dispersion degree of the metallic phase, have been obtained considering the potential vs. particles distance curve of the Ni(OH₂, and their structure has been discussed in terms of the strength of the agglomerates and/or aggregates of the Ni(OH₂.La obtención de materiales compuestos Ni/Al₂O₃ se ha llevado a cabo mediante colaje en molde de escayola de suspensiones concentradas de Ni(OH₂/Al₂O₃ y su posterior reducción in situ para obtener la fase metálica. Para ello, se ha estudiado la síntesis asistida por ultrasonido de los polimorfos α- y β-Ni(OH₂, así como su comportamiento coloidal en medio acuoso. Las diferencias estructurales entre ambos polimorfos han sido estudiadas en detalle mediante XRD, FTIR, ATD-TG, SSA, MEB y MET, para poder optimizar las suspensiones de partida. De esta manera, se ha establecido el PIE de ambos polimorfos (9.7 y 12 para las fases β- y α-Ni(OH₂, respectivamente, así como el contenido óptimo de un dispersante aniónico (PAA para la estabilización de las partículas (0.8 % p/p para la fase beta y 3.0 % p/p para la fase alfa. Tres materiales compuestos Ni/Al₂O₃ diferentes, con un alto grado de
New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard
2017-11-01
Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.
Dynamics of platicons due to third-order dispersion
Lobanov, Valery E.; Cherenkov, Artem V.; Shitikov, Artem E.; Bilenko, Igor A.; Gorodetsky, Michael L.
2017-07-01
Dynamics of platicons caused by the third-order dispersion is studied. It is shown that under the influence of the third-order dispersion platicons obtain angular velocity depending both on dispersion and on detuning value. A method of tuning of platicon associated optical frequency comb repetition rate is proposed. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Energy Technology Data Exchange (ETDEWEB)
Kotoh, K. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kubo, K.; Takashima, S.; Moriyama, S.T. [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Tanaka, M. [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu (Japan); Sugiyama, T. [Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan)
2015-03-15
Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packed columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)
2006-09-15
By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)
Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo
2018-03-01
The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.
Walcott Beckwith, Andrew
2010-05-01
In other conference research papers, Beckwith obtained a maximum DM mass/energy value of up to 5 TeV, as opposed to 400 GeV for DM, which may mean more convertible power for a dark matter ram jet. The consequences are from assuming that axions are CDM, and KK gravitons are for WDM, then ρWarm-Dark-Matter would dominate not only structure formation in early universe formation, but would also influence the viability of the DM ram jet applications for interstellar travel. The increase in convertible DM mass makes the ram jet a conceivable option. This paper in addition to describing the scientific issues leading to that 5 TeV mass for DM also what are necessary and sufficient laser boost systems which would permit a ram net to become operational.
Buhmann, Stefan Yoshi
2012-01-01
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...
Surface wave velocity tracking by bisection method
International Nuclear Information System (INIS)
Maeda, T.
2005-01-01
Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)
Zhang, X.
2009-01-01
This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for
Directory of Open Access Journals (Sweden)
R. ATANASOSKI
2000-09-01
Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.
Wave-equation dispersion inversion
Li, Jing; Feng, Zongcai; Schuster, Gerard T.
2016-01-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained
Optimized nonlinear inversion of surface-wave dispersion data
International Nuclear Information System (INIS)
Raykova, Reneta B.
2014-01-01
A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software
Observations of High Dispersion Clusters of Galaxies: Constraints on Cold Dark Matter
Oegerle, William R.; Hill, John M.; Fitchett, Michael J.
1995-07-01
We have studied the dynamics of several Abell clusters of galaxies, which were previously reported to have large velocity dispersions, and hence very large masses. In particular, we have investigated the assertion of Frenk et al. (1990) that clusters with intrinsic velocity dispersions ~> 1200 km s^-1^ are extremely rare in the universe, and that large observed dispersions are due to projection effects. We report redshifts for 303 galaxies in the fields of A1775, A2029, A2142, and A2319, obtained with the Nessie multifiber spectrograph at the Mayall 4 m telescope. A1775 appears to be two poor, interacting clusters, separated in velocity space by ~3075 km s^-1^ (in the cluster rest frame). A2029 has a velocity dispersion of 1436 km s^-1^, based on 85 cluster member redshifts. There is evidence that a group or poor cluster of galaxies of slightly different redshift is projected onto (or is merging with) the core of A2029. However, the combined kinematic and x-ray data for A2029 argue for an intrinsically large dispersion for this cluster. Based on redshifts for 103 members of A2142, we find a dispersion of 1280 km s^-1^, and evidence for subclustering. With 130 redshifts in the A2319 field, we have isolated a subcluster ~10' NW of the cD galaxy. After its removal, A2319 has a velocity dispersion of 1324 km s^-1^. The data obtained here have been combined with recent optical and X-ray data for other supposedly high-mass clusters to study the cluster velocity dispersion distribution in a sample of Abell clusters. We find that clusters with true velocity dispersions ~> 1200 km s^-1^ are not extremely rare, but account for ~5% of all Abell clusters with R >= 0. If these clusters are in virial equilibrium, then our results are inconsistent with a high-bias (b~>22), high-density CDM model.
Stochastic models for atmospheric dispersion
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2003-01-01
Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...
Energy Technology Data Exchange (ETDEWEB)
Cabanas-Polo, S.; Ferrari, B.; Sanchez-Herencia, A. J.
2014-07-01
Ni/Al{sub 2}O{sub 3} composites have been fabricated by slip casting of concentrated Ni(OH){sub 2}/Al{sub 2}O{sub 3} suspensions and subsequent in situ reduction to metallic nickel during sintering. For that, the synthesis assisted by ultrasound of both α- and β-Ni(OH){sub 2} polymorphs, as well as their colloidal stability, have been studied. The structural differences between both polymorphs have been thoroughly studied by means of XRD, FTIR, DTA-TG, SSA, SEM and TEM, in order to optimize the starting suspensions. This way, the IEP of both polymorphs have been established (9.7 y 12 for β- and α-Ni(OH){sub 2}, respectively), as well as the optimal content of an anionic dispersant (PAA) to stabilize the particles (0.8 wt. % for beta phase and 3.0 wt. % for alpha phase). Three different Ni/Al{sub 2}O{sub 3} composites, with a high dispersion degree of the metallic phase, have been obtained considering the potential vs. particles distance curve of the Ni(OH){sub 2}, and their structure has been discussed in terms of the strength of the agglomerates and/or aggregates of the Ni(OH){sub 2}. (Author)
Group velocity tomography and regionalization in Italy and bordering areas
International Nuclear Information System (INIS)
Pontevivo, A.; Panza, G.F.
2001-10-01
More than one hundred group velocity dispersion curves of the fundamental mode of Rayleigh waves have been processed to obtain tomographic maps, in the period range from 10 s to 35 s, for the Italian peninsula and bordering areas. We compute average dispersion relations over a 1 deg. x 1 deg. grid, and, since the lateral resolving power of our data set is about 200 km, we group the cells of the grid accordingly to their dispersion curves. In this way and without a priori geological constraints, we define seven different regions, each characterised by a distinctive mean group velocity dispersion curve. The resulting regionalization can be easily correlated with the main tectonic features of the study area and mimics a recently proposed structural sketch. Average models of the shear wave velocity in the crust and in the upper mantle for a few selected regions are presented. The very low S-wave velocity values found in the uppermost upper mantle of the Southern Tyrrhenian basin are consistent with a large percentage of partial melting, well in agreement with the presence of the Vavilov-Magnaghi and Marsili huge volcanic bodies. (author)
Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity
International Nuclear Information System (INIS)
Choi, Cheong R.; Lee, Nam C.
2004-01-01
The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion
Effect of pore size distribution and flow segregation on dispersion in porous media
International Nuclear Information System (INIS)
Carbonell, R.G.
1978-11-01
In order to study the effect of the pore size distribution and flow segregation on dispersion in a porous media, the dispersion of solute in an array of parallel pores is considered. Equations are obtained for the dispersion coefficient in laminar and turbulent flow, as a function of the particle Peclet number. The theory fits quite well cumulative experimental data from various researchers in the Peclet number range from 10 -3 to 10 6 . The model also predicts some trends, backed by experimental data, regarding the effect of particle size, particle size distribution and fluid velocity on dispersion
International Nuclear Information System (INIS)
Amodu, A.E.; Achumu, L. A.; Egwuogu, C.P.
2013-01-01
Five catfish (Clarias lazera) samples obtained from the Lower Niger River Basin at Idah were subjected to elemental analysis by Energy Dispersive X - ray Fluorescence (EDXR) technique. A voltage of 30KV and current of 1mA was applied to produce a 17.441KeV molybdenum X-ray which was used to irradiate the samples for ten minutes. The analysis was performed using the mini pal 4 version PW 4030 X -ray spectrometer at the Center for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Kaduna State, Nigeria. The elemental composition and concentration of seven major and trace elements: Ca, Cr, K, Cu, Fe, Mn, and V were detected in the samples. The major elements are Ca,K and Fe while the trace elements are Cr,Cu, V and Mn. The concentration of Calcium which is the highest range fro 0.370% to 3.110% while the concentration of Copper which is the least range from 46.030pm to 99.859pm. The result shows the presence of Cr, Cu, Fe, Mn and V which are heavy metals the concentration of Cr, Cu, Fe and Mn in the sample were below World Health Organization (WHO) and Food and Agricultural Organization(FAO) maximum permissible limit of intake of the various minerals respectively. However the concentration of V found in the sample is above the WHO and FAO maximum limit for Vanadium.
Examples of Vector Velocity Imaging
DEFF Research Database (Denmark)
Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.
2011-01-01
To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...
Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells
DEFF Research Database (Denmark)
Überall, Herbert; Ahyi, A. C.; Raju, P. K.
2002-01-01
In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278–289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase ...
Granados, I.; Calo, M.; Ramos, V.
2017-12-01
We developed a Matlab suite package (NDCP, Noisy Dispersion Curve Picking) that allows a full control over parameters to identify correctly group velocity dispersion curves in two types of datasets: correlograms between two stations or surface wave records from earthquakes. Using the frequency-time analysis (FTAN), the procedure to obtain the dispersion curves from records with a high noise level becomes difficult, and sometimes, the picked curve result in a misinterpreted character. For correlogram functions, obtained with cross-correlation of noise records or earthquake's coda, a non-homogeneous noise sources distribution yield to a non-symmetric Green's function (GF); to retrieve the complete information contained in there, NDCP allows to pick the dispersion curve in the time domain both in the causal and non-causal part of the GF. Then the picked dispersion curve is displayed on the FTAN diagram to in order to check if it matches with the maximum of the signal energy avoiding confusion with overtones or spike of noise. To illustrate how NDCP performs, we show exemple using: i) local correlograms functions obtained from sensors deployed into a volcanic caldera (Los Humeros, in Puebla, Mexico), ii) regional correlograms functions between two stations of the National Seismological Service (SSN, Servicio Sismológico Nacional in Spanish), and iii) surface wave seismic record for an earthquake located in the Pacific Ocean coast of Mexico and recorded by the SSN. This work is supported by the GEMEX project (Geothermal Europe-Mexico consortium).
Tailoring group velocity by topology optimization
DEFF Research Database (Denmark)
Stainko, Roman; Sigmund, Ole
2007-01-01
The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyses. The goal of the optimization process is to come...... up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. An example concerning the design of a wide bandwidth, constant low group velocity waveguide demonstrate the e±ciency of the method....
Lin'kov, G I; Zhukovskaia, S A; Dzhabarov, D N; Nabokov, V S
1977-09-01
Characteristics of the powder dispersity of tetracycline base samples prepared by directed crystallization with variation of the process conditions were determined by the sedimentation method. It was found that the speed of the solution agitation had the maximum effect on the level and nature of the dispersity. The rate of the solution temperature and pH changing during the crystallization process had also a significant effect at low agitation speed.
A method for grindability testing using the Scirocco disperser.
Bonakdar, Tina; Ali, Muzammil; Dogbe, Selasi; Ghadiri, Mojtaba; Tinke, Arjen
2016-03-30
-way coupling, as the particle concentration is very low. Taking account of these dependencies, a clear unification of the change in the specific surface area as a function of particle size, density and impact velocity is observed, and the slope of the fitted line gives a measure of grindability for each material. The trend of data obtained here matches the one obtained by single particle impact testing. Hence aerodynamic dispersion of solids by the Scirocco disperser can be used to evaluate the ease of grindability of different materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Cold dark matter. 2: Spatial and velocity statistics
Gelb, James M.; Bertschinger, Edmund
1994-01-01
We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.
Experimental simulation of corium dispersion phenomena in direct containment heating
International Nuclear Information System (INIS)
Wu, Q.
1996-01-01
In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms. (orig.)
Olszewski, E.; Pryor, C.; Armandroff, T.
1995-01-01
We use a large set of radial velocities in the Ursa Minor and Draco dwarf spheroidal galaxies to search for binary stars and to infer the binary frequency. Of the 118 stars in our sample with multiple observations, six are velocity variables with $\\chi^2$ probabilities below 0.001. We use Monte Carlo simulations that mimic our observations to determine the efficiency with which our observations find binary stars. Our best, though significantly uncertain, estimate of the binary frequency for s...
Self-focusing of optical pulses in media with normal dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
The self-focusing of ultra short optical pulses in a nonlinear medium with normal (i.e., negative) group-velocity dispersion is investigated. By using a combination of various techniques like virial-type arguments and self-similar transformations, we obtain strong evidence suggesting that a pulse...
Time-Frequency Analysis of the Dispersion of Lamb Modes
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Energy Technology Data Exchange (ETDEWEB)
Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.
1980-01-15
A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.
Asymmetric Velocity Distributions from Halo Density Profiles in the Eddington Approach
International Nuclear Information System (INIS)
Vergados, J. D.
2015-01-01
We show how to obtain the energy distribution f(E) in our vicinity starting from WIMP density profiles in a self-consistent way by employing the Eddington approach and adding reasonable angular momentum dependent terms in the expression of the energy. We then show how we can obtain the velocity dispersions and the asymmetry parameter β in terms of the parameters describing the angular momentum dependence. From this expression, for f(E), we proceed to construct an axially symmetric WIMP a velocity distribution, which, for a gravitationally bound system, automatically has a velocity upper bound and is characterized by the same asymmetriy β. This approach is tested and clarified by constructing analytic expressions in a simple model, with adequate structure. We then show how such velocity distributions can be used in determining the event rates, including modulation, in both the standard and the directional WIMP searches.
