WorldWideScience

Sample records for vein xylem water

  1. Water Filtration Using Plant Xylem

    Science.gov (United States)

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  2. How Does Leaf Anatomy Influence Water Transport outside the Xylem?

    Science.gov (United States)

    Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren

    2015-08-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Hydrogel Regulation of Xylem Water Flow: An Alternative Hypothesis

    NARCIS (Netherlands)

    Doorn, van W.G.; Hiemstra, T.; Fanourakis, D.

    2011-01-01

    The concentration of cations in the xylem sap influences the rate of xylem water flow in angiosperm plants. It has been speculated that this is due to the shrinking and swelling of pectins in the pit membranes. However, there is as yet minimal evidence for the presence of pectin in pit membranes of

  4. Effects of water stress during growth of xylem anatomy, xylem functioning and vase life in three Zinnia elegans cultivars

    OpenAIRE

    Twumasi, P.; Ieperen, van, W.; Woltering, E.J.; Emons, A.M.C.; Schel, J.H.N.; Meeteren, van, U.; Marwijk, van, D.

    2005-01-01

    In cut flowers, hydraulic properties and dimensions of xylem vessels in the stem directly influence vase-life and thus post-harvest quality. Xylem hydraulic conductance as well as recovery from air embolisms at the start of vase life strongly depends on number, diameter and length of xylem vessels in the base of the cut flower stems. In this research we employed different water availability levels (high and low water content) in the growing medium of Zinnia elegans plants of three cultivars (...

  5. The watering of trees. Embolization and recovery in xylem microtubes

    CERN Document Server

    Gouin, Henri

    2014-01-01

    In any tree, crude sap is driven through xylem microtubes. The crude sap is submitted to intermolecular forces shaping it into very thin liquid films in embolized xylem microtubes. The concept of disjoining pressure must be taken into account and a strong negative pressure can be present in liquid-water bulks. The disjoining pressure gradient induced by the flux of transpiration initiates crude sap motion. Applications enable to understand why the xylem microtubes can be refilled and why the ascent of sap is possible even for the tallest trees avoiding the problems due to cavitation.

  6. A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf.

    Science.gov (United States)

    Moreno-Piovano, Guillermo S; Moreno, Javier E; Cabello, Julieta V; Arce, Agustín L; Otegui, María E; Chan, Raquel L

    2017-10-17

    The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.

  7. How Does Leaf Anatomy Influence Water Transport outside the Xylem?1[OPEN

    Science.gov (United States)

    Buckley, Thomas N.; Scoffoni, Christine; Sack, Lawren

    2015-01-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. PMID:26084922

  8. 78 FR 77649 - Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D...

    Science.gov (United States)

    2013-12-24

    ... Foreign-Trade Zones Board Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D, (Centrifugal, Submersible Pumps and Related Components), Auburn, New York Xylem Water Systems USA LLC (Xylem), operator of Subzone 37D, submitted a notification of proposed production activity to...

  9. Effects of water stress during growth of xylem anatomy, xylem functioning and vase life in three Zinnia elegans cultivars

    NARCIS (Netherlands)

    Twumasi, P.; Ieperen, van W.; Woltering, E.J.; Emons, A.M.C.; Schel, J.H.N.; Meeteren, van U.; Marwijk, van D.

    2005-01-01

    In cut flowers, hydraulic properties and dimensions of xylem vessels in the stem directly influence vase-life and thus post-harvest quality. Xylem hydraulic conductance as well as recovery from air embolisms at the start of vase life strongly depends on number, diameter and length of xylem vessels

  10. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots.

    Science.gov (United States)

    Pérez-Donoso, Alonso G; Greve, L Carl; Walton, Jeffrey H; Shackel, Ken A; Labavitch, John M

    2007-02-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (K(S)) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen.

  11. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  12. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic

  13. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L.

    OpenAIRE

    Guet, Justine; Fichot, Régis; Ledée, Camille; Laurans, Françoise; Cochard, Hervé; Delzon, Sylvain; Bastien, Catherine; Brignolas, Franck

    2015-01-01

    Xylem resistance to drought-induced cavitation is a key trait of plant water relations. This study assesses the genetic variation expressed for stem cavitation resistance within a population of a riparian species, the European black poplar (Populus nigra L.), and explores its relationships with xylem anatomy, water-use efficiency (WUE), and growth. Sixteen structural and physiological traits related to cavitation resistance, xylem anatomy, growth, bud phenology, and WUE were measured on 33 P....

  14. Evidence for discontinuous water columns in the xylem conduit of tall birch trees.

    Science.gov (United States)

    Westhoff, M; Zimmermann, D; Schneider, H; Wegner, L H; Gessner, P; Jakob, P; Bamberg, E; Shirley, St; Bentrup, F-W; Zimmermann, U

    2009-05-01

    The continuity of the xylem water columns was studied on 17- to 23-m tall birch trees (trunk diameter about 23 cm; first branching above 10 m) all year round. Fifty-one trees were felled, and 5-cm thick slices or 2-m long boles were taken at regular, relatively short intervals over the entire height of the trees. The filling status of the vessels was determined by (i) xylem sap extraction from trunk and branch pieces (using the gas bubble-based jet-discharge method and centrifugation) and from trunk boles (using gravity discharge); (ii) (1)H nuclear magnetic resonance imaging of slice pieces; (iii) infusion experiments (dye, (86)Rb(+), D(2)O) on intact trees and cut branches; and (iv) xylem pressure measurements. This broad array of techniques disclosed no evidence for continuous water-filled columns, as postulated by the Cohesion-Tension theory, for root to apex directed mass transport. Except in early spring (during the xylem refilling phase) and after extremely heavy rainfall during the vegetation period, cohesive/mobile water was found predominantly at intermediate heights of the trunks but not at the base or towards the top of the tree. Similar results were obtained for branches. Furthermore, upper branches generally contained more cohesive/mobile water than lower branches. The results suggest that water lifting occurs by short-distance (capillary, osmotic and/or transpiration-bound) tension gradients as well as by mobilisation of water in the parenchymatic tissues and the heartwood, and by moisture uptake through lenticels.

  15. Are leaves 'freewheelin'? Testing for a wheeler-type effect in leaf xylem hydraulic decline.

    Science.gov (United States)

    Scoffoni, Christine; Sack, Lawren

    2015-03-01

    A recent study found that cutting shoots under water while xylem was under tension (which has been the standard protocol for the past few decades) could produce artefactual embolisms inside the xylem, overestimating hydraulic vulnerability relative to shoots cut under water after relaxing xylem tension (Wheeler et al. 2013). That study also raised the possibility that such a 'Wheeler effect' might occur in studies of leaf hydraulic vulnerability. We tested for such an effect for four species by applying a modified vacuum pump method to leaves with minor veins severed, to construct leaf xylem hydraulic vulnerability curves. We tested for an impact on leaf xylem hydraulic conductance (Kx ) of cutting the petiole and minor veins under water for dehydrated leaves with xylem under tension compared with dehydrated leaves after previously relaxing xylem tension. Our results showed no significant 'cutting artefact' for leaf xylem. The lack of an effect for leaves could not be explained by narrower or shorter xylem conduits, and may be due to lesser mechanical stress imposed when cutting leaf petioles, and/or to rapid refilling of emboli in petioles. These findings provide the first validation of previous measurements of leaf hydraulic vulnerability against this potential artefact. © 2014 John Wiley & Sons Ltd.

  16. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography1[OPEN

    Science.gov (United States)

    Fei, Jiong; McElrone, Andrew J.; Shackel, Kenneth A.; Matthews, Mark A.

    2015-01-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. PMID:26077763

  17. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography.

    Science.gov (United States)

    Knipfer, Thorsten; Fei, Jiong; Gambetta, Gregory A; McElrone, Andrew J; Shackel, Kenneth A; Matthews, Mark A

    2015-08-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology.

    Science.gov (United States)

    Martín-Gómez, Paula; Serrano, Luis; Ferrio, Juan Pedro

    2017-04-01

    In ecohydrology, it is generally assumed that xylem water reflects the water source used by plants. Several studies have reported isotopic enrichment within woody tissues, particularly during dormancy periods or after long periods of inactivity. However, little is known about the short-term dynamics of this process. Here we assessed the magnitude and dynamics of xylem isotopic enrichment in suberized twigs of pines and oaks. We performed a series of laboratory experiments, in which we monitored hourly changes in water content and isotopic composition under two contrasting scenarios of sap flow restriction. First, we simulated the effect of extreme hydraulic failure by excising twigs to restrict sap flow, while sealing the wounds to ensure that water loss took place only through the leaves or bark, as would be the case for evaporation in attached stems. Second, we studied the effect of reduced leaf transpiration by darkening with aluminium foil all the leaves of healthy, well-watered saplings growing in pot conditions. We found evidence of fast evaporative enrichment in metabolically active stems, as a consequence of a temporal decline in sap flow rates, and not necessarily linked to a traceable decline in stem water content. The excision experiments showed significant isotopic changes (~+1‰ in oxygen) appearing in enrichment of xylem water in stems is a highly dynamic process that may have significant effects even during short periods of restricted water flow. This has important implications for the study of plant water uptake, as well as for ecosystem- and global-scale hydrological models. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  20. Linking xylem water storage with anatomical parameters in five temperate tree species.

    Science.gov (United States)

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  1. Direct observation of local xylem embolisms induced by soil drying in intact Zea mays leaves.

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin X; Lee, Sang Joon

    2016-04-01

    The vulnerability of vascular plants to xylem embolism is closely related to their stable long-distance water transport, growth, and survival. Direct measurements of xylem embolism are required to understand what causes embolism and what strategies plants employ against it. In this study, synchrotron X-ray microscopy was used to non-destructively investigate both the anatomical structures of xylem vessels and embolism occurrence in the leaves of intact Zea mays (maize) plants. Xylem embolism was induced by water stress at various soil drying periods and soil water contents. X-ray images of dehydrated maize leaves showed that the ratio of gas-filled vessels to all xylem vessels increased with decreased soil water content and reached approximately 30% under severe water stress. Embolism occurred in some but not all vessels. Embolism in maize leaves was not strongly correlated with xylem diameter but was more likely to occur in the peripheral veins. The rate of embolism formation in metaxylem vessels was higher than in protoxylem vessels. This work has demonstrated that xylem embolism remains low in maize leaves under water stress and that there xylem has characteristic spatial traits of vulnerability to embolism. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides x Populus nigra hybrids.

    Science.gov (United States)

    Fichot, Régis; Laurans, Françoise; Monclus, Romain; Moreau, Alain; Pilate, Gilles; Brignolas, Franck

    2009-12-01

    Six Populus deltoides Bartr. ex Marsh. x P. nigra L. genotypes were selected to investigate whether stem xylem anatomy correlated with gas exchange rates, water-use efficiency (WUE) and growth performance. Clonal copies of the genotypes were grown in a two-plot common garden test under contrasting water regimes, with one plot maintained irrigated and the other one subjected to moderate summer water deficit. The six genotypes displayed a large range of xylem anatomy, mean vessel and fibre diameter varying from about 40 to 60 microm and from 7.5 to 10.5 microm, respectively. Decreased water availability resulted in a reduced cell size and an important rise in vessel density, but the extent of xylem plasticity was both genotype and trait dependent. Vessel diameter and theoretical xylem-specific hydraulic conductivity correlated positively with stomatal conductance, carbon isotope discrimination and growth performance-related traits and negatively with intrinsic WUE, especially under water deficit conditions. Vessel diameter and vessel density measured under water deficit conditions correlated with the relative losses in biomass production in response to water deprivation; this resulted from the fact that a more plastic xylem structure was generally accompanied by a larger loss in biomass production.

  3. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L.

    Science.gov (United States)

    Guet, Justine; Fichot, Régis; Lédée, Camille; Laurans, Françoise; Cochard, Hervé; Delzon, Sylvain; Bastien, Catherine; Brignolas, Franck

    2015-08-01

    Xylem resistance to drought-induced cavitation is a key trait of plant water relations. This study assesses the genetic variation expressed for stem cavitation resistance within a population of a riparian species, the European black poplar (Populus nigra L.), and explores its relationships with xylem anatomy, water-use efficiency (WUE), and growth. Sixteen structural and physiological traits related to cavitation resistance, xylem anatomy, growth, bud phenology, and WUE were measured on 33 P. nigra genotypes grown under optimal irrigation in a 2-year-old clonal experiment in a nursery. Significant genetic variation was expressed for the xylem tension inducing 50% loss of hydraulic conductivity (Ψ50) within the studied population, as attested by the high value of broad-sense heritability estimated for this trait (H (2) ind = 0.72). Stem cavitation resistance was associated with xylem structure: the more cavitation-resistant genotypes exhibited lower hydraulic efficiency and higher mechanical reinforcement as assessed from stem xylem cross sections. By contrast, Ψ50 was not significantly related to shoot height increment, total above-ground dry mass, or bulk leaf carbon isotope discrimination, a proxy for intrinsic WUE. These findings indicate that the trade-offs between xylem resistance to cavitation, hydraulic efficiency, and mechanical reinforcement can occur at the within-population level. Given that the studied genotypes were exposed to the same environmental conditions and evolutionary drivers in situ, the trade-offs detected at this scale are expected to reflect true functional relationships. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Topography mediates plant water stress: coupling groundwater flow and rhizosphere-xylem hydraulics

    Science.gov (United States)

    Mackay, D. S.; Tai, X.

    2016-12-01

    Explicit representation of groundwater movement and its subsidy to the unsaturated zone have long been recognized to affect land surface fluxes. But its impact on mediating plant safety during drought has not yet been evaluated, due to the oversimplified representation of the soil-plant-atmospheric continuum in current mainstream land surface models. Here we evaluated the interaction between groundwater processes and plant hydraulics by integrating a three-dimensional groundwater model - ParFlow with a physiologically sophisticated plant model - TREES. A series of simulation experiments using representative hillslope shapes during a general dry down period were carried out to explore the impacts of topography, soil properties, and plant traits - maximum hydraulic conductance (Kmax), root area (Ar), and vulnerability to cavitation on plant hydraulic stress and the potential feedbacks to soil water spatial dynamics. From an initial condition of uniform pressure, lateral redistribution dominated the first stage when soils were wet, resulting in various water table depths. As drought progressed, the tension wetted zone provided a water subsidy to the root zone, causing various rates of soil dry down at different locations. In the end, the root zone soil water remains stable and dry, with diurnal fluctuations induced by the hydraulic redistribution of plant roots. Plants, in general, had higher transpiration and lower hydraulic stress on concave hillslopes. The same plant growing on fine-textured soils had higher transpiration rate, and therefore stronger feedbacks to the water table depths, compared to coarse-textured soil. But these responses could further vary by plant traits. For locations with shallow water table, Kmax is the most important factor determining plant function. When soil is dry, plants with higher Ar and more resistant xylem sustained higher transpiration rates. Those promising performance suggests that the coupled model could be a powerful tool for

  5. Stomatal regulation based on competition for water, stochastic rainfall, and xylem hydraulic vulnerability - a new theoretical model

    Science.gov (United States)

    Lu, Y.; Duursma, R.; Farrior, C.; Medlyn, B. E.

    2016-12-01

    Stomata control the exchange of soil water for atmospheric CO2, which is one of the most important resource trade-offs for plants. This trade-off has been studied a lot but not in the context of competition. Based on the theory of evolutionarily stable strategy, we search for the uninvadable (or the ESS) response of stomatal conductance to soil water content under stochastic rainfall, with which the dominant plant population should never be invaded by any rare mutants in the water competition due to a higher fitness. In this study, we define the fitness as the difference between the long-term average photosynthetic carbon gain and a carbon cost of stomatal opening. This cost has traditionally been considered an unknown constant. Here we extend this framework by assuming it as the energy required for xylem embolism refilling. With regard to the refilling process, we explore 2 questions 1) to what extent the embolized xylem vessels can be repaired via refilling; and 2) whether this refilling is immediate or has a time delay following the formation of xylem embolism. We compare various assumptions in a total of 5 scenarios and find that the ESS exists only if the xylem damage can be repaired completely. Then, with this ESS, we estimate annual vegetation photosynthesis and water consumption and compare them with empirical results. In conclusion, this study provides a different insight from the existing empirical and mechanistic models as well as the theoretical models based on the optimization theory. In addition, as the model result is a simple quantitative relation between stomatal conductance and soil water content, it can be easily incorporated into other vegetation function models.

  6. Modified water regimes affect photosynthesis, xylem water potential, cambial growth and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae)

    Science.gov (United States)

    James P. Dunn; Peter L. Jr. Lorio

    1993-01-01

    We modified soil water supply to two groups of juvenile loblolly pines, Pinus taeda L., by sheltering or irrigating root systems in early summer or in later summer and measured oleoresin flow (primary defense), net photosynthesis, xylem water potential, and cambial growth throughout the growing season. When consistent significant differences in...

  7. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.

    Science.gov (United States)

    Tombesi, Sergio; Nardini, Andrea; Farinelli, Daniela; Palliotti, Alberto

    2014-11-01

    Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near-isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (k(petiole)) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum k(petiole) and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLg(s)) under water stress was almost linearly correlated with corresponding percentage loss of k(petiole) (PLC), while in MP PLg(s) was less influenced by PLC. Our results suggest that V. vinifera near-isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of k(petiole) and that the coordination of these traits leads to their different stomatal responses under water stress conditions. © 2014 Scandinavian Plant Physiology Society.

  8. A Plumber's-Eye View of Xylem Water Transport in Woody Plants

    Science.gov (United States)

    Martinez-Vilalta, Jordi; Pinol, Josep

    2004-01-01

    We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity ("K[subscript h]") was calculated as the ratio…

  9. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    pruning caused water deficit stress in pear trees. Further RP trees had significantly lower concentrations of total cations and anions and the sum of cations and anions than the NP trees implying root pruning decreased acquisition of nutrients from the soil. In the root pruned trees, the leaf water......Root pruning is an effective approach for controlling vegetative growth of pear trees (Pyrus communis L.), yet the underlying mechanisms for such effect remain largely elusive. A two-year field experiment was conducted to investigate the effect of root pruning and irrigation regimes on leaf water...... relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  10. Root xylem plasticity to improve water use and yield in water-stressed soybean.

    Science.gov (United States)

    Prince, Silvas J; Murphy, Mackensie; Mutava, Raymond N; Durnell, Lorellin A; Valliyodan, Babu; Shannon, J Grover; Nguyen, Henry T

    2017-04-01

    We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24-80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6-R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Science.gov (United States)

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  12. Are flowers vulnerable to xylem cavitation during drought?

    Science.gov (United States)

    Zhang, Feng-Ping; Brodribb, Timothy J

    2017-05-17

    Water stress is known to cause xylem cavitation in the leaves, roots and stems of plants, but little is known about the vulnerability of flowers to xylem damage during drought. This is an important gap in our understanding of how and when plants become damaged by water stress. Here we address fundamental questions about if and when flowers suffer cavitation damage, using a new technique of cavitation imaging to resolve the timing of cavitation in water-stressed flower petals compared with neighbouring leaves. Leaves and flowers from a sample of two herbaceous and two woody eudicots were exposed to a severe water stress while the spatial and temporal propagation of embolism through veins was recorded. Although in most cases water potentials inducing 50% embolism of herbaceous flower veins were more negative than neighbouring leaves, there was no significant difference between the average vulnerability of leaves and petals of herbaceous species. In both woody species, petals were more vulnerable to cavitation than leaves, in one case by more than 3 MPa. Early cavitation and subsequent damage of flowers in the two woody species would thus be expected to precede leaf damage during drought. Similar cavitation thresholds of flowers and leaves in the herb sample suggest that cavitation during water shortage in these species will occur simultaneously among aerial tissues. Species-specific differences in the cavitation thresholds of petals provide a new axis of variation that may explain contrasting flowering ecology among plant species. © 2017 The Author(s).

  13. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica).

    Science.gov (United States)

    Eichert, Thomas; Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Heredia, Antonio; Fernández, Victoria

    2010-01-01

    There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F(V)/F(M)), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO(2) and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.

  14. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath.

    Science.gov (United States)

    Feild, Taylor S; Brodribb, Tim

    2001-05-01

    The effect of freezing on stem xylem hydraulic conductivity and leaf chlorophyll a fluorescence was measured in 12 tree and shrub species from a treeline heath in Tasmania, Australia. Reduction in stem hydraulic conductivity after a single freeze-thaw cycle was minimal in conifers and the vessel-less angiosperm species Tasmannia lanceolata (Winteraceae), whereas mean loss of conductivity in vessel-forming angiosperms fell in the range 17-83%. A positive linear relationship was observed between percentage loss of hydraulic conductivity by freeze-thaw and the average conduit diameter across all 12 species. This supports the hypothesis that large-diameter vascular conduits have a greater likelihood of freeze-thaw cavitation because larger bubbles are produced, which are more likely to expand under tension. Leaf frost tolerances, as measured by a 50% loss of maximum PSII quantum yield, varied from -6 to -13°C, indicating that these species were more frost-sensitive than plants from northern hemisphere temperate forest and treeline communities. There was no evidence of a relationship between frost tolerance of leaves and the resilience of stem water transport to freezing, suggesting that low temperature survival and the resistance of stem water transport to freezing are independently evolving traits. The results of this study bear on the ecological importance of stem freezing in the southern hemisphere treeline zones.

  15. Freezing regime and trade-offs with water transport efficiency generate variation in xylem structure across diploid populations of Larrea sp. (Zygophyllaceae).

    Science.gov (United States)

    Medeiros, Juliana S; Pockman, William T

    2014-04-01

    The impact of changing temperature regime on plant distributions may depend on the nature of physiological variation among populations. The arid-land genus Larrea spans habitats with a range of freezing frequency in North and South America. We hypothesized that variation in xylem anatomy among populations and species within this genus is driven by plasticity and trade-offs between safety from freeze-thaw embolism and water transport efficiency. We measured vessel density and diameter distributions to predict freeze-thaw embolism and water transport capacity for high and low latitude populations of three Larrea species grown in the field and a greenhouse common garden. Among field-grown L. divaricata, low latitude plants had larger mean vessel diameter and greater predicted freeze-thaw embolism, but higher water transport capacity compared with high latitude plants. Though high latitude L. tridentata and L. nitida had abundant smaller vessels, these plants also produced very large vessels and had semi ring-porous wood structure. Thus, their predicted embolism and water transport capacity were comparable to those of low latitude plants. Differences among field-grown and common-garden-grown plants demonstrate that plasticity contributes to population differentiation in xylem characters, though high latitude L. divaricata exhibited relatively lower plasticity. Our results indicate that a trade-off between transport safety and efficiency contributes substantially to variation in xylem structure within the genus Larrea. In addition, we suggest that xylem plasticity may play a role in negotiating these trade-offs, with implications for responses to future climate change.

  16. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species.

    Science.gov (United States)

    Cao, X; Jia, J B; Li, H; Li, M C; Luo, J; Liang, Z S; Liu, T X; Liu, W G; Peng, C H; Luo, Z B

    2012-07-01

    Although fast-growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE(i) ), stable carbon isotope composition (δ(13) C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE(i) and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE(i) /δ(13) C, whereas P. × euramericana had a considerable growth increment and the highest WUE(i) /δ(13) C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g(s) ) and lowest WUE(i) /δ(13) C. Moreover, significant correlations were observed between WUE(i) and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE(i) and δ(13) C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE(i) . It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water-limited regions and others, e.g. P. cathayana, may be better for water-abundant areas. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  18. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Geissbuehler, P.; Siegwolf, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  19. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    Science.gov (United States)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    The DeepCHALLA consortium is preparing an ICDP (International Continental Drilling Program) deep-drilling project on Lake Challa, a crater lake near Mt. Kilimanjaro in equatorial East Africa, where the climate is tropical semi-arid climate and characterized by two distinct rainy seasons. The main objective of this project is to acquire high-resolution and accurately dated proxy data of continental climate and ecosystem change near the Equator over 250,000 years. One of the paleoclimate proxies to be used is the hydrogen-isotopic composition of sedimentary n-alkanes (δDalkanes) derived from fossil plant leaf wax. However, this requires a better understanding of seasonal variability in the isotopic composition of precipitation, and of the fractionation of its hydrogen during incorporation in the plant waxes. In addition, recent studies have described the existence of "two water worlds", resulting in an additional deviation of the isotopic composition of the water taken up by plants. In this study, we measured the δD and δ18O of local precipitation, lake water, and xylem and leaf water from different plant species, seasons and sites with varying distances to Lake Challa. We use these data to set up a local meteoric water line (LMWL), and to assess spatial and temporal patterns of water utilization by local plants. Our data show a seasonal change in water-isotope partitioning with plants tapping water from isotopically lighter water sources during the dry seasons, as indicated by more negative xylem δD values and higher offsets from precipitation (i.e. greater distances from the LMWL), therefore supporting the "two water worlds" hypothesis. Surprisingly, trees appear to preferentially exploit isotopically more enriched sources of soil water, suggesting shallower water sources, than shrubs. Plants located at the lake shore use a mixture of precipitation and lake water, reflected in enriched xylem δD values and in the intersection of 2H and 18O with the LMWL. Leaf-water

  20. Evidence of a dense water vein along the Libyan continental margin

    Directory of Open Access Journals (Sweden)

    G. P. Gasparini

    2008-02-01

    Full Text Available For the first time it was possible to investigate a still poorly known region of the eastern Mediterranean Sea, the Libyan continental margin. An oceanographic cruise, performed during summer 2006, revealed an important and novel feature: a dense vein flowing along the continental slope. The paper describes the vein evolution with some insights on its dynamic and furnishes an estimate of its transport, which results to be comparable with the Adriatic Deep Water production rate. The cascading into a steep canyon which incises the continental shelf suggests that the vein may play an important role in ventilating the deep layers of the Ionian Sea.