Tailoring Dispersion properties of photonic crystal waveguides by topology optimization
DEFF Research Database (Denmark)
Stainko, Roman; Sigmund, Ole
2007-01-01
based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...
Sun, Enwei; Cao, Wenwu; Han, Pengdi
2011-08-01
The frequency dispersion of ultrasonic velocity and attenuation in [001](c)-poled 0.24Pb(in(1/2)Nb(1/2))O(3)-0.45Pb(Mg(1/3)Nb(2/3))o(3)-0.31PbTio(3) (PIN-0.45PMN-0.31PT) ternary single crystal were measured by ultrasonic spectroscopy from 25 to 100 MHz for the longitudinal wave. It was found that the velocity has a linear relationship with the frequency f, but the attenuation has a quadratic relation with f. The attenuation and frequency dispersion of the ternary system are lower than that of the (1-x)Pb(Mg(1/3)Nb(2/3))O(3)-xPbTiO(3) (PMN-PT) binary system and the coercive field also increased by a factor of 2.5, hence, the ternary single system is superior to the corresponding binary single-crystal system for high-frequency and high-power transducer applications.
Scale dependence of acoustic velocities. An experimental study
Energy Technology Data Exchange (ETDEWEB)
Gotusso, Angelamaria Pillitteri
2001-06-01
Reservoir and overburden data (e.g. seismic, sonic log and core data) are collected at different stages of field development, at different scales, and under different measurement conditions. A more precise reservoir characterization could be obtained by combining all the collected data. Reliable data may also be obtained from drill cuttings. This methodology can give data in quasi-real time, it is easily applicable, and cheap. It is then important, to understand the relationship between results obtained from measurements at different scales. In this Thesis acoustic velocities measured at several different laboratory scales are presented. This experimental study was made in order to give the base for the development of a model aiming to use/combine appropriately the data collected at different scales. The two main aspects analyzed are the experimental limitations due to the decrease in sample size and the significance of measurements in relation to material heterogeneities. Plexiglas, an isotropic, non-dispersive artificial material, with no expected scale effect, was used to evaluate the robustness of the measurement techniques. The results emphasize the importance of the wavelength used with respect to the sample length. If the sample length (L) is at least 5 time bigger than wavelength used ({lambda}), then the measured velocities do not depend on sample size. Leca stone, an artificial isotropic material containing spherical grains was used to evaluate the combined effects of technique, heterogeneities and sample length. The ratio between the scale of the heterogeneities and the sample length has to be taken in to account. In this case velocities increase with decreasing sample length when the ratio L/{lambda} is smaller than 10-15 and at the same time the ratio between sample length and grain size is greater than 10. Measurements on natural rocks demonstrate additional influence of grain mineralogy, shape and orientation. Firenzuola sandstone shows scale and
Statistical description of turbulent dispersion
Brouwers, J.J.H.
2012-01-01
We derive a comprehensive statistical model for dispersion of passive or almost passive admixture particles such as fine particulate matter, aerosols, smoke and fumes, in turbulent flow. The model rests on the Markov limit for particle velocity. It is in accordance with the asymptotic structure of
Normal-dispersion microresonator Kerr frequency combs
Directory of Open Access Journals (Sweden)
Xue Xiaoxiao
2016-06-01
Full Text Available Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.
Directory of Open Access Journals (Sweden)
P. Guio
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.
Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Directory of Open Access Journals (Sweden)
P. Guio
1998-10-01
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Longitudinal dispersion of radioactive substances in Federal waterways
Energy Technology Data Exchange (ETDEWEB)
Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.
2007-08-15
In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)
Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows
Energy Technology Data Exchange (ETDEWEB)
Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2009-04-15
The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)
Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.
2016-01-01
Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil
Propagation and dispersion of electrostatic waves in the ionospheric E region
Directory of Open Access Journals (Sweden)
K. Iranpour
Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.
Propagation and dispersion of electrostatic waves in the ionospheric E region
Directory of Open Access Journals (Sweden)
K. Iranpour
1997-07-01
Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.
A radial velocity survey of the Carina Nebula's O-type stars
Kiminki, Megan M.; Smith, Nathan
2018-03-01
We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbor Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive-star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive-star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.
A radial velocity survey of the Carina Nebula's O-type stars
Kiminki, Megan M.; Smith, Nathan
2018-06-01
We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.
Velocity distribution of fragments of catastrophic impacts
Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi
1992-01-01
Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.
Experimental investigation of ultrasonic velocity anisotropy in ...
Indian Academy of Sciences (India)
Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic ﬂuids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic ﬁeld-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 ﬂuid (applied magnetic ﬁeld is perpendicular to the ultrasonic propagation vector) is ...
Dispersion - does it degrade a pulse envelope
International Nuclear Information System (INIS)
Deighton, M.O.
1985-01-01
In hostile environments, transmitting information as ultrasonic Lamb wave pulses has advantages, since the stainless steel strip serving as a waveguide is very durable. Besides attenuation, velocity dispersion (inherent in Lamb waves) can be important even in fairly short guides. Theory shows that unlimited propagation of a pulsed r.f. envelope is possible, even with dispersion present. The constant group velocity needed would favour asub(o)-mode pulses over other modes, provided ordinary attenuation is small. An approximate formula indicates the useful range of a pulse, when group velocity does vary. (author)
Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber
Directory of Open Access Journals (Sweden)
N. A. G. Puentes
2012-03-01
Full Text Available A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" could be used as a simple and quick way to estimate droplet dispersion. The purpose of this paper is to measure the spreading angle of jets transversally injected into the throat of a Venturi scrubber and correlate it with both gas and jet velocities. The throat gas velocities varied between 59 and 74 m/s and the jet velocity between 3.18 and 19.1 m/s. The angles were measured through image analysis, obtained with high velocity photography. The spreading angle was found to be strongly dependent on jet velocity.
Characteristic wave velocities in spherical electromagnetic cloaks
International Nuclear Information System (INIS)
Yaghjian, A D; Maci, S; Martini, E
2009-01-01
We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.
Soliton-effect generation of Raman pulses in optical fibers with slowly decreasing dispersion
International Nuclear Information System (INIS)
Wenhua Cao; Youwei Zhang
1995-01-01
We suggested that single-mode fibers with slowly decreasing dispersion (FSDD) should be used for the generation of tunable ultrashort RAman pulses. A mathematical model is obtained for the description of ultrafast stimulated Raman scattering in optical fibers with slowly decreasing dispersion. Numerical simulations show that, under identical pump conditions, Raman pulse generated from this kind of fiber is shorter with a higher peak power than that generated from conventional fibers. This means that the Raman threshold of fibers with slowly decreasing dispersion may be lower than that of conventional fibers. Given pump conditions, we found that the highest peak power and narrowest width of the Raman pulse correspond to an optimal decrement velocity of the fiber dispersion
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
VizieR Online Data Catalog: Velocity and proper motion of OB associations (Melnik+, 2009)
Melnik, A. M.; Dambis, A. K.
2009-11-01
For every OB-association from the list by Blaha and Humphreys (1989AJ.....98.1598B) we give the mean galactic coordinates l and b, the mean heliocentric distance r, median line-of-sight velocity Vr, the dispersion of line-of-sight velocities dvr, and number of stars with known line-of-sight velocity nvr. The line-of-sight velocities were taken from the catalog by Barbier-Brossat and Figon (1999, Cat. ). We used only the velocities measured with errors of less than 10km/s which corresponds to the quality estimations A, B, and C. We also present median proper motions of OB-associations along l- and b- coordinates, mul and mub. The data obtained for the old reduction (1997, Cat. ) are denoted by the subscript 1, whereas those based on the reduction by van Leewen (2008, Cat. ) are marked by the subscript 2. For each OB association we represent the dispersions of proper motions, dml and dmb, as well as a number of stars nmu with known proper motion. The last column shows the total number of stars with known photometric measurements, Nt, used for determination of the distances for OB-associations. The distances r correspond to the short distance scale for classical Cepheids. They are equal to the distances from the catalog by Blaha and Humphreys (1989AJ.....98.1598B), rBH, multiplied by a factor of 0.8, r=0.8*rBH. (1 data file).
Reddy, Ramana; Kumar, Sanjeev
2007-12-01
In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.
Dispersion and energy conservation relations of surface waves in semi-infinite plasma
International Nuclear Information System (INIS)
Atanassov, V.
1981-01-01
The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)
High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise
International Nuclear Information System (INIS)
Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.
2009-03-01
This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)
Retrieval of sea surface velocities using sequential Ocean Colour ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
pended sediment dispersion patterns, in sequential two time lapsed images. .... face advective velocities consists essentially of iden- tifying the ... matrix is time consuming, a significant reduction .... Chauhan, P. 2002 Personal Communication.
Investigation of the propagation characteristics in turbulent dispersed two-phase flow
International Nuclear Information System (INIS)
Sami, S.M.
1980-01-01
The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio
Energy Technology Data Exchange (ETDEWEB)
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations
Phonon dispersion evolution in uniaxially strained aluminum crystal
Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi
2018-04-01
The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.
Laser control of natural disperse systems
Vlasova, Olga L.; Bezrukova, Alexandra G.
2003-10-01
Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.
International Nuclear Information System (INIS)
Scattergood, R.O.; Das, E.S.P.
1976-01-01
Using digital computer-based methods, models for dispersion strengthening can now be developed which take into account many of the important effects that have been neglected in the past. In particular, the self interaction of a dislocation can be treated, and a computer simulation method was developed to determine the flow stress of a random distribution of circular, impenetrable obstacles, taking into account all such interactions. The flow stress values depended on the obstacle sizes and spacings, over and above the usual 1/L dependence where L is the average obstacle spacing. From an analysis of the results, it was found that the main effects of the self interactions can be captured in a line tension analogue in which the obstacles appear to be penetrable
3D shear wave velocity structure revealed with ambient noise tomography on a DAS array
Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.
2017-12-01
An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and
Complex relationship between groundwater velocity and concentration of radioactive contaminants
International Nuclear Information System (INIS)
Kaszeta, F.E.; Bond, F.W.
1980-01-01
This paper uses the results from the Multi-component Mass Transport model to examine the complex interrelationship between groundwater velocity and contaminant dispersion, decay, and retardation with regard to their influence on the contaminant concentration distribution as it travels through the geosphere to the biosphere. The rate of transport of contaminants through the geosphere is governed by groundwater velocity, leach rate, and contaminant retardation. The dominant characteristics of the contaminant concentration distribution are inherited during leaching and modified during transport by dilution, dispersion and decay. For a hypothetical non-decaying, non-dispersing contaminant with no retardation properties, the shape of the source term distribution is governed by the groundwater velocity (dilution) and leach rate. This distribution remains unchanged throughout transport. Under actual conditions, however, dispersion, decay and retardation modify the concentration distribution during both leaching and transport. The amount of dispersion is determined by the distance traveled, but it does have a greater peak-reducing influence on spiked distributions than square-shaped distributions. Decay acts as an overall scaling factor on the concentration distribution. Retardation alters the contaminant travel time and therefore indirectly influences the amount of dilution, dispersion and decay. Simple relationships between individual parameters and groundwater velocity as they influence peak concentration do not exist. For those cases where the source term is not solubility-limited and flow past the waste is independent of regional hydrologic conditions, a threshold concentration occurs at a specific groundwater velocity where the effects of dilution balance those of dispersion and decay
Micromixer based on Taylor dispersion
International Nuclear Information System (INIS)
Yang, H; Nguyen, N-T; Huang, X
2006-01-01
This paper reports an analytical model, the fabrication and the characterization of a polymeric micromixer based on Taylor dispersion. Due to the distributed velocity field over the channel cross section, the effective dispersion in axial direction in a microchannel is much stronger than the pure molecular diffusion. In our work, squential segmentation was used in the micromixer for improving mixing in a microchannel. The micromixer was designed and fabricated based on lamination of five 100-μm-thick polymer sheets. Rubber valve seats were embedded between the forth and the fifth layers. The polymer layers were machined using a CO 2 laser. The lamination of the five layers was carried out by a commercial hot laminator (Aurora LM-450HC). External solenoid actuators are used for closing the valves at the mixer inlets. The experimental results confirm the effect of Taylor dispersion. Mixing ratio can be adjusted by pulse width modulation of the control signal of the solenoids
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.
Chong, See Yenn; Todd, Michael D
2018-05-01
Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.
... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...
International Nuclear Information System (INIS)
Beyer, R.T.
1985-01-01
The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)
Additional radial velocities of supergiants in the Small Magellanic Cloud
International Nuclear Information System (INIS)
Thackeray, A.D.
1978-01-01
Additional radial velocities of 28 SMC supergiants determined in the years 1959-69 at the Radcliffe Observatory are presented. These and other measures from ESO and elsewhere are intercompared. The mean Radcliffe velocities have an internal standard error of +- 4.7 km/s and a systematic error exceeding 4 km/s is regarded as unlikely. Eight stars in the SMC core have a corrected velocity dispersion of only 6.9 km/s, similar to Feast's values for H II regions in the core. But the core H II regions have a velocity differential of -20 km/s relative to these stars. The velocity dispersion for stars in other parts of the Cloud is of the order 15 km/s as previously found. Two possibly variable-velocity stars are discussed, without reaching a satisfactory conclusion. (author)
International Nuclear Information System (INIS)
Pryce, M.H.L.
1985-01-01
A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix
International Nuclear Information System (INIS)
O'Leary, Gonzalez; Alvarez, L.; Chimera, G.; Panza, G.F.
2004-04-01
An overview of the crust and upper mantle structure of the Central America and Caribbean region is presented as a result of the processing of more than 200 seismograms recorded by digital broadband stations from SSSN and GSN seismic networks. By FTAN analysis of the fundamental mode of the Rayleigh waves, group velocity dispersion curves are obtained in the period range from 10 s to 40 s; the error of these measurements varies from 0.06 and 0.10 km/s. From the dispersion curves, seven tomographic maps at different periods and with average spatial resolution of 500 km are obtained. Using the logical combinatorial classification techniques, eight main groups of dispersion curves are determined from the tomographic maps and eleven main regions, each one characterized by one kind of dispersion curves, are identified. The average dispersion curves obtained for each region are extended to 150 s by adding data from the tomographic study of and inverted using a non-linear procedure. As a result of the inversion process, a set of models of the S-wave velocity vs. depth in the crust and upper mantle are found. In six regions, we identify a typically oceanic crust and upper mantle structure, while in the other two the models are consistent with the presence of a continental structure. Two regions, located over the major geological zones of the accretionary crust of the Caribbean region, are characterized by a peculiar crust and upper mantle structure, indicating the presence of lithospheric roots reaching, at least, about 200 km of depth. (author)
Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N
2008-12-01
In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.