  1. Xylem hydraulics and mechanics : where are the tradeoffs ?

    OpenAIRE

    Cochard, Hervé; Badel, Eric; Herbette, Stéphane

    2012-01-01

    The xylem is a complex tissue that covers different key functions in woody plants: 1) it transports water throughout the plant to replace water lost during leaf transpiration, 2) it confers to trunk and branches their stiffness and flexibility, and 3) it stores water, nutrients and carbohydrates. These functions have set contrasted selective pressures on this tissue and shaped its structure during evolution. Understanding how xylem functions relate to xylem anatomy is a challenging issue. Eac...

  2. Spatial distribution and packing of xylem conduits.

    Science.gov (United States)

    Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Alvarez, Xavier; Camacho, Juan; Loepfe, Lasse; Piñol, Josep

    2012-07-01

    The hydraulic properties of the xylem determine the ability of plants to transport water from the soil to the leaves and to cope with important stress factors such as frost and drought. Hydraulic properties have usually been studied as a function of the anatomy of xylem conduits and their pits, but recent studies have proposed that system-level properties, related to the topology of the xylem network, may also play a role. Here we study how the spatial arrangement of conduits in xylem cross sections affects the relationship between mean conduit lumen area and conduit density (packing function) across species. Point pattern analysis was used to describe the spatial distribution of xylem conduits in 97 woody species. The effect of conduit aggregation on the packing function was tested using phylogenetic generalized least squares. A hydraulic model with an explicit description of the topology of the xylem network was used to interpret the functional significance of our findings. The spatial arrangement of conduits affected the packing function across species, so that species with aggregated distributions tended to have lower conduit densities for a given conduit size and lower conduit lumen fractions. According to our modeling results, the higher conduit-to-conduit connectivity of species with aggregated distributions allows them to achieve higher hydraulic conductivity. Species with aggregated conduits, however, pay a cost in terms of increased vulnerability to embolism. The spatial arrangement of conduits affects the fundamental structural and functional attributes of the xylem.

  3. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  4. Climate drives vein anatomy in Proteaceae.

    Science.gov (United States)

    Jordan, Gregory J; Brodribb, Timothy J; Blackman, Christopher J; Weston, Peter H

    2013-08-01

    The mechanisms by which plants tolerate water deficit are only just becoming clear. One key factor in drought tolerance is the ability to maintain the capacity to conduct water through the leaves in conditions of water stress. Recent work has shown that a simple feature of the leaf xylem cells, the cube of the thickness of cell walls divided by the lumen width (t/b)(3), is strongly correlated with this ability. Using ecologically, phylogenetically, and anatomically diverse members of Proteaceae, we tested the relationships between (t/b)(3) and climate, leaf mass per unit area, leaf area, and vein density. To test relationships at high phylogenetic levels (mostly genus), we used phylogenetic and nonphylogenetic single and multiple regressions based on data from 50 species. We also used 14 within-genus species pairs to test for relationships at lower phylogenetic levels. All analyses revealed that climate, especially mean annual precipitation, was the best predictor of (t/b)(3). The variation in (t/b)(3) was driven by variation in both lumen diameter and wall thickness, implying active control of these dimensions. Total vein density was weakly related to (t/b)(3) but unrelated to either leaf area or climate. We conclude that xylem reinforcement is a fundamental adaptation for water stress tolerance and, among evergreen woody plants, drives a strong association between rainfall and xylem anatomy. The strong association between (t/b)(3) and climate cannot be explained by autocorrelation with other aspects of leaf form and anatomy that vary along precipitation gradients.

  5. Air in xylem vessels of cut flowers

    NARCIS (Netherlands)

    Nijsse, J.; Meeteren, van U.; Keijzer, C.J.

    2000-01-01

    Until now all studies on the role of air emboli in the water uptake of cut flowers describe indirect methods to demonstrate the presencFe of air in the plant tissues. Using cut chrysanthemum flowers, this report is the first one that directly visualises both air and water in xylem ducts of cut

  6. Water transport properties of the grape (V. vinifera L.) pedicel during fruit development: Insights into xylem anatomy and function using microtomography

    Science.gov (United States)

    Xylem flow into the fruit decline at the onset of ripening (i.e. veraison) in grapes, and current literature suggests that there is an increase in hydraulic resistance in the pedicel at this time. However, it is unknown how pedicel hydraulic properties change developmentally in relation to xylem an...

  7. Xylem tissue specification, patterning, and differentiation mechanisms.

    Science.gov (United States)

    Schuetz, Mathias; Smith, Rebecca; Ellis, Brian

    2013-01-01

    Vascular plants (Tracheophytes) have adapted to a variety of environments ranging from arid deserts to tropical rainforests, and now comprise >250,000 species. While they differ widely in appearance and growth habit, all of them share a similar specialized tissue system (vascular tissue) for transporting water and nutrients throughout the organism. Plant vascular systems connect all plant organs from the shoot to the root, and are comprised of two main tissue types, xylem and phloem. In this review we examine the current state of knowledge concerning the process of vascular tissue formation, and highlight important mechanisms underlying key steps in vascular cell type specification, xylem and phloem tissue patterning, and, finally, the differentiation and maturation of specific xylem cell types.

  8. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    Science.gov (United States)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain

  9. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.

    Science.gov (United States)

    Kasuga, Jun; Mizuno, Kaoru; Arakawa, Keita; Fujikawa, Seizo

    2007-12-01

    Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing temperatures by deep supercooling. Crude extracts from xylem in all these trees were found to have anti-ice nucleation activity that promoted supercooling capability of water as measured by a droplet freezing assay. The magnitude of increase in supercooling capability of water droplets in the presence of ice-nucleation bacteria, Erwinia ananas, was higher in the ranges from 0.1 to 1.7 degrees C on addition of crude xylem extracts than freezing temperature of water droplets on addition of glucose in the same concentration (100 mosmol/kg). Crude xylem extracts from C. japonicum provided the highest supercooling capability of water droplets. Our additional examination showed that crude xylem extracts from C. japonicum exhibited anti-ice nucleation activity toward water droplets containing a variety of heterogeneous ice nucleators, including ice-nucleation bacteria, not only E. ananas but also Pseudomonas syringae (NBRC3310) or Xanthomonas campestris, silver iodide or airborne impurities. However, crude xylem extracts from C. japonicum did not affect homogeneous ice nucleation temperature as analyzed by emulsified micro-water droplets. The possible role of such anti-ice nucleation activity in crude xylem extracts in deep supercooling of XPCs is discussed.

  10. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  11. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport.

    Science.gov (United States)

    Woodruff, D R; Meinzer, F C; Lachenbruch, B

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.

  12. Pressure Changes before and after Explosive Rhyolitic Bomb Ejection at Chaiten, Chile Recorded By Water Diffusion Profiles Around Tuffisite Veins

    Science.gov (United States)

    Tuffen, H.; McGowan, E.; Castro, J. M.; Berlo, K.; James, M. R.; Owen, J.; Schipper, C. I.; Wadsworth, F. B.; Saubin, E.; Wehbe, K.

    2014-12-01

    The recent rhyolitic eruptions at Chaitén and Cordón Caulle have provided valuable new insights into the relationship between explosive and effusive activity, and the gas escape mechanisms that permit rapid effusion of degassed lava[1,2]. Bombs ejected during mixed explosive-effusive activity host spectacular tuffisite veins cutting both dense obsidian (Fig 1a) and highly-expanded pumice. Tuffisite veins are ash-filled fracture networks that act as ephemeral permeable pathways for gas escape in shallow conduits and lava domes. Previous studies have revealed water depletion adjacent to tuffisite veins, leading to models of fracture-triggered pressure release[2] and estimates of gas escape timescales[2,3]. We have characterised water diffusion profiles from a new suite of tuffisite-bearing Chaitén bombs, using synchrotron-source FTIR at the Diamond Light Source, Oxford, UK. Unexpectedly, one exceptionally large tuffisite vein, which is 30 mm thick (Fig. 1a, b) is mantled by zones of strong water enrichment, which enclose the usual narrow depletion zones immediately adjacent to the vein (Fig. 1c). Consistent results from different branches of this vein (Fig. 1b) indicate a similar history. The plausible range of diffusion model solutions points towards ~2-4 hours of vein pressurisation, followed by a brief pre-quench period of lower pressure conditions. In our model the vein opened during a period of overpressure at the lava dome base, sustained by gas influx from a deeper catchment extending hundreds of metres into the upper conduit. Overpressure culminated in violent bomb ejection, after which vein pressure decreased due to gas leakage to the atmosphere through the incompletely welded vein, as observed in rhyolitic bombs from Cordón Caulle (Fig. 1d). Commonly-seen water depletion zones[2,3] may therefore merely record post-fragmentation degassing. However, the enrichment zone points towards the type of deep pressurisation associated with cycles of tilt and

  13. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species.

    Science.gov (United States)

    Gleason, Sean M; Westoby, Mark; Jansen, Steven; Choat, Brendan; Hacke, Uwe G; Pratt, Robert B; Bhaskar, Radika; Brodribb, Tim J; Bucci, Sandra J; Cao, Kun-Fang; Cochard, Hervé; Delzon, Sylvain; Domec, Jean-Christophe; Fan, Ze-Xin; Feild, Taylor S; Jacobsen, Anna L; Johnson, Daniel M; Lens, Frederic; Maherali, Hafiz; Martínez-Vilalta, Jordi; Mayr, Stefan; McCulloh, Katherine A; Mencuccini, Maurizio; Mitchell, Patrick J; Morris, Hugh; Nardini, Andrea; Pittermann, Jarmila; Plavcová, Lenka; Schreiber, Stefan G; Sperry, John S; Wright, Ian J; Zanne, Amy E

    2016-01-01

    The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem. No claim to US government works. New Phytologist © 2015 New Phytologist Trust.

  14. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  15. Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy

    Science.gov (United States)

    Peter Kitin; Steven L. Voelker; Frederick C. Meinzer; Hans Beekman; Steven H. Strauss; Barbara. Lachenbruch

    2010-01-01

    Of 14 transgenic poplar genotypes (Populus tremula x Populus alba) with antisense 4-coumarate:coenzynle A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small...

  16. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation.

    Science.gov (United States)

    Skelton, Robert P; Brodribb, Timothy J; Choat, Brendan

    2017-04-01

    Finding thresholds at which loss of plant functionality occurs during drought is critical for predicting future crop productivity and survival. Xylem resistance to embolism has been suggested as a key trait associated with water-stress tolerance. Although a substantial literature exists describing the vulnerability of woody stems to embolism, leaves and roots of herbaceous species remain under-represented. Also, little is known about vulnerability to embolism at a whole-plant scale or propagation of embolism within plants. New techniques to view the process of embolism formation provide opportunities to resolve long-standing questions. Here, we used multiple visual techniques, including X-ray micro-computed tomography and the optical vulnerability method, to investigate the spread of embolism within intact stems, leaves and roots of Solanum lycopersicum (common tomato). We found that roots, stems and leaves of tomato plants all exhibited similar vulnerability to embolism, suggesting that embolism rapidly propagates among tissues. Although we found scarce evidence for differentiation of xylem vulnerability among tissues at the scale of the whole plant, within a leaf the midrib embolized at higher water potentials than lower order veins. Substantial overlap between the onset of cavitation and incipient leaf damage suggests that cavitation represents a substantial damage to plants, but the point of lethal cavitation in this herbaceous species remains uncertain. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral.

    Science.gov (United States)

    Pratt, R B; Jacobsen, A L; Ewers, F W; Davis, S D

    2007-01-01

    Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between xylem mechanical strength (xylem density and modulus of rupture) and xylem transport safety (resistance to cavitation and estimated vessel implosion resistance), and this was supported by PICs. Like stems, greater root cavitation resistance was correlated with greater vessel implosion resistance; however, unlike stems, root cavitation resistance was not correlated with xylem density and modulus of rupture. Also different from stems, roots displayed a trade-off between xylem transport safety from cavitation and xylem transport efficiency. Both stems and roots showed a trade-off between xylem transport safety and xylem storage of water and nutrients, respectively. Stems and roots differ in xylem structural and functional relationships, associated with differences in their local environment (air vs soil) and their primary functions.

  18. Wound-induced and bacteria-induced xylem blockage in roses, Astilbe and Viburnum

    NARCIS (Netherlands)

    Loubaud, M.; Doorn, van W.G.

    2004-01-01

    We previously concluded that the xylem blockage that prevents water uptake into several cut flowers is mainly due to the presence of bacteria, whilst in chrysanthemum and Bouvardia we observed a xylem occlusion that was mainly due to a wound-reaction of the plant. We have further tested which of

  19. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  20. Evidence for Air-Seeding: Watching the Formation of Embolism in Conifer Xylem

    OpenAIRE

    Mayr, S; Kartusch, B; Kikuta, S

    2014-01-01

    International audience; Water transport in plants is based on a metastable system as the xylem "works" at negative water potentials (ψ). At critically low ψ, water columns can break and cause embolism. According to the air-seeding hypothesis, this occurs by air entry via the pits. We studied the formation of embolism in dehydrating xylem sections of Juniperus virginiana (Cupressaceae), which were monitored microscopically and via ultrasonic emission analyses. After replacement of water by air...

  1. Gradients of turgor, osmotic pressure, and water potential in the cortex of the hypocotyl of growing ricinus seedlings : effects of the supply of water from the xylem and of solutes from the Phloem.

    Science.gov (United States)

    Meshcheryakov, A; Steudle, E; Komor, E

    1992-03-01

    To evaluate the possible role of solute transport during extension growth, water and solute relations of cortex cells of the growing hypocotyl of 5-day-old castor bean seedlings (Ricinus communis L.) were determined using the cell pressure probe. Because the osmotic pressure of individual cells (pi(i)) was also determined, the water potential (psi) could be evaluated as well at the cell level. In the rapidly growing part of the hypocotyl of well-watered plants, turgor increased from 0.37 megapascal in the outer to 1.04 megapascal in the inner cortex. Thus, there were steep gradients of turgor of up to 0.7 megapascal (7 bar) over a distance of only 470 micrometer. In the more basal and rather mature region, gradients were less pronounced. Because cell turgor approximately pi(i) and psi approximately 0 across the cortex, there were also no gradients of psi across the tissue. Gradients of cell turgor and pi(i) increased when the endosperm was removed from the cotyledons, allowing for a better water supply. They were reduced by increasing the osmotic pressure of the root medium or by cutting off the cotyledons or the entire hook. If the root was excised to interrupt the main source for water, effects became more pronounced. Gradients completely disappeared and turgor fell to 0.3 megapascal in all layers within 1.5 hours. When excised hypocotyls were infiltrated with 0.5 millimolar CaCl(2) solution under pressure via the cut surface, gradients in turgor could be restored or even increased. When turgor was measured in individual cortical cells while pressurizing the xylem, rapid responses were recorded and changes of turgor exceeded that of applied pressure. Gradients could also be reestablished in excised hypocotyls by abrading the cuticle, allowing for a water supply from the wet environment. The steep gradients of turgor and osmotic pressure suggest a considerable supply of osmotic solutes from the phloem to the growing tissue. On the basis of a new theoretical

  2. Three-dimensional xylem networks and phyllode properties of co-occurring Acacia.

    Science.gov (United States)

    Page, Gerald F M; Liu, Jie; Grierson, Pauline F

    2011-12-01

    Reduced leaf size is often correlated to increased aridity, where smaller leaves demand less water via xylem conduits. However, it is unknown if differences in three-dimensional (3D) xylem connectivity reflect leaf-level adaptations. We used X-ray microtomography (micro-CT) to quantify 3D xylem connectivity in ∼5 mm diameter branch sections of co-occurring semi-arid Acacia species of varied phyllode size. We compared 3D connectivity to minimum branch water potential and two-dimensional (2D) vessel attributes derived from sections produced by micro-CT. 2D attributes included vessel area, density, vessel size to number ratio (S) and vessel lumen fraction (F). Trees with terete phyllodes had less negative water potentials than broad phyllode variants. 3D xylem connectivity was conserved across all trees regardless of phyllode type or minimum water potential. We also found that xylem connectivity was sensitive to vessel lumen fraction (F) and not the size to number ratio (S) even though F was consistent among species and phyllode variants. Our results demonstrate that differences in phyllode anatomy, and not xylem connectivity, likely explain diversity of drought tolerance among closely related Acacia species. Further analysis using our approach across a broader range of species will improve understanding of adaptations in the xylem networks of arid zone species. © 2011 Blackwell Publishing Ltd.

  3. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics.

    Science.gov (United States)

    Pratt, R Brandon; Jacobsen, Anna L

    2017-06-01

    The secondary xylem of woody plants transports water mechanically supports the plant body and stores resources. These three functions are interdependent giving rise to tradeoffs in function. Understanding the relationships among these functions and their structural basis forms the context in which to interpret xylem evolution. The tradeoff between xylem transport efficiency and safety from cavitation has been carefully examined with less focus on other functions, particularly storage. Here, we synthesize data on all three xylem functions in angiosperm branch xylem in the context of tradeoffs. Species that have low safety and efficiency, examined from a resource economics perspective, are predicted to be adapted for slow resource acquisition and turnover as characterizes some environments. Tradeoffs with water storage primarily arise because of differences in fibre traits, while tradeoffs in carbohydrate storage are driven by parenchyma content of tissue. We find support for a tradeoff between safety from cavitation and storage of both water and starch in branch xylem tissue and between water storage capacity and mechanical strength. Living fibres may facilitate carbohydrate storage without compromising mechanical strength. The division of labour between different xylem cell types allows for considerable functional and structural diversity at multiple scales. © 2016 John Wiley & Sons Ltd.

  4. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  5. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Transport and coordination in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Huang, C. W.; Katul, G. G.; Pockman, W.; Litvak, M. E.; Domec, J. C.; Palmroth, S.

    2016-12-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the dry atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior

  7. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants

    OpenAIRE

    Craig eBrodersen; Andrew eMcElrone

    2013-01-01

    Maintenance of long distance water transport in xylem is essential to plant health and productivity. Both biotic and abiotic environmental conditions lead to embolism formation within the xylem resulting in lost transport capacity and ultimately death. Plants exhibit a variety of strategies to either prevent or restore hydraulic capacity through cavitation resistance with specialized anatomy, replacement of compromised conduits with new growth, and a metabolically active embolism repair mecha...

  8. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.

    Science.gov (United States)

    Ogasa, Mayumi; Miki, Naoko; Yoshikawa, Ken

    2010-05-01

    Xylem cavitation and its recovery were studied in 1-year-old stems of ring-porous Quercus serrata Thunb. and diffuse-porous Betula platyphylla var. japonica Hara. The Q. serrata had 5-100 microm vessel diameter in the functional current xylem and 5-75 microm in nonconducting 1-year-old xylem; B. platyphylla had a narrower range of vessel diameters of 5-55 microm and more than double the number of vessels in both functional growth rings. Although hydraulic conductivity of Q. serrata appeared to decrease after release of moderate water stress of a half loss of native hydraulic conductivity--about -2 MPa in xylem water potential--no significant recovery of hydraulic conductivity was observed, probably because of intraspecific variation in vessel diameter distribution, which induced variable vulnerability to cavitation. Furthermore, in terms of xylem anatomy, larger and more efficient vessels of the current xylem did not show obvious refilling. In B. platyphylla, after release of water stress, rapid (1 h) recoveries of both hydraulic conductivity and water potential were apparent after rewatering: so-called 'novel refilling'. During that time, a high degree of vessel refilling was observed in both xylems. At 12 h after rewatering, embolized vessels of the current xylem had refilled completely, although about 20% of vessels were still embolized in 1-year-old xylem. This different pattern of vessel refilling in relation to xylem age for B. platyphylla might be attributable to structural faults in the 1-year-old xylem, such as pit degradation or perhaps xylem aging itself. Results show that Q. serrata performs water conduction using highly efficient large vessels instead of unclear vessel refilling. In contrast, B. platyphylla transports water via less efficient but numerous vessels. If cavitation occurs, B. platyphylla improves water conduction by increasing the degree of vessel refilling.

  9. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.

    Science.gov (United States)

    Feild, Taylor S; Brodribb, Timothy J

    2013-08-01

    High vein density (D(V)) evolution in angiosperms represented a key functional transition. Yet, a mechanistic account on how this hydraulic transformation evolved remains lacking. We demonstrate that a consequence of producing high D(V is that veins must become very small to fit inside the leaf, and that angiosperms are the only clade that evolved the specific type of vessel required to yield sufficiently conductive miniature leaf veins. From 111 species spanning key divergences in vascular plant evolution, we show, using analyses of vein conduit evolution in relation to vein packing, that a key xylem innovation associated with high D(V) evolution is a strong reduction in vein thickness and simplification of the perforation plates of primary xylem vessels. Simple perforation plates in the leaf xylem occurred only in derived angiosperm clades exhibiting high D(V) (> 12 mm mm(-2)). Perforation plates in the vessels of other species, including extant basal angiosperms, consisted of resistive scalariform types that were associated with thicker veins and much lower D(V). We conclude that a reduction in within-vein conduit resistance allowed vein size to decrease. We suggest that this adaptation may have been a critical evolutionary step that enabled dramatic D(V) elaboration in angiosperms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Height-Related Trends in Leaf Xylem Anatomy and Shoot Hydraulic Characteristics in a Tall Conifer: Safety versus Efficiency in Water Transport

    National Research Council Canada - National Science Library

    D. R. Woodruff; F. C. Meinzer; B. Lachenbruch

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance at more negative leaf water potentials...

  11. Varicose vein - noninvasive treatment

    Science.gov (United States)

    Sclerotherapy; Laser therapy - varicose veins; Radiofrequency vein ablation; Endovenous thermal ablation; Ambulatory phlebectomy; Transilluminated power phlebotomy; Endovenous laser ablation; Varicose vein ...

  12. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven

    2017-02-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN

    Science.gov (United States)

    Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy

    2017-01-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981

  14. Photosynthetic pathway influences xylem structure and function in Flaveria (Asteraceae).

    Science.gov (United States)

    Kocacinar, Ferit; McKown, Athena D; Sage, Tammy L; Sage, Rowan F

    2008-10-01

    Higher water use efficiency (WUE) in C(4) plants may allow for greater xylem safety because transpiration rates are reduced. To evaluate this hypothesis, stem hydraulics and anatomy were compared in 16 C(3), C(3)-C(4) intermediate, C(4)-like and C(4) species in the genus Flaveria. The C(3) species had the highest leaf-specific conductivity (K(L)) compared with intermediate and C(4) species, with the perennial C(4) and C(4)-like species having the lowest K(L) values. Xylem-specific conductivity (K(S)) was generally highest in the C(3) species and lower in intermediate and C(4) species. Xylem vessels were shorter, narrower and more frequent in C(3)-C(4) intermediate, C(4)-like and C(4) species compared with C(3) species. WUE values were approximately double in the C(4)-like and C(4) species relative to the C(3)-C(4) and C(3) species. C(4)-like photosynthesis arose independently at least twice in Flaveria, and the trends in WUE and K(L) were consistent in both lineages. These correlated changes in WUE and K(L) indicate WUE increase promoted K(L) decline during C(4) evolution; however, any involvement of WUE comes late in the evolutionary sequence. C(3)-C(4) species exhibited reduced K(L) but little change in WUE compared to C(3) species, indicating that some reduction in hydraulic efficiency preceded increases in WUE.

  15. The mechanisms of refilling of xylem conduits and bleeding of tall birch during spring.

    Science.gov (United States)

    Westhoff, M; Schneider, H; Zimmermann, D; Mimietz, S; Stinzing, A; Wegner, L H; Kaiser, W; Krohne, G; Shirley, St; Jakob, P; Bamberg, E; Bentrup, F-W; Zimmermann, U

    2008-09-01

    Seasonal variations in osmolality and components of xylem sap in tall birch trees were determined using several techniques. Xylem sap was extracted from branch and trunk sections of 58 trees using the very rapid gas bubble-based jet-discharge method. The 5-cm long wood pieces were taken at short intervals over the entire tree height. The data show that large biphasic osmolality gradients temporarily exist within the conducting xylem conduits during leaf emergence (up to 272 mosmol x kg(-1) at the apex). These gradients (arising mainly from glucose and fructose) were clearly held within the xylem conduit as demonstrated by (1)H NMR imaging of intact twigs. Refilling experiments with benzene, sucrose infusion, electron and light microscopy, as well as (1)H NMR chemical shift microimaging provided evidence that the xylem of birch represents a compartment confined by solute-reflecting barriers (radial: lipid linings/lipid bodies; axial: presumably air-filled spaces). These features allow transformation of osmolality gradients into osmotic pressure gradients. Refilling of the xylem occurs by a dual mechanism: from the base (by root pressure) and from the top (by hydrostatic pressure generated by xylem-bound osmotic pressure). The generation of osmotic pressure gradients was accompanied by bleeding. Bleeding could be observed at a height of up to 21 m. Bleeding rates measured at a given height decreased exponentially with time. Evidence is presented that the driving force for bleeding is the weight of the static water columns above the bleeding point. The pressure exerted by the water columns and the bleeding volume depend on the water-filling status of (communicating) vessels.