Study on evaluation methods for Rayleigh wave dispersion characteristic
Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.
2005-01-01
The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.
Study of the determination method of the river dispersion coefficient
International Nuclear Information System (INIS)
Carvalho, M.A.G. de.
1982-01-01
An application of the method introduced by 'Fischer, H.B. - 1968 - Dispersion prediction in natural streams Journal of the Sanitary Engineering Division, ACSE, vol. 94 n 5A5. Proc. Paper 6169 pp 927-943.', for the calculation of the dispersion coefficient, based on Taylor's model is made. The aim is to develop a method which avoids the necessity of having an instantaneous impulse at the entrance section (1st section) of the system being measured. The dispersion coefficient is determined by curve fitting the experimental response in the 2nd secton and that obtained with the model by means of the non-linear least-squares method. The same method is applied with the residence time distribution function. The theoretical differences between these two function and their results are discussed. By adjusting the two model parameters in all these calculations, the dispersion coefficient and the mean velocity are determined, simultaneously. A comparison between the moment's method and Fischer's formulation is also done using the same experimental data. (E.G.) [pt
Velocity locking and pulsed invasions of fragmented habitats with seasonal growth
Korolev, Kirill; Wang, Ching-Hao
From crystal growth to epidemics, spatial spreading is a common mechanism of change in nature. Typically, spreading results from two processes: growth and dispersal in ecology or chemical reactions and diffusion in physics. These two processes combine to produce a reaction-diffusion wave, an invasion front advancing at a constant velocity. We show that the properties of these waves are remarkably different depending whether space and time are continuous, as they are for a chemical reaction, or discrete, as they are for a pest invading a patchy habitat in seasonal climates. For discrete space and time, we report a new type of expansions with velocities that can lock into specific values and become insensitive to changes in dispersal and growth, i.e. the dependence of the velocity on model parameters exhibits plateaus or pauses. As a result, the evolution and response to perturbations in locked expansions can be markedly different compared to the expectations based on continuous models. The phenomenon of velocity locking requires cooperative growth and does not occur when per capita growth rate decline monotonically with population density. We obtain both numerical and analytical results describing highly non-analytic properties of locked expansions.
A Study on Fluid Dispersion after Liquid Filled Missile Impact
International Nuclear Information System (INIS)
Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil
2015-01-01
In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results
A Study on Fluid Dispersion after Liquid Filled Missile Impact
Energy Technology Data Exchange (ETDEWEB)
Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil [KAERI, Daejeon (Korea, Republic of)
2015-05-15
In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results.
DEFF Research Database (Denmark)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-01-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and conc...
Radial velocities of RR Lyrae stars
International Nuclear Information System (INIS)
Hawley, S.L.; Barnes, T.G. III
1985-01-01
283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references
Noise figure of amplified dispersive Fourier transformation
International Nuclear Information System (INIS)
Goda, Keisuke; Jalali, Bahram
2010-01-01
Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.
Middleton, Beth; van Diggelen, Rudy; Jensen, Kai
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and
International Nuclear Information System (INIS)
Kataoka, Isao; Tomiyama, Akio
2004-01-01
The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill
On whistler-mode group velocity
International Nuclear Information System (INIS)
Sazhin, S.S.
1986-01-01
An analytical of the group velocity of whistler-mode waves propagating parallel to the magnetic field in a hot anisotropic plasma is presented. Some simple approximate formulae, which can be used for the magnetospheric applications, are derived. These formulae can predict some properties of this group velocity which were not previously recognized or were obtained by numerical methods. In particular, it is pointed out that the anisotropy tends to compensate for the influence of the electron temperature on the value of the group velocity when the wave frequency is well below the electron gyrofrequency. It is predicted, that under conditions at frequencies near the electron gyrofrequency, this velocity tends towards zero
Long, Fang; Tian, Huiping; Ji, Yuefeng
2010-09-01
A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.
Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency
Zhang, Dong; Kushibiki, Junichi; Zou, Wei
2006-10-01
We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.
On plasma coupling and turbulence effects in low velocity stopping
Energy Technology Data Exchange (ETDEWEB)
Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)
2006-04-28
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.
On plasma coupling and turbulence effects in low velocity stopping
International Nuclear Information System (INIS)
Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A
2006-01-01
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly
The species velocity of trees in Alaska
Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.
2017-12-01
Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly
Cosmic string induced peculiar velocities
International Nuclear Information System (INIS)
van Dalen, A.; Schramm, D.N.
1987-02-01
We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab
Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.
2017-12-01
We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.
A glance at velocity structure of Izmir
Energy Technology Data Exchange (ETDEWEB)
Özer, Çağlar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir (Turkey); Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey)
2016-04-18
In this study; we investigated velocity structure of Izmir and surroundings. We used local earthquake data which was recorded by different type of instruments and obtained high resolution 3D sections. We selected more than 400 earthquakes which were occurred between 2010 and 2013. Examined tomographic sections especially in Izmir along coastal areas (Mavisehir-Inciraltı); revealed the low speed zone. Along this low-speed zone; it is consistent with the results obtained from the stratigraphic section and surface geology. While; low velocity zones are associated with faults and water content; high velocity is related to magmatic rocks or compact rocks. Along Karsıyaka, Seferihisar, Orhanlı, Izmir fault zones; low P velocity was observed. When examined higher elevations of the topography; which are composed of soured magmatic material is dominated by high P velocity. In all horizontal sections; resolution decreasing with increasing depth. The reason for this; the reduction of earthquakes causes ray tracing problems.
Group Velocity for Leaky Waves
Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo
2017-11-01
In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast
Julia, J.; Nascimento, R.
2013-05-01
Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.
Roberts, C. W.; Smith, D. L.
1970-01-01
Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
A laboratory dispersant effectiveness test which reflects dispersant efficiency in the field
International Nuclear Information System (INIS)
Lunel, T.; Wood, P.
1996-01-01
Oil dispersion efficiencies of surfactants, from laboratory dispersion tests and field data were compared and calibrated. Data from an oil spill, where dispersants were used as a major part of the response, was analysed. The data was accumulated through the monitoring of the dispersant operation of the Sea Empress spill incident, in which Forties Blend oil was spilled at sea. This detailed data set was used to calibrate existing laboratory dispersant tests, and to devise a new International Dispersant Effectiveness Test. The objective was to create a comprehensive guide to decision making on whether and when to start a dispersant spraying operation. The dispersion efficiencies obtained from the laboratory dispersant tests were compared with field data. Flume tests produced the highest percentage of dispersed oil for all the dispersal tests. However, it was emphasised that the total percentage of oil dispersed should not be the only measure of dispersant effectiveness, since it does not distinguish between the contribution of natural and chemically enhanced dispersion. 9 refs., 1 tab., 9 figs
DEFF Research Database (Denmark)
2015-01-01
(3) with a net positive dispersion. Furthermore, the net positive dispersion in the dispersive unit at least partially compensates for the negative nonlinear phase variation and the negative group-velocity dispersion produced by the bulk quadratic nonlinear medium when the optical pulse passes......A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive unit...
Determination of the filtration velocities and mean velocity in ground waters using radiotracers
International Nuclear Information System (INIS)
Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida
1994-01-01
An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.
Xia, Ji-Yang; Leung, Dennis Y C
2005-01-01
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.
RADIAL VELOCITIES FROM VLT-KMOS SPECTRA OF GIANT STARS IN THE GLOBULAR CLUSTER NGC 6388
International Nuclear Information System (INIS)
Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Origlia, L.; Valenti, E.; Cirasuolo, M.
2015-01-01
We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC 6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 ± 1.5 km s –1 ) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9'' and 20'' from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ∼9'' and 70'', supplementing previous measurements at r < 2'' and r > 60'' obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs
Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape
International Nuclear Information System (INIS)
Clara, F M; Scandurra, A G; Meschino, G J; Passoni, L I
2011-01-01
This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.
Quiros, D.; Pulliam, J.; Polanco Rivera, E.; Huerfano Moreno, V. A.
2017-12-01
The eastern North America-Caribbean (NA-CAR) plate boundary near the islands of Hispaniola (which is comprised of the Dominican Republic and Haiti) and Puerto Rico is a complex transition zone in which strain is accommodated by two transform fault systems and oblique subduction. In 2013, scientists from Baylor University, the Autonomous University of Santo Domingo, and the Puerto Rico Seismic Network deployed 16 broadband stations on the Dominican Republic to expand the local permanent network. The goal of the Greater Antilles Seismic Program (GrASP) is to combine its data with that from permanent networks in Puerto Rico, Haiti, Cuba, the Cayman Islands, and Jamaica to develop a better understanding of the crust and upper mantle structure in the Northeastern Caribbean (Greater Antilles). One important goal of GrASP is to develop robust velocity models that can be used to improve earthquake location and seismic hazard efforts. In this study, we focus on obtaining Rayleigh wave group velocity maps from ambient noise tomography. By cross-correlating ambient seismic noise recorded at 53 stations between 2010 to present, we obtain Green's functions between 1165 pairs of stations. From these, we obtain dispersion curves by the application of FTAN methods with phase-matched filtering. Selection criteria depend on the signal-to-noise ratio and seasonal variability, with further filtering done by rejecting velocities incompatible with maps produced from overdamped tomographic inversions. Preliminary dispersion maps show strong correlations with large-scale geological and tectonic features for periods between 5 - 20 s, such as the Cordillera Central in both the Dominican Republic and Puerto Rico, the Mona Passage, and the NA-CAR subduction zone. Ongoing efforts focus on including shorter periods in Puerto Rico as its denser station distribution could allow us to retrieve higher resolution group velocity maps.
Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method
Verachtert, R.; Lombaert, G.; Degrande, G.
2018-03-01
This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.
Planetary nebula velocities in the disc and bulge of M31
Halliday, C.; Carter, D.; Bridges, T. J.; Jackson, Z. C.; Wilkinson, M. I.; Quinn, D. P.; Evans, N. W.; Douglas, N. G.; Merrett, H. R.; Merrifield, M. R.; Romanowsky, A. J.; Kuijken, K.; Irwin, M. J.
2006-01-01
We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [OIII] lambda 5007 emission line. Rotation and velocity dispersion are measured to a
Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming
2018-02-01
By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.
Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel
2017-08-01
We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.
Energy Technology Data Exchange (ETDEWEB)
Akama, K [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)
1997-10-22
Concerning migration velocity analysis in the seismic exploration method, two typical techniques, out of velocity analysis techniques using residual moveout in the CIP gather, are verified. Deregowski`s method uses pre-stacking deep-level migration records for velocity analysis to obtain velocities free of spatial inconsistency and not dependent on the velocity structure. This method is very like the conventional DMO velocity analysis method and is easy to understand intuitively. In this method, however, error is apt to be aggravated in the process of obtaining the depth-sector velocity from the time-RMS velocity. Al-Yahya`s method formulates the moveout residual in the CIP gather. This assumes horizontal stratification and a small residual velocity, however, and fails to guarantee convergence in the case of a steep structure or a grave model error. In the updating of the velocity model, in addition, it has to maintain required accuracy and, at the same time, incorporate smoothing to ensure not to deteriorate high convergence. 2 refs., 5 figs.
International Nuclear Information System (INIS)
Boutrif, M.S.; Thelliez, M.
1993-01-01
We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2 mm thickness. We also show that the cylinder discharges in two phases: the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly: its velocity varies betwen -100 m/s and 200 m/s within a period shorter than 1 ms; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000 rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. (orig.)
Directory of Open Access Journals (Sweden)
Chiu Choi
2017-02-01
Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.
The critical ionization velocity
International Nuclear Information System (INIS)
Raadu, M.A.
1980-06-01
The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)
1988-01-01
A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.
International Nuclear Information System (INIS)
Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.
2014-01-01
This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)
International Nuclear Information System (INIS)
Hofman, G.L.
1996-01-01
A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing
Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium
International Nuclear Information System (INIS)
Shekhtman, V.L.
1992-01-01
This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs
Dispersion of axially symmetric waves in fluid-filled cylindrical shells
DEFF Research Database (Denmark)
Bao, X.L.; Überall, H.; Raju, P. K.
2000-01-01
Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves...... on such shells have been investigated for the case of aluminum shells, and their phase-velocity dispersion curves have been obtained for double fluid loading [Bao, Raju, and Überall, J. Acoust. Soc. Am. 105, 2704 (1999)]. Similar results were obtained for empty or fluid-filled brass shells [Kumar, Acustica 27......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...
DEFF Research Database (Denmark)
Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong
2018-01-01
We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...
Directory of Open Access Journals (Sweden)
Zhixiang Deng
2017-01-01
Full Text Available The absence of Raman and unique pressure-tunable dispersion is the characteristic feature of gas-filled photonic crystal fiber (PCF, and its zero dispersion points can be extended to the near-infrared by increasing gas pressure. The generation of dispersive wave (DW in the normal group velocity dispersion (GVD region of PCF is investigated. It is demonstrated that considering the self-steepening (SS and introducing the chirp of the initial input pulse are two suitable means to control the DW generation. The SS enhances the relative average intensity of blue-shift DW while weakening that of red-shift DW. The required propagation distance of DW emission is markedly varied by introducing the frequency chirp. Manipulating DW generation in gas-filled PCF by the combined effects of either SS or chirp and three-order dispersion (TOD provides a method for a concentrated transfer of energy into the targeted wavelengths.
Simultaneous measurement of particle and fluid velocities in particle-laden flows
International Nuclear Information System (INIS)
Jin, D. X.; Lee, D. Y.