  16. Threats to xylem hydraulic function of trees under 'new climate normal' conditions.

    Science.gov (United States)

    Zwieniecki, Maciej A; Secchi, Francesca

    2015-09-01

    Climate models predict increases in frequency and intensity of extreme environmental conditions, such as changes to minimum and maximum temperatures, duration of drought periods, intensity of rainfall/snowfall events and wind strength. These local extremes, rather than average climatic conditions, are closely linked to woody plant survival, as trees cope with such events over long lifespans. While the xylem provides trees with structural strength and is considered the most robust part of a tree's structure, it is also the most physiologically vulnerable as tree survival depends on its ability to sustain water supply to the tree crown under variable environmental conditions. Many structural, functional and biological tree properties evolved to protect xylem from loss of transport function because of embolism or to restore xylem transport capacity following embolism formation. How 'the new climate normal' conditions will affect these evolved strategies is yet to be seen. Our understanding of xylem physiology and current conceptual models describing embolism formation and plant recovery from water stress, however, can provide insight into near-future challenges that woody plants will face. In addition, knowledge of species-specific properties of xylem function may help guide mitigation of climate change impacts on woody plants in natural and agricultural tree communities. © 2014 John Wiley & Sons Ltd.

  17. Xylem-to-phloem transfer of organic nitrogen in young soybean plants

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, M.C.; Shelp, B.J. (Univ. of Guelph, Ontario (Canada))

    1990-03-01

    Xylem-to-phloem transfer in young vegetative soybean (Glycine max (L.) Merr.) plants (V4 stage) was identified as the difference in the distribution of ({sup 14}C)inulin, a xylem marker, and ({sup 14}C)aminoisobutyric acid (AIB), a synthetic amino acid, fed via the transpiration stream. Since ({sup 14}C)AIB was retained in the stem to some extent, whereas ({sup 14}C)inulin was not, the distribution of these marker compounds in each leaf was expressed as a percentage of the total ({sup 14}C) radioactivity recovered in the foliage. The developing third trifoliolate was a consistent and reliable indicator of xylem-to-phloem transfer. The phloem stream provided to the developing trifoliolate up to fourfold the relative proportion of solute received from the xylem stream; this was markedly reduced by increased light intensity and consequently water flow through the xylem. Evidence from heat girdling experiments is discussed with respect to the vascular anatomy of the soybean plant, and interpreted to suggest that direct xylem-to-phloem transfer in the stem, in the region of the second node, accounted for about one-half of the AIB supplied to the developing trifoliolate, with the remainder being provided from the second trifoliolate. Since AIB is not metabolized it seems likely that rapid transfer within the second trifoliolate occurred as direct veinal transfer rather than indirect cycling through the mesophyll. This study confirmed that xylem-to-phloem transfer plays a major role in the partitioning of nitrogen for early leaf development.

  18. Paleozoic Akiyoshi broken limestone of iron and carbon-bearing quenched veins by impacts on water Earth

    Science.gov (United States)

    Miura, Y.

    2015-12-01

    As active Earth has been described by the present site after accretionary moved formations through the surface. In fact, the present Japanese Islands have less young volcanic rocks compared with much sedimentary rocks (ca. 60 vol. % ) of the Paleozoic Akiyoshi limestone remained from ocean-floor aggregates and uplifted to form the brecciated plateau in the Miocene at present site of Sea of Japan. The main purpose of the paper is to elucidate the in-situ material evidence of brecciated limestone blocks. The Akiyoshi underground samples (up to 250m in depth from the Kaerimizu site) drilled by the Akiyoshi Science Museum show significant changes of physical properties of powdered calcite minerals along the fossil reversal distributions [1-4] with anomalous abundances of siderophiles of bulk XRF data analysis at the bottom of 243m in depth[3]. The present in-situ data of FE-ASEM and Raman data show that the deep samples have re- crystallized calcite-halite and rapid veins with iron-carbon grains with shocked nano-carbon [2-4]. To compare with overseas samples, four American Paleozoic samples are investigated in this study of Carlsbad limestone, Sierra Madera Permian limestone, Alamo breccias and Santa-Fe breccias, where the Santa-Fe sample contains shocked quartz and limestone with fluid-tube texture and separated nano-carbon grains in this study [4]. The Akiyoshi limestone formed near at Equator has been remained as shallow impact breccias stored in the interior with Chinese blocks to present site by continental drift process followed by recent impact to be uplifted at the formed site of the Japan islands [4], which might be typical characteristics of active water planet Earth. Reference: [1] Miura Y. (1986): Bull. Akiyoshi-Dai Museum of Natural History (Yamaguchi), 22, 1-22. [3] Miura Y. (1996): Shock-wave Handbook (SV-Tokyo), p.1073-1209. [4] Miura Y. (2014, 2015): Japan G U-2014,2015 (English), each pp.1.

  19. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants

    Directory of Open Access Journals (Sweden)

    Craig eBrodersen

    2013-04-01

    Full Text Available Maintenance of long distance water transport in xylem is essential to plant health and productivity. Both biotic and abiotic environmental conditions lead to embolism formation within the xylem resulting in lost transport capacity and ultimately death. Plants exhibit a variety of strategies to either prevent or restore hydraulic capacity through cavitation resistance with specialized anatomy, replacement of compromised conduits with new growth, and a metabolically active embolism repair mechanism. In recent years, mounting evidence suggests that metabolically active cells surrounding the xylem conduits in some, but not all, species are capable of restoring hydraulic conductivity. This review summarizes our current understanding of the osmotically driven embolism repair mechanism, the known genetic and anatomical components related to embolism repair, rehydration pathways through the xylem, and the role of capacitance. Anatomical differences between functional plant groups may be one of the limiting factors that allow some plants to refill while others do not, but further investigations are necessary to fully understand this dynamic process. Finally, xylem networks should no longer be considered an assemblage of dead, empty conduits, but instead a metabolically active tissue finely tuned to respond to ever changing environmental cues.

  20. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay.

    Science.gov (United States)

    Fonti, Patrick; Bryukhanova, Marina V; Myglan, Vladimir S; Kirdyanov, Alexander V; Naumova, Oksana V; Vaganov, Eugene A

    2013-07-01

    Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation. To understand the mechanistic process and the functional impact of xylem responses to warming in a cold-limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312-yr tree-ring chronology of Larix sibirica trees from the Altay Mountains in Russia. Climate-growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree-ring width. Long-term analyses indicated a diverging trend between lumen and cell wall of early- and latewood. Xylem anatomy appears to respond to warming temperatures. A warmer early-growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher-performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long-term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.

  1. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development.

    Science.gov (United States)

    Chatelet, David S; Rost, Thomas L; Matthews, Mark A; Shackel, Kenneth A

    2008-01-01

    It has been hypothesized that the substantial reductions in xylemic water flow occurring at veraison are due to physical disruption (breaking) of the xylem as a result of renewed berry growth. In a companion paper, evidence was presented that the vast majority of xylem tracheary elements remained intact despite the growth of the berry, and it was proposed that existing tracheary elements stretch to accommodate growth and that additional elements may also differentiate after veraison. Measurements of the intergyre distance of tracheary elements in macerated tissue were used to test for stretching, and the numbers of tracheary elements per vascular bundle and of branch points of the peripheral xylem network were analysed to test for continued differentiation from 18 to 120 d after anthesis in Chardonnay berries. The distance between the epidermis and the vasculature increased substantially from pre- to post-veraison, potentially increasing the amount of skin available for analysis of compounds important for winemaking. Tracheary elements continued to differentiate within the existing vascular bundles throughout berry development. Additional vascular bundles also appeared until after veraison, thereby increasing the complexity of the peripheral vascular network. The results also confirmed that tracheary elements stretched by approximately 20%, but this was not as much as that predicted based on the growth of the vascular diameter (40%). These results complete a comprehensive evaluation of grape berry peripheral xylem during its development and show that tracheary development continues further into berry maturation than previously thought.

  2. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  3. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance

    Science.gov (United States)

    Frederick C. Meinzer; Daniel M. Johnson; Barbara Lachenbruch; Katherine A. McCulloh; David R. Woodruff

    2009-01-01

    The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special...

  4. Relating xylem cavitation to transpiration in cotton

    Science.gov (United States)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  5. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings

    NARCIS (Netherlands)

    Fonti, P.; Arx, von G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D.

    2010-01-01

    Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between

  6. The xylem as battleground for plant hosts and vascular wilt pathogens

    NARCIS (Netherlands)

    Yadeta, K.A.; Thomma, B.P.H.J.

    2013-01-01

    Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate

  7. Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves.

    Science.gov (United States)

    Kim, Hae Koo; Lee, Sang Joon

    2010-12-01

    A comprehensive understanding of the sap flow dynamics and xylem hydraulic properties is essential to unravel the functional features of water transport from roots to shoots in vascular plants. To evaluate quantitatively the safety and efficiency of this system, nondestructive methods to assess the interactions between sap ascent kinetics and xylem structure are required. In this study, synchrotron X-ray microscopy was employed to observe anatomical structures and sap flow dynamics in rice (Oryza sativa) xylem simultaneously. The phase-contrast imaging technique allowed nondestructive observation of the xylem structural characteristics and the air-water interfaces generated by dehydration-rehydration cycles in excised leaves. This X-ray microimaging method provided a unique tool to characterize the perforated end walls of vessel elements and to evaluate their influence on hydraulic resistance during the refilling of embolized vessels. The real-time monitoring of the axial and radial sap flow under various environmental conditions highlighted the important role of perforation plates. In summary, we report a new methodology to study the sap flow dynamics and xylem hydraulic properties with μm spatial and ms temporal resolution using X-ray microscopy. The experimental procedure described herein provides a useful handle to understand key sap transport phenomena in xylem. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  8. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees.

    Science.gov (United States)

    Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea

    2016-11-01

    Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P xylem rings with fewer but larger vessels (P  0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    Science.gov (United States)

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  10. Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides x Populus nigra hybrids.

    Science.gov (United States)

    Fichot, Régis; Barigah, Têtè S; Chamaillard, Sylvain; LE Thiec, Dider; Laurans, Françoise; Cochard, Hervé; Brignolas, Franck

    2010-09-01

    We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides x Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Psi(50)) varied from -1.60 to -2.40 MPa. Drought-acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependent, with Psi(50) being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Psi(50) was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water-use efficiency. At the whole-plant level, increased safety was associated with higher shoot growth potential under well-irrigated regime only. We conclude that common trade-offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.

  11. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival.

    Science.gov (United States)

    Voelker, Steven L; Lachenbruch, Barbara; Meinzer, Frederick C; Kitin, Peter; Strauss, Steven H

    2011-04-01

    We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after growing either as free-standing trees in the field or as supported by stakes in a greenhouse. In free-standing trees, a 20 to 40% reduction in lignin content was associated with increased xylem vulnerability to embolism, shoot dieback and mortality. In staked trees, the decreased biomechanical demands on the xylem was associated with increases in the leaf area to sapwood area ratio and wood specific conductivity (k(s)), and with decreased leaf-specific conductivity (k(l)). These shifts in hydraulic architecture suggest that the bending stresses perceived during growth can affect traits important for xylem water transport. Severe 4CL-downregulation resulted in the patchy formation of discoloured, brown wood with irregular vessels in which water transport was strongly impeded. These severely 4CL-downregulated trees had significantly lower growth efficiency (biomass/leaf area). These results underscore the necessity of adequate lignification for mechanical support of the stem, water transport, tree growth and survival. © 2011 Blackwell Publishing Ltd.

  12. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.

    Science.gov (United States)

    Lee, Eric F; Matthews, Mark A; McElrone, Andrew J; Phillips, Ronald J; Shackel, Kenneth A; Brodersen, Craig R

    2013-09-21

    Long distance water and nutrient transport in plants is dependent on the proper functioning of xylem networks, a series of interconnected pipe-like cells that are vulnerable to hydraulic dysfunction as a result of drought-induced embolism and/or xylem-dwelling pathogens. Here, flow in xylem vessels was modeled to determine the role of vessel connectivity by using three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera cv. 'Chardonnay') stems. Flow in 4-27% of the vessel segments (i.e. any section of vessel elements between connection points associated with intervessel pits) was found to be oriented in the direction opposite to the bulk flow under normal transpiration conditions. In order for the flow in a segment to be in the reverse direction, specific requirements were determined for the location of connections, distribution of vessel endings, diameters of the connected vessels, and the conductivity of the connections. Increasing connectivity and decreasing vessel length yielded increasing numbers of reverse flow segments until a maximum value was reached, after which more interconnected networks and smaller average vessel lengths yielded a decrease in the number of reverse flow segments. Xylem vessel relays also encouraged the formation of reverse flow segments. Based on the calculated flow rates in the xylem network, the downward spread of Xylella fastidiosa bacteria in grape stems was modeled, and reverse flow was shown to be an additional mechanism for the movement of bacteria to the trunk of grapevine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ozone and xylem regeneration in internodes of Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Rier, J.P. Jr.; Owens, V.A.

    1973-01-01

    Xylem regeneration was studied in wounded, excised second internodes of Coleus blumei(Benth) following exposure to ozone at 50 pphm. Sections were treated with ozone 1 hr/day for 7 and 14 days under room conditions. Nontreated controls were cultured during the same periods. New elements failed to regenerate in sections cultured in glass distilled water. When compared to controls, ozone reduced the amount of new elements that regenerated in segments cultured in media. The reductions were: 34% in sucrose cultures and 46% in IAA-sucrose cultures ozonated for only seven days, 21% in sucrose cultures and 65% in IAA-sucrose cultures ozonated during the first seven days of a two week culture period, 56% in segments grown in IAA-sucrose and 22% in those grown in sucrose media and exposed to ozone for 14 days, and 30% in segments cultured during the last seven days of a two week culture period. It is tentatively concluded that ozone attacked the endogeneous and exogenous supply of IAA rendering it inactive and ineffective in the process of xylem regeneration. 57 references, 4 figures.

  14. Portal Vein Thrombosis

    Directory of Open Access Journals (Sweden)

    Hakan Demirci

    2016-01-01

    Full Text Available Portal vein thrombosis is an important cause of presinusoidal portal hypertension. Portal vein thrombosis commonly occurs in patient with cirrhosis, malignancy and prothrombotic states. Patients with acute portal vein thrombosis have immediate onset. Patients with chronic portal vein thrombosis have developed portal hypertension and cavernous portal transformation. Portal vein thrombosis is diagnosed with doppler ultrasound, computed tomography and magnetic resonance imaging. Therapy with low molecular weight heparin achieves recanalization in more than half of acute cases.

  15. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K(+) concentration ([K(+)]), electrical conductivity (σsap), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (Kwb), leaf blade (Klb) and petiole hydraulic conductances (KP) showed clear daily dynamics. Air temperature (TA) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on KwbKlb, KP, [K(+)] and σsap. Osm varied only with light intensity, while KB varied depending on atmospheric evaporative demand expressed as TA, VPD or RH. Xylem sap pH depended inversely on soil water potential (ΨS) and during daylight also on VPD. Although soil water content was close to saturation during the study period, ΨS influenced also [K(+)] and σsap. The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants.

    Directory of Open Access Journals (Sweden)

    Li Jingmin

    Full Text Available In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.

  17. Branch xylem density variations across Amazonia

    Science.gov (United States)

    Patiño, S.; Lloyd, J.; Paiva, R.; Quesada, C. A.; Baker, T. R.; Santos, A. J. B.; Mercado, L. M.; Malhi, Y.; Phillips, O. L.; Aguilar, A.; Alvarez, E.; Arroyo, L.; Bonal, D.; Costa, A. C. L.; Czimczik, C. I.; Gallo, J.; Herrera, R.; Higuchi, N.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neill, D.; Núñez-Vargas, P.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares de Almeida, S.; Torres-Lezama, A.; Turriago, J. D.; Vásquez-Martínez, R.; Schwarz, M.; Sota, A.; Schmerler, J.; Vieira, I.; Villanueva, B.; Vitzthum, P.

    2008-05-01

    Measurements of branch xylem density, Dx, were made for 1466 trees representing 503 species, sampled from 80 sites across the Amazon basin. Measured values ranged from 240 kg m-3 for a Brosimum parinarioides from Tapajos in West Pará, Brazil to 1130 kg m-3 for an Aiouea sp. from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average Dx across the sample plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that geographic location and plot accounted for 33% of the variation with species identity accounting for an additional 27%; the remaining "residual" 40% of the variance accounted for by tree to tree (within species) variation. Variations in plot means, were, however, hardly accountable at all by differences in species composition. Rather, it would seem that variations of xylem density at plot level must be explained by the effects of soils and/or climate. This conclusion is supported by the observation that the xylem density of the more widely distributed species varied systematically from plot to plot. Thus, as well as having a genetic component branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing and in a predictable manner. Exceptions to this general rule may be some pioneers belonging to Pourouma and Miconia and some species within the genera Brosimum, Rinorea and Trichillia which seem to be more constrained in terms of this plasticity than most species sampled as part of this study.

  18. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  19. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species.

    Science.gov (United States)

    Lopez, Omar R; Kursar, Thomas A; Cochard, Hervé; Tyree, Melvin T

    2005-12-01

    In tropical moist forests, seasonal drought limits plant survival, productivity and diversity. Drought-tolerance mechanisms of tropical species should reflect the maximum seasonal water deficits experienced in a particular habitat. We investigated stem xylem vulnerability to cavitation in nine tropical species with different life histories and habitat associations. Stem xylem vulnerability was scored as the xylem water potential causing 50 and 75% loss of hydraulic conductivity (P50 and P75, respectively). Four shade-tolerant shrubs ranged from moderately resistant (P50=-1.9 MPa for Ouratea lucens Kunth. Engl.) to highly resistant to cavitation (P50=-4.1 MPa for Psychotria horizontalis Sw.), with shallow-rooted species being the most resistant. Among the tree species, those characteristic of waterlogged soils, Carapa guianensis Aubl., Prioria copaifera Griseb. and Ficus citrifolia Mill., were the most vulnerable to cavitation (P50=-0.8 to -1.6 MPa). The wet-season, deciduous tree, Cordia alliodora (Ruiz and Pav.) Oken., had resistant xylem (P50=-3.2 MPa), whereas the dry-season, deciduous tree, Bursera simaruba (L.) Sarg. was among the most vulnerable to cavitation (P50=-0.8 MPa) of the species studied. For eight out of the nine study species, previously reported minimum seasonal leaf water potentials measured in the field during periods of drought correlated with our P50 and P75 values. Rooting depth, deciduousness, soil type and growth habit might also contribute to desiccation tolerance. Our results support the functional dependence of drought tolerance on xylem resistance to cavitation.

  20. The xylem as battleground for plant hosts and vascular wilt pathogens

    OpenAIRE

    Koste eYadeta; Bart eThomma

    2013-01-01

    Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical...

  1. Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes.

    Science.gov (United States)

    López-Bernal, Álvaro; Alcántara, Esteban; Testi, Luca; Villalobos, Francisco J

    2010-12-01

    The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.

  2. Focus on Varicose Veins

    Science.gov (United States)

    ... plethysmography. These diagnostic tests are non-invasive and painless. How are varicose veins treated? Varicose veins are ... and mid-term results. • RF treatment involves controlled delivery of radio- frequency (RF) energy directly to a ...

  3. Portal Vein Thrombosis

    Directory of Open Access Journals (Sweden)

    Ronny Cohen

    2015-01-01

    Full Text Available Portal vein thrombosis (PVT is the blockage or narrowing of the portal vein by a thrombus. It is relatively rare and has been linked with the presence of an underlying liver disease or prothrombotic disorders. We present a case of a young male who presented with vague abdominal symptoms for approximately one week. Imaging revealed the presence of multiple nonocclusive thrombi involving the right portal vein, the splenic vein, and the left renal vein, as well as complete occlusion of the left portal vein and the superior mesenteric vein. We discuss pathogenesis, clinical presentation, and management of both acute and chronic thrombosis. The presence of PVT should be considered as a clue for prothrombotic disorders, liver disease, and other local and general factors that must be carefully investigated. It is hoped that this case report will help increase awareness of the complexity associated with portal vein thrombosis among the medical community.

  4. What Are Varicose Veins?

    Science.gov (United States)

    ... often they develop in people who have certain genetic disorders, viral infections, or other conditions, such as ... all people who have varicose veins have a family history of them. Older ... or blue veins in a web or tree branch pattern. Often, these veins appear on the ...

  5. Quo vadis, carbon? High resolution tracing of xylem and phloem carbon transport and release in trees

    Science.gov (United States)

    Ingrisch, J.; Bloemen, J.; Bahn, M.

    2016-12-01

    Carbon (C) allocation defines the flows of C between plant organs, and between storage pools and metabolic processes and is therefore considered an important determinant of ecosystem C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported as sugars via the phloem to above- and below-ground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, above- and below-ground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a transport pathway opposite to the downward transport of sugars along the phloem. So far, it is unclear to what extent these transport pathways interact, for instance by lateral transport of C, and contribute to above- and belowground respiratory fluxes to the atmosphere. We performed a combined canopy and stem infusion 13C labeling study on six year old potted oak (Quercus rubra) trees to trace C transport along the phloem and xylem, respectively, in order to investigate the role of both transport pathways in C allocation. In addition, high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux were used to monitor the contribution of both pathways to respiratory fluxes. Additional tissue analysis was performed to analyze the occurrence of lateral transport of C between the phloem and xylem transport pathway. Our results will permit disentangling the contribution of metabolic versus xylem and phloem transport processes to stem and soil CO2 efflux and give insight into lateral C transport between xylem and phloem in trees.

  6. Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra)

    OpenAIRE

    Froux, Fabienne; Huc, Roland; Ducrey, Michel; Dreyer, Erwin

    2002-01-01

    International audience; We studied the xylem hydraulic traits and anatomy of four diverse Mediterranean conifers to determine how these species protect themselves against catastrophic xylem failure. Cedrus atlantica, Cupressus sempervirens, Pinus nigra and P. halepensis seedlings were grown for two years in pots in a greenhouse under well-watered conditions. Measurements were conducted in April and September. The vulnerability to cavitation was lower in April in the two pines and cedar wherea...

  7. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  8. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  9. Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values.

    Science.gov (United States)

    Trifilò, Patrizia; Raimondo, Fabio; Lo Gullo, Maria A; Barbera, Piera M; Salleo, Sebastiano; Nardini, Andrea

    2014-11-01

    Diurnal changes in percentage loss of hydraulic conductivity (PLC), with recorded values being higher at midday than on the following morning, have been interpreted as evidence for the occurrence of cycles of xylem conduits' embolism and repair. Recent reports have suggested that diurnal PLC changes might arise as a consequence of an experimental artefact, that is, air entry into xylem conduits upon cutting stems, even if under water, while under substantial tension generated by transpiration. Rehydration procedures prior to hydraulic measurements have been recommended to avoid this artefact. In the present study, we show that xylem rehydration prior to hydraulic measurements might favour xylem refilling and embolism repair, thus leading to PLC values erroneously lower than those actually experienced by transpiring plants. When xylem tension relaxation procedures were performed on stems where refilling mechanisms had been previously inhibited by mechanical (girdling) or chemical (orthovanadate) treatment, PLC values measured in stems cut under native tension were the same as those measured after sample rehydration/relaxation. Our data call for renewed attention to the procedures of sample collection in the field and transport to the laboratory, and suggest that girdling might be a recommendable treatment prior to sample collection for PLC measurements. © 2014 John Wiley & Sons Ltd.

  10. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars.

    Science.gov (United States)

    Savi, Tadeja; Casolo, Valentino; Luglio, Jessica; Bertuzzi, Stefano; Trifilo', Patrizia; Lo Gullo, Maria A; Nardini, Andrea

    2016-09-01

    Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

    Science.gov (United States)

    Zimmerman, Reiner; Way, JoBea; McDonald, Kyle; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    As part of its efforts to determine environmental and phenological states from radar imagery, the Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the Southern Study Area-Old Black Spruce (SSA-OBS) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31 May 1994 until 27 September 1994. The data are stored in tabular ASCII files. The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants.

    Science.gov (United States)

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2018-02-01

    Water flow through xylem vessels encounters hydraulic resistance when passing through the vessel lumen and end wall. Comparative studies have reported that lumen and end wall resistivities co-limit water flow through stem xylem in several angiosperm woody species that have vessels of different average diameter and length. This study examined the intra-specific relationship between the lumen and end wall resistivities (Rlumen and Rwall) for vessels within the stem xylem using three deciduous angiosperm woody species found in temperate forest. Morus australis Poir. and Acer rufinerve Siebold et Zucc. are early- and late-successional species, and Vitis coignetiae Pulliat ex Planch is a woody liana. According to the Hagen-Poiseuille equation, Rlumen is proportional to the fourth power of vessel diameter (D), whereas vessel length (L) and inter-vessel pit area (Apit) determine Rwall. To estimate Rlumen and Rwall, the scaling relationships between the L and D and between Apit and D were measured. The scaling exponents between L and D were 1.47, 3.19 and 2.86 for A. rufinerve, M. australis and V. coignetiae, respectively, whereas those between Apit and D were 0.242, 2.11 and 2.68, respectively. Unlike the inter-specific relationships, the wall resistivity fraction (Rwall/(Rlumen + Rwall)) within xylem changed depending on D. In M. australis and V. coignetiae, this fraction decreased with increasing D, while in A. rufinerve, it increased with D. Vessels with a high wall resistivity fraction have high Rwall and total resistivity but are expected to have low susceptibility to xylem cavitation due to a small cumulative Apit. In contrast, vessels with a low wall resistivity fraction have low Rwall and total resistivity but high susceptibility to xylem cavitation. Because the wall resistivity fraction varies with D, the stem xylem contains vessels with different hydraulic efficiencies and safety to xylem cavitation. These features produce differences in the hydraulic properties

  14. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series.