2009-01-01
For the velocity measurement in a particle-laden fluid flow, the fluid velocity and the inherently dispersed particle velocity can be analyzed by using PIV and PTV, respectively. Since the PIV result statistically represents the average displacement of all the particles in a PIV image, it is inevitable that the PIV result includes the influence of the dispersed particles' displacement if a single CCD camera is used to simultaneously measure the fluid velocity and the dispersed particle velocity. The influence of dispersed particles should be excluded before the PIV analysis in order to evaluate the fluid velocity accurately. In this study, the optimum replacement brightness of dispersed particles to minimize the false influence of dispersed particles on the PIV analysis was theoretically derived. Simulation results show that the modification of dispersed particle brightness can significantly reduce the PIV error caused by the dispersed particles. This modification method was also verified in the analysis of an actual experimental case of the particle-laden fluid flow in a triangular grooved channel
A new optical rotation dispersion formula
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new dispersion formula for the rotatory power is obtained in the framework of Kubo forlalism for transport coefficients. Unlike the well known Rosenfeld-Condon dispersion law, this formula is consistent with the free electron gas asymptotic behavior. (Author) [pt
Shear wave velocity structure of northern and North-Eastern Ethiopia
International Nuclear Information System (INIS)
Kebede, F.; Mammo, T.; Panza, G.F.; Vuan, A.; Costa, G.
1995-10-01
The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs
Control of group velocity by phase-changing collisions
International Nuclear Information System (INIS)
Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.
2005-01-01
We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity
Wave Tank Studies of Phase Velocities of Short Wind Waves
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Performance of a vector velocity estimator
DEFF Research Database (Denmark)
Munk, Peter; Jensen, Jørgen Arendt
1998-01-01
tracking can be found in the literature, but no method with a satisfactory performance has been found that can be used in a commercial implementation. A method for estimation of the velocity vector is presented. Here an oscillation transverse to the ultrasound beam is generated, so that a transverse motion...... in an autocorrelation approach that yields both the axial and the lateral velocity, and thus the velocity vector. The method has the advantage that a standard array transducer and a modified digital beamformer, like those used in modern ultrasound scanners, is sufficient to obtain the information needed. The signal...
Sound velocity in potassium hydroxide aqueous solution
International Nuclear Information System (INIS)
Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.
1992-01-01
Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed
Neutron stars velocities and magnetic fields
Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.
2018-01-01
We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.
Clock synchronization and dispersion
International Nuclear Information System (INIS)
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C
2002-01-01
We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect
International Nuclear Information System (INIS)
Censor, Dan
2010-01-01
Identifying invariance properties helps in simplifying calculations and consolidating concepts. Presently the Special Relativistic invariance of dispersion relations and their associated scalar wave operators is investigated for general dispersive homogeneous linear media. Invariance properties of the four-dimensional Fourier-transform integrals is demonstrated, from which the invariance of the scalar Green-function is inferred. Dispersion relations and the associated group velocities feature in Hamiltonian ray tracing theory. The derivation of group velocities for moving media from the dispersion relation for these media at rest is discussed. It is verified that the group velocity concept satisfies the relativistic velocity-addition formula. In this respect it is considered to be 'real', i.e., substantial, physically measurable, and not merely a mathematical artifact. Conversely, if we assume the group velocity to be substantial, it follows that the dispersion relation must be a relativistic invariant. (orig.)
Dispersive stresses in wind farms
Segalini, Antonio; Braunbehrens, Robert; Hyvarinen, Ann
2017-11-01
One of the most famous models of wind farms is provided by the assumption that the farm can be approximated as a horizontally-homogeneous forest canopy with vertically-varying force intensity. By means of this approximation, the flow-motion equations become drastically simpler, as many of the three-dimensional effects are gone. However, the application of the horizontal average operator to the RANS equations leads to the appearance of new transport terms (called dispersive stresses) originating from the horizontal (small-scale) variation of the mean velocity field. Since these terms are related to the individual turbine signature, they are expected to vanish outside the roughness sublayer, providing a definition for the latter. In the present work, an assessment of the dispersive stresses is performed by means of a wake-model approach and through the linearised code ORFEUS developed at KTH. Both approaches are very fast and enable the characterization of a large number of wind-farm layouts. The dispersive stress tensor and its effect on the turbulence closure models are investigated, providing guidelines for those simulations where it is impossible to resolve the farm at a turbine scale due to grid requirements (as, for instance, mesoscale simulations).
Nelson, RD
1988-01-01
This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica
Optimal velocity difference model for a car-following theory
International Nuclear Information System (INIS)
Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.
2011-01-01
In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.
Determination of dispersity of crushed granite
International Nuclear Information System (INIS)
Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong
2004-01-01
The experimental crushed granite column breakthrough curves, using 99 Tc as spike tracer and 3 H as invariant tracer, are analyzed by different linear regression techniques. Dispersity of crushed granite and retardation factor of 99 TcO 4 - on the crushed granite are determined simultaneously by one linear regression technique. Dispersity of crushed granite is also obtained with 3 H as invariant tracer by the other linear regression technique. The dispersities found by spike source and invariant source methods are compared. The experimental results show that the dispersity found by spike source method is close to that found by invariant source method. It indicates that dispersity is only the characteristic of dispersion medium
Determination of dispersity of crushed granite
International Nuclear Information System (INIS)
Liu, D.J.; Fan, X.H.
2005-01-01
Experimental crushed granite column breakthrough curves, using 99 Tc as spike tracer and 3 H as invariant tracer, were analyzed by different linear regression techniques. Dispersity of crushed granite and the retardation factor of 99 TcO 4 - on the crushed granite were determined simultaneously by one linear regression. Dispersity of crushed granite was also obtained with 3 H as invariant tracer by the other linear regression. The dispersities found by spike source and invariant source methods are compared. Experimental results show that the dispersity found by the spike source method is close to that found by the invariant source method. This indicates that dispersity is only a characteristic of the dispersion medium. (author)
Experiments for obtaining field influence mass particles.
Yahalomi, E
2010-01-01
Analyzing time dilation experiments the existence of a universal field interacting with moving mass particles is obtained. It is found that mass particle changes its properties depend on its velocity relative to this universal scalar field and not on its velocity relative to the laboratory. High energy proton momentum, energy and mass were calculated obtaining new results. Experiments in high energy accelerators are suggested as additional proofs for the existence of this universal field. This universal field may explain some results of other high energy experiments.
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Dispersion of multi-walled carbon nanotubes in biocompatible dispersants
International Nuclear Information System (INIS)
Piret, J.-P.; Detriche, S.; Vigneron, R.; Vankoningsloo, S.; Rolin, S.; Mejia Mendoza, J. H.; Masereel, B.; Lucas, S.; Delhalle, J.; Luizi, F.; Saout, C.; Toussaint, O.
2010-01-01
Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.
Modified circular velocity law
Djeghloul, Nazim
2018-05-01
A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.
The influence of tested body size upon longitudinal ultrasonic pulse velocity
International Nuclear Information System (INIS)
Suarez Antola, R.
2001-01-01
Low ultrasonic frequencies are used in nondestructive testing of heterogeneous materials,such as concrete,rocks and timber.When frequencies are low enough,size and shape of tested bodies may influence measured longitudinal pulse velocities(geometric dispersion).A simplified mathematical model is developed from known experimental and theoretical results obtained for elastic wave propagation in rods of uniform circular cross section.Wave propagation is described by a spatial averaged dilatational field in an approach which is named quasi fluid.A formula is obtained which relates group velocity with an effective lateral size of the body,with transducers a frequency,with a non-dimensional parameter and with asymptotic P-wave velocity.In principle it can be applied to bars of any uniform cross section.The limitations of this formula are discussed in relation to path length,threshold of detection,patterns of radiation and reception and other variables.A more general formula is proposed.Practical application of this formula is briefly exemplified using some experimental data obtained by the author.The problem of longitudinal pulse propagation in reinforcing steel bars embedded in concrete is briefly considered
National Research Council Canada - National Science Library
Julia, Jordi; Ammon, Charles J; Herrimann, Robert B
2006-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
National Research Council Canada - National Science Library
Herrmann, Robert B; Julia, Jordi; Ammon, Charles J
2007-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
The Velocity Distribution of Isolated Radio Pulsars
Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)
2002-01-01
We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for
Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
International Nuclear Information System (INIS)
Ardenghi, J.S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.
2014-01-01
The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ 2 )
Theory of dispersive microlenses
Herman, B.; Gal, George
1993-01-01
A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.
Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar
2014-01-01
In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.
The Prescribed Velocity Method
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...
Multidisc neutron velocity selector
International Nuclear Information System (INIS)
Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.
1987-12-01
The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs
International Nuclear Information System (INIS)
Meng, Yiqing; Lucas, Gary P
2017-01-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
International Nuclear Information System (INIS)
Alvarez, M.C.; Garzon, L.
1990-01-01
In this paper a practical dispersion model is presented, which permits to calculate, in Spain, the concentration of natural radionuclides released to the atmosphere from coal power plants. To apply the model it is necessary to know the following data: emission rates, dry deposition velocity, scavenging coefficient, mixing layer height, together with climatological frequency data relating to wind speed and wind direction (to determinate trajectories from a given source) in the areas examined. Meteorological data can be obtained from meteorological stations across Spain. (Author)
Experimental modelling of core debris dispersion from the vault under a PWR pressure vessel: Part 1
International Nuclear Information System (INIS)
Macbeth, R.V.; Trenberth, R.
1987-12-01
Modelling experiments have been done on a 1/25 scale model in Perspex of the vault under a PWR pressure vessel. Various liquids have been used to simulate molten core debris assumed to have fallen on to the vault floor from a breach at the bottom of the pressure vessel. High pressure air and helium have been used to simulate the discharge of steam and gas from the breach. The dispersion of liquid via the vault access shafts has been measured. Photographs have been taken of fluid flow patterns and velocity profiles have been obtained. The requirements for further experiments are indicated. (author)
Discrete dispersion models and their Tweedie asymptotics
DEFF Research Database (Denmark)
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...
Effectiveness of dispersants on thick oil slicks
International Nuclear Information System (INIS)
Ross, S.; Belore, R.
1993-01-01
Experiments were conducted to determine the relationship between dispersant effectiveness and oil slick thickness, and thereby determine the optimum time for applying dispersant onto spilled oil at sea. Tests were completed at a lab-scale level by varying the three parameters of oil type, dispersant application, and oil thickness. The tests were intended to be comparative only. The primary oils used were Alberta sweet mix blend and Hibernia B-27 crude. The dispersant, Corexit 9527, was applied either premixed with the oil, dropwise in one application, or dropwise in multiple applications to simulate a multi-hit aircraft operation. The apparatus used in the experiment was an oscillating hoop tank, with oil-containing rings used to obtain and maintain uniform slick thickness. The results indicate that the effectiveness potential of a chemical dispersant does not decrease as slick thickness increases. In fact, results of the tests involving Hibernia oil suggest that oils that tend to herd easily would be treated more effectively if dispersant were applied when the oil was relatively thick (1 mm or greater) to avoid herding problems. The oil slicks premixed with dispersant did not disperse well in the thick oil tests, not because of dispersant-oil interaction problems but because of reduced mixing energy. 6 refs., 4 figs., 1 tab
Aquatic dispersion modelling of a tritium plume in Lake Ontario
International Nuclear Information System (INIS)
Klukas, M.H.; Moltyaner, G.L.
1996-05-01
Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs
International Nuclear Information System (INIS)
Cook, K.H.; Mateo, M.; Olszewski, E.W.; Vogt, S.S.; Stubbs, C.; Diercks, A.
1999-01-01
We have obtained radial velocities of three K giants and one faint carbon star in LGS 3, a dwarf companion of M31, based on 12 individual spectra obtained with the HIRES spectrograph on the Keck I telescope. The mean precision of these measurements is 3.8 km s -1 . The mean systemic velocity of LGS 3 is -282.2±3.5 km s -1 . Monte Carlo simulations that take into account the individual velocity uncertainties and the maximum observed velocity difference reveal that the central velocity dispersion of LGS 3 is in the range 2.6 - 30.5 km s -1 , with 95% confidence; the most likely value for the central dispersion is 7.9 +5.3 -2.9 km s -1 . These results agree with the kinematics of H i gas in LGS 3. This contrasts with the tendency for the gas and stars in other low-luminosity Local Group dwarfs to exhibit distinct spatial and kinematic properties. Taking into account the relative youth of LGS 3, we conclude that the 'asymptotic' M/L ratio the value the galaxy would exhibit if it were composed only of ancient stars is M/L V,LGS3 ≥11 (at a 97.5% confidence level), with a most probable value of 95 +175 -56 . These values are consistent with the M/L V ratios observed in other well-studied early-type dwarfs of the Local Group. We have also estimated the mass of LGS 3 using modified Newtonian dynamics. These data represent the first moderately high precision optical spectra of giants in a dwarf system beyond the Galactic halo. We suggest future studies that are now feasible to study the dynamics of dwarf galaxies throughout the Local Group and beyond. copyright copyright 1999. The Astronomical Society of the Pacific
Group-velocity matched nonlinear photonic crystal fibers
DEFF Research Database (Denmark)
Bache, Morten; Lægsgaard, Jesper; Bang, Ole
2006-01-01
A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....
International Nuclear Information System (INIS)
Zahran, M.A.; El-Shewy, E.K.
2008-01-01
The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained
Joint inversion of high resolution S-wave velocity structure underneath North China Basin
Yang, C.; Li, G.; Niu, F.
2017-12-01
North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.
Approximation of wave action flux velocity in strongly sheared mean flows
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Hydrodynamic dispersion characteristics of lateral inflow into a river tested by a laboratory model
Directory of Open Access Journals (Sweden)
P. Y. Chou
2009-02-01
Full Text Available Groundwater and river-water have a different composition and interact in and below the riverbed. The riverbed-aquifer flux interactions have received growing interest because of their role in the exchange and transformation of nutrients and pollutants between rivers and the aquifer. In this research our main purpose is to identify the physical processes and characteristics needed for a numerical transport model, which includes the unsaturated recharge zone, the aquifer and the riverbed. In order to investigate such lateral groundwater inflow process, a laboratory J-shaped column experiment was designed. This study determined the transport parameters of the J-shaped column by fitting an analytical solution of the convective-dispersion equation for every flux on individual segments to the observed breakthrough curves of the resident concentration, and by inverse modelling for every flux simultaneously over the entire flow domain. The obtained transport-parameter relation was tested by numerical simulation using HYDRUS 2-D/3-D.
Four steady-state flux conditions (i.e. 0.5 cm hr^{−1}, 1 cm hr^{−1}, 1.5 cm hr^{−1} and 2 cm hr^{−1} were applied, transport parameters including pore water velocity and dispersivity were determined for both unsaturated and saturated sections along the column. Results showed that under saturated conditions the dispersivity was fairly constant and independent of the flux. In contrast, dispersivity under unsaturated conditions was flux dependent and increased at lower flux. For our porous medium the dispersion coefficient related best to the quotient of the pore water velocity divided by the water content. A simulation model of riverbed-aquifer flux interaction should take this into account.
Bulk velocity extraction for nano-scale Newtonian flows
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenfei, E-mail: zwenfei@gmail.com [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China); Sun, Hongyu [Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004 (China)
2012-04-16
The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.
Bulk velocity extraction for nano-scale Newtonian flows
International Nuclear Information System (INIS)
Zhang, Wenfei; Sun, Hongyu
2012-01-01
The conventional velocity extraction algorithm in MDS method has difficulty to determine the small flow velocity. This study proposes a new method to calculate the bulk velocity in nano-flows. Based on the Newton's law of viscosity, according to the calculated viscosities and shear stresses, the flow velocity can be obtained by numerical integration. This new method can overcome the difficulty existed in the conventional MDS method and improve the stability of the computational process. Numerical results show that this method is effective for the extraction of bulk velocity, no matter the bulk velocity is large or small. -- Highlights: ► Proposed a new method to calculate the bulk velocity in nano-flows. ► It is effective for the extraction of small bulk velocity. ► The accuracy, convergence and stability of the new method is good.
Retrieval of sea surface velocities using sequential ocean colour monitor (OCM) data
Digital Repository Service at National Institute of Oceanography (India)
Prasad, J.S.; Rajawat, A.S.; Pradhan, Y.; Chauhan, O.S.; Nayak, S.R.
velocities has been developed. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on atmospherically corrected and geo-referenced sequential pair of images by Maximum...
Multidisk neutron velocity selectors
International Nuclear Information System (INIS)
Hammouda, B.
1992-01-01
Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)
Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors
International Nuclear Information System (INIS)
Tan Ren-Bing; Qin Hua; Zhang Xiao-Yu; Xu Wen
2013-01-01
We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density)
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo
2013-04-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.
2013-01-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Sphagnum moss disperses spores with vortex rings.
Whitaker, Dwight L; Edwards, Joan
2010-07-23
Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.
Process for encapsulating active agents obtaining a gel
Yilmaz, G.; Jongboom, R.O.J.
2001-01-01
The present invention relates to a process for encapsulating an active agent in a biopolymer in the form of a gel, comprising the steps of: a) forming a dispersion or solution of the biopolymer in water; and b) adding the active agent to the dispersion or solution obtained in step a); wherein the
A new car-following model considering velocity anticipation
International Nuclear Information System (INIS)
Jun-Fang, Tian; Bin, Jia; Xin-Gang, Li; Zi-You, Gao
2010-01-01
The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink–antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this model. Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model. (general)
A new estimator for vector velocity estimation [medical ultrasonics
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2001-01-01
A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation...... be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained...
Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex
International Nuclear Information System (INIS)
Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.
2008-01-01
Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)
Duan, Yuexin; Yuan, Lu; Zhao, Yan; Guan, Fengxia
2007-07-01
It is an obstacle issue for Carbon nanotubes (CNTs) applied in fiber reinforced polymer composites that CNTs is dispersed in nano-level, particularly for single-wall Carbon nanotubes (SWCNTs). In this paper, SWCNTs were treated by the coupling agent like volan and dispersing agent as BYK to improve the dispersion in the Glass Fiber/Epoxy composites. The result of dispersion of SWCNTs in composites was observed by Scanning electron microscopy (SEM). Then the Glass Transition Temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by Dynamic Mechanical Thermal Analysis (DMTA). Moreover, the bending properties of these composites were tested.
Directory of Open Access Journals (Sweden)
Luciano Zuccarello
2016-09-01
Full Text Available Seismic noise recorded by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna, have been analysed with several techniques. Single station HVSR method and SPAC array method have been applied to stationary seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. A comparison of such model with the stratigraphic information available for the investigated area shows a good qualitative agreement. Taking advantage of a borehole station installed at 130 m depth, we could estimate also the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave observable in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, compatible with the shear wave velocity found from the analysis of seismic noise.
Dispersivity in heterogeneous permeable media
International Nuclear Information System (INIS)
Chesnut, D.A.
1994-01-01
When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. For continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the, clinical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects. of this behavior on radionuclide or other contaminant migration
Dispersivity in heterogeneous permeable media
International Nuclear Information System (INIS)
Chesnut, D.A.
1994-01-01
When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage (typically 80%) of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. Alternatively, for continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the classical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects of this behavior on radionuclide or other contaminant migration
Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos
Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.
1994-01-01
Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.
Velocity navigator for motion compensated thermometry.
Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael
2012-02-01
Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.
Databases of surface wave dispersion
Directory of Open Access Journals (Sweden)
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Transport and Dispersion of Nanoparticles in Periodic Nanopost Arrays
He, Kai; Retterer, Scott T.; Srijanto, Bernadeta R.; Conrad, Jacinta C.; Krishnamoorti, Ramanan
2014-01-01
Nanoparticles transported through highly confined porous media exhibit faster breakthrough than small molecule tracers. Despite important technological applications in advanced materials, human health, energy, and environment, the microscale mechanisms leading to early breakthrough have not been identified. Here, we measure dispersion of nanoparticles at the single-particle scale in regular arrays of nanoposts and show that for highly confined flows of dilute suspensions of nanoparticles the longitudinal and transverse velocities exhibit distinct scaling behaviors. The distributions of transverse particle velocities become narrower and more non-Gaussian when the particles are strongly confined. As a result, the transverse dispersion of highly confined nanoparticles at low Péclet numbers is significantly less important than longitudinal dispersion, leading to early breakthrough. This finding suggests a fundamental mechanism by which to control dispersion and thereby improve efficacy of nanoparticles applied for advanced polymer nanocomposites, drug delivery, hydrocarbon production, and environmental remediation. © 2014 American Chemical Society.
Transport and Dispersion of Nanoparticles in Periodic Nanopost Arrays
He, Kai
2014-05-27
Nanoparticles transported through highly confined porous media exhibit faster breakthrough than small molecule tracers. Despite important technological applications in advanced materials, human health, energy, and environment, the microscale mechanisms leading to early breakthrough have not been identified. Here, we measure dispersion of nanoparticles at the single-particle scale in regular arrays of nanoposts and show that for highly confined flows of dilute suspensions of nanoparticles the longitudinal and transverse velocities exhibit distinct scaling behaviors. The distributions of transverse particle velocities become narrower and more non-Gaussian when the particles are strongly confined. As a result, the transverse dispersion of highly confined nanoparticles at low Péclet numbers is significantly less important than longitudinal dispersion, leading to early breakthrough. This finding suggests a fundamental mechanism by which to control dispersion and thereby improve efficacy of nanoparticles applied for advanced polymer nanocomposites, drug delivery, hydrocarbon production, and environmental remediation. © 2014 American Chemical Society.
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
Improved new generation dispersants
International Nuclear Information System (INIS)
Anon.
1993-01-01
The use of dispersants to combat oil spills has attracted controversy over the years, and there has been a number of accusations of the chemicals involved doing more harm than good. A new study by the International Petroleum Industry Environmental Conservation Association discusses the positive and the negatives of dispersant use to be considered when drawing up spill contingency plans. (author)
Middleton, B.; Van Diggelen, R.; Jensen, K.
2006-01-01
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.
Energy Technology Data Exchange (ETDEWEB)
Cho, I; Nakanishi, I [Kyoto University, Kyoto (Japan); Ling, S [Nihon Nessui Corp., Tokyo (Japan); Okada, H [Hokkaido University, Sapporo (Japan)
1997-10-22
Discussions were given on a genetic algorithm as a means to solve simultaneously the problems related to stability of solution and dependence on an initial model in estimating subsurface structures using the microtremor exploration method. In the study, a forking genetic algorithm (fGA) to explore solid substance groups was applied to the optimizing simulations for a velocity structure model to discuss whether the algorithm can be used practically. The simulation No. 1 was performed by making the number of layers four for both of the given velocity structure and the optimizing model. On the other hand, the simulation No. 2 was executed by making the number of layers for the given velocity structure greater than that for the optimizing model. As a result, it was verified that wide range exploration may be possible for the velocity structure model, and that a large number of candidates for the velocity structure model may be proposed. In either case, the exploration capability of the fGA exceeded that of the standard simple genetic algorithm. 8 refs., 4 figs., 2 tabs.
Rotating drum tests of particle suspensions within a fines dispersion
Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei
2014-05-01
Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.
ZZ SIESTA, Atmospheric Dispersion Experiment over Complex Terrain
International Nuclear Information System (INIS)
2000-01-01
1 - Name of experiment: SIESTA. 2 - Computer for which program is designed and other machine version packages available: To request or retrieve programs click on the one of the active versions below. A password and special authorization is required. Explanation of the status codes. Program-name: ZZ-SIESTA; Package-ID Status: NEA-1617/01 Tested; Machines used: Package-ID: NEA-1617/01; Orig. Computer: DEC VAX 6000; Test Computer: DEC VAX 6000. 3 - Purpose and phenomena tested: The aim of the project was to obtain knowledge of the general nature of the turbulence, advection and atmospheric dispersion in the two flow regimes parallel to the Swiss Jura ridge, which represent the most frequent wind systems occurring on the Swiss Plain. 4 - Description of the experimental set-up used: The atmospheric dispersion process was investigated by carrying out SF 6 tracer experiments. The tracer was released about 6 m above ground level near the Goesgen meteo tower. Sampling units were placed on ellipses around the release point. Total sampling time was at least one hour. Tracer concentrations were determined after each experiment by Gas chromatography. 5 - Special features: Because of the uncertainty in the transport direction of the tracer plume, a mobile tracer analyzing system was used. 6 - Description of experiment and analysis: To investigate the flow field in the test region, the following measuring setups were used: (1) Three tethered balloon sounding systems to measure temperature, humidity, wind speed and direction; (2) a meteo tower to measure 10-minute averages of wind direction and velocity at two fixed heights; (3) sonic anemometers to measure heat flux, friction velocity, Monin-Obukhov length, and wind speed at the release point and at a certain distance; (4) 2-m masts to measure wind speed and direction continuously. The wind flow system was measured by radar-tracked tetroons
Obtaining zircaloy powder through hydriding
International Nuclear Information System (INIS)
Dupim, Ivaldete da Silva; Moreira, Joao M.L.
2009-01-01
Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)
Indentation of aluminium foam at low velocity
Directory of Open Access Journals (Sweden)
Shi Xiaopeng
2015-01-01
Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.
Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano
2017-07-01
It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on
An expert system for dispersion model interpretation
International Nuclear Information System (INIS)
Skyllingstad, E.D.; Ramsdell, J.V.
1988-10-01
A prototype expert system designed to diagnose dispersion model uncertainty is described in this paper with application to a puff transport model. The system obtains qualitative information from the model user and through an expert-derived knowledge base, performs a rating of the current simulation. These results can then be used in combination with dispersion model output for deciding appropriate evacuation measures. Ultimately, the goal of this work is to develop an expert system that may be operated accurately by an individual uneducated in meteorology or dispersion modeling. 5 refs., 3 figs
Anomalous dispersion due to hydrocarbons: The secret of reservoir geophysics?
Brown, R.L.
2009-01-01
When P- and S-waves travel through porous sandstone saturated with hydrocarbons, a bit of magic happens to make the velocities of these waves more frequency-dependent (dispersive) than when the formation is saturated with brine. This article explores the utility of the anomalous dispersion in finding more oil and gas, as well as giving a possible explanation about the effect of hydrocarbons upon the capillary forces in the formation. ?? 2009 Society of Exploration Geophysicists.
Langmuir wave dispersion relation in non-Maxwellian plasmas
International Nuclear Information System (INIS)
Ouazene, M.; Annou, R.
2010-01-01
The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.
Procedure for preparation of dispersions
International Nuclear Information System (INIS)
1978-01-01
Procedure for the preparation of a water based dispersion of cerium oxide, characterised in that a suspension of cerium (IV) hydroxide is formed with an acid, where the acid is in the state of a disaggregation of aggregated crystalline cerium hydroxide, the suspension being preheated for a specified time and to a specified temperature, so that the pH value becomes constant, and whereby the quantity of acid in the suspension is such that the constant pH value is lower than 5.4, so that a conditioned suspension may be obtained, and water may be mixed with the conditioned suspension for making a water based dispersion of cerium oxide. (G.C.)
Transverse dispersion in heterogeneous fractures
International Nuclear Information System (INIS)
Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan
2004-12-01
breakthrough curves are much more strongly affected by transverse dispersivity, with t 95 delayed by up to almost 50%. This is because when aperture is held constant, velocity varies directly with transmissivity, such that flow outside the high transmissivity channel is slower. However, even for these cases, the effect of transverse dispersivity in these single fracture studies was to increase transport times. Studies of sorbing tracer transport (Case 3) produced results similar to those found with conservative tracers, in which the magnitude of changes in breakthrough statistics due to transverse dispersion was on the same order as the changes between stochastic realizations of the spatial fields. Similarly, simulations with larger tracer release area (Case 2) also produced variations due to transverse dispersion within the range defined by stochastic realizations
Estimating plume dispersion: a comparison of several sigma schemes
International Nuclear Information System (INIS)
Irwin, J.S.
1983-01-01
The lateral and vertical Gaussian plume dispersion parameters are estimated and compared with field tracer data collected at 11 sites. The dispersion parameter schemes used in this analysis include Cramer's scheme, suggested for tall stack dispersion estimates, Draxler's scheme, suggested for elevated and surface releases, Pasquill's scheme, suggested for interim use in dispersion estimates, and the Pasquill--Gifford scheme using Turner's technique for assigning stability categories. The schemes suggested by Cramer, Draxler and Pasquill estimate the dispersion parameters using onsite measurements of the vertical and lateral wind-velocity variances at the effective release height. The performances of these schemes in estimating the dispersion parameters are compared with that of the Pasquill--Gifford scheme, using the Prairie Grass and Karlsruhe data. For these two experiments, the estimates of the dispersion parameters using Draxler's scheme correlate better with the measurements than did estimates using the Pasquill--Gifford scheme. Comparison of the dispersion parameter estimates with the measurement suggests that Draxler's scheme for characterizing the dispersion results in the smallest mean fractional error in the estimated dispersion parameters and the smallest variance of the fractional errors
Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field
Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
Dispersions in Semi-Classical Dynamics
International Nuclear Information System (INIS)
Zielinska-Pfabe, M.; Gregoire, C.
1987-01-01
Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation
Directory of Open Access Journals (Sweden)
Sophie S. Shamailov, Joachim Brand
2018-03-01
Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.