    Science.gov (United States)

    Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco

    2015-08-01

    The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.

    Science.gov (United States)

    Trifilò, Patrizia; Barbera, Piera M; Raimondo, Fabio; Nardini, Andrea; Lo Gullo, Maria A

    2014-02-01

    Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydraulic function under drought stress by coordinating the refilling of xylem conduits and ion-mediated enhancement of stem hydraulic conductance (K stem). Vessel grouping indices and starch content in vessel-associated parenchyma cells were quantified to verify eventual correlations with ionic effects and refilling, respectively. Experiments were performed on stems of Ceratonia siliqua L., Olea europaea L. and Laurus nobilis L. Seasonal, ion-mediated changes in K stem (ΔK stem) and diurnal and/or seasonal embolism repair were recorded for all three species, although with different temporal patterns. Field measurements of leaf specific stem hydraulic conductivity showed that it remained quite constant during the year, despite changes in the levels of embolism. Starch content in vessel-associated parenchyma cells changed on diurnal and seasonal scales in L. nobilis and O. europaea but not in C. siliqua. Values of ΔK stem were significantly correlated with vessel multiple fraction values (the ratio of grouped vessels to total number of vessels). Our data suggest that the regulation of xylem water transport in Mediterranean plants relies on a close integration between xylem refilling and ionic effects. These functional traits apparently play important roles in plants' responses to drought-induced xylem cavitation.

  16. Deep Vein Thrombosis

    African Journals Online (AJOL)

    OWNER

    CONCLUSION: Deep Venous Thrombosis is a common disease with fatal and serious long term burdensome complications. ... WAJM 2009; 28(2): 77–82. Keywords: Deep Vein Thrombosis, Venous Thrombosis,. Phlebothrombosis. ... phlebitic syndrome, ulcers and varicose veins. In surgical patients with malignant disease ...

  17. Vein Problems Related to Varicose Veins

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  18. Sex determines xylem anatomy in a dioecious conifer: hydraulic consequences in a drier world.

    Science.gov (United States)

    Olano, José M; González-Muñoz, Noelia; Arzac, Alberto; Rozas, Vicente; von Arx, Georg; Delzon, Sylvain; García-Cervigón, Ana I

    2017-11-01

    Increased drought frequency and severity may reshape tree species distribution in arid environments. Dioecious tree species may be more sensitive to climate warming if sex-related vulnerability to drought occurs, since lower performance of one sex may drive differential stress tolerance, sex-related mortality rates and biased sex ratios. We explored the effect of sex and environment on branch hydraulic (hydraulic conductivity and vulnerability to embolism) and trunk anatomical traits in both sexes of the dioecious conifer Juniperus thurifera L. at two sites with contrasting water availability. Additionally, we tested for a trade-off between hydraulic safety (vulnerability to embolism) and efficiency (hydraulic conductivity). Vulnerability to embolism and hydraulic conductivity were unaffected by sex or site at branch level. In contrast, sex played a significant role in xylem anatomy. We found a trade-off between hydraulic safety and efficiency, with larger conductivities related to higher vulnerabilities to embolism. At the anatomical level, females' trunk showed xylem anatomical traits related to greater hydraulic efficiency (higher theoretical hydraulic conductivity) over safety (thinner tracheid walls, lower Mork's Index), whereas males' trunk anatomy followed a more conservative strategy, especially in the drier site. Reconciling the discrepancy between branch hydraulic function and trunk xylem anatomy would require a thorough and integrated understanding of the tree structure-function relationship at the whole-plant level. Nevertheless, lower construction costs and higher efficiency in females' xylem anatomy at trunk level might explain the previously observed higher growth rates in mesic habitats. However, prioritizing efficiency over safety in trunk construction might make females more sensitive to drought, endangering the species' persistence in a drier world. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions

  19. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells

    OpenAIRE

    Kasuga, Jun; Mizuno, Kaoru; Arakawa, Keita; Fujikawa, Seizo

    2007-01-01

    Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing temperatures by deep supercooling. Crude extracts from xylem in all these trees were found to have anti-ice...

  20. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands.

    Science.gov (United States)

    Lavrič, Martina; Eler, Klemen; Ferlan, Mitja; Vodnik, Dominik; Gričar, Jožica

    2017-01-01

    Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the 'correct sequence' of processes is essential for synchronized plant performance and response to environmental stress.

  1. Nickel sorption capacity of ground xylem of Quercus ilex trees and effects of selected ligands present in the xylem sap.

    Science.gov (United States)

    Araújo, Geórgia C L; Lemos, Sherlan G; Nabais, Cristina

    2009-02-15

    In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0.1molL(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid>citric acid>histidine>aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups.

  2. Congenital preduodenal portal vein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Hwang, Mi Soo; Huh, Young Soo; Park, Bok Hwan [College of Medicine, Youngnam University, Gyeongsan (Korea, Republic of)

    1991-03-15

    Congenital preduodenal portal vein, first reported by Knight in 1921, is an extremely rare congenital anomaly in which the portal vein passes anteriorly to the duodenum rather than posteriorly in its normal location. It is of surgical significance because it may cause difficulties in operations involving the gall bladder, biliary duct, or duodenum. Recently, we experienced 2 cases of preduodenal portal vein. One was found during surgical exploration for the diagnosis and correction of malrotation of the bowels and the other in a 3 day-old male newborn associated with dextrocardia, situs inversus, and duodenal obstruction by diaphragm. We report these 2 cases with a review of the literature.

  3. Evidence for Air-Seeding: Watching the Formation of Embolism in Conifer Xylem.

    Science.gov (United States)

    Mayr, S; Kartusch, B; Kikuta, S

    Water transport in plants is based on a metastable system as the xylem "works" at negative water potentials (ψ). At critically low ψ, water columns can break and cause embolism. According to the air-seeding hypothesis, this occurs by air entry via the pits. We studied the formation of embolism in dehydrating xylem sections of Juniperus virginiana (Cupressaceae), which were monitored microscopically and via ultrasonic emission analyses. After replacement of water by air in outer tracheid layers, a complex movement of air-water menisci into tracheids was found. With decreasing ψ, pits started to aspirate and the speed of menisci movements increased. In one experiment, an airseeding event could be detected at a pit. The onset of ultrasonic activity was observed when pits started to close, and ultrasonic emission ceased at intense dehydration. Experiments clearly indicated that predictions of the air-seeding hypothesis are correct: At low ψ, pit mechanisms to prevent air entry failed and air spread into tracheids. ψ fluctuations caused complex movements of air-water menisci and pits, and at low ψ, air-seeding caused ultrasonic emissions. Main insights are presented in a video.

  4. What Are Varicose Veins?

    Science.gov (United States)

    ... these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment ...

  5. Preventing Deep Vein Thrombosis

    Science.gov (United States)

    ... methods that contain estrogen or hormone therapy for menopause symptoms Certain illnesses, including heart failure, inflammatory bowel disease, and some kidney disorders Obesity Smoking Varicose veins Having a tube in a ...

  6. Popliteal vein aneurysm.

    Science.gov (United States)

    Falkowski, A; Poncyljusz, W; Zawierucha, D; Kuczmik, W

    2006-06-01

    The incidence of a popliteal vein aneurysm is extremely low. Two cases of this rare venous anomaly are described. The epidemiology, morphology, and diagnostic methods are discussed and the potentially dangerous complications and treatment methods are presented.

  7. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?

    Science.gov (United States)

    Savi, Tadeja; Bertuzzi, Stefano; Branca, Salvatore; Tretiach, Mauro; Nardini, Andrea

    2015-02-01

    Urban trees help towns to cope with climate warming by cooling both air and surfaces. The challenges imposed by the urban environment, with special reference to low water availability due to the presence of extensive pavements, result in high rates of mortality of street trees, that can be increased by climatic extremes. We investigated the water relations and xylem hydraulic safety/efficiency of Quercus ilex trees growing at urban sites with different percentages of surrounding impervious pavements. Seasonal changes of plant water potential and gas exchange, vulnerability to cavitation and embolism level, and morpho-anatomical traits were measured. We found patterns of increasing water stress and vulnerability to drought at increasing percentages of impervious pavement cover, with a consequent reduction in gas exchange rates, decreased safety margins toward embolism development, and increased vulnerability to cavitation, suggesting the occurrence of stress-induced hydraulic deterioration. The amount of impermeable surface and chronic exposure to water stress influence the site-specific risk of drought-induced dieback of urban trees under extreme drought. Besides providing directions for management of green spaces in towns, our data suggest that xylem hydraulics is key to a full understanding of the responses of urban trees to global change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Classifying Taiwan Lianas with Radiating Plates of Xylem

    Directory of Open Access Journals (Sweden)

    Sheng-Zehn Yang

    2015-12-01

    Full Text Available Radiating plates of xylem are a lianas cambium variation, of which, 22 families have this feature. This study investigates 15 liana species representing nine families with radiating plates of xylem structures. The features of the transverse section and epidermis in fresh liana samples are documented, including shapes and colors of xylem and phloem, ray width and numbers, and skin morphology. Experimental results indicated that the shape of phloem fibers in Ampelopsis brevipedunculata var. hancei is gradually tapered and flame-like, which is in contrast with the other characteristics of this type, including those classified as rays. Both inner and outer cylinders of vascular bundles are found in Piper kwashoense, and the irregularly inner cylinder persists yet gradually diminishes. Red crystals are numerous in the cortex of Celastrus kusanoi. Aristolochia shimadai and A. zollingeriana develop a combination of two cambium variants, radiating plates of xylem and a lobed xylem. The shape of phloem in Stauntonia obovatifoliola is square or truncate, and its rays are numerous. Meanwhile, that of Neoalsomitra integrifolia is blunt and its rays are fewer. As for the features of a stem surface within the same family, Cyclea ochiaiana is brownish in color and has a deep vertical depression with lenticels, Pericampylus glaucus is greenish in color with a vertical shallow depression. Within the same genus, Aristolochia shimadai develops lenticels, which are not in A. zollingeriana; although the periderm developed in Clematis grata is a ring bark and tears easily, that of Clematis tamura is thick and soft.

  9. Xylem hydraulic safety and construction costs determine tropical tree growth.

    Science.gov (United States)

    Eller, Cleiton B; Barros, Fernanda de V; Bittencourt, Paulo R L; Rowland, Lucy; Mencuccini, Maurizio; Oliveira, Rafael S

    2017-12-06

    Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of nine tropical cloud forest tree species coupled with numerical simulations using a optimization model. We find that fast-growing trees have lower xylem safety margins than slow-growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast-growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose that this growth - xylem vulnerability trade-off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that a growth - hydraulic safety trade-off can emerge from the coordination between growth rates, wood density and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth-mortality trade-off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy. This article is protected by copyright. All rights reserved.

  10. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na(+), K(+), and Cl(-)), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  11. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Mihucz, Victor G; Tatár, Eniko; Virág, István; Cseh, Edit; Fodor, Ferenc; Záray, Gyula

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 micromol dm(-3) arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite.

  12. Branch xylem density variations across the Amazon Basin

    Directory of Open Access Journals (Sweden)

    S. Patiño

    2009-04-01

    Full Text Available Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m−3 for a Cordia sagotii (Boraginaceae from Mountagne de Tortue, French Guiana to 1130 kg m−3 for an Aiouea sp. (Lauraceae from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species accounted for 33% with environment (geographic location and plot accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  13. Branch xylem density variations across the Amazon Basin

    Science.gov (United States)

    Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T. R.; Quesada, C. A.; Mercado, L. M.; Schmerler, J.; Schwarz, M.; Santos, A. J. B.; Aguilar, A.; Czimczik, C. I.; Gallo, J.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J. D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A. C. L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neil, D.; Núñez-Vargas, P.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares Dealmeida, S.; Torres-Lezama, A.; Vásquez-Martínez, R.; Vieira, I.; Malhi, Y.; Phillips, O. L.

    2009-04-01

    Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m-3 for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m-3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  14. A broad survey of hydraulic and mechanical safety in the xylem of conifers

    OpenAIRE

    Bouche, Pauline S.; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain

    2014-01-01

    Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical propertie...

  15. Response pattern of amino compounds in phloem and xylem of trees to soil drought depends on drought intensity and root symbiosis.

    Science.gov (United States)

    Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H

    2013-01-01

    This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious.

    Science.gov (United States)

    Chatelet, David S; Wistrom, Christina M; Purcell, Alexander H; Rost, Thomas L; Matthews, Mark A

    2011-07-01

    The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant 'Sylvaner' had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. Stem--leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.

  17. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.

    Science.gov (United States)

    Choat, Brendan; Medek, Danielle E; Stuart, Stephanie A; Pasquet-Kok, Jessica; Egerton, John J G; Salari, Hooman; Sack, Lawren; Ball, Marilyn C

    2011-09-01

    Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  18. Portal Vein Thrombosis

    Science.gov (United States)

    Chawla, Yogesh K.; Bodh, Vijay

    2015-01-01

    Portal vein thrombosis is an important cause of portal hypertension. PVT occurs in association with cirrhosis or as a result of malignant invasion by hepatocellular carcinoma or even in the absence of associated liver disease. With the current research into its genesis, majority now have an underlying prothrombotic state detectable. Endothelial activation and stagnant portal blood flow also contribute to formation of the thrombus. Acute non-cirrhotic PVT, chronic PVT (EHPVO), and portal vein thrombosis in cirrhosis are the three main variants of portal vein thrombosis with varying etiological factors and variability in presentation and management. Procoagulant state should be actively investigated. Anticoagulation is the mainstay of therapy for acute non-cirrhotic PVT, with supporting evidence for its use in cirrhotic population as well. Chronic PVT (EHPVO) on the other hand requires the management of portal hypertension as such and with role for anticoagulation in the setting of underlying prothrombotic state, however data is awaited in those with no underlying prothrombotic states. TIPS and liver transplant may be feasible even in the setting of PVT however proper selection of candidates and type of surgery is warranted. Thrombolysis and thrombectomy have some role. TARE is a new modality for management of HCC with portal vein invasion. PMID:25941431

  19. [Deep vein thrombosis prophylaxis.

    Science.gov (United States)

    Sandoval-Chagoya, Gloria Alejandra; Laniado-Laborín, Rafael

    2013-01-01

    Background: despite the proven effectiveness of preventive therapy for deep vein thrombosis, a significant proportion of patients at risk for thromboembolism do not receive prophylaxis during hospitalization. Our objective was to determine the adherence to thrombosis prophylaxis guidelines in a general hospital as a quality control strategy. Methods: a random audit of clinical charts was conducted at the Tijuana General Hospital, Baja California, Mexico, to determine the degree of adherence to deep vein thrombosis prophylaxis guidelines. The instrument used was the Caprini's checklist for thrombosis risk assessment in adult patients. Results: the sample included 300 patient charts; 182 (60.7 %) were surgical patients and 118 were medical patients. Forty six patients (15.3 %) received deep vein thrombosis pharmacologic prophylaxis; 27.1 % of medical patients received deep vein thrombosis prophylaxis versus 8.3 % of surgical patients (p < 0.0001). Conclusions: our results show that adherence to DVT prophylaxis at our hospital is extremely low. Only 15.3 % of our patients at risk received treatment, and even patients with very high risk received treatment in less than 25 % of the cases. We have implemented strategies to increase compliance with clinical guidelines.

  20. Cucumber vein yellowing virus

    Science.gov (United States)

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Cucumber vein yellowing virus (CVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of CVYV and the disease it causes....

  1. Squash vein yellowing virus

    Science.gov (United States)

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Squash vein yellowing virus (SqVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of SqVYV and the disease it causes....

  2. What Causes Varicose Veins?

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  3. Deep Vein Thrombosis

    Centers for Disease Control (CDC) Podcasts

    2012-04-05

    This podcast discusses the risk for deep vein thrombosis in long-distance travelers and ways to minimize that risk.  Created: 4/5/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/5/2012.

  4. Transport of glutamine into the xylem of sunflower (Helianthus annuus).

    NARCIS (Netherlands)

    Findenegg, G.R.; Plaisier, W.; Posthumus, M.A.; Melger, W.C.

    1990-01-01

    Sunflower (Helianthus annuus L.) plants were grown on nutrient solution with ammonium nitrogen. After 12 days of growth the ammonium in the nutrient solution was labeled with N (99%). Three hours later glutamine-N in the xylem exudate was labeled for 56% as shown by GC-MS; this percentage increased

  5. Relating xylem cavitation to gas exchange in cotton

    Science.gov (United States)

    Acoustic emissions (AEs) from xylem cavitation events are characteristic of transpiration processes. Though a body of work using AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. The objective of...

  6. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative ...

  7. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    ondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differen- tial expression analysis of the three EtCesA genes using qRT-PCR revealed ...

  8. Portal Vein Thrombosis: Recent Advance.

    Science.gov (United States)

    Qi, Xingshun

    2017-01-01

    Portal vein thrombosis is a life-threatening vascular disorder of the liver. In this chapter, I will review the recent advance regarding the epidemiology, etiology, management, and prognosis of portal vein thrombosis.

  9. Cyclic nucleotides and production of prostanoids in human varicose veins.

    Science.gov (United States)

    Nemcova, S; Gloviczki, P; Rud, K S; Miller, V M

    1999-11-01

    Experiments were designed to determine the production of prostacyclin and thromboxane and the activation of cyclic nucleotides in human varicose and nonvaricose veins and to determine whether these second messenger pathways were differentially activated by the venotropic extract of Ruscus aculeatus. The experiments were designed to characterize the activity of cyclic nucleotides and the production of prostaglandins in human varicose and nonvaricose veins. Segments of the greater saphenous veins and the adjacent tributaries were obtained from patients who underwent vein stripping and excision of primary varicose veins. The saphenous veins from the patients who underwent peripheral arterial bypass grafting were used as controls. The segments of veins were incubated in Krebs-Ringer bicarbonate solution in the presence of venotropic extract of Ruscus aculeatus (10(-3) g/mL) or in water-miscible organic solvent (dimethyl sulfoxide, 10(-3) g/mL), for 1, 5, and 10 minutes at 37 degrees C. The nonspecific phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, 10(-4) g/mL) was used to block cyclic nucleotide degradation in some samples. Tissue and media samples were collected. Tissue concentrations of both cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP and cGMP, respectively) and media concentrations of 6-ketoprostaglandin-F(1)(alpha) (the stable metabolite of prostacyclin) and thromboxane B(2) (the stable metabolite of thromboxane A(2)) were measured by means of radioimmunoassay. Cyclooxygenase 2 was measured with Western blot analysis. The varicose veins showed greater levels of cAMP but not of cGMP at all time points as compared with the control veins. Prostanoid production was not significantly altered in the varicose veins. Stimulation with Ruscus aculeatus increased the cAMP concentration in the varicose veins but did not affect the cGMP levels. The ratio between 6-ketoprostaglandin-F(1)(alpha) and thromboxane B(2) was two-fold greater in

  10. Concerns and Discomforts of Pregnancy - Varicose Veins

    Science.gov (United States)

    Concerns and Discomforts of Pregnancy - Varicose Veins Varicose veins are enlarged veins you may see on your legs. They can itch, ... Healthy Roads Media project www. healthyroadsmedia. org English - Concerns and Discomforts of Pregnancy (Varicose Veins) Last reviewed 2012

  11. Effect of Macerase, Oxalic Acid, and EGTA on Deep Supercooling and Pit Membrane Structure of Xylem Parenchyma of Peach.

    Science.gov (United States)

    Wisniewski, M; Davis, G; Arora, R

    1991-08-01

    The object of this study was to determine if calcium cross-linking of pectin in the pit membrane of xylem parenchyma restricts water movement which results in deep supercooling. Current year shoots of ;Loring' peach (Prunus persica) were infiltrated with oxalic acid or EGTA solutions for 24 or 48 hours and then either prepared for ultrastructural analysis or subjected to differential thermal analysis. The effect of 0.25 to 1.0% pectinase (weight/volume) on deep supercooling was also investigated. The use of 5 to 50 millimolar oxalic acid and pectinase resulted in a significant reduction (flattening) of the low temperature exotherm and a distinct swelling and partial degradation of the pit membrane. EGTA (10 millimolar) for 24 or 48 hours shifted the low temperature exotherm to warmer temperatures and effected the outermost layer of the pit membrane. A hypothesis is presented on pectin-mediated regulation of deep supercooling of xylem parenchyma.

  12. Vulnerability to cavitation differs between current-year and older xylem: non-destructive observation with a compact magnetic resonance imaging system of two deciduous diffuse-porous species.

    Science.gov (United States)

    Fukuda, Kenji; Kawaguchi, Daichi; Aihara, Tomo; Ogasa, Mayumi Y; Miki, Naoko H; Haishi, Tomoyuki; Umebayashi, Toshihiro

    2015-12-01

    Development of xylem embolism during water stress in two diffuse-porous hardwoods, Katsura (Cercidiphyllum japonicum) and Japanese white birch (Betula platyphylla var. japonica), was observed non-destructively under a compact magnetic resonance imaging (MRI) system in addition to conventional quantitation of hydraulic vulnerability to cavitation from excised stem segments. Distribution of white and dark areas in MR images corresponded well to the distribution of water-filled/embolized vessels observed by cryo-scanning electron microscopy in both species. Water-filled vessels were observed in MR images as white areas in Katsura and as white dots in Japanese white birch, respectively, and embolisms could be detected as a change to dark areas. The increase in the relative embolized area (REA: %) in the cross-sectional area of total xylem during water stress, which was estimated from the binarized MR images, was consistent with the hydraulic vulnerability curves of these species. From the non-destructive MRI observations, cavitation induced by water stress was shown to develop earlier in 1- or 2-year-old xylem than in the current-year xylem in both species; that is, the vulnerability to cavitation differs between vessels in the current-year xylem and those in older annual rings. © 2015 John Wiley & Sons Ltd.

  13. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability.

    Science.gov (United States)

    Herbette, Stephane; Wortemann, Remi; Awad, Hosam; Huc, Roland; Cochard, Herve; Barigah, Tete Severien

    2010-11-01

    Xylem vulnerability to cavitation is a key parameter in understanding drought resistance of trees. We determined the xylem water pressure causing 50% loss of hydraulic conductivity (P(50)), a proxy of vulnerability to cavitation, and we evaluated the variability of this trait at tree and population levels for Fagus sylvatica. We checked for the effects of light on vulnerability to cavitation of stem segments together with a time series variation of P(50). Full sunlight-exposed stem segments were less vulnerable to cavitation than shade-exposed ones. We found no clear seasonal change of P(50), suggesting that this trait was designed for a restricted period. P(50) varied for populations settled along a latitudinal gradient, but not for those sampled along an altitudinal gradient. Moreover, mountainside exposure seemed to play a major role in the vulnerability to cavitation of beech populations, as we observed the differences along north-facing sides but not on south-facing sides. Unexpectedly, both north-facing mountainside and northern populations appeared less vulnerable than those grown on the southern mountainside or in the South of France. These results on beech populations were discussed with respect to the results at within-tree level.

  14. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.

    Science.gov (United States)

    Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C

    2015-08-01

    Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  16. Identification of Xylem Occlusions Occurring in Cut Clematis (Clematis L., fam. Ranunculaceae Juss. Stems during Their Vase Life

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.

  17. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection.

    Science.gov (United States)

    Kuprian, Edith; Tuong, Tan D; Pfaller, Kristian; Wagner, Johanna; Livingston, David P; Neuner, Gilbert

    2016-01-01

    Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.

  18. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection.

    Directory of Open Access Journals (Sweden)

    Edith Kuprian

    Full Text Available Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin. A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.

  19. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  20. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  1. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    Science.gov (United States)

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells

    OpenAIRE

    Kasuga, Jun; Mizuno, Kaoru; Miyaji, Natsuko; Arakawa, Keita; Fujikawa, Seizo

    2006-01-01

    In order to find the possible role of intracellular contents in facilitating the supercooling capability of xylem parenchyma cells, changes in the temperature of supercooling levels were compared before and after the release of intracellular substances from beech xylem parenchyma cells by DTA. Various methods were employed to release intracellular substances from xylem parenchyma cells and all resulted in a reduction of supercooling ability. It was concluded that the reduction of supercooling...

  3. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    Science.gov (United States)

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  4. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.

    Science.gov (United States)

    Pittermann, Jarmila; Limm, Emily; Rico, Christopher; Christman, Mairgareth A

    2011-10-01

    The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, and examined the relationships among hydraulic transport, drought-induced cavitation resistance, the xylem anatomy of the stipe, and the gas-exchange response of the pinnae. For comparison, the results are presented alongside a similar suite of conifer data. Fern xylem is as resistant to cavitation as conifer xylem, but exhibits none of the hydraulic or structural trade-offs associated with resistance to cavitation. On a conduit diameter basis, fern xylem can exhibit greater hydraulic efficiency than conifer and angiosperm xylem. In ferns, wide and long tracheids compensate in part for the lack of secondary xylem and allow ferns to exhibit transport rates on a par with those of conifers. We suspect that it is the arrangement of the primary xylem, in addition to the intrinsic traits of the conduits themselves, that may help explain the broad range of cavitation resistance in ferns. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Leiomyosarcoma of the renal vein

    Directory of Open Access Journals (Sweden)

    Lemos Gustavo C.

    2003-01-01

    Full Text Available Leiomyosarcoma of the renal vein is a rare tumor of complex diagnosis. We presented a case of renal vein leiomyosarcoma detected in a routine study. The primary treatment was complete surgical removal of the mass. In cases where surgical removal is not possible the prognosis is poor, with high rates of local recurrence and distant spread.