Dispersal and metapopulation stability
Directory of Open Access Journals (Sweden)
Shaopeng Wang
2015-10-01
Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.
Velocity ratio measurement using the frequency of gyro backward wave
International Nuclear Information System (INIS)
Muggli, P.; Tran, M.Q.; Tran, T.M.
1990-10-01
The operating diagram of a low quality factor, 8GHz TE 01 0 gyrotron exhibits oscillations between 6.8 and 7.3GHz. These oscillations are identified as the backward wave component of the TE 21 0 traveling mode. As the resonance condition of this mode depends on the average parallel velocity [ > of the beam electrons (ω BW ≅Ω C /γ - k [ [ >), the measurement of ω BW for given Ω C and γ, is used as a diagnostic for the beam electrons velocity ratio α= / [ >. The values of α, deduced from ω BW through the linear dispersion relation for the electron cyclotron instability in an infinite waveguide, are unrealistic. A non-linear simulation code gives α values which are in very good agreement with the ones predicted by a particle trajectory code (+10% to +20%). We find numerically that the particles' velocity dispersion in vperpendicular and v [ increases ω BW . This effect explains part of the discrepancy between the values of α inferred from ω BW without velocity dispersion and the expected values. (author) 10 refs., 6 figs., 1 tab
Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas
2017-04-01
We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.
Determination of dispersion coefficients in the River Plate
International Nuclear Information System (INIS)
Maggio, G.E.; Graino, J.G.; Kopp, U.I.; Tripoli, C.R.
1987-01-01
The determination of dispersion coefficients of contaminants through a radioactive tracer was performed as a contribution to the development of a mathematical model for a zone of the River Plate, close to the effluent discharge. During March 1987, six operations of tracer (I-131) injection and follow-up were carried out. The injection was performed by breaking a bulb under water and the follow-up of the 'radioactive spot' was done by means of a boat. Once the 'radioactive spot' was located (approximately 2 hours after the injection) a series of transversal movements over it was effected, measuring the activity concentration by means of a submerged detector. At the same time the coordinates of each point were determined in order to draw a map of the activity distribution. This procedure was repeated for different spot positions. This set of data can be plotted on a map of the zone under study, so as to obtain a set of iso activity curves. However, these curves would be representative provided that corrections are made for the boat speed, the water speed and the half-life of radionuclide. From each set of iso activity curves, the variance and the increase of variance, as well as the dispersion coefficients, can be determined. This procedure was applied to each one of the six above mentioned operations. Presently, different values of dispersion coefficient are available for different river conditions. These values, together with other parameters, such as wind velocity, temperature, salinity, bacterial behaviour, etc., will allow the calibration of the mathematical model. (Author)
Dispersant effectiveness in the field on fresh oils and emulsions
International Nuclear Information System (INIS)
Lunel, T.; Davies, L.
1996-01-01
A detailed data set on the effectiveness of dispersants on fresh oils and emulsions, was presented. The data set could be used to calibrate laboratory dispersant tests and dispersion models so that oil spill response teams would have accurate information to make decisions regarding remediation processes. AEA Technology developed steady state continuous release experiments to provide a data set with quantitative measures of dispersant effectiveness in the field. The Sea Empress incident was closely monitored in order to compare the quantification obtained through field trials. It was noted that the prediction of the percentage of oil dispersed chemically is not the only indication of whether or not to use a dispersant. The important determinant to consider should be the extent to which the natural dispersion process would be enhanced by dispersant application. 17 refs., 5 tabs., 18 figs
Analysis of non-thermal velocities in the solar corona
Directory of Open Access Journals (Sweden)
L. Contesse
2004-09-01
Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.
Measurement of particle velocity using a mutual inductance technique
International Nuclear Information System (INIS)
Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven
2004-01-01
Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement
Shaping the distribution of vertical velocities of antihydrogen in GBAR
Energy Technology Data Exchange (ETDEWEB)
Dufour, G.; Lambrecht, A.; Reynaud, S. [CNRS, ENS, UPMC, Laboratoire Kastler-Brossel, Paris (France); Debu, P. [CEA-Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, Gif-sur-Yvette (France); Nesvizhevsky, V.V. [Institut Max von Laue-Paul Langevin, Grenoble (France); Voronin, A.Yu. [P.N. Lebedev Physical Institute, Moscow (Russian Federation)
2014-01-15
GBAR is a project aiming at measuring the freefall acceleration of gravity for antimatter, namely antihydrogen atoms (H). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution.We propose to use a new method for shaping the distribution of the vertical velocities of H, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing H with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk.We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration g of H could be pushed below 10{sup -3} under realistic experimental conditions. (orig.)
Shaping the distribution of vertical velocities of antihydrogen in GBAR
Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.
2014-01-30
GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.
CO and IRAS detection of an intermediate-velocity cloud
International Nuclear Information System (INIS)
Desert, F.X.; Bazell, D.; Blitz, L.
1990-01-01
In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs
Dispersion modeling by kinematic simulation: Cloud dispersion model
International Nuclear Information System (INIS)
Fung, J C H; Perkins, R J
2008-01-01
A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.
Directory of Open Access Journals (Sweden)
Anthony G. Dixon
2017-10-01
Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.
Utilization of multimode Love wave dispersion curve inversion for geotechnical site investigation
International Nuclear Information System (INIS)
Hamimu, La; Nawawi, Mohd; Safani, Jamhir
2011-01-01
Inversion codes based on a modified genetic algorithm (GA) have been developed to invert multimode Love wave dispersion curves. The multimode Love wave dispersion curves were synthesized from the profile representing shear-wave velocity reversal using a full SH (shear horizontal) waveform. In this study, we used a frequency–slowness transform to extract the dispersion curve from the full SH waveform. Dispersion curves overlain in dispersion images were picked manually. These curves were then inverted using the modified GA. To assess the accuracy of the inversion results, differences between the true and inverted shear-wave velocity profile were quantified in terms of shear-wave velocity and thickness errors, E S and E H . Our numerical modeling showed that the inversion of multimode dispersion curves can significantly provide the better assessment of a shear-wave velocity structure, especially with a velocity reversal profile at typical geotechnical site investigations. This approach has been applied on field data acquired at a site in Niigata prefecture, Japan. In these field data, our inversion results show good agreement between the calculated and experimental dispersion curves and accurately detect low velocity layer targets
Energy Technology Data Exchange (ETDEWEB)
Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2006-12-15
This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)
Refractive index dispersion measurement using carrier-envelope phasemeters
International Nuclear Information System (INIS)
Hansinger, Peter; Töpfer, Philipp; Adolph, Daniel; Hoff, Dominik; Rathje, Tim; Sayler, A Max; Paulus, Gerhard G; Dimitrov, Nikolay; Dreischuh, Alexander
2017-01-01
We introduce a novel method for direct and accurate measurement of refractive index dispersion based on carrier-envelope phase detection of few-cycle laser pulses, exploiting the difference between phase and group velocity in a dispersive medium. In a layout similar to an interferometer, two carrier-envelope phasemeters are capable of measuring the dispersion of a transparent or reflective sample, where one phasemeter serves as the reference and the other records the influence of the sample. Here we report on proof-of-principle measurements that already reach relative uncertainties of a few 10 −4 . Further development is expected to allow for unprecedented precision. (paper)
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Turbulent flow velocity distribution at rough walls
International Nuclear Information System (INIS)
Baumann, W.
1978-08-01
Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de
Flocking and invariance of velocity angles.
Liu, Le; Huang, Lihong; Wu, Jianhong
2016-04-01
Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.
International Nuclear Information System (INIS)
Rahm, L.; Nyberg, L.; Gidhagen, L.
1990-01-01
A dispersion model to be used off costal waters has been developed. The model has been applied to describe the migration of radionuclides in the Baltic sea. A summary of the results is presented here. (K.A.E)
Pulsar velocity observations: Correlations, interpretations, and discussion
International Nuclear Information System (INIS)
Helfand, D.J.; Tademaru, E.
1977-01-01
From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution
Microseismic Velocity Imaging of the Fracturing Zone
Zhang, H.; Chen, Y.
2015-12-01
Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By
Reactimeter dispersion equation
A.G. Yuferov
2016-01-01
The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...
Fickian dispersion is anomalous
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Bikowski, J.; Huisman, J.A.; Vrugt, J.A.; Vereecken, H.; van der Kruk, J.
2012-01-01
Ground-penetrating radar (GPR) data affected by waveguide dispersion are not straightforward to analyse. Therefore, waveguide dispersed common midpoint measurements are typically interpreted using so-called dispersion curves, which describe the phase velocity as a function of frequency. These
Clay squirt: Local flow dispersion in shale-bearing sandstones
DEFF Research Database (Denmark)
Sørensen, Morten Kanne; Fabricius, Ida Lykke
2017-01-01
Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...
Subsurface offset behaviour in velocity analysis with extended reflectivity images
Mulder, W.A.
2012-01-01
Migration velocity analysis with the wave equation can be accomplished by focusing of extended migration images, obtained by introducing a subsurface offset or shift. A reflector in the wrong velocity model will show up as a curve in the extended image. In the correct model, it should collapse to a
Subsurface offset behaviour in velocity analysis with extended reflectivity images
Mulder, W.A.
2013-01-01
Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In
A classical model explaining the OPERA velocity paradox
Broda, Boguslaw
2011-01-01
In the context of the paradoxical results of the OPERA Collaboration, we have proposed a classical mechanics model yielding the statistically measured velocity of a beam higher than the velocity of the particles constituting the beam. Ingredients of our model necessary to obtain this curious result are a non-constant fraction function and the method of the maximum-likelihood estimation.
Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa
2017-01-01
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method
Development of an optimal velocity selection method with velocity obstacle
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-08-15
The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.
Analytic properties of the whistler dispersion function
International Nuclear Information System (INIS)
Daniell, G.J.
1986-01-01
The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed. (author)
Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.
2017-10-01
Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.
Double path-integral migration velocity analysis: a real data example
International Nuclear Information System (INIS)
Costa, Jessé C; Schleicher, Jörg
2011-01-01
Path-integral imaging forms an image with no knowledge of the velocity model by summing over the migrated images obtained for a set of migration velocity models. Double path-integral imaging migration extracts the stationary velocities, i.e. those velocities at which common-image gathers align horizontally, as a byproduct. An application of the technique to a real data set demonstrates that quantitative information about the time migration velocity model can be determined by double path-integral migration velocity analysis. Migrated images using interpolations with different regularizations of the extracted velocities prove the high quality of the resulting time-migration velocity information. The so-obtained velocity model can then be used as a starting model for subsequent velocity analysis tools like migration tomography or other tomographic methods
Variation of the solar wind velocity following solar flares
International Nuclear Information System (INIS)
Huang, Y.; Lee, Y.
1975-01-01
By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)
Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe
2017-04-01
For the past several years a lot of attention has been given to pore-scale flow in order to understand and model transport, mixing and reaction in porous media. Nevertheless we believe that an accurate study of spatial and temporal evolution of velocities could bring important additional information for the upscaling from pore to higher scales. To gather these pieces of information, we perform Stokes flow simulations on pore-scale digitized images of a Berea sandstone core. First, micro-tomography (XRMT) imaging and segmentation processes allow us to obtain 3D black and white images of the sample [1]. Then we used an OpenFoam solver to perform the Stokes flow simulations mentioned above, which gives us the velocities at the interfaces of a cubic mesh. Subsequently, we use a particle streamline reconstruction technique which uses the Eulerian velocity field previously obtained. This technique, based on a modified Pollock algorithm [2], enables us to make particle tracking simulations on the digitized sample. In order to build a stochastic pore-scale transport model, we analyze the Lagrangian velocity series in two different ways. First we investigate the velocity evolution by sampling isochronically (t-Lagrangian), and by studying its statistical properties in terms of one- and two-points statistics. Intermittent patterns can be observed. These are due to the persistance of low velocities over a characteristic space length. Other results are investigated, such as correlation functions and velocity PDFs, which permit us to study more deeply this persistence in the velocities and to compute the correlation times. However, with the second approach, doing these same analysis in space by computing the velocities equidistantly, enables us to remove the intermittency shown in the temporal evolution and to model these velocity series as a Markov process. This renders the stochastic particle dynamics into a CTRW [3]. [1] Gjetvaj, F., A. Russian, P. Gouze, and M. Dentz (2015
Energy Technology Data Exchange (ETDEWEB)
Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id [PhD student, Physics Department, FMIPA, UGM. Sekip Utara Yogyakarta 55281 Indonesia (Indonesia); Brotopuspito, Kirbani S.; Sismanto; Waluyo [Geophysics Laboratory, FMIPA, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281 (Indonesia)
2015-04-24
The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.
The dispersion relation of a gravitating spiral system
International Nuclear Information System (INIS)
Evangelidis, E.
1977-01-01
The dispersion relation has been found for a galaxy, without the assumption that the centrifugal force is balanced by the gravitational force. It has been shown that such a system (1) can be gravitationally unstable under appropriate conditions, and (2) that there is no resonance at ω=2Ω (Ω=angular velocity of the Galaxy). (Auth.)
International Nuclear Information System (INIS)
Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.
1986-01-01
This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction
Bayesian inversion of microtremor array dispersion data in southwestern British Columbia
Molnar, Sheri; Dosso, Stan E.; Cassidy, John F.
2010-11-01
This paper applies Bayesian inversion, with evaluation of data errors and model parametrization, to produce the most-probable shear-wave velocity profile together with quantitative uncertainty estimates from microtremor array dispersion data. Generally, the most important property for characterizing earthquake site response is the shear-wave velocity (VS) profile. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and non-linear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a non-linear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parametrization. This paper applies a Bayesian formulation that represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parametrization is determined using the Bayesian information criterion, which provides the simplest model consistent with the resolving power of the data. Parametrizations considered vary in the number of layers, and include layers with uniform, linear and power-law gradients. Parameter uncertainties are found to be underestimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance
Dispersion analysis for waves propagated in fractured media
Energy Technology Data Exchange (ETDEWEB)
Lesniak, A; Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering
1996-05-01
Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.
Eccentricity samples: Implications on the potential and the velocity distribution
Directory of Open Access Journals (Sweden)
Cubarsi R.
2017-01-01
Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems
Anomalous acoustic dispersion in architected microlattice metamaterials
KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara
The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.
On linear relationship between shock velocity and particle velocity
International Nuclear Information System (INIS)
Dandache, H.