  6. High temporal resolution tracing of xylem CO2 transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  7. Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments.

    Science.gov (United States)

    Granda, E; Alla, A Q; Laskurain, N A; Loidi, J; Sánchez-Lorenzo, A; Camarero, J J

    2017-12-28

    The ability of trees to cope with climate change is a pivotal feature of forest ecosystems, especially for rear-edge populations facing warm and dry conditions. To evaluate current and future forests threats, a multi-proxy focus on the growth, anatomical and physiological responses to climate change is needed. We examined the long-term xylem adjustments to climate variability of the temperate Quercus robur L. at its rear edge and the sub-Mediterranean Quercus pyrenaica Willd. Both species coexist at a mesic (ME, humid and warmer) and a xeric (XE, dry and cooler) site in northern Spain, the latter experiencing increasing temperatures in recent decades. We compared xylem traits at each site and assessed their trends, relationships and responses to climate (1960-2008). Traits included basal area increment, earlywood vessel hydraulic diameter, density and theoretical-specific hydraulic conductivity together with latewood oxygen (δ18O) stable isotopes and δ13C-derived water-use efficiency (iWUE). Quercus robur showed the highest growth at ME, likely through enhanced cambial activity. Quercus pyrenaica had higher iWUE at XE compared with ME, but limited plasticity of anatomical xylem traits was found for the two oak species. Similar physiological performance was found for both species. The iWUE augmented in recent years especially at XE, likely explained by stomatal closure given the increasing δ18O signal in response to drier and sunnier growing seasons. Overall, traits were more correlated at XE than at ME. The iWUE improvements were linked to higher growth up to a threshold (~85 μmol mol-1) after which reduced growth was found at XE. Our results are consistent with Q. pyrenaica and Q. robur coexisting at the central and dry edge of the climatic species distribution, respectively, showing similar responses to buffer warmer conditions. In fact, the observed adjustments found for Q. robur point towards growth stability of similar rear-edge oak populations under

  8. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil.

    Science.gov (United States)

    Kirfel, Kristina; Leuschner, Christoph; Hertel, Dietrich; Schuldt, Bernhard

    2017-01-01

    Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D), vessel density (VD), relative vessel lumen area (lumen area per xylem area) and derived potential hydraulic conductivity (Kp) in the xylem of 197 fine- to medium-diameter roots (1-10 mm) in the topsoil and subsoil (0-200 cm) of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1-2 mm) to ∼70 μm in 6-7 mm roots (corresponding to a mean root age of ∼12 years), but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1-10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50-700%, we obtained evidence of the existence of 'high-conductivity roots' indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth - without referring to path length - had a negligible effect.

  9. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil

    Directory of Open Access Journals (Sweden)

    Kristina Kirfel

    2017-07-01

    Full Text Available Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D, vessel density (VD, relative vessel lumen area (lumen area per xylem area and derived potential hydraulic conductivity (Kp in the xylem of 197 fine- to medium-diameter roots (1–10 mm in the topsoil and subsoil (0–200 cm of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1–2 mm to ∼70 μm in 6–7 mm roots (corresponding to a mean root age of ∼12 years, but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1–10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50–700%, we obtained evidence of the existence of ‘high-conductivity roots’ indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth – without referring to path length – had a negligible effect.

  10. Distribution and persistence of Verticillium dahliae in the xylem of Norway maple and European ash trees

    NARCIS (Netherlands)

    Keykha Saber, Mojtaba; Thomma, Bart P.H.J.; Hiemstra, Jelle A.

    2018-01-01

    Verticillium dahliae colonizes the xylem vessels of susceptible host plants. Hence it can be expected that the distribution of the fungus as well as disease progress will be influenced by the anatomy of the xylem of that host. Here, we studied the spatial and temporal distribution of V. dahliae in

  11. Lead mobility within the xylem of red spruce seedlings: Implications for the development of pollution histories

    Science.gov (United States)

    John R. Donnelly; John B. Shane; Paul G. Schaberg

    1990-01-01

    Development of Pb pollution histories using tree ring analyses has been troubled by possible mobility of Pb within stem xylem. In a 2-yr study, we exposed red spruce (Picea rubens Sarg.) seedlings to Pb during one growing season, with Pb excluded in either the previous or following growing season. Lead levels within xylem rings and bark were...

  12. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants

    NARCIS (Netherlands)

    Houterman, Petra M.; Speijer, Dave; Dekker, Henk L.; de Koster, Chris G.; Cornelissen, Ben J. C.; Rep, Martijn

    2007-01-01

    SUMMARY Secreted proteins are known to play decisive roles in plant-fungus interactions. To study the molecular details of the interaction between the xylem-colonizing, plant-pathogenic fungus Fusarium oxysporum and tomato, the composition of the xylem sap proteome of infected tomato plants was

  13. Dynamics of uranium vein mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, R.V. (Ministerstvo Geologii SSR, Moscow)

    1981-01-01

    The formation of uraniun vein deposits and the essence of consanguinity of the mineralization and wall metasomatites are considered. The formation of uranium mineralization is analysed from the positions of Korzhinsky D. S. : the formation of metasomatite aureole and associated vein ores take place as a result of the development of one solution flow while the formation of mineral vein associations occurs on the background of continuous filtration of the solution during metasomato is due to a repeated (pulse) half-opening of fractures and their filling with a part of filtrating solution. The analysis of the available information on the example of two different uranium manifestations permits to reveal certain relations both in the character of wall rock alterations and between the metasomatosis and the formation of ore minerals in veins. The conclusion is made that spatial-time correlations of vein formations with wall metasomatites attest that the pulse formation of ores in veinlets occurs on the background and in interrelation with a consecutive precipitation of components in the aureole volume. The analysis of element migration dynamics in wall aureole carried out from the positions of the Korzhinsky hypothesis of the advance wave of acid components that takes into account the interaction of continuous and pulse mechanisms of solution movement permits to avoid contradictions when interpreting the processes of wall rock alterations and vein ore-forming, and permits to make a common scheme of vein ore-genesis.

  14. Varicose Vein Treatment (Endovenous Ablation of Varicose Veins)

    Science.gov (United States)

    ... surgery. Most of the veins treated are effectively invisible even to ultrasound 12 months after the procedure. ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  15. Calcium Is a Major Determinant of Xylem Vulnerability to Cavitation

    Science.gov (United States)

    Herbette, Stephane; Cochard, Herve

    2010-01-01

    Xylem vulnerability to cavitation is a key parameter in the drought tolerance of trees, but little is known about the control mechanisms involved. Cavitation is thought to occur when an air bubble penetrates through a pit wall, and would hence be influenced by the wall's porosity. We first tested the role of wall-bound calcium in vulnerability to cavitation in Fagus sylvatica. Stems perfused with solutions of oxalic acid, EGTA, or sodium phosphate (NaPO4) were found to be more vulnerable to cavitation. The NaPO4-induced increase in vulnerability to cavitation was linked to calcium removal from the wall. In contrast, xylem hydraulic conductance was unaffected by the chemical treatments, demonstrating that the mechanisms controlling vulnerability to cavitation and hydraulic resistance are uncoupled. The NaPO4 solution was then perfused into stems from 13 tree species possessing highly contrasted vulnerability to cavitation. Calcium was found to be a major determinant of between-species differences in vulnerability to cavitation. This was evidenced in angiosperms as well as conifer species, thus supporting the hypothesis of a common mechanism in drought-induced cavitation. PMID:20547703

  16. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease

    NARCIS (Netherlands)

    Lowe-Power, Tiffany M.; Hendrich, Connor G.; Roepenack-Lahaye, von Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L.; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J.; Allen, Caitilyn

    2017-01-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from

  17. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  18. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  19. The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves.

    Science.gov (United States)

    Inoue, Yuki; Kobae, Yoshihiro; Omoto, Eiji; Tanaka, Aiko; Banba, Mari; Takai, Shoko; Tamura, Yosuke; Hirose, Aya; Komatsu, Kunihiko; Otagaki, Shungo; Matsumoto, Shogo; Taniguchi, Mitsutaka; Masuta, Chikara; Ishimoto, Masao; Hata, Shingo

    2014-12-01

    GmPT7 was originally identified as an arbuscular mycorrhiza-inducible gene of soybean that encodes a member of subfamily I in the PHOSPHATE TRANSPORTER 1 family. In the present study, we established conditions under which a number of dwarf soybean plants complete their life cycles in a growth chamber. Using this system, we grew transgenic soybean with a GmPT7 promoter-β-glucuronidase fusion gene and evaluated GmPT7 expression in detail. GmPT7 was highly expressed in mature, but not in collapsed, arbuscule-containing cortical cells, suggesting its importance in the absorption of fungus-derived phosphate and/or arbuscule development. GmPT7 was also expressed in the columella cells of root caps and in the lateral root primordia of non-mycorrhizal roots. The expression of GmPT7 occurred only in the late stage of phosphorus translocation from leaves to seeds, after water evaporation from the leaves ceased, and later than the expression of GmUPS1-2, GmNRT1.7a and GmNRT1.7b, which are possibly involved in nitrogen export. GmPT7 expression was localized in a pair of tracheid elements at the tips of vein endings of senescent leaves. Transmission electron microscopy revealed that the tip tracheid elements in yellow leaves were still viable and had intact plasma membranes. Thus, we think that GmPT7 on the plasma membranes transports phosphate from the apoplast into the tip elements. GmPT7 knockdown resulted in no significant effects, the function of GmPT7 remaining to be clarified. We propose a working model in which phosphate incorporated in vein endings moves to seeds via xylem to phloem transfer. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. A Vein Map Biometric System

    Directory of Open Access Journals (Sweden)

    Felix Fuentes

    2013-08-01

    Full Text Available There is increasing demand world-wide, from government agencies and the private sector for cutting-edge biometric security technology that is difficult to breach but userfriendly at the same time. Some of the older tools, such as fingerprint, retina and iris scanning, and facial recognition software have all been found to have flaws and often viewed negatively because of many cultural and hygienic issues associated with them. Comparatively, mapping veins as a human barcode, a new technology, has many advantages over older technologies. Specifically, reproducing a three-dimensional model of a human vein system is impossible to replicate. Vein map technology is distinctive because of its state-of-the-art sensors are only able to recognize vein patterns if hemoglobin is actively flowing through the person

  1. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.

    Science.gov (United States)

    Nadezhdina, Nadezhda; Nadezhdin, Valeriy; Ferreira, Maria Isabel; Pitacco, Andrea

    2007-01-01

    Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers.

  2. Portal Vein Thrombosis in non cirrhotic patients

    NARCIS (Netherlands)

    M.C.W. Spaander (Manon)

    2010-01-01

    textabstractExtrahepatic portal vein thrombosis (EPVT) is the most common cause of portal hypertension in non- cirrhotic patients. EPVT has been defined as an obstruction of the extrahepatic portal vein with or without involvement of the intrahepatic portal veins. Although the portal vein accounts

  3. Outside-xylem pathways, not xylem embolism, drive leaf hydraulic decline with dehydration

    Science.gov (United States)

    Leaf hydraulic supply is crucial to enable the maintenance of open stomata for CO2 capture and plant growth. During drought-induced leaf dehydration, the capacity for water flow through the leaf (Kleaf) declines, a phenomenon surprisingly attributed for the past fifty years solely to the formation o...

  4. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Kim, Young-Mi; Namkoong, Seung; Yun, Young-Gab; Hong, Hee-Do; Lee, Young-Chul; Ha, Kwon-Soo; Lee, Hansoo; Kwon, Ho Jeong; Kwon, Young-Guen; Kim, Young-Myeong

    2007-09-01

    Angiogenesis is important for promoting cardiovascular disease, wound healing, and tissue regeneration. We investigated the effects of Korean red ginseng water extract (KRGE) on angiogenesis and its underlying signal mechanism. KRGE increased in vitro proliferation, migration, and tube formation of human umbilical vein endothelial cells, as well as stimulated in vivo angiogenesis without increasing VEGF expression. KRGE-induced angiogenesis was accompanied by phosphorylation of ERK1/2, phosphatidylinositol 3-kinase (Akt), and endothelial nitric oxide synthase (eNOS) as well as an increase in NO production. Inhibition of PI3K activity by wortmannin completely inhibited KRGE-induced angiogenesis and phosphorylation of Akt, ERK1/2, and eNOS, indicating that PI3K/Akt activation is an upstream event of the KRGE-mediated angiogenic pathway. The MEK inhibitor PD98059 blocked KRGE-induced ERK1/2 phosphorylation without affecting Akt and eNOS activation. However, the eNOS inhibitor N(G)-monomethyl-L-arginine effectively inhibited tube formation, but partially blocked proliferation and migration as well as ERK phosphorylation, without altering Akt and eNOS activation, revealing that the eNOS/NO pathway is partially involved in ERK1/2 activation. This study demonstrated that KRGE stimulates in vitro and in vivo angiogenesis through the activation of the PI3K/Akt-dependent ERK1/2 and eNOS signal pathways and their cross talk.

  5. LASER MEDICINE: Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    Science.gov (United States)

    Zhilin, K. M.; Minaev, V. P.; Sokolov, Aleksandr L.

    2009-08-01

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 μm. It is shown that the best EVLT conditions are ensured by 1.56-μm radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 μm.

  6. Characterization of cadmium ((108)Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem.

    Science.gov (United States)

    Qin, Qin; Li, Xuemei; Wu, Haiyan; Zhang, Yinqiu; Feng, Qian; Tai, Peidong

    2013-11-01

    Tagetes erecta has a high potential for cadmium (Cd) phytoremediation. Through several hydroponic experiments, characteristics of (108)Cd distribution and accumulation were investigated in T. erecta with split -roots or removed xylem/phloem. The results showed that (108)Cd transport from roots to aboveground tissues showed the homolateral transport phenomenon in split-root seedlings. (108)Cd content of leaves on the +(108)Cd side and the -(108)Cd side was not significantly different, which implied that there was horizontal transport of (108)Cd from the +(108)Cd side to the -(108)Cd side in cut-root seedlings. Like (108)Cd transport, the transport of (70)Zn was homolateral. Reduction of water consumption in the removed xylem treatment significantly decreased (108)Cd accumulation; whereas, the removed phloem treatment had no significant effect on water consumption, but did decrease (108)Cd accumulation in leaves of the seedlings. The removal of phloem significantly reduced distal leaf (108)Cd content, which was significantly lower than that in the basal leaves in both the split-root and unsplit-root seedlings. Overall, the results presented in this study revealed that the root to aboveground cadmium translocation via phloem is as an important and common physiological process as xylem determination of the cadmium accumulation in stems and leaves of marigold seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Gypsum veins in Triassic Moenkopi mudrocks of southern Utah: Analogs to calcium sulfate veins on Mars

    Science.gov (United States)

    Young, B. W.; Chan, M. A.

    2017-01-01

    Well-exposed gypsum veins in the Triassic Moenkopi formation in southern Utah, USA, are similar to veins at Endeavour and Gale Craters on Mars. Both Moenkopi and Mars veins are hydrated calcium sulfate, have fibrous textures, and crosscut other diagenetic features. Moenkopi veins are stratigraphically localized with strontium and sulfur isotope ratios similar to primary Moenkopi sulfate beds and are thus interpreted to be sourced from within the unit. Endeavour veins seem to be distributed by lithology and may have a local source. Gale veins cut across multiple lithologies and appear to be sourced from another stratigraphic interval. Evaluation of vein network geometries indicates that horizontal Moenkopi veins are longer and thicker than vertical veins. Moenkopi veins are also generally oriented with the modern stress field, so are interpreted to have formed in the latest stages of exhumation. Endeavour veins appear to be generally vertical and oriented parallel to the margins of Cape York and are interpreted to have formed in response to topographic collapse of the crater rim. Gale horizontal veins appear to be slightly more continuous than vertical veins and may have formed during exhumation. Abrupt changes in orientation, complex crosscutting relationships, and fibrous (antitaxial) texture in Moenkopi and Mars veins suggest emplacement via hydraulic fracture at low temperatures. Moenkopi and Mars veins are interpreted as late-stage diagenetic features that have experienced little alteration since emplacement. Moenkopi veins are useful terrestrial analogs for Mars veins because vein geometry, texture, and chemistry record information about crustal deformation and vein emplacement.

  8. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees.

    Science.gov (United States)

    Powell, Thomas L; Wheeler, James K; de Oliveira, Alex A R; da Costa, Antonio Carlos Lola; Saleska, Scott R; Meir, Patrick; Moorcroft, Paul R

    2017-10-01

    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P 50 ), leaf turgor loss point (TLP), cellular osmotic potential (π o ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P 50 , TLP, and π o , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and

  9. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  10. Commercialization of vein contrast enhancement

    Science.gov (United States)

    Lovhoiden, Gunnar; Deshmukh, Harshal; Vrancken, Carlos; Zhang, Yong; Zeman, Herbert D.; Weinberg, Devin

    2003-07-01

    An ongoing clinical study of an experimental infrared (IR) device, the Vein Contrast Enhancer (VCE) that visualizes surface veins for medical access, indicates that a commercial device with the performance of the existing VCE would have significant clinical utility for even a very skilled phlebotomist. A proof-of-principle prototype VCE device has now been designed and constructed that captures IR images of surface veins with a commercial CCD camera, transfers the images to a PC for real-time software image processing to enhance the vein contrast, and projects the enhanced images back onto the skin with a modified commercial LCD projector. The camera and projector are mounted on precision slides allowing for precise mechanical alignment of the two optical axes and for measuring the effects of axes misalignment. Precision alignment of the captured and projected images over the entire field-of-view is accomplished electronically by software adjustments of the translation, scaling, and rotation of the enhanced images before they are projected back onto the skin. This proof-of-principle prototype will be clinically tested and the experience gained will lead to the development of a commercial device, OnTarget!, that is compact, easy to use, and will visualize accessible veins in almost all subjects needing venipuncture.

  11. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings.

    Science.gov (United States)

    Fonti, Patrick; von Arx, Georg; García-González, Ignacio; Eilmann, Britta; Sass-Klaassen, Ute; Gärtner, Holger; Eckstein, Dieter

    2010-01-01

    Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.

  12. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation

    Science.gov (United States)

    Konings, A. G.; Williams, A. P.; Gentine, P.

    2017-03-01

    The terrestrial water and carbon cycles are coupled through plant regulation of stomatal closure. Both soil moisture and vapour pressure deficit--the amount of moisture in the air relative to its potential maximum--can govern stomatal closure, which reduces plant carbon uptake. However, plants vary in the degree to which they regulate their stomata--and in association, xylem conductance--in response to increasing aridity: isohydric plants exert tight regulation of stomata and the water content of the plant, whereas anisohydric plants do not. Here we use remote-sensing data sets of anisohydricity and vegetation greenness to show that productivity in United States grasslands--especially anisohydric ones--is far more sensitive to variations in vapour pressure deficit than to variations in precipitation. Anisohydric ecosystem productivity is over three times more sensitive to vapour pressure deficit than isohydric ecosystem productivity. The precipitation sensitivity of summer productivity increases with anisohydricity only for the most anisohydric ecosystems. We conclude that increases in vapour pressure deficit rather than changes in precipitation--both of which are expected impacts of climate change--will be a dominant influence on future grassland productivity.

  13. The xylem as battleground for plant hosts and vascular wilt pathogens

    Directory of Open Access Journals (Sweden)

    Koste eYadeta

    2013-04-01

    Full Text Available Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.

  14. Immunohistochemistry comparing endoscopic vein harvesting vs. open vein harvesting on saphenous vein endothelium.

    Science.gov (United States)

    Nezafati, Mohammad Hassan; Nezafati, Pouya; Amoueian, Sakineh; Attaranzadeh, Armin; Rahimi, Hamid Reza

    2014-06-17

    The present study attempts to compare the immunohistochemistry (IHC) of von Willebrand factor (vWf) , endothelial cadherin, Caveolin and endothelial Nitric Oxide Synthase (eNOS) in VasoView Endoscopic Vein Harvesting (EVH) versus traditional Open Vein Harvesting (OVH) techniques for Coronary Artery Bypass Graft (CABG) Surgery performed in Javad al Aemeh Hospital of Mashhad, Iran in 2013,. Forty-seven patients were scheduled for CABG (30 EVH and 17 OVH) among whom patients with relatively same gender and similar age were selected. Three separate two cm vein samples were harvested from each patient's saphenous vein. Each portion was collected from distal, middle and proximal zones of the saphenous vein. The tissues were deparaffinized, and antigen retrieval was done using EZ-retriever followed by an immunohistochemistry evaluation with vWf, e-cadherin, Caveolin and eNOS. In addition, demographic questioner as of Lipid profile, FBS, BMI, and cardiovascular risk factors were collected. Data analyses, including parametric and nonparametric tests were undertaken using the SPSS 16 software. A P value  0.05). Qualitative report of vWf, e-cadherin, Caveolin and eNOS reveals no significant difference between the EVH and OVH (P > 0.05). This study indicates that VasoView EVH technique causes no endothelial damage in comparison with OVH. This study could be a molecular confirmation for the innocuous of EVH technique.

  15. Effect of long-term forest fertilization on Scots pine xylem quality and wood borer performance.

    Science.gov (United States)

    Heijari, Juha; Nerg, Anne-Marja; Kainulainen, Pirjo; Noldt, Uwe; Levula, Teuvo; Raitio, Hannu; Holopainen, Jarmo K

    2008-01-01

    We tested whether changes in long-term nutrient availability would affect the xylem quality and characteristics of Scots pine trees as a food source for the larvae of the xylophagous wood borer Hylotrupes bajulus L. (Cerambycidae). We looked for an effect of host plant growth and xylem structural traits on H. bajulus larval performance, and looked for delayed effects of long-term forest fertilization on xylem chemical quality. In general, larval performance was dependent on larval developmental stage. However, the growth of larvae also varied with host plant quality (increases in the concentration of nitrogen and carbon-based secondary compounds of xylem were correlated with a decrease in the larval growth rate). The greater annual growth of trees reduced tracheid length and correlated positively with second-instar H. bajulus growth rate. This is consistent with the hypothesis that intrinsic growth patterns of host plants influence the development of the xylophagous wood borer H. bajulus.

  16. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment

    National Research Council Canada - National Science Library

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-01-01

    ... to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ 18 O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed...

  17. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  18. Anomalous branching pattern of the portal vein: right posterior portal vein originating from the left portal vein.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kiryu, Shigeru

    2017-05-01

    To introduce a rare variant branching pattern of the portal vein with clinical relevance. A 55-year-old man was examined by contrast-enhanced computed tomography to investigate the cause of fever and mildly elevated hepatic enzyme levels. Based on computed tomography, liver abscesses were identified which may have caused the fever and elevated hepatic enzyme levels. And a variation in the branching pattern of the portal vein was also detected in this patient, which has not been reported previously; the right posterior portal vein originated from the end of the horizontal part of the left portal vein. Identification of this rare branching pattern of the portal vein prior to hepatectomy, liver transplantation, and portal vein embolization is considered important to prevent complications. A rare variant in which the right posterior portal vein originated from the left portal vein was identified. Recognition of this variant may be important prior to surgical or interventional radiological strategies.

  19. Extrahepatic Portal Vein Obstruction and Portal Vein Thrombosis in Special Situations: Need for a New Classification

    Science.gov (United States)

    Wani, Zeeshan A.; Bhat, Riyaz A.; Bhadoria, Ajeet S.; Maiwall, Rakhi

    2015-01-01

    Extrahepatic portal vein obstruction is a vascular disorder of liver, which results in obstruction and cavernomatous transformation of portal vein with or without the involvement of intrahepatic portal vein, splenic vein, or superior mesenteric vein. Portal vein obstruction due to chronic liver disease, neoplasm, or postsurgery is a separate entity and is not the same as extrahepatic portal vein obstruction. Patients with extrahepatic portal vein obstruction are generally young and belong mostly to Asian countries. It is therefore very important to define portal vein thrombosis as acute or chronic from management point of view. Portal vein thrombosis in certain situations such as liver transplant and postsurgical/liver transplant period is an evolving area and needs extensive research. There is a need for a new classification, which includes all areas of the entity. In the current review, the most recent literature of extrahepatic portal vein obstruction is reviewed and summarized. PMID:26021771

  20. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions

    Directory of Open Access Journals (Sweden)

    Cho Un-Haing

    2009-09-01

    Full Text Available Abstract Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

  1. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  2. How Are Varicose Veins Diagnosed?

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  3. How Are Varicose Veins Treated?

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  4. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.

    Science.gov (United States)

    Do, F C; Isarangkool Na Ayutthaya, S; Rocheteau, A

    2011-04-01

    Comparisons of tree water relations between treatments, species and sites are facilitated by the use of simple and low-cost measurements of xylem sap flow rates. The transient thermal dissipation (TTD) method is a variant of the constant thermal dissipation (CTD) method of Granier. It has the advantages of limiting thermal interference and of saving electrical energy. Here, our concern was to test a new step towards simplicity and low cost: the applicability of the TTD method with a single probe, i.e., without a reference sensor, following a cycle of 10 min heating and 10 min cooling, and using the same thermal index and multi-species calibration previously assessed with a dual probe. First, the responses of the dual and single probes were compared in an artificial hydraulic column of sawdust in the laboratory over a complete range of flux densities, from 0.3 to 4.0 l dm⁻² h⁻¹. Second, diurnal kinetics were compared in a young tree with rapid changes in the sapwood reference temperature of up to 5 °C h⁻¹ for 5 consecutive days. With a relatively stable reference temperature, laboratory results showed that a single probe yielded the same temperature signal and thermal index as a dual probe for the full range of sap flux densities. Within the tree, the cooled temperature of the heated probe, linearly interpolated, proved to be an accurate indicator of the change in the reference temperature over time. Logically, the temperature signals and estimates of sap flux density with the single probe did not differ from the dual-sensor measurements when the cooled temperature was interpolated. Additionally, the responses of the thermal index, yielded in the hydraulic experiment with the sawdust column, fell within the variability of the multi-species calibration. This result supports the previous assessment of a non-species-specific calibration for the TTD method with diffuse porous media. In conclusion, our results showed that the TTD method can be directly applied

  5. Preoperative ultrasound mapping of the saphenous vein

    DEFF Research Database (Denmark)

    Levi, Niels; Schroeder, T

    1997-01-01

    A prospective series of 92 patients had their greater saphenous vein assessed with duplex ultrasound scanning prior to planned infrainguinal bypass procedures. Sixteen (17%) bypass procedures thrombosed within the first week postoperatively. A naturally occurring optimal vein diameter was discove......A prospective series of 92 patients had their greater saphenous vein assessed with duplex ultrasound scanning prior to planned infrainguinal bypass procedures. Sixteen (17%) bypass procedures thrombosed within the first week postoperatively. A naturally occurring optimal vein diameter...

  6. Preoperative mapping of the saphenous vein

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Sillesen, H; Nielsen, Tina G

    1995-01-01

    A consecutive series of 92 patients had their greater saphenous vein assessed with duplex ultrasound scanning prior to planned infrainguinal bypass procedures. A naturally occurring optimal vein diameter was discovered. It was significantly correlated with higher postoperative ankle-brachial pres......A consecutive series of 92 patients had their greater saphenous vein assessed with duplex ultrasound scanning prior to planned infrainguinal bypass procedures. A naturally occurring optimal vein diameter was discovered. It was significantly correlated with higher postoperative ankle...

  7. Xylem and Leaf Functional Adjustments to Drought in Pinus sylvestris and Quercus pyrenaica at Their Elevational Boundary

    Directory of Open Access Journals (Sweden)

    Laura Fernández-de-Uña

    2017-07-01

    Full Text Available Climatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in Pinus sylvestris L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Quercus pyrenaica Willd. The functional response of these species to the projected shifts in water availability will partially determine their performance and, thus, their competitive success under these changing climatic conditions. We studied how the cambial and leaf phenology and xylem anatomy of these two species responded to a 3-year rainfall exclusion experiment set at their elevational boundary in Central Spain. Additionally, P. sylvestris leaf gas exchange, water potential and carbon isotope content response to the treatment were measured. Likewise, we assessed inter-annual variability in the studied functional traits under control and rainfall exclusion conditions. Prolonged exposure to drier conditions did not affect the onset of xylogenesis in either of the studied species, whereas xylem formation ceased 1–3 weeks earlier in P. sylvestris. The rainfall exclusion had, however, no effect on leaf phenology on either species, which suggests that cambial phenology is more sensitive to drought than leaf phenology. P. sylvestris formed fewer, but larger tracheids under dry conditions and reduced the proportion of latewood in the tree ring. On the other hand, Q. pyrenaica did not suffer earlywood hydraulic diameter changes under rainfall exclusion, but experienced a cumulative reduction in latewood width, which could ultimately challenge its hydraulic performance. The phenological and anatomical response of the studied species to drought is consistent with a shift in resource allocation under drought stress from xylem to other sinks. Additionally, the tighter stomatal control and higher intrinsic water use efficiency observed in drought

  8. Cephalic veins in coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Licht, P; Jakobsen, Erik; Lerbjerg, G

    1996-01-01

    Various alternative conduits for aortocoronary bypass grafting have been suggested when the saphenous vein quality is inadequate. During a 10-year period we have used the cephalic vein in 39 patients. Eighteen entered an angiographic follow-up study. A total of 31 arm vein grafts were used with 43...... bypass operations....

  9. An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood.

    Science.gov (United States)

    Wolkerstorfer, Silviya V; Rosner, Sabine; Hietz, Peter

    2012-10-01

    The vulnerability of the xylem to cavitation is an important trait in plant drought resistance and has been quantified by several methods. We present a modified method for the simultaneous measurement of cavitations, recorded as ultrasound acoustic emissions (UAEs), and the water potential, measured with a thermocouple psychrometer, in small samples of conifer wood. Analyzing the amplitude of the individual signals showed that a first phase, during which the mean amplitude increased, was followed by a second phase with distinctly lower signal amplitudes. We provide a method to separate the two groups of signals and show that for many samples plausible vulnerability curves require rejecting late low-energy UAEs. These very likely do not result from cavitations. This method was used to analyze the differences between juvenile wood, and early and late mature wood in Picea abies (L.) Karst. Juvenile earlywood was more resistant to cavitation than mature earlywood or latewood, which we relate to the tracheid anatomy of the samples. Copyright © Physiologia Plantarum 2012.

  10. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    Science.gov (United States)

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Recurrence of superficial vein thrombosis in patients with varicose veins.

    Science.gov (United States)

    Karathanos, Christos; Spanos, Konstantinos; Saleptsis, Vassileios; Tsezou, Aspasia; Kyriakou, Despina; Giannoukas, Athanasios D

    2016-08-01

    To investigate which factors other than history of superficial vein thrombosis (SVT) are associated with recurrent spontaneous SVT episodes in patients with varicose veins (VVs). Patients with a history of spontaneous SVT and VVs were followed up for a mean period of 55 months. Demographics, comorbidities, and thrombophilia screening test were analyzed. Patients were grouped according to the clinical-etiology-anatomy-pathophysiology classification. A multiple logistic regression analysis with the forward likelihood ratio method was undertaken. Thirteen patients out of 97 had a recurrence SVT episode during the follow-up period. All those patients were identified to have a thrombophilia defect. Protein C and S, antithrombin, and plasminogen deficiencies were more frequently present in patients without recurrence. Gene mutations were present in 38% in the nonrecurrence group and 77% in the recurrence group. After logistic regression analysis, patients with dislipidemia and mutation in prothrombin G20210A (FII) had an increased risk for recurrence by 5.4-fold and 4.6-fold, respectively. No deep vein thrombosis or pulmonary embolism occurred. Dislipidemia and gene mutations of F II are associated with SVT recurrence in patients with VVs. A selection of patients may benefit from anticoagulation in the short term and from VVs intervention in the long term. © The Author(s) 2015.

  12. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

    Science.gov (United States)

    Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D

    2015-06-01

    Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Unusual termination of the right testicular vein | Woldeyes | Anatomy ...

    African Journals Online (AJOL)

    The testicular veins are formed by the veins emerging from the testis and epididymis forming the pampiniform venous plexus. The right testicular vein drains into inferior vena cava and the left testicular vein to the left renal vein. Testicular veins display a great variability with regard to their number, course and sites of ...

  14. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    Science.gov (United States)

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region.

    Science.gov (United States)

    Torres-Ruiz, José M; Cochard, Hervé; Fonseca, Elsa; Badel, Eric; Gazarini, Luiz; Vaz, Margarida

    2017-06-01

    A significant increase in drought events frequency is predicted for the next decades induced by climate change, potentially affecting plant species mortality rates and distributions worldwide. The main trigger of plant mortality is xylem hydraulic failure due to embolism and induced by the low pressures at which water is transported through xylem. As the Mediterranean basin will be severely affected by climate change, the aim of this study was to provide novel information about drought resistance and tolerance of one of its most widely distributed and common genera as a case study: the genus Cistus. Different functional and anatomical traits were evaluated in four co-occurring Cistus species in the Mediterranean Montado ecosystem. Soil water availability for each species was also assessed to evaluate if they show different ecological niches within the area. Results showed physiological and xylem anatomical differences between the four co-occurring species, as well as in the soil water availability of the sites they occupy. Despite the significant differences in embolism resistance across species, no trade-off between hydraulic safety and efficiency was observed. Interestingly, species with narrower vessels showed lower resistance to embolism than those with higher proportions of large conduits. No correlation, however, was observed between resistance to embolism and wood density. The four species showed different water-use and drought-tolerance strategies, occupying different ecological niches that would make them cope differently with drought. These results will allow us to improve the predictions about the expected changes in vegetation dynamics in this area due to ongoing climate change. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Coordination of leaf and stem water transport properties in tropical forest trees

    Science.gov (United States)

    Frederick C. Meinzer; David R. Woodruff; Jean-Christophe Domec; Guillermo Goldstein; Paula I. Campanello; Genoveva M. Gatti; Randol Villalobos-Vega

    2008-01-01

    Stomatal regulation of transpiration constrains leaf water potential (ψ l) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the...

  17. Nuclide Transport and Diffusion for Vein and Fracture Flow

    Energy Technology Data Exchange (ETDEWEB)

    Heer, W

    2004-06-01

    Modelling radionuclide transport through crystalline rock is usually based on a small water flow in a system of narrow fractures. This flow is denoted as fracture flow. In our model, it implies planar water-conducting channels and adjacent zones of dominant matrix diffusion. According to the constitution of the rock, it can be necessary to consider additionally a vein flow being characterized by cylindrical water-conducting channels and adjacent zones of dominant matrix diffusion. Transport calculations, based on a dual porosity concept, were performed for vein as well as for fracture flow. An extensive discussion of the results provides an overview on important parameter dependencies and on the major vein flow effects. Formulae for quick estimates are given to guide quantitative interpretation of break-through curves. The discussion of analytical results for nuclide diffusion from a planar and from a cylindrical boundary backs up the comments on matrix diffusion. The following effects of vein flow onto the break-through curves are illustrative examples of useful findings: (1) The peak height can be very strongly reduced compared to fracture flow. The peak arrival time, however, is only slightly changed. (2) The asymptotic part of the tail is flatter than the well-known t{sup -3/2} decrease for fracture flow. (3) The bump at the end of the tail, generated by the limitation of the diffusion zones, is substantially larger than for fracture flow. A double-peak break-through curve, therefore, can emerge from many cases of nuclide transport. (4) Sorption on the surfaces of diffusion-accessible pores can substantially change the break-through curves. The vein to fracture flow ratios of the break-through peak data, however, remain essentially equal. This holds for the whole range of investigated retardation factors from 7 to 27'000. The investigations presented contribute to sophisticated interpretations of break-through curves and improve the physical understanding

  18. A broad survey of hydraulic and mechanical safety in the xylem of conifers.

    Science.gov (United States)

    Bouche, Pauline S; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain

    2014-08-01

    Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  20. De novo transcriptome assemblies of four xylem sap-feeding insects.

    Science.gov (United States)

    Tassone, Erica E; Cowden, Charles C; Castle, S J

    2017-03-01

    Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91 384 for Cuerna arida to 106 998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60% for H. liturata to 82% for C. arizonana. Bench-marking universal single-copy orthologs analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization.

  1. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  2. New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.

    Science.gov (United States)

    Bagniewska-Zadworna, Agnieszka; Arasimowicz-Jelonek, Magdalena; Smoliński, Dariusz J; Stelmasik, Agnieszka

    2014-06-01

    Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were

  3. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  4. Compositions and methods for xylem-specific expression in plant cells

    Science.gov (United States)

    Han, Kyung-Hwan; Ko, Jae-Heung

    2017-12-19

    The invention provides promoter sequences that regulate specific expression of operably linked sequences in developing xylem cells and/or in developing xylem tissue. The developing xylem-specific sequences are exemplified by the DX5, DX8, DX11, and DX15 promoters, portions thereof, and homologs thereof. The invention further provides expression vectors, cells, tissues and plants that contain the invention's sequences. The compositions of the invention and methods of using them are useful in, for example, improving the quantity (biomass) and/or the quality (wood density, lignin content, sugar content etc.) of expressed biomass feedstock products that may be used for bioenergy, biorefinary, and generating wood products such as pulp, paper, and solid wood.

  5. Compositions and methods for xylem-specific expression in plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung-Hwan; Ko, Jae-Heung

    2017-12-19

    The invention provides promoter sequences that regulate specific expression of operably linked sequences in developing xylem cells and/or in developing xylem tissue. The developing xylem-specific sequences are exemplified by the DX5, DX8, DX11, and DX15 promoters, portions thereof, and homologs thereof. The invention further provides expression vectors, cells, tissues and plants that contain the invention's sequences. The compositions of the invention and methods of using them are useful in, for example, improving the quantity (biomass) and/or the quality (wood density, lignin content, sugar content etc.) of expressed biomass feedstock products that may be used for bioenergy, biorefinary, and generating wood products such as pulp, paper, and solid wood.

  6. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot.

    Science.gov (United States)

    Wang, Guang-Long; Que, Feng; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2017-03-01

    Gibberellins (GAs) are important growth regulators involved in plant development processes. However, limited information is known about the relationship between GA and xylogenesis in carrots. In this study, carrot roots were treated with GA3. The effects of applied GA3 on root growth, xylem development, and lignin accumulation were then investigated. Results indicated that GA treatment dose-dependently inhibited carrot root growth. The cell wall significantly thickened in the xylem parenchyma. Autofluorescence analysis with ultraviolet (UV) excitation indicated that these cells became lignified because of long-term GA3 treatment. Moreover, lignin content increased in the roots, and the transcripts of lignin biosynthesis genes were altered in response to applied GA3. Our data indicate that GA may play important roles in xylem growth and lignification in carrot roots. Further studies shall focus on regulating plant lignification, which may be achieved by modifying GA levels within plant tissues.

  7. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem.

    Science.gov (United States)

    Milhinhos, Ana; Prestele, Jakob; Bollhöner, Benjamin; Matos, Andreia; Vera-Sirera, Francisco; Rambla, José L; Ljung, Karin; Carbonell, Juan; Blázquez, Miguel A; Tuominen, Hannele; Miguel, Célia M

    2013-08-01

    Polyamines are small polycationic amines that are widespread in living organisms. Thermospermine, synthesized by thermospermine synthase ACAULIS5 (ACL5), was recently shown to be an endogenous plant polyamine. Thermospermine is critical for proper vascular development and xylem cell specification, but it is not known how thermospermine homeostasis is controlled in the xylem. We present data in the Populus model system supporting the existence of a negative feedback control of thermospermine levels in stem xylem tissues, the main site of thermospermine biosynthesis. While over-expression of the ACL5 homologue in Populus, POPACAULIS5, resulted in strong up-regulation of ACL5 expression and thermospermine accumulation in leaves, the corresponding levels in the secondary xylem tissues of the stem were similar or lower than those in the wild-type. POPACAULIS5 over-expression had a negative effect on accumulation of indole-3-acetic acid, while exogenous auxin had a positive effect on POPACAULIS5 expression, thus promoting thermospermine accumulation. Further, over-expression of POPACAULIS5 negatively affected expression of the class III homeodomain leucine zipper (HD-Zip III) transcription factor gene PttHB8, a homologue of AtHB8, while up-regulation of PttHB8 positively affected POPACAULIS5 expression. These results indicate that excessive accumulation of thermospermine is prevented by a negative feedback control of POPACAULIS5 transcript levels through suppression of indole-3-acetic acid levels, and that PttHB8 is involved in the control of POPACAULIS5 expression. We propose that this negative feedback loop functions to maintain steady-state levels of thermospermine, which is required for proper xylem development, and that it is dependent on the presence of high concentrations of endogenous indole-3-acetic acid, such as those present in the secondary xylem tissues. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Ion-mediated flow changes suppressed by minimal clacium presence in xylem sap in Chrysanthemum and prunus laurocerasus

    NARCIS (Netherlands)

    Ieperen, van W.; Gelder, van H.

    2006-01-01

    After the discovery of ion-mediated changes in xylem hydraulic resistance a few years ago, a number of research papers were published that related ion-mediated flow changes in the xylem to various aspects of whole plant functioning and evolutionary diversification of vascular cells. Ion-mediated

  9. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  10. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires

    Science.gov (United States)

    S.T. Michaletz; E.A. Johnson; M.T. Tyree

    2012-01-01

    It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem:...

  11. Genome sequence of Methylobacterium sp. strain GXF4, a xylem-associated bacterium isolated from Vitis vinifera L. grapevine.

    Science.gov (United States)

    Gan, Han Ming; Chew, Teong Han; Hudson, André O; Savka, Michael A

    2012-09-01

    Methylobacterium sp. strain GXF4 is an isolate from grapevine. Here we present the sequence, assembly, and annotation of its genome, which may shed light on its role as a grapevine xylem inhabitant. To our knowledge, this is the first genome announcement of a plant xylem-associated strain of the genus Methylobacterium.

  12. Physiological and molecular mechanisms mediating xylem Na(+) loading in barley in the context of salinity stress tolerance.

    Science.gov (United States)

    Zhu, Min; Zhou, Meixue; Shabala, Lana; Shabala, Sergey

    2017-07-01

    Time-dependent kinetics of xylem Na(+) loading was investigated using a large number of barley genotypes contrasting in their salinity tolerance. Salt-sensitive varieties were less efficient in controlling xylem Na(+) loading and showed a gradual increase in the xylem Na(+) content over the time. To understand underlying ionic and molecular mechanisms, net fluxes of Ca(2+) , K(+) and Na(+) were measured from the xylem parenchyma tissue in response to H2 O2 and ABA; both of them associated with salinity stress signalling. Our results indicate that NADPH oxidase-mediated apoplastic H2 O2 production acts upstream of the xylem Na(+) loading and is causally related to ROS-inducible Ca(2+) uptake systems in the root stelar tissue. It was also found that ABA regulates (directly or indirectly) the process of Na(+) retrieval from the xylem and the significant reduction of Na(+) and K(+) fluxes induced by bumetanide are indicative of a major role of chloride cation co-transporter (CCC) on xylem ion loading. Transcript levels of HvHKT1;5_like and HvSOS1_like genes in the root stele were observed to decrease after salt stress, while there was an increase in HvSKOR_like gene, indicating that these ion transporters are involved in primary Na(+) /K(+) movement into/out of xylem. © 2016 John Wiley & Sons Ltd.

  13. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Uroic, M Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (As(V)) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under As(V) stress. Produced xylem sap was quantified and absolute arsenic transported was determined. As(V) exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by As(V) exposure. The compound down-regulated was identified to be isoleucine. Furthermore, As(V) exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg(-1) As(V). No difference to control plants was observed when plants were exposed to 1000 μg kg(-1) DMA. Absolute arsenic amount in xylem sap was the lowest at high As(V) exposure. These results show that As(V) has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  14. Normal hepatic vein patterns on ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Jin; Chae, Yoo Soon; Park, Hea Yeoung; Park, Bok Hwan; Kim, Yang Sook [Maryknoll Hospital, Busan (Korea, Republic of)

    1987-02-15

    Understanding of the anatomy of the hepatic vein is important in manipulation for transplantation of the liver, hepatectomy and the treatment of hepatic trauma with avulsion of the hepatic vein. Demonstrated of the inferior right hepatic vein (IRHV) is also important; in some cases of hepatocellular carcinoma, thrombus can be seen in the IRHV; in primary Budd-Chiari syndrome, the IRHV is main draining vein; during hepatectomy, the postero-inferior segment of the right lobe and draining IRHV can be preserved. For some 10 months ultrasound examination was done in a total of 124 patients with normal liver function with special emphasis on the hepatic vein, their branches, and the IRHV, and analysed in terms of branching pattern and relative size of the hepatic vein and the detection rate of the IRHV.

  15. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.

    Science.gov (United States)

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.

  16. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture

    Science.gov (United States)

    Dodd, Ian C.; Egea, Gregorio; Davies, William J.

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. ‘Two root-one shoot’ grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Ψsoil) during PRD. Although Ψsoil of the irrigated pot determined the threshold Ψsoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Ψsoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Ψsoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed. PMID:18940933

  17. Partial defoliation and hydraulic integration in Ocimum basilicum (Lamiaceae): testing a model for sectored xylem flow using ¹⁵N labeling.

    Science.gov (United States)

    Thorn, Alexandra M; Orians, Colin M

    2011-11-01

    Xylem sectoriality limits nutrient translocation throughout the plant, which may constrain growth following partial defoliation by herbivores. To date, the implications for nutrient allocation have not been assessed, and sectoriality studies lack a modeling framework for relating intersector transport to the hydraulic properties of the stem. We present an Ohm's law model for sectoriality of xylem transport in basil (Ocimum basilicum), which we parameterized and tested using hydroponically grown split-root basil, pruned to two branches. To evaluate xylem resistance, we forced KCl solution through excised stems along either direct or indirect pathways. To examine the effect of partial defoliation on nutrient allocation, we applied (15)N-NO₃ to one half of the root system after one of three defoliation treatments: uniform, orthostichous to label, or opposite the label. In support of our model, we found a tight correlation between total water uptake and total leaf area and between the actual and predicted proportions of water taken up from the labeled container. Significantly more ¹⁵N accumulated in orthostichous than in opposite sector leaves for the uniform and opposite defoliation treatments, but not for the orthostichous defoliation treatment. Across individuals, ¹⁵N distribution varied as predicted by the model, but there was generally 10% more ¹⁵N crossover than predicted. These results support our model and suggest high potential integration for O. basilicum. The fact that our model consistently underestimated the rate of crossover suggests that other mechanisms are also in play. Future research should evaluate possible mechanisms for this mixing, including the role of transporters in specialized transfer cells.

  18. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

    Science.gov (United States)

    Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven

    2012-12-01

    The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.

  19. Shock Veins as Recorders of Shock Pressures in Chondrites: Pressure Histories from Thin vs. Thick Veins

    Science.gov (United States)

    Xie, Z.; Sharp, T.; Decarli, P.

    2004-12-01

    High-pressure minerals are generally found within or adjacent to shock-induced melt veins and melt pockets in highly shocked chondrites. The minerals that crystallize in the melt veins and pockets and the distribution of these minerals provide a record of crystallization and quench histories that can be used to constrain shock pressure and pulse duration. Most previous investigations have focused on relatively thick veins (>100 μ m in width) because they tend to contain high-pressure minerals that are observable using petrography or scanning electron microscopy. However, the mineralogy of thin shock veins can provide additional constraints on the pressure history of shocked meteorites. Because shock veins cool predominantly by conduction to the surrounding matrix, rather than by adiabatic decompression, the timing of shock-vein crystallization depends strongly on vein thickness and position within the veins. Therefore, the thinnest melt veins, which solidify within tens of nanoseconds after melting, provide a brief crystallization history at the time of formation whereas thicker veins provide a longer history that may reflect crystallization during decompression. If thin veins form during compression or early in the shock pulse, they will likely record the equilibrium shock pressure or the peak pressure. The goal of this study is to characterize the mineralogy of thin melt veins and to compare the results to those of thicker veins in the same samples. We have investigated three L chondrites that contain a wide range of melt vein sizes. These include Tenham (several μ m to 600 μ m in width), Roy (10 μ m to 150 μ m in width) and Umbarger (35 μ m to 300 μ m in width). Thick veins in these samples have been previously investigated using FESEM and TEM, resulting in crystallization pressures of approximately 25, 20 and 18 GPa for Tenham, Roy and Umbarger, respectively. Thin veins from these samples were investigated using TEM. Three thin veins in Tenham show three

  20. NMR, water and plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  1. Evidence for a wounding-induced xylem occlusion in stems of cut chrysanthemum flowers

    NARCIS (Netherlands)

    Doorn, van W.G.; Cruz, P.

    2000-01-01

    A temperature-dependent xylem occlusion was found in cut chrysanthemum stems (Dendranthema grandiflora, cv. Viking) which were placed for 24 h in air at 5oC prior to vase life evaluation. The response was inhibited by a 5-h treatment, prior to placement in air, with aqueous solutions at low initial

  2. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after...

  3. Development of Successive Cambia and Structure of Secondary Xylem of Ipomoea Obscura (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Rajput Kishore S.

    2014-07-01

    Full Text Available Stems of Ipomoea obscura Ker Gawl., increase in thickness by forming multiple rings of cambia. Stems 5-6 mm thick produce parenchymatous derivatives which divide repeatedly to form small arcs of cambium. Several such small arcs initiate simultaneously and form a ring of small cambial arcs. After the formation of a few xylem and phloem elements, all these arcs are interconnected by transdifferentiation of parenchyma cells present between the cambial arcs and constitute a complete cambial cylinder. This newly formed cambium is functionally bidirectional: earlier- formed arcs produce xylem centripetally and phloem centrifugally, while later-formed segments exclusively produce thin-walled parenchyma cells on either side. Young stems are circular in cross section but as stem thickness increases they become oval to elliptic or lobed and dumbbell-shaped. Xylem rays are mostly uni- or biseriate and thin-walled, but multiseriate rays characteristic for a climbing habit are observed occasionally. In thick stems, the marginal ray parenchyma in most of the samples becomes meristematic and develops ray cambia which exclusively produce sieve elements. Similarly, parenchyma cells produced from later-formed cambial segments give rise to several irregularly oriented vascular bundles. The secondary xylem is diffuse porous, with indistinct growth rings and is composed of fibriform and wider vessels, fibres, and axial and ray parenchyma cells, while phloem consists of sieve elements, companion cells, and axial and ray parenchyma cells.

  4. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica.