1986-11-01
We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs
Analyses of subchannel velocity distribution for HANARO fuel assembly
International Nuclear Information System (INIS)
Chae, Hee Taek; Han, Gee Yang; Park, Cheol; Lim, In Cheol
1998-10-01
MATRA-h which is a subchannel analysis computer code is used to evaluate the thermal margin of HANARO core. To estimate core thermal margin, accurate prediction of subchannel velocity is very important. The average subchannel velocities of 18 element fuel assembly were obtained from the results of velocity measurement test. To validate the adequacy of the hydraulic model code predictions were compared with the experimental results for the subchannel velocity distribution in 18 element fuel channel. The calculated subchannel velocity distributions in the central channels were larger than those of experiment. On the other hand the subchannel velocities in the outer channels were smaller. It is speculated that the prediction like as above would make CHF value lower because CHF phenomena had been occurred in the outer fuel element in the bundle CHF test of AECL. The prediction for axial pressure distribution coincided with the experimental results well. (author). 9 refs., 9 tabs., 14 figs
Directory of Open Access Journals (Sweden)
Ahmadishoar Javad
2017-01-01
Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.
DEFF Research Database (Denmark)
2014-01-01
The last decades have witnessed a significant shift in policy competences away from central governments in Europe. The reallocation of competences spans over three dimensions: upwards; sideways; and downwards. This collection takes the dispersion of powers as a starting point and seeks to assess...... how the actors involved cope with the new configurations. In this introduction, we discuss the conceptualization of power dispersion and highlight the ways in which the contributions add to this research agenda. We then outline some general conclusions and end by indicating future avenues of research....... Taken together, the collection contributes some answers to the challenge of defining and measuring – in a comparative way – the control and co-ordination mechanisms which power dispersion generates. It also explores the tension between political actors' quest for autonomy and the acknowledgement...
Severino, Gerardo; Cuomo, Salvatore; Sommella, Angelo; D'urso, Guido
2017-10-01
We consider transport of a conservative solute through an aquifer as determined: (i) by the advective velocity, which depends upon the hydraulic conductivity K and (ii) by the local spreading due to the pore-scale dispersion (PSD). The flow is steady, and it takes place in a porous formation where, owing to its erratic spatial variations, the hydraulic log conductivity Y≡lnK is modeled as a stationary Gaussian random field. The relative effect of the above mechanisms (i)-(ii) is quantified by the Peclet number>(Pe>) which, in most of the previous studies, was considered infinite (i.e., no PSD) due to the overtake of advective heterogeneities upon the PSD. Here we aim at generalizing such studies by accounting for the impact of finite Pe on conservative transport. Previous studies on the topic required extensive numerical computations. In the present note, we remove the computational burden by adopting the rational approximate expression of Dagan and Cvetkovic (1993) for the covariance of the velocity field. This allows one to obtain closed form expressions for the quantities characterizing the longitudinal plume's dispersion. Transport can be straightforwardly investigated by dealing with a modified Peclet number>(Pe>¯>) incorporating both the PSD and the aquifer's anisotropy. The satisfactory match to Cape Cod field data suggests that the present theoretical results lend themselves as a useful tool to assess the impact of the PSD upon conservative transport through heterogeneous porous formations.
International Nuclear Information System (INIS)
Saffouri, M.H.
1982-07-01
A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)
On the theory of turbulent flame velocity
Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady
2012-01-01
The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...
El-Amin, Mohamed
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.
Sodium Velocity Maps on Mercury
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
High velocity impact experiment (HVIE)
Energy Technology Data Exchange (ETDEWEB)
Toor, A.; Donich, T.; Carter, P.
1998-02-01
The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!
Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C
2016-05-01
Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015
Suspended sediment drift and dispersion at Hibernia
International Nuclear Information System (INIS)
Tedford, T.; Drozdowski, A.; Hannah, C.G.
2003-01-01
Surface water waves and near-bottom currents around the Hibernia oil production platform on the Grand Banks of Newfoundland were examined to determine how the different seasons affect changes in wave magnitude and directions of water currents. Wave observations revealed a strong correlation with seasons, with the larger waves occurring in fall and early winter. There was no obvious seasonality in the size or direction of currents. The benthic boundary layer transport (BBLT) model was used to predict the drift and dispersion pathways of suspended drilling muds discharged from the Hibernia platform. The 2-year study from March 1998 to May 2000 involved 5-day BBLT model simulations covering the complete period of current meter deployment. The study focused on the sensitivity of the drift and dispersion to variability in the physical environment and uncertainty in the bottom stress calculation and particle settling velocity. The BBLT model incorporates a stress dependent particle settling velocity that includes the main features of the flocculations of drill mud fines under marine conditions. The study provides a better understanding of how drill mud concentration levels can change with variations in waves, currents, and bottom stress. It was determined that drift is generally oriented along the northwest/southeast axis, with a typical magnitude of 0.8 cm/sec for the fast settling velocity and 3.1 cm/sec for the slow settling velocity. It was concluded that near-surface or mid-depth discharges of drilling mud in the summer may not reach the sea floor. 17 refs., 13 tabs., 36 figs
Influence of boundary-layer dynamics on pollen dispersion and viability
Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.
2013-04-01
Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.
Pulse splitting of self-focusing-beams in normally dispersive media
DEFF Research Database (Denmark)
Bergé, L.; Juul Rasmussen, J.
1996-01-01
The influence of the normal group-velocity dispersion on anisotropic self-focusing beams in nonlinear Kerr media is studied analytically. It is shown that a light pulse self-focusing in the presence of normal dispersion is split up into several small-scale cells preventing a catastrophic collapse....... The theoretical explanation of this splitting process is revealed....
Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4
DEFF Research Database (Denmark)
Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.
2004-01-01
High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...
Modal expansions in periodic photonic systems with material loss and dispersion
DEFF Research Database (Denmark)
Wolff, Christian; Busch, Kurt; Mortensen, N. Asger
2018-01-01
in the presence of material dispersion can be overcome. We then formulate expressions for the band-structure derivative (∂ω)/(∂k) (complex group velocity) and the local and total density of transverse optical states. Our exact expressions hold for 3D periodic arrays of materials with arbitrary dispersion...
Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...
Experimental study of ERT monitoring ability to measure solute dispersion.
Lekmine, Grégory; Pessel, Marc; Auradou, Harold
2012-01-01
This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Stress modeling in colloidal dispersions undergoing non-viscometric flows
Dolata, Benjamin; Zia, Roseanna
2017-11-01
We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.
Introduction to vector velocity imaging
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov
Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...
Spatially varying dispersion to model breakthrough curves.
Li, Guangquan
2011-01-01
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
A Method of Initial Velocity Measurement for Rocket Projectile
Directory of Open Access Journals (Sweden)
Zhang Jiancheng
2017-01-01
Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.
An interferometric velocity calibrator for 73Ge Moessbauer spectrometer
International Nuclear Information System (INIS)
Chow, L.; Kimble, T.
1987-01-01
A velocity calibrator based on a laser driven Michelson interferometer was designed for a 73 Ge Moessbauer spectrometer in the range of 100 to 500 μm/sec. The conventional method of counting the interference fringes cannot be used in this case because the displacement only spans about 3 to 15 μm and only a few fringes can be observed during one velocity sweep. The velocity calibration obtained this way was compared with the calibration obtained from 57 Fe measurement, and excellent agreement was found between the two methods. (orig.)
Dispersive shock mediated resonant radiations in defocused nonlinear medium
Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar
2018-04-01
We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.
Energy Technology Data Exchange (ETDEWEB)
Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)
2014-07-01
{sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained
Acoustic phonon dispersion of CoSi2
International Nuclear Information System (INIS)
Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.
1985-01-01
The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained
Photonic crystal waveguides with semi-slow light and tailored dispersion properties
DEFF Research Database (Denmark)
Frandsen, Lars Hagedorn; Lavrinenko, Andrei; Fage-Pedersen, Jacob
2006-01-01
waveguide with either vanishing, positive, or negative group velocity dispersion and semi-slow light. We realize experimentally a silicon-on-insulator photonic crystal waveguide having nearly constant group velocity [similar to]c$-0$//34 in an 11-nm bandwidth below the silica-line. $CPY@2006 Optical Society...
Interface, a dispersed architecture
Vissers, C.A.
1976-01-01
Past and current specification techniques use timing diagrams and written text to describe the phenomenology of an interface. This paper treats an interface as the architecture of a number of processes, which are dispersed over the related system parts and the message path. This approach yields a
Psychorheology of food dispersions
Czech Academy of Sciences Publication Activity Database
Štern, Petr; Panovská, Z.; Pokorný, J.
2010-01-01
Roč. 58, č. 1 (2010), s. 29-35 ISSN 0042-790X R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : psychorheology * food dispersions * tomato ketchup * rheology * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010
Diffraction imaging and velocity analysis using oriented velocity continuation
Decker, Luke
2014-08-05
We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.
Uncertainty assessment of 3D instantaneous velocity model from stack velocities
Emanuele Maesano, Francesco; D'Ambrogi, Chiara
2015-04-01
3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the
Modeling of corium dispersion in DCH accidents
International Nuclear Information System (INIS)
Wu, Q.
1996-01-01
A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)
SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN
Directory of Open Access Journals (Sweden)
Mohammad Outokesh
2011-09-01
Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.
The radial velocities of planetary nebulae in NGC 3379
Ciardullo, Robin; Jacoby, George H.; Dejonghe, Herwig B.
1993-09-01
We present the results of a radial velocity survey of planetary nebulae (PNs) in the normal elliptical galaxy NGC 3379 performed with the Kitt Peak 4 m telescope and the NESSIE multifiber spectrograph. In two half-nights, we measured 29 PNs with projected galactocentric distances between 0.4 and 3.8 effective radii with an observational uncertainty of about 7 km/s. These data extend three times farther into the halo than any previous absorption-line velocity study. The velocity dispersion and photometric profile of the galaxy agrees extremely well with that expected from a constant mass-to-light ratio, isotropic orbit Jaffe model with M/L(B) about 7; the best-fitting anisotropic models from a quadratic programming algorithm also give M/L(B) about 7. The data are consistent with models that contain no dark matter within 3.5 effective radii of the galaxy's nucleus.
Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.
Yassin, Mohamed F; Kellnerová, R; Janour, Z
2009-09-01
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.
Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media
Icardi, Matteo
2014-07-31
In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.
Radial velocity asymmetries from jets with variable velocity profiles
International Nuclear Information System (INIS)
Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.
2006-01-01
We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models
Modified Feynman ratchet with velocity-dependent fluctuations
Directory of Open Access Journals (Sweden)
Jack Denur
2004-03-01
Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir
2017-01-01
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Fractals control in particle's velocity
International Nuclear Information System (INIS)
Zhang Yongping; Liu Shutang; Shen Shulan
2009-01-01
Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.
International Nuclear Information System (INIS)
Augensen, H.J.; Buscombe, W.
1978-01-01
Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)
Dispersion Differences and Consistency of Artificial Periodic Structures.
Cheng, Zhi-Bao; Lin, Wen-Kai; Shi, Zhi-Fei
2017-10-01
Dispersion differences and consistency of artificial periodic structures, including phononic crystals, elastic metamaterials, as well as periodic structures composited of phononic crystals and elastic metamaterials, are investigated in this paper. By developing a K(ω) method, complex dispersion relations and group/phase velocity curves of both the single-mechanism periodic structures and the mixing-mechanism periodic structures are calculated at first, from which dispersion differences of artificial periodic structures are discussed. Then, based on a unified formulation, dispersion consistency of artificial periodic structures is investigated. Through a comprehensive comparison study, the correctness for the unified formulation is verified. Mathematical derivations of the unified formulation for different artificial periodic structures are presented. Furthermore, physical meanings of the unified formulation are discussed in the energy-state space.
Chromatic dispersion effects in ultra-low coherence interferometry
Energy Technology Data Exchange (ETDEWEB)
Lychagov, V V; Ryabukho, V P [N.G.Chernyshevsky Saratov State University (Russian Federation)
2015-06-30
We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that is an order of magnitude greater than the pulse width. (interferometry)
Climatology of tropospheric vertical velocity spectra
Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.
1986-01-01
Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.
Saturable absorption in detonation nanodiamond dispersions
Vanyukov, Viatcheslav; Mikheev, Gennady; Mogileva, Tatyana; Puzyr, Alexey; Bondar, Vladimir; Lyashenko, Dmitry; Chuvilin, Andrey
2017-07-01
We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.
Dispersion relations for 1D high-gain FELs
International Nuclear Information System (INIS)
Webb, S.D.; Litvinenko, V.N.
2010-01-01
We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.
In-town dispersion calculations with RIMPUFF and UDM
DEFF Research Database (Denmark)
Astrup, P.; Thykier-Nielsen, Søren; Mikkelsen, Torben
2005-01-01
and in depositions obtained with a code designed for dispersion of a release from a nuclear power plant, typically situated at a distance from densely inhabited areas, and a code specifically designed forpredicting dispersion from sources inside urban areas. The codes applied are the RIMPUFF code, RIsø Mesoscale...
Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river
Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.
2012-01-01
Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).
Dispersion of breakdown voltage of liquid helium
International Nuclear Information System (INIS)
Ishii, Itaru; Noguchi, Takuya
1978-01-01
As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)
Solar wind velocity and geomagnetic moment variations
International Nuclear Information System (INIS)
Kalinin, Yu.D.; Rozanova, T.S.
1982-01-01
The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity
International Nuclear Information System (INIS)
Andreani, M.; Yadigaroglu, G.
1989-12-01
Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs
Working document dispersion models
International Nuclear Information System (INIS)
Dop, H. van
1988-01-01
This report is a summary of the most important results from June 1985 of the collaboration of the RIVM (Dutch National Institute for Public Health and Environment Hygiene) and KNMI (Royal Dutch Meteorologic Institute) on the domain of dispersion models. It contains a short description of the actual SO x /NO x -model. Furthermore it contains recommendations for modifications of some numerical-mathematical aspects and an impulse to a more complete description of chemical processes in the atmosphere and the (wet) deposition process. A separate chapter is devoted to the preparation of meteorologic data which are relevant for dispersion as well as atmospheric chemistry and deposition. This report serves as working document for the final formulation of a acidifying- and oxidant-model. (H.W.). 69 refs.; 51 figs.; 13 tabs.; 3 schemes
Spatially Dispersed Employee Recovery
DEFF Research Database (Denmark)
Hvass, Kristian Anders; Torfadóttir, Embla
2014-01-01
Employee recovery addresses either employee well-being or management's practices in aiding employees in recovering themselves following a service failure. This paper surveys the cabin crew at a small, European, low-cost carrier and investigates employees' perceptions of management practices to aid...... personnel achieve service recovery. Employee recovery within service research often focuses on front-line employees that work in a fixed location, however a contribution to the field is made by investigating the recovery of spatially dispersed personnel, such as operational personnel in the transport sector......, who have a work place away from a fixed or central location and have minimal management contact. Results suggest that the support employees receive from management, such as recognition, information sharing, training, and strategic awareness are all important for spatially dispersed front...