    Science.gov (United States)

    Bär, Andreas; Nardini, Andrea; Mayr, Stefan

    2017-11-28

    Recent studies on post-fire tree mortality suggest a role for heat-induced alterations of the hydraulic system. We analyzed heat effects on xylem hydraulics both in the laboratory and at a forest site hit by fire. Stem vulnerability to drought-induced embolism and hydraulic conductivity were measured in Picea abies, Pinus sylvestris and Fagus sylvatica. Control branches were compared with samples experimentally exposed to 90°C or damaged by a natural forest fire. In addition, xylem anatomical changes were examined microscopically. Experimental heating caused structural changes in the xylem and increased vulnerability in all species. The largest shifts in vulnerability thresholds (1.3 MPa) were observed in P. sylvestris. F. sylvatica also showed heat-induced reductions (49%) in hydraulic conductivity. At the field site, increased vulnerability was observed in damaged branches of P. sylvestris and F. sylvatica, and the xylem of F. sylvatica was 39% less conductive in damaged than in undamaged branches. These results provide evidence for heat-induced impairment of tree hydraulics after fire. The effects recorded at the forest fire site corresponded to those obtained in laboratory experiments, and revealed pronounced hydraulic risks in P. sylvestris and F. sylvatica. Knowledge of species-specific hydraulic impairments induced by fire and heat is a prerequisite for accurate estimation of post-fire mortality risks. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops.

    Science.gov (United States)

    Achari, Gauri A; Ramesh, Raman

    2014-01-01

    Eggplant (Solanum melongena L.) is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA) grouped these xylem residing bacteria (XRB) into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%-22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  6. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  7. Ceratocystis smalleyi colonization of bitternut hickkory and host responses in the xylem

    Science.gov (United States)

    J.-H. Park; J. Juzwik

    2014-01-01

    Colonization of Carya cordiformis sapwood by Ceratocystis smalleyi and subsequent host defence responses following artificial inoculation were investigated using anatomical and histological techniques. Hyphae of C. smalleyi were observed in all sapwood xylem features confirming the ability of the pathogen to...

  8. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes

    Science.gov (United States)

    The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in the...

  9. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    Science.gov (United States)

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  10. Xylem Resin in the Resistance of the Pinaceae to Bark Beetles

    Science.gov (United States)

    Richard H. Smith

    1972-01-01

    Xylem resin of Pinaceae is closely linked with their resistance and suseptibility to tree-killing bark beetles. This review of the literature on attacking adults suggests that all three resistance mechanisms proposed by Painter -- preference, antibiosis, and tolerance -- are active in this relationship: preference by attraction, repellency, and synergism; antibiosis...

  11. The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease

    NARCIS (Netherlands)

    Krasikov, V.; Dekker, H.L.; Rep, M.; Takken, F.L.W.

    2011-01-01

    XSP10 is an abundant 10 kDa protein found in the xylem sap of tomato. The protein displays structural similarity to plant lipid transfer proteins (LTPs). LTPs are involved in various physiological processes, including disease resistance, and some are able to bind and transfer diverse lipid

  12. Internal Jugular Vein Cannulation; Anatomical Surface Markings ...

    African Journals Online (AJOL)

    We report the case of a female patient scheduled for skin grafting of chronic Burulli ulcers who had a history of difficult peripheral vein cannulation. She had undergone numerous central venous cannulations and unsuccessful peripheral vein cut-downs in the past. On two separate occasions she had central venous ...

  13. Generating and analyzing synthetic finger vein images

    NARCIS (Netherlands)

    Hillerström, Fieke; Kumar, Ajay; Veldhuis, Raymond N.J.

    2014-01-01

    Abstract: The finger-vein biometric offers higher degree of security, personal privacy and strong anti-spoofing capabilities than most other biometric modalities employed today. Emerging privacy concerns with the database acquisition and lack of availability of large scale finger-vein database have

  14. Deep vein thrombosis and pulmonary embolism

    NARCIS (Netherlands)

    Di Nisio, Marcello; van Es, Nick; Büller, Harry R.

    2016-01-01

    Deep vein thrombosis and pulmonary embolism, collectively referred to as venous thromboembolism, constitute a major global burden of disease. The diagnostic work-up of suspected deep vein thrombosis or pulmonary embolism includes the sequential application of a clinical decision rule and D-dimer

  15. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.

    Science.gov (United States)

    Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-04-01

    During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our

  16. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.

    Science.gov (United States)

    Samuels, A L; Rensing, K H; Douglas, C J; Mansfield, S D; Dharmawardhana, D P; Ellis, B E

    2002-11-01

    The objectives of this study were to define cell structure during pine secondary xylem development and to integrate this information with current knowledge of the biochemistry and physiology of secondary cell wall biosynthesis in gymnosperms. Lodgepole pine (Pinus contorta var. latifolia Englem.) cambium and secondary xylem were cryofixed using high pressure freezing and freeze-substitution which allowed excellent preservation of the cell structure of developing secondary xylem and enabled high-resolution transmission electron microscopic viewing of these cells for the first time. In contrast to their precursors in the adjacent cambial zone, developing tracheids were active in secondary wall deposition, with abundant cortical microtubules and developing bordered pits. These cells were also characterized by unusual Golgi structures: the trans-Golgi network was highly developed and the associated vesicles were large and darkly stained. These unusual Golgi structures persisted throughout the period of xylem maturation until programmed cell death occurred. Immuno-cytochemistry and enzyme-gold probes were used to investigate the distribution of key secretory products (mannans) and a lignification-associated enzyme (coniferin beta-glucosidase) during xylogenesis. Mannans were localized to the secondary cell wall, the trans-Golgi cisternae and trans-Golgi network vesicles of developing xylem. Coniferin beta-glucosidase was found only in the secondary cell wall. The cell wall localization of coniferin beta-glucosidase, the enzyme responsible for cleaving glucose from coniferin to generate free coniferyl alcohol, provides a mechanism to de-glucosylate monolignols in muro. A two-step model of lignification of conifer tracheids is proposed. First, Golgi-mediated secretion deposits monolignols into the cell wall, where they polymerize in cell corners and middle lamella. Secondly, cell lysis releases stored, vacuolar monolignol glucosides into the wall where they are

  17. Protein S-Nitrosylation Regulates Xylem Vessel Cell Differentiation in Arabidopsis.

    Science.gov (United States)

    Kawabe, Harunori; Ohtani, Misato; Kurata, Tetsuya; Sakamoto, Tomoaki; Demura, Taku

    2018-01-01

    Post-translational modifications of proteins have important roles in the regulation of protein activity. One such modification, S-nitrosylation, involves the covalent binding of nitric oxide (NO)-related species to a cysteine residue. Recent work showed that protein S-nitrosylation has crucial functions in plant development and environmental responses. In the present study, we investigated the importance of protein S-nitrosylation for xylem vessel cell differentiation using a forward genetics approach. We performed ethyl methanesulfonate mutagenesis of a transgenic Arabidopsis 35S::VND7-VP16-GR line in which the activity of VASCULAR-RELATED NAC-DOMAIN7 (VND7), a key transcription factor involved in xylem vessel cell differentiation, can be induced post-translationally by glucocorticoid treatment, with the goal of obtaining suppressor mutants that failed to differentiate ectopic xylem vessel cells; we named these mutants suppressor of ectopic vessel cell differentiation induced by VND7 (seiv) mutants. We found the seiv1 mutant to be a recessive mutant in which ectopic xylem cell differentiation was inhibited, especially in aboveground organs. In seiv1 mutants, a single nucleic acid substitution (G to A) leading to an amino acid substitution (E36K) was present in the gene encoding S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1), which regulates the turnover of the natural NO donor, S-nitrosoglutathione. An in vitro S-nitrosylation assay revealed that VND7 can be S-nitrosylated at Cys264 and Cys320 located near the transactivation activity-related domains, which were shown to be important for transactivation activity of VND7 by transient reporter assay. Our results suggest crucial roles for GSNOR1-regulated protein S-nitrosylation in xylem vessel cell differentiation, partly through the post-translational modification of VND7. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions

  18. Evaluation of apoptosis in varicose vein disease complicated by superficial vein thrombosis.

    Science.gov (United States)

    Filis, Konstantinos; Kavantzas, Nikolaos; Dalainas, Ilias; Galyfos, George; Karanikola, Evridiki; Toutouzas, Konstantinos; Tsioufis, Constantinos; Sigala, Fragiska

    2014-07-01

    The factors contributing to superficial vein thrombosis (SVT) in patients with varicose vein disease are unclear. Differences in vein wall apoptotic activity could be associated with the pathogenesis of SVT. The aim of the study is to address the role of the programmed cell death in the vein wall by comparing varicose veins with history of SVT to uncomplicated varicose veins. Vein segments from the proximal part of the great saphenous vein (GSV), the distal part of the vein and from a varicose tributary, from 16 patients with varicose vein disease and one episode of SVT, were evaluated for the immunohistochemical expression of pro-apoptotic (Bax, p53, Caspase 3, BCL-6, BCL-xs), anti-apoptotic (BCL-xl and BCL-2) and proliferation (Ki-67) markers. The results of this study were compared to the results from the evaluation of 19 patients suffering from uncomplicated varicose vein disease and 10 healthy GSVs as controls. Overall, there was increased apoptosis in the distal part of GSV compared to the proximal part documented by increased expression of Bax (p SVT showed significant differences among the three different anatomic locations. In the proximal GSV, only BCL-xs was higher in patients with SVT (p = 0.029). In the tributaries, Bax, BCL-xl and Ki-67 were higher in patients with SVT (p SVT shows increased pro-apoptotic activity compared to uncomplicated disease and normal veins. Whether increased vein wall cell apoptosis is a causative factor for SVT in varicose veins disease or a repairing mechanism of the thrombosis itself needs further research.

  19. Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins.

    Science.gov (United States)

    Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R; Hem, Sonia; Santoni, Véronique; Maurel, Christophe

    2013-03-01

    The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.

  20. [Portal vein embolization: Present and future].

    Science.gov (United States)

    Piron, Lauranne; Deshayes, Emmanuel; Escal, Laure; Souche, Regis; Herrero, Astrid; Pierredon-Foulongne, Marie-Ange; Assenat, Eric; le Lam, Ngo; Quenet, François; Guiu, Boris

    2017-05-01

    Portal vein embolization consists of occluding a part of the portal venous system in order to achieve the hypertrophy of the non-embolized liver segments. This technique is used during the preoperative period of major liver resection when the future remnant liver (FRL) volume is insufficient, exposing to postoperative liver failure, main cause of death after major hepatectomy. Portal vein embolization indication depends on the FRL, commonly assessed by its volume. Nowadays, FRL function evaluation seems more relevant and can be measured by 99mTc labelled mebrofenin scintigraphy. Portal vein embolization procedure is mostly performed with percutaneous trans-hepatic access by using ultrasonography guidance and consists of embolic agent injection, such as cyanoacrylate, in the targeted portal vein branches with fluoroscopic guidance. It is a safe and well-tolerated technique, with extremely low morbi-mortality. Portal vein embolization leads to sufficient FRL hypertrophy in about 80% of patients, allowing them to undergo surgery from which they were initially rejected. The two main reasons of non-resection are tumor progression (≈15% of cases) and FRL insufficient hypertrophy (≈5% of cases). When portal vein embolization is not enough to obtain adequate FRL regeneration, hepatic vein embolization may potentiate its effect (liver venous deprivation technique). Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Portal vein gas in emergency surgery

    Directory of Open Access Journals (Sweden)

    Mahmood Hind

    2008-07-01

    Full Text Available Abstract Background Portal vein gas is an ominous radiological sign, which indicates a serious gastrointestinal problem in the majority of patients. Many causes have been identified and the most important was bowel ischemia and mesenteric vascular accident. The presentation of patients is varied and the diagnosis of the underlying problem depends mainly on the radiological findings and clinical signs. The aim of this article is to show the clinical importance of portal vein gas and its management in emergency surgery. Methods A computerised search was made of the Medline for publications discussing portal vein gas through March 2008. Sixty articles were identified and selected for this review because of their relevance. These articles cover a period from 1975–2008. Results Two hundreds and seventy-five patients with gas in the portal venous system were reported. The commonest cause for portal vein gas was bowel ischemia and mesenteric vascular pathology (61.44%. This was followed by inflammation of the gastrointestinal tract (16.26%, obstruction and dilatation (9.03%, sepsis (6.6%, iatrogenic injury and trauma (3.01% and cancer (1.8%. Idiopathic portal vein gas was also reported (1.8%. Conclusion Portal vein gas is a diagnostic sign, which indicates a serious intra-abdominal pathology requiring emergency surgery in the majority of patients. Portal vein gas due to simple and benign cause can be treated conservatively. Correlation between clinical and diagnostic findings is important to set the management plan.

  2. Radiological features of azygous vein aneurysm.

    Science.gov (United States)

    Choudhary, Arabinda Kumar; Moore, Michael

    2014-04-01

    Mediastinal masses are most commonly associated with malignancy. Azygous vein aneurysm is a very rare differential diagnosis of mediastinal mass. We report here three cases of azygous vein aneurysm including children and adult patients. In the pediatric patient it was further complicated by thrombosis and secondary pulmonary embolism. We describe the radiological features on CXR, MRI, CT, PET-CT, US and angiogram and their differential diagnosis. Imaging findings of continuity with azygous vein, layering of contrast medium on enhanced CT and dynamic MRA showing filling of the mass at the same time as the azygous vein without prior enhancement will be strongly suggestive of azygous vein aneurysm with transtracheal ultrasound being the definitive test in these patients. It is important to keep a vascular origin mass in the differential diagnosis of mediastinal masses. Also, in young healthy patients with pulmonary embolism, a vascular etiology such as azygous vein aneurysm should be carefully evaluated. This article will help the clinicians to learn about the imaging features of azygous vein aneurysm on different imaging modalities.

  3. Valsalva and gravitational variability of the internal jugular vein and common femoral vein: Ultrasound assessment

    Energy Technology Data Exchange (ETDEWEB)

    Beddy, P. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland)]. E-mail: pbeddy@eircom.net; Geoghegan, T. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Ramesh, N. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Buckley, O. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); O' Brien, J. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Colville, J. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Torreggiani, W.C. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland)

    2006-05-15

    Purpose: Central venous cannulation via the common femoral vein is an important starting point for many interventions. The purpose of this study was to determine the optimum conditions for cannulation of the femoral vein and to compare these with the relative changes in the internal jugular vein. Methods: High-resolution 2D ultrasound was utilised to determine variability of the calibre of the femoral and internal jugular veins in 10 healthy subjects. Venous diameter was assessed during the Valsalva manoeuvre and in different degrees of the Trendelenburg position. Results: The Valsalva manoeuvre significantly increased the size of the femoral and internal jugular veins. There was a relatively greater increase in femoral vein diameter when compared with the internal jugular vein of 40 and 29%, respectively. Changes in body inclination (Trendelenburg position) did not significantly alter the luminal diameter of the femoral vein. However, it significantly increased internal jugular vein diameter. Conclusions: Femoral vein cannulation is augmented by the Valsalva manoeuvre but not significantly altered by the gravitational position of the subject.

  4. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins.

    Directory of Open Access Journals (Sweden)

    Nilwala S Abeysekara

    Full Text Available BACKGROUND: Sudden death syndrome (SDS caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. RESULTS: Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. CONCLUSION: This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS

  5. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana.

    Science.gov (United States)

    Ploetz, Randy C; Schaffer, Bruce; Vargas, Ana I; Konkol, Joshua L; Salvatierra, Juanpablo; Wideman, Ronney

    2015-04-01

    Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.

  6. Factors which affect the amount of inorganic phosphate, phosphorylcholine, and phosphorylethanolamine in xylem exudate of tomato plants.

    Science.gov (United States)

    Martin, B A; Tolbert, N E

    1983-10-01

    Phosphate in the xylem exudate of tomato (Lycopersicon esculentum) plants was 70 to 98% inorganic phosphate (Pi), 2 to 30% P-choline, and less than 1% P-ethanolamine. Upon adding (32)Pi to the nutrient, Pi in xylem exudate had the same specific activity within 4 hours. P-choline and P-ethanolamine reached the same specific activity only after 96 hours. The amount of Pi in xylem exudate was dependent on Pi concentration in the nutrient and decreased from 1700 to 170 micromolar when Pi in the nutrient decreased from 50 to 2 micromolar. The flux of 0.4 nmoles organic phosphate per minute per gram fresh weight root into the xylem exudate was not affected by the Pi concentration in the nutrient solution unless it was below 1 micromolar. During 7 days of Pi starvation, Pi in the xylem exudate decreased from 1400 to 130 micromolar while concentrations of the two phosphate esters remained unchanged.The concentration of phosphate esters in the xylem exudate was increased by addition of choline or ethanolamine to the nutrient solution, but Pi remained unchanged. Upon adding [(14)C]choline to the nutrient, 10 times more [(14)C]P-choline than [(14)C]choline was in the xylem exudate and 85 to 90% of the ester phosphate was P-choline. When [(14)C]ethanolamine was added, [(14)C]P-ethanolamine and [(14)C]ethanolamine in the xylem sap were equal in amount. P-choline and P-ethanolamine accumulated in leaves of whole plants at the same time and the same proportion as observed for their flux into the xylem exudate. No relationship between the transport of P-choline and Pi in the xylem was established. Rather, the amount of choline in xylem exudate and its incorporation into phosphatidylcholine in the leaf suggest that the root is a site of synthesis of P-choline and P-ethanolamine for phospholipid synthesis in tomato leaves.

  7. Spatial and temporal patterns of xylem sap pH derived from stems and twigs of Populus deltoides L.

    Science.gov (United States)

    Doug Aubrey; Justin Boyles; Laura Krysinsky; Robert Teskey

    2011-01-01

    Xylem sap pH (pHX) is critical in determining the quantity of inorganic carbon dissolved in xylem solution from gaseous [CO2] measurements. Studies of internal carbon transport have generally assumed that pHX derived from stems and twigs is similar and that pHX remains constant through time; however, no empirical studies have investigated these assumptions. If any of...

  8. Polarity of IAA Effect on Sieve-Tube and Xylem Regeneration in Coleus and Tomato Stems 12

    Science.gov (United States)

    Thompson, Neal P.; Jacobs, William P.

    1966-01-01

    A technique is described for the processing of regenerated xylem and sieve tubes from the same wound area for microscopic and quantitative comparison. Regeneration was examined in internodes of 2 developmental stages in Coleus: internode 2, elongating, characteristic of primary growth; and internode 5, non-elongating, characteristic of secondary growth. Transport of indoleacetic acid (IAA) in excised number 5 internodes of Coleus is strictly polar, in a basipetal direction, judging by a regeneration bioassay involving both sieve tube strands and xylem cells. Similar results were obtained with tomato. If isolated number 5 Coleus internodes are not treated with hormone, they regenerate no xylem cells and a small number of sieve tube strands. With increasing concentrations of IAA added apically, the number of regenerated sieve tube strands (and, with higher concentrations, of xylem cells) increases progressively up to 1% IAA, the highest concentration applied. Internode 2 of Coleus regenerates fewer xylem cells or sieve tube strands than internode 5, whether on the otherwise intact plant or with a given concentration of IAA added apically. The amount of regenerated xylem increases with added apical IAA, except that the highest concentration gives no further increase. The number of xylem cells regenerated in intact plants occurs at the same interpolated IAA concentration as in number 5 internodes. No concentration of IAA tried provided replacement of intact number of sieve tube strands in internode 2. IAA can exert a regenerative stimulus on both xylem and sieve tubes in the area immediately adjacent to the site of its application. Images PMID:16656304

  9. Prospective analysis of endoscopic vein harvesting.

    Science.gov (United States)

    Patel, A N; Hebeler, R F; Hamman, B L; Hunnicutt, C; Williams, M; Liu, L; Wood, R E

    2001-12-01

    Utilization of bridging vein harvesting (BVH) of saphenous vein grafts (SVG) for coronary artery bypass grafting (CABG) results in large wounds with great potential for pain and infection. Endoscopic vein harvesting (EVH) may significantly reduce the morbidity associated with SVG harvesting. A prospective database of 200 matched patients receiving EVH and BVH was compared. The patients all underwent CABG done over a period of 4 months (April to August 2000). Patients were excluded if they had prior vein harvesting. The EVH and BVH group included 100 patients each with similar demographics. The patients in the EVH group had significantly fewer wound complications, mean days to ambulation, and total length of stay (P BVH in patients undergoing CABG.

  10. Leiomyosarcoma of the great saphenous vein.

    Science.gov (United States)

    El Khoury, M; Mesurolle, B; Trassard, M; Cherel, P; Talma, V; Hagay, C

    2006-10-01

    Peripheral vascular leiomyosarcomas are rare. A case of leiomyosarcoma of the great saphenous vein diagnosed pre-surgically by MRI and fine-needle aspiration is presented. Characteristics of the tumour and imaging features are discussed.

  11. Hepatic vein obstruction (Budd-Chiari)

    Science.gov (United States)

    ... MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Hepatic vein obstruction (Budd-Chiari) URL of this page: // ...

  12. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.

    Science.gov (United States)

    Feild, Taylor S; Brodribb, Timothy J; Iglesias, Ari; Chatelet, David S; Baresch, Andres; Upchurch, Garland R; Gomez, Bernard; Mohr, Barbara A R; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos

    2011-05-17

    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.

  13. Primary leiomyosarcoma of the innominate vein.

    Science.gov (United States)

    Illuminati, Giulio; Miraldi, Fabio; Mazzesi, Giuseppe; D'urso, Antonio; Ceccanei, Gianluca; Bezzi, Marcello

    2007-01-01

    Primary venous leiomyosarcoma is rare. We report the case of a primary leiomyosarcoma of the left innominate vein, with neoplastic thrombus extending into the left jugular and subclavian veins. The tumor was curatively resected en bloc with anterior mediastinal and laterocervical lymphatics, through a median sternotomy prolonged into left cervicotomy. Primary venous sarcomas may be associated with prolonged survival in individual cases, with curative resection recommended as the standard treatment, in the absence of distant spread.

  14. CT in thrombosed dilated posterior epidural vein

    Energy Technology Data Exchange (ETDEWEB)

    Bammatter, S.; Schnyder, P.; Preux, J. de

    1987-05-01

    The authors report a case of thrombosis of the distal end of an enlarged right posterior epidural vein. The patient had a markedly narrow lumbar canal due to L5 spondylolisthesis. The dilated vein and the thrombosis were displayed by computed tomography but remained unrecognized until surgery. Pathogenesis of this condition is discussed. A review of the English, French and German literature revealed no prior radiological reports of a similar condition.

  15. Retrotracheal aberrant left brachiocephalic vein: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Adalet E.; Haliloglu, Mithat; Karcaaltincaba, Musturay; Ariyurek, Macit O. [Hacettepe University Faculty of Medicine, Department of Radiology, Ankara (Turkey)

    2008-03-15

    We present a child with double aberrant left brachiocephalic vein (ALBCV) that was an incidental finding on CT. The anterior and thin branch was above the aortic arch and behind the truncus brachiocephalicus and drained into the superior vena cava (SVC). The posterior and thick branch of the ALBCV coursed posterior to the trachea and oesophagus and joined with the azygos vein before draining into the SVC. To our knowledge, retrotracheal ALBCV has not been previously described. (orig.)

  16. Efficacy of varicose vein surgery with preservation of the great safenous vein

    Directory of Open Access Journals (Sweden)

    Bernardo Cunha Senra Barros

    Full Text Available OBJECTIVE: To evaluate the efficacy of surgical treatment of varicose veins with preservation of the great saphenous vein. METHODS: We conducted a prospective study of 15 female patients between 25 and 55 years of age with clinical, etiologic, anatomic and pathophysiologic (CEAP classification 2, 3 and 4. The patients underwent surgical treatment of primary varicose veins with great saphenous vein (GSV preservation. Doppler ultrasonography exams were carried out in the first and third months postoperatively. The form of clinical severity of venous disease, Venous Clinical Severity Score (VCSS was completed before and after surgery. We excluded patients with history of deep vein thrombosis, smoking or postoperatively use of elastic stockings or phlebotonics. RESULTS: All patients had improved VCSS (p <0.001 and reduction in the diameter of the great saphenous vein (p <0.001. There was a relationship between VCSS and the GSV caliber, as well as with preoperative CEAP. There was improvement in CEAP class in nine patients when compared with the preoperative period (p <0.001. CONCLUSION: The varicose vein surgery with preservation of the great saphenous vein had beneficial effects to the GSV itself, with decreasing caliber, and to the symptoms when the vein had maximum caliber of 7.5 mm, correlating directly with the CEAP. The decrease in GSV caliber, even without complete abolition of reflux, leads to clinical improvement by decreasing the reflux volume.

  17. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    Science.gov (United States)

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved

  18. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  19. Conservative hemodynamic surgery for varicose veins.

    Science.gov (United States)

    Criado, Enrique; Luján, Salvador; Izquierdo, Luis; Puras, Enrique; Gutierrez, Miguel; Fontcuberta, Juan

    2002-03-01

    Conservative hemodynamic surgery for varicose veins is a minimally invasive, nonablative technique that preserves the saphenous vein and helps avoid excision of varicosities. It represents a physiologic approach to the surgical treatment of varicose veins based on knowledge of the underlying venous pathophysiology gained through detailed duplex scanning. A change in venous hemodynamics is attained through fragmentation of the blood column by interruption of the refluxing saphenous trunks, closure of the origin of the refluxing varicose branches, and preservation of the communicating veins that drain the incompetent varicose veins into the deep venous system. After surgery, varicose veins regress through a reduction in hydrostatic pressure and efficient emptying of the superficial system by the musculo-venous pump. Obvious advantages of this technique are that it is done in an ambulatory setting, minimizes the risk of surgical complications, and permits a rapid return to full activity. The long-term hemodynamic improvement and recurrence rate of this technique remain to be established. Copyright 2002 by W.B. Saunders Company

  20. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    Directory of Open Access Journals (Sweden)

    Maristela Boaceff Ciraulo

    2010-01-01

    Full Text Available Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC and grapevine Pierce's disease (PD. Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW, the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  1. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  2. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey, Doug, P.; Teskey, Robert, O.