International Nuclear Information System (INIS)
Shaw, T.L.
1974-01-01
One of the tasks of the Sonderforschungsbereich 80 is to study the dispersion of heat discharged into rivers and other bodies of water and to develop methods which permit prediction of detrimental effects caused by the heated discharges. In order to help the SFB 80 to specify this task, Dr. Shaw, lecturer of Civil Engineering at the Bristol University, conducted a literature survey on heat-dispersion studies during the two months which he spent as a visiting research fellow with the SFB 80 at the University of Karlsruhe in the summer of 1973. The following report is the outcome of this survey. It gives Dr. Shaw's assessment of the present state of knowledge - based almost exclusively on literature in the English language - and compares this with the knowledge required by river planners. The apparent discrepancy leads to suggestions for future research. Selected references as well as a representative bibliography can be found at the end of the report. (orig.) [de
International Nuclear Information System (INIS)
Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan
2012-01-01
The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration
Settling velocities in batch sedimentation
International Nuclear Information System (INIS)
Fricke, A.M.; Thompson, B.E.
1982-10-01
The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles
Dispersion relations and sum rules for natural optical activity
International Nuclear Information System (INIS)
Thomaz, M.T.; Nussenzveig, H.M.
1981-06-01
Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author) [pt
Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution
Directory of Open Access Journals (Sweden)
Erick E. Reyes-Vera
2013-11-01
Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km
Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils
International Nuclear Information System (INIS)
Erel, Y.
1998-01-01
The isotopic composition of Pb measured in soil samples was used to determine rates and mechanisms of anthropogenic Pb migration in the soil. Petrol-Pb found in soluble halogenated aerosols migrates into the soil and is retained in the soil by the stationary soil particles. Lead infiltration velocity is approximately 5 x 10 -1 cm/year, and its retardation factor is estimated to be on the order of 1 x 10 3 . The infiltration of Pb into the soil is best described by the advection-dispersion equation under the assumption that the time scale of the longitudinal dispersion is much longer than the time scale of advection. Therefore, the contribution of dispersion to the solution of the advection-dispersion equation is negligible. As a result, the soil profile of petrol-Pb resembles the time-dependent input function of petrol-Pb. The estimated petrol-Pb penetration velocity and the isotopic composition profile of Pb in off-road soil are used for the computation of the fraction of anthropogenic Pb in this soil. It is calculated that the fraction of anthropogenic Pb in the acid-leached soil samples and in the soil residue of this soil profile drops from 60 and 22% near the surface to 6 and 0% at a depth of 33 cm, respectively. The downward migration velocity of Pb in soils of the studied area, which are typically 50 to 100 cm deep, implies a residence time of Pb in the soil of 100 to 200 years
International Nuclear Information System (INIS)
Boerzsoenyi, A.; Meroe, M.
2010-01-01
Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3
Taylor dispersion of nanoparticles
Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke
2017-08-01
The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE
Energy Technology Data Exchange (ETDEWEB)
Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Gagné, Jonathan [Institute for Research on Exoplanets (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Bochanski, John J. [Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 (United States); Faherty, Jaqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Schmidt, Sarah J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Cruz, Kelle L., E-mail: aburgasser@ucsd.edu [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States)
2015-09-15
Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfs (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.
Dispersion self-energy of the electron
International Nuclear Information System (INIS)
Hawton, M.
1991-01-01
Electron mass renormalization and the Lamb shift have been investigated using the dispersion self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transitions frequencies are considered, absorption from the electromagnetic field is canceled by emission due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency condition that the field seen by the electron is the same as the field produced by the expectation value of current. The radiation present can thus be viewed as arising from emission and subsequent reabsorption by matter. As developed here, the numerical predictions of dispersion theory are identical to those of quantum electrodynamics. The physical picture implied by dispersion theory is discussed in the context of semiclassical theories and quantum electrodynamics
International Nuclear Information System (INIS)
Mace, R.L.
2003-01-01
A Gordeyev-type integral for the investigation of electrostatic waves in magnetized plasma having a kappa or generalized Lorentzian velocity distribution is derived. The integral readily reduces, in the unmagnetized and parallel propagation limits, to simple expressions involving the Z κ function. For propagation perpendicular to the magnetic field, it is shown that the Gordeyev integral can be written in closed form as a sum of two generalized hypergeometric functions, which permits easy analysis of the dispersion relation for electrostatic waves. Employing the same analytical techniques used for the kappa distribution, it is further shown that the well-known Gordeyev integral for a Maxwellian distribution can be written very concisely as a generalized hypergeometric function in the limit of perpendicular propagation. This expression, in addition to its mathematical conciseness, has other advantages over the traditional sum over modified Bessel functions form. Examples of the utility of these generalized hypergeometric series, especially how they simplify analyses of electrostatic waves propagating perpendicular to the magnetic field, are given. The new expression for the Gordeyev integral for perpendicular propagation is solved numerically to obtain the dispersion relations for the electrostatic Bernstein modes in a plasma with a kappa distribution
Uranium Dispersion and Dosimetry (UDAD) Code
International Nuclear Information System (INIS)
Momeni, M.H.; Yuan, Y.; Zielen, A.J.
1979-05-01
The Uranium Dispersion and Dosimetry (UDAD) Code provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility. The UDAD Code incorporates the radiation dose from the airborne release of radioactive materials, and includes dosimetry of inhalation, ingestion, and external exposures. The removal of raioactive particles from a contaminated area by wind action is estimated, atmospheric concentrations of radioactivity from specific sources are calculated, and source depletion as a result of deposition, fallout, and ingrowth of radon daughters are included in a sector-averaged Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination and deposition velocity are estimated. Calculation of the inhalation dose and dose rate to an individual is based on the ICRP Task Group Lung Model. Estimates of the dose to the bronchial epithelium of the lung from inhalation of radon and its short-lived daughters are calculated based on a dose conversion factor from the BEIR report. External radiation exposure includes radiation from airborne radionuclides and exposure to radiation from contaminated ground. Terrestrial food pathways include vegetation, meat, milk, poultry, and eggs. Internal dosimetry is based on ICRP recommendations. In addition, individual dose commitments, population dose commitments, and environmental dose commitments are computed. This code also may be applied to dispersion of any other pollutant
Thomas, J.R.; Gibson, D.J.; Middleton, B.A.
2005-01-01
Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.
Nozzle for electric dispersion reactor
Sisson, W.G.; Basaran, O.A.; Harris, M.T.
1995-11-07
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.
International Nuclear Information System (INIS)
Makino, A.; Law, C.K.
1995-01-01
The combustion behavior of the self-propagating high-temperature synthesis (SHS) process has been the subject of many analytical and experimental investigations. Recently, a theory based on spray combustion was proposed for the SHS flame structure and propagation. In contrast to previous studies based on the homogeneous premixed flame, this theory accounts for the premixed-mode of propagation of the bulk flame and the non-premixed reaction of the dispersed nonmetal (or higher melting-point metal) particles which supports the bulk flame. Finite-rate reaction at the particle surface and the temperature-dependent, Arrhenius nature of mass diffusion are both incorporated. The heterogeneous nature of the theory has satisfactorily captured the effects of particle size on the flame propagation speed. The final solution of Makino and Law was obtained numerically and hence presented parametrically. The authors have since then derived an approximate analytical expression for the burning velocity, which explicitly displays the functional dependence of the burning velocity on the various system parameters. This result is presented herein. Applicability of this expression is examined by comparing it with the numerical results for Ti-C, Ti-B, Zr-B, Hf-B, and Co-Ti systems. A fair degree of agreement has been shown as far as the general trend and approximate magnitude are concerned
International Nuclear Information System (INIS)
Fitremann, J.M.; Guilpin, C.; Postaire, J.
1976-01-01
The measurement of the interface velocity in a two-phase gas-liquid flow is a difficult problem, owing to the dispersion of the velocity components of individual bubbles, gas-slugs, droplets, waves, etc. An entirely automatic method is presented, it gives the velocity of slugs and bubbles independently, by discrimination of local phase probe signals into a 'slug' signal and a 'bubble' signal feeding a shape-recognition program. Both discriminated void fractions are also calculated by the apparatus [fr
A CFD model for pollutant dispersion in rivers
Directory of Open Access Journals (Sweden)
Modenesi K.
2004-01-01
Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.
In Vivo Validation of a Blood Vector Velocity Estimator with MR Angiography
DEFF Research Database (Denmark)
Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten
2009-01-01
Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound beam direction. This implies that a Doppler angle under examination close to 90° results in unreliable information about the true blood direction and blood velocity. The novel method...... indicate that reliable vector velocity estimates can be obtained in vivo using the presented angle-independent 2-D vector velocity method. The TO method can be a useful alternative to conventional Doppler systems by avoiding the angle artifact, thus giving quantitative velocity information....
Determination of hydrogen cluster velocities and comparison with numerical calculations
International Nuclear Information System (INIS)
Täschner, A.; Köhler, E.; Ortjohann, H.-W.; Khoukaz, A.
2013-01-01
The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements
Phase velocity enhancement of linear explosive shock tubes
Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent
2011-06-01
Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.
Reliability of force-velocity relationships during deadlift high pull.
Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane
2017-11-13
This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p 0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.
Burning velocity measurements of nitrogen-containing compounds.
Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira
2008-06-30
Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.
Ramana Reddy, J. V.; Srikanth, D.; Das, Samir K.
2017-08-01
A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.
Numerical modeling of probe velocity effects for electromagnetic NDE methods
Shin, Y. K.; Lord, W.
The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.
Continuous measurements of in-bore projectile velocity
International Nuclear Information System (INIS)
Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.
1989-01-01
The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed
Variational multi-valued velocity field estimation for transparent sequences
DEFF Research Database (Denmark)
Ramírez-Manzanares, Alonso; Rivera, Mariano; Kornprobst, Pierre
2011-01-01
Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose a variational approach for estimating multi-valued velocity fields in transparent sequences. Starting from existing local motion estimators, we derive...... a variational model for integrating in space and time such a local information in order to obtain a robust estimation of the multi-valued velocity field. With this approach, we can indeed estimate multi-valued velocity fields which are not necessarily piecewise constant on a layer –each layer can evolve...
Attenuation and Dispersion in Earth's Materials
Gueguen, Y.
2012-04-01
waves are related through Kramers-Kronig equations. Using simple viscoelastic models such as the Zener model, one can show that Q-1 is maximum at a critical frequency fc, and, correlatively, that the wavespeed increases from low to high f by an amount ?V/V = (Q-1)max. This means that another (equivalent) way to look at attenuation is to look at dispersion. Experimentally, this implies to measure high and low frequency wavespeeds or elastic moduli. High frequency measurements have been performed for a long time (including high P-high T conditions) but low frequency measurements remain a challenge. Such data are however of major importance: seismic velocities data (1 H-1 kHz range) are obtained at much lower frequencies than laboratory data (MHz range). A difference by up to 6 orders of magnitudes in frequency exist between both set of data. Yet it has been mainly assumed that the frequency dependence can be neglected. Several set of experimental data show that it is not true. The implications for the crust and for the mantle will be discussed.
Tracer dispersion - experiment and CFD
International Nuclear Information System (INIS)
Zitny, R.
2004-01-01
Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)
Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.
2009-04-01
This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of
Velocity distribution in snow avalanches
Nishimura, K.; Ito, Y.
1997-12-01
In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Analysis of Nonlinear Dispersion of a Pollutant Ejected by an External Source into a Channel Flow
Directory of Open Access Journals (Sweden)
T. Chinyoka
2010-01-01
Full Text Available This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.
Polymer Inclusion Membranes with Strip Dispersion
Directory of Open Access Journals (Sweden)
Yueh-Hsien Li
2017-06-01
Full Text Available The present work investigated the permeation of indium ions through a polymer inclusion membrane (PIM, prepared with cellulose triacetate (CTA as the base polymer, tris(2-butoxyethyl phosphate (TBEP as the plasticizer and di-(2-ethylhexylphosphoric acid (D2EHPA as the extractant. With 5 M HCl aqueous solution as the strip solution, we observed an initial indium permeability of 2.4 × 10−4 m/min. However, the permeability decreases with time, dropping to about 3.4 × 10−5 m/min after 200 min of operation. Evidence was obtained showing that hydrolysis of CTA occurred, causing a dramatic decrease in the feed pH (protons transported from strip to feed solutions and a loss of extractant and plasticizer from the membrane, and then leading to the loss of indium permeability. To alleviate the problem of hydrolysis, we proposed an operation scheme called polymer inclusion membranes with strip dispersion: dispersing the strip solution in extractant-containing oil and then bringing the dispersion to contact with the polymer membrane. Since the strong acid was dispersed in oil, the membrane did not directly contact the strong acid at all times, and membrane hydrolysis was thus alleviated and the loss of indium permeability was effectively prevented. With the proposed scheme, a stable indium permeability of 2.5 × 10−4 m/min was obtained during the whole time period of the permeation experiment.
Transparent dispersion compensator with built-in gain equalizer
DEFF Research Database (Denmark)
Rottwitt, Karsten; Doerr, C.
2002-01-01
In this work we describe a method to obtain a transparent or even an amplifying dispersion compensating module with built-in gain equalization functionality. The principle of operation and experimental results are illustrated.......In this work we describe a method to obtain a transparent or even an amplifying dispersion compensating module with built-in gain equalization functionality. The principle of operation and experimental results are illustrated....
Should tsunami simulations include a nonzero initial horizontal velocity?
Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.
2017-08-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the
Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides
International Nuclear Information System (INIS)
Xiao-Yu, Mao; Geng-Yan, Zhang; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng
2008-01-01
By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W 2 ) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity ν g in incident waveguide can be achieved. In particular, proper W 2 and r' can lead to the lowest ν g of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion
Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise
Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin
2017-04-01
Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the
Consideration of wear rates at high velocity
Hale, Chad S.
The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models