    2009-07-01

    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m-2 d-1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m-2 d-1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  3. Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling.

    Science.gov (United States)

    Poluektova, Anna A; Malskat, Wendy S J; van Gemert, Martin J C; Vuylsteke, Marc E; Bruijninckx, Cornelis M A; Neumann, H A Martino; van der Geld, Cees W M

    2014-03-01

    vein wall and its subsequent temperature increase from two independent heat sources. The first is the exceedingly hot carbonized layer covering the fiber tip; the second is the hot blood surrounding the fiber tip, heated up by direct absorption of the laser light. Both mechanisms are about equally effective for all laser wavelengths. Therefore, our model concurs the finding of Vuylsteke and Mordon (Ann Vasc Surg 26:424-433, 2012) of more circumferential vein wall injury in veins (nearly) devoid of blood, but it does not support their proposed explanation of direct light absorption by the vein wall. Furthermore, EVLA appears to be a more efficient therapy by the combination of higher laser power and faster pullback velocity than by the inverse combination. Our findings suggest that 1,470 nm achieves the highest EVLA efficacy compared to the shorter wavelengths at all vein diameters considered. However, 1,950 nm of EVLA is more efficacious than 1,470 nm albeit only at very small inner vein diameters (smaller than about 1 mm, i.e., veins quite devoid of blood). Our model confirms the efficacy of both clinical procedures at 810 and 1,470 nm. In conclusion, our model simulations suggest that direct light absorption by the vein wall is relatively unimportant, despite being the supposed mechanism of action of EVLA that drove the introduction of new lasers with different wavelengths. Consequently, the presumed advantage of wavelengths targeting water rather than hemoglobin is flawed. Finally, the model predicts that EVLA therapy may be optimized by using 1,470 nm of laser light, emptying of the vein before treatment, and combining a higher laser power with a greater fiber tip pullback velocity.

  4. Nanobubbles: a new paradigm for air-seeding in xylem.

    Science.gov (United States)

    Schenk, H Jochen; Steppe, Kathy; Jansen, Steven

    2015-04-01

    Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.

    Science.gov (United States)

    Fiorin, Lucia; Brodribb, Timothy J; Anfodillo, Tommaso

    2016-01-01

    Leaves of vascular plants use specific tissues to irrigate the lamina (veins) and to regulate water loss (stomata), to approach homeostasis in leaf hydration during photosynthesis. As both tissues come with attendant costs, it would be expected that the synthesis and spacing of leaf veins and stomata should be coordinated in a way that maximizes benefit to the plant. We propose an innovative geoprocessing method based on image editing and a geographic information system to study the quantitative relationships between vein and stomatal spatial patterns on leaves collected from 31 angiosperm species from different biomes. The number of stomata within each areole was linearly related to the length of the looping vein contour. As a consequence of the presence of free-ending veinlets, the minimum mean distance of stomata from the nearest veins was invariant with areole size in most of the species, and species with smaller distances carried a higher density of stomata. Uniformity of spatial patterning was consistent within leaves and species. Our results demonstrate the existence of an optimal spatial organization of veins and stomata, and suggest their interplay as a key feature for achieving a constant mesophyll hydraulic resistance throughout the leaf. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  7. A method to determine plant water source using transpired water

    Science.gov (United States)

    Menchaca, L. B.; Smith, B. M.; Connolly, J.; Conrad, M.; Emmett, B.

    2007-04-01

    A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree) and Genista monspessulana (shrub) using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris) switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  8. Apical control of xylem formation in the pine stem. I. Auxin effects and distribution of assimilates

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2014-01-01

    Full Text Available The effect of IAA upon cambial activity, xylem differentiation and translocation of assimilates from the lateral shoot was investigated in spring and late summer in decapitated and ring-barked young trees of Pinus silvestris in the forest stand. Decapitation interrupted cambial xylem production in the uppermost part of the main stem of decapitated trees in spring and late summer, regardless of whether lateral branches below were growing, dormant or disbudded, and the contact through phloem with the roots was maintained or severed. Auxin supplied to the decapitated stems caused an increasing stimulation of cambial xylem production in spring. It also stimulated cambial activity in August but was ineffective in September. Apical control of cambial xylem production was strongly dependent upon the continuity of phloem and/or cambial tissues of the decapitated main-stem-section with lower parts of the plant. Decapitation of the stem strongly reduced the daily rate of cell wall deposition in the cambial xylem derivatives which on the day the experiment started constituted the zones of radial enlargement and maturation. This reduction limited progressively secondary wall deposition in consecutive maturing tracheids even though the cells differentiated longer. Irrespective of the season, auxin prevented the effect of decapitation in cells which were already differentiating when the experiment started as well as extension of the maturation phase. The effect of auxin was somewhat reduced when the lateral branches were additionally decapitated in early summer. In early summer auxin caused a significant increase of the daily rate of cell wall deposition in cells of the cambial zone or the newly produced ones, thus resulting in formation of progressively thicker secondary walls. Late in summer assimilates were transported mostly to the lower part of the stem. Decapitation changed the intact tree pattern of assimilate distribution, increasing the transport in

  9. Diagnosis and treatment of superficial vein thrombosis.

    Science.gov (United States)

    Bauersachs, R M

    2013-08-01

    Superficial vein thrombosis (SVT) is a common disease, characterized by an inflammatory-thrombotic process in a superficial vein. Typical clinical findings are pain and a warm, tender, reddish cord along the vein. Until recently, no reliable epidemiological data were available. The incidence is estimated to be higher than that of deep-vein thrombosis (DVT) (1/1000). SVT shares many risk factors with DVT, but affects twice as many women than men and frequently occurs in varicose veins. Clinically, SVT extension is commonly underestimated, and patients may have asymptomatic DVT. Therefore, ultrasound assessment and exclusion of DVT is essential. Risk factors for concomitant DVT are recent hospitalization, immobilization, autoimmune disorders, age > 75 years, prior VTE, cancer and SVT in non-varicose veins. Even though most patients with isolated SVT (without concomitant DVT or PE) are commonly treated with anticoagulation for a median of 15 days, about 8% experience symptomatic thromboembolic complications within three months. Risk factors for occurrence of complications are male gender, history of VTE, cancer, SVT in a non-varicose vein or SVT involving the sapheno-femoral junction (SFJ). As evidence supporting treatment of isolated SVT was sparse and of poor quality, the large, randomized, double-blind, placebo-controlled CALISTO trial was initiated assessing the effect of fondaparinux on symptomatic outcomes in isolated SVT. This study showed that, compared with placebo, 2.5 mg fondaparinux given for 45 days reduced the risk of symptomatic thromboembolic complications by 85% without increasing bleeding. Based on CALISTO and other observational studies, evidence-based recommendations can be made for the majority of SVT patients. Further studies can now be performed in higher risk patients to address unresolved issues.

  10. Corrosion cast study of the canine hepatic veins.

    Science.gov (United States)

    Uršič, M; Vrecl, M; Fazarinc, G

    2014-11-01

    This study presents a detailed description of the distribution, diameters and drainage patterns of hepatic veins on the basis of the corrosion cast analysis in 18 dogs. We classified the hepatic veins in three main groups: the right hepatic veins of the caudate process and right lateral liver lobe, the middle hepatic veins of the right medial and quadrate lobes and the left hepatic veins of both left liver lobes and the papillary process. The corrosion cast study showed that the number of the veins in the Nomina Anatomica Veterinaria and most anatomical textbooks is underestimated. The number of various-sized hepatic veins of the right liver division ranged from 3 to 5 and included 1 to 4 veins from the caudate process and 2 to 4 veins from the right lateral liver lobe. Generally, in all corrosion casts, one middle-sized vein from the right part of the right medial lobe, which emptied separately in the caudal vena cava, was established. The other vein was a large-sized vein from the remainder of the central division, which frequently joined the common left hepatic vein from the left liver lobes. The common left hepatic vein was the largest of all the aforementioned hepatic veins.

  11. Spatial and seasonal variation in amino compounds in the xylem sap of a mistletoe (Viscum album) and its hosts (Populus spp. and Abies alba).

    Science.gov (United States)

    Escher, Peter; Eiblmeier, Monika; Hetzger, Ilka; Rennenberg, Heinz

    2004-06-01

    In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of both hosts and mistletoe contained large, but similar amounts of total organic nitrogen in low molecular weight amino compounds (TONLW). Nevertheless, individual amino compounds accumulated in the xylem sap of mistletoe relative to the host xylem sap, indicating selective uptake. In the xylem sap of Populus, major amino compounds (asparagine (Asn) and glutamine (Gln)) and the bulk parameters, TONLW and proteinogenic amino acids, showed significant seasonal variation. In Abies and in mistletoe on either host, variation of amino compounds in xylem sap was largely explained by inter-annual differences, not by seasonal variation. In both hosts, TONLW in the xylem sap was dominated by Gln. There was a steady decrease in relative abundance of Gln from the host xylem sap to the mistletoe xylem sap and to the stems and leaves of mistletoe. Simultaneously, the abundance of arginine (Arg) increased. Arginine was the predominant amino compound in the stems and leaves of mistletoe, occurring at concentrations previously observed only in leaves of trees exposed to excess nitrogen. We conclude that Gln (2 mol N mol(-1)) delivered by the host xylem sap is converted, in mistletoe, to Arg (4 mol N mol(-1)) and that the organic carbon liberated from Gln contributes significantly to the parasite's heterotrophic carbon gain. Statistical analyses of the data support this conclusion. Accumulation of Arg in mistletoe is an indication of excess N supply as a result of the uptake of amino compounds from the host xylem sap and a lack of phloem uploading.

  12. Sinter-vein correlations at Buckskin Mountain, National district, Humboldt County, Nevada

    Science.gov (United States)

    Vikre, P.G.

    2007-01-01

    At Buckskin Mountain (elev 2,650 m, 8,743 ft), Humboldt County, Nevada, a hydrothermal system, imposed on a middle Miocene volcanic sequence with contrasting permeabilities and tensile strengths, produced alteration assemblages controlled by elevation, from Hg-mineralized sinter to subjacent precious metal veins over a vertical distance exceeding 790 m. Sinter and epiclastic deposits, interpreted to be remnant paleosurface basinal strata enclosed by 16.6 to 16.1 Ma rhyolites, overlie older volcaniclastic basinal deposits and were part of a regional fluvial-lacustrine system developed among ca. 16 to 12 Ma basalt-rhyolite eruptive centers throughout the northern Great Basin. Because of contrasting erosional resistance among altered and unaltered rocks, Buckskin Mountain represents inverse topography with sinter and silicified epiclastic deposits at the summit. Sinter and veins, correlated by common elements, similar mineralogy, age constraints, textures, S isotope compositions, and fluid inclusion microthermometry, were deposited by sinter-vein fluid, the first of two sequential hydrothermal fluid regimes that evolved in response to magmatism, tectonism, hydrology, and topography. Thermal quenching of distally derived sinter-vein fluid in planar conduits caused deposition of banded quartz-silicate-selenide-sulfide veins ???270 to > 440 m below sinter at 16.1 Ma; vei??ns were initially enveloped by zoned selvages of proximal K-feldspar + K-mica + quartz + pyrite and distal illite + chlorite + calcite + pyrite. Mixing of sinter-vein fluid with local meteoric water in saturated basinal deposits caused deposition of silica, Hg-Se-S-Cl minerals, and precious metals in sinter and epiclastic deposits. Elevated ???Se/???S in sinter-vein fluid, and the relatively large stability fields of reduced aqueous selenide species in the temperature range of 250?? to decompose selenide-sulfide-precious metal phases in sinter. Paragenetically late vein and wall-rock assemblages

  13. Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.

    Science.gov (United States)

    Hao, Guang-You; Wang, Ai-Ying; Liu, Zhi-Hui; Franco, Augusto C; Goldstein, Guillermo; Cao, Kun-Fang

    2011-06-01

    Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase.

  14. The anatomy of the cardiac veins in mice

    Science.gov (United States)

    Ciszek, Bogdan; Skubiszewska, Daria; Ratajska, Anna

    2007-01-01

    Although the cardiac coronary system in mice has been the studied in detail by many research laboratories, knowledge of the cardiac veins remains poor. This is because of the difficulty in marking the venous system with a technique that would allow visualization of these large vessels with thin walls. Here we present the visualization of the coronary venous system by perfusion of latex dye through the right caudal vein. Latex injected intravenously does not penetrate into the capillary system. Murine cardiac veins consist of several principal branches (with large diameters), the distal parts of which are located in the subepicardium. We have described the major branches of the left atrial veins, the vein of the left ventricle, the caudal veins, the vein of the right ventricle and the conal veins forming the conal venous circle or the prepulmonary conal venous arch running around the conus of the right ventricle. The venous system of the heart drains the blood to the coronary sinus (the left cranial caval vein) to the right atrium or to the right cranial caval vein. Systemic veins such as the left cranial caval, the right cranial caval and the caudal vein open to the right atrium. Knowledge of cardiac vein location may help to elucidate abnormal vein patterns in certain genetic malformations. PMID:17553104

  15. Superficial vein thrombosis with hemorrhagic cerebral infarction

    Directory of Open Access Journals (Sweden)

    Yu-wei CONG

    2016-01-01

    Full Text Available Background Cerebral superficial vein thrombosis was rare and often misdiagnosed or missed for its various etiological factors, and complicated and nonspecific clinical manifestations. This paper reported one case of superficial vein thrombosis in right fronto-parietal lobe with hemorrhagic infarction. The anatomy of superficial vein, pathophysiological points, diagnosis and treatment of superficial vein thrombosis were reviewed to help to reduce missed diagnosis or misdiagnosis. Methods and Results A 18-year-old male patient had suffered from progressive headache for 4 years and weakness of left limbs for 2 d. Head MRI showed circular space-occupying lesion in right fronto-parietal lobe. Magnetic resonance venography (MRV examination showed the front two-thirds of the superior sagittal sinus was not clear. The lesions were removed and decompressive craniectomy was conducted, showing the brain tissue was pale, partly yellow or dark red, and superficial venous engorgement. Histological observation showed pial superficial vein thrombosis and subpial encephalomalacia, and multifocal hemorrhage of cerebral cortex and local parenchymal hemorrhage. A large number of "grid cells" and vascular "cuff" phenomenan were visible in surrounding tissue, and the parenchymal blood vessel proliferation was obvious. Left hand activity of the patient was obviously limited after the operation. Conclusions Clinical diagnosis of superficial vein thrombosis with hemorrhagic infarction is difficult, and brain imaging and serological examination can provide certain help. Much attention should be paid to the multidisciplinary diagnosis and treatment to reduce misdiagnosis or missed diagnosis, and gather clinical experience. DOI: 10.3969/j.issn.1672-6731.2016.01.007

  16. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase.

    Science.gov (United States)

    Richardson, A; Duncan, J; McDougall, G J

    2000-09-01

    In a diverse taxonomic range of tree species, including representative species of ancient families of angiosperms (Magnolia x soulangiana Soul.-Bod.) and gymnosperms (Ginkgo biloba L.), oxidase activity was associated with cell walls of developing xylem and was enriched in extracts of cell wall-associated glycoproteins. In all species where oxidase activity was detected histochemically, it was expressed in cell walls of lignifying, differentiating xylem cells and was absent from old wood, cambium and phloem, suggesting that oxidases have a conservative role in lignification of tree xylem. An oxidase from the developing xylem of Picea sitchensis (Bong) Carr. (Sitka spruce) was partially purified by a combination of lectin affinity and immobilized metal ion affinity chromatography. A portion of the total oxidase activity had high affinity for immobilized zinc ions and this feature allowed it to be separated from the bulk of oxidase activity. Two polypeptides that could have been responsible for the bound oxidase activity were enriched by this procedure. The smaller polypeptide of Mr approximately 73 kDa yielded an N-terminal amino-acid sequence that was homologous to laccase-like polyphenol oxidases (E.C. 1.10.3.2) from loblolly pine (Pinus taeda L.), poplar (Populus euramericana (Dode) Guinier) and Arabidopsis. The larger polypeptide (Mr approximately 77 kDa) yielded an N-terminal amino-acid sequence that was homologous with a range of plant subtilisin-like serine proteinases. The roles of oxidase and proteinase activities in developing xylem are discussed.

  17. Deep vein thrombosis: a clinical review

    Directory of Open Access Journals (Sweden)

    Kesieme EB

    2011-04-01

    Full Text Available Emeka Kesieme1, Chinenye Kesieme2, Nze Jebbin3, Eshiobo Irekpita1, Andrew Dongo11Department of Surgery, Irrua Specialist Teaching Hospital, Irrua, Nigeria; 2Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria; 3Department of Surgery, University of Port Harcourt Teaching Hospital, Port-Harcourt, NigeriaBackground: Deep vein thrombosis (DVT is the formation of blood clots (thrombi in the deep veins. It commonly affects the deep leg veins (such as the calf veins, femoral vein, or popliteal vein or the deep veins of the pelvis. It is a potentially dangerous condition that can lead to preventable morbidity and mortality.Aim: To present an update on the causes and management of DVT.Methods: A review of publications obtained from Medline search, medical libraries, and Google.Results: DVT affects 0.1% of persons per year. It is predominantly a disease of the elderly and has a slight male preponderance. The approach to making a diagnosis currently involves an algorithm combining pretest probability, D-dimer testing, and compression ultrasonography. This will guide further investigations if necessary. Prophylaxis is both mechanical and pharmacological. The goals of treatment are to prevent extension of thrombi, pulmonary embolism, recurrence of thrombi, and the development of complications such as pulmonary hypertension and post-thrombotic syndrome.Conclusion: DVT is a potentially dangerous condition with a myriad of risk factors. Prophylaxis is very important and can be mechanical and pharmacological. The mainstay of treatment is anticoagulant therapy. Low-molecular-weight heparin, unfractionated heparin, and vitamin K antagonists have been the treatment of choice. Currently anticoagulants specifically targeting components of the common pathway have been recommended for prophylaxis. These include fondaparinux, a selective indirect factor Xa inhibitor and the new oral selective direct thrombin inhibitors (dabigatran and selective

  18. Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    2012-10-01

    Full Text Available On the basis of the increased emphasis placed on the protection of privacy, biometric recognition systems using physical or behavioural characteristics such as fingerprints, facial characteristics, iris and finger-vein patterns or the voice have been introduced in applications including door access control, personal certification, Internet banking and ATM machines. Among these, finger-vein recognition is advantageous in that it involves the use of inexpensive and small devices that are difficult to counterfeit. In general, finger-vein recognition systems capture images by using near infrared (NIR illumination in conjunction with a camera. However, such systems can face operational difficulties, since the scattering of light from the skin can make capturing a clear image difficult. To solve this problem, we proposed new image quality enhancement method that measures the direction and thickness of vein lines. This effort represents novel research in four respects. First, since vein lines are detected in input images based on eight directional profiles of a grey image instead of binarized images, the detection error owing to the non-uniform illumination of the finger area can be reduced. Second, our method adaptively determines a Gabor filter for the optimal direction and width on the basis of the estimated direction and thickness of a detected vein line. Third, by applying this optimized Gabor filter, a clear vein image can be obtained. Finally, the further processing of the morphological operation is applied in the Gabor filtered image and the resulting image is combined with the original one, through which finger-vein image of a higher quality is obtained. Experimental results from application of our proposed image enhancement method show that the equal error rate (EER of finger-vein recognition decreases to approximately 0.4% in the case of a local binary pattern-based recognition and to approximately 0.3% in the case of a wavelet transform

  19. Adipose tissue metabolism in humans determined by vein catheterization and microdialysis techniques

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Madsen, J

    1994-01-01

    A technique for catheterization of a vein draining abdominal subcutaneous tissue and a microdialysis technique that allows measurements of intercellular water concentrations in adipose tissue in humans have recently been described. In the present study, we compare the two techniques during an ora...

  20. Clinical Significance of the Soleal Vein and Related Drainage Veins, in Calf Vein Thrombosis in Autopsy Cases with Massive Pulmonary Thromboembolism

    Science.gov (United States)

    Kageyama, Norimasa

    2015-01-01

    Objective: To clarify the histopathological characteristics of deep vein thrombosis (DVT) resulting in lethal pulmonary thromboembolism (PE). Subjects and Methods: We investigated 100 autopsy cases of PE from limb DVT. The distribution and chronology of DVT in each deep venous segment were examined. Venous segments were classified into three groups: iliofemoral vein, popliteal vein and calf vein (CV). The CV was subdivided into two subgroups, drainage veins of the soleal vein (SV) and non drainage veins of SV. Results: Eighty-nine patients had bilateral limb DVTs. CV was involved in all limbs with DVT with isolated calf DVTs were seen in 47% of patients. Fresh and organized thrombi were detected in 84% of patients. SV showed the highest incidence of DVTs in eight venous segments. The incidence of DVT gradually decreased according to the drainage route of the central SV. Proximal tips of fresh thrombi were mainly located in the popliteal vein and tibioperoneal trunk, occurring in these locations in 63% of limbs. Conclusions: SV is considered to be the primary site of DVT; the DVT then propagated to proximal veins through the drainage veins. Lethal thromboemboli would occur at proximal veins as a result of proximal propagation from calf DVTs. PMID:27087868

  1. Portal-to-right portal vein bypass for extrahepatic portal vein obstruction.

    Science.gov (United States)

    Long, Li; Jinshan, Zhang; Zhen, Chen; Qi, Li; Ning, Dong; Mei, Diao; Wei, Cheng

    2017-11-04

    Rex shunt (mesenteric-to-left portal vein bypass) is considered a more physiologically rational treatment for EHPVO than other portosystemic systemic shunts in children. However, about 13.6% of children with EHPVO do not have usable left portal veins and up to 28.1%. Rex operations in children are not successful. Hence, a Rex shunt in these children was impossible. This study reports a novel approach by portal-to-right portal vein bypass for treatment of children with failed Rex shunts. Eight children (age 6.1years, range 3.5-8.9years) who underwent Rex shunts developed recurrent gastrointestinal bleeding and hypersplenism 13months (11-30months) postoperatively. After ultrasound confirmation of blocked shunt, they underwent exploration. Three patients were found to have right portal vein agenesis. Five patients (62.5%) were found to have the patent right portal vein, with the diameter of 3-6mm. Four patients underwent bypass between the main portal vein in the hepatoduodenal ligament and the right portal vein by interposing an inferior mesenteric vein autograft, whereas the remaining patient underwent a bypass using ileal mesenteric vein autograft. The operations took 2.3h (1.9-3.5h). The estimated blood loss was 50ml (30-80ml), with no complication. The portal venous pressure dropped from 34.6cmH2O (28-45 cmH2O) before the bypass to 19.6cmH2O (14-24cmH2O) after the bypass. The 5 patients were followed up for 10.2months (4-17months) and the post-operative ultrasound and CT angiography confirmed the patency of all the grafts and disappearance of the portal venous cavernova in all five patients. The portal-to-right portal vein bypass technique is feasible and safe for treatment of children with EHPVO who have had failed Rex shunts. Our preliminary result indicates that this technique extends the success of Rex shunt from left portal vein to right portal vein and open a new indication of physiological shunt for some of the children who not only have had failed Rex

  2. Structure of the secondary xylem of Aniba Aubl. species from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Cláudia Viana Urbinati

    2014-09-01

    Full Text Available The aim of this study was to characterize the wood of Aniba species from the Brazilian Amazon, on the basis of specimens in the wood collection of the Herbarium of the Museu Paraense Emílio Goeldi, in the city of Belém, Brazil. The species were found to present a homogeneous structure in the secondary xylem, as defined by the location of oil cells; the presence of tyloses and crystals; and singularities of the radial and axial parenchyma.

  3. Microclimate, Water Potential, Transpiration, and Bole Dielectric Constant of Coniferous and Deciduous Tree Species in the Continental Boreal Ecotone of Central Alaska

    Science.gov (United States)

    Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.

    1994-01-01

    Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.

  4. An unusual case: right proximal ureteral compression by the ovarian vein and distal ureteral compression by the external iliac vein

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Serin

    2015-12-01

    Full Text Available A 32-years old woman presented to the emergency room of Bozok University Research Hospital with right renal colic. Multidetector computed tomography (MDCT showed compression of the proximal ureter by the right ovarian vein and compression of the right distal ureter by the right external iliac vein. To the best of our knowledge, right proximal ureteral compression by the ovarian vein together with distal ureteral compression by the external iliac vein have not been reported in the literature. Ovarian vein and external iliac vein compression should be considered in patients presenting to the emergency room with renal colic or low back pain and a dilated collecting system.

  5. Bacteria-like bodies in coalified Carboniferous xylem - enigmatic microspheroids or possible evidence of microbial saprophytes in a vitrinite precursor

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.C. (US Geological Survey, Reston, VA (USA))

    1991-09-01

    Possible fossil cocci, both solitary and diplococcus types, have been discovered in coalified tissue (xylem) from coal balls and bituminous coal of Carboniferous age. Most of the presumed bacteria are microspheroids 1-2.5{mu}m in diameter and were found in partly degraded humic tissue (xylem) from a medullosan seed fern preserved in a coal ball (Herrin No. 6 coal bed, Westphalian D), an indication that they may have been saprotrophs (decay causing). The same kind of bodies were also found in coalified xylem from the Pittsburgh coal bed (early Stephanian). Whatever the origin of the bacteria-like bodies, they provide direct evidence of secondary organic components in tissue that gives rise to vitrinite and fusinite, major macerals of bituminous and anthracitic coals. 34 refs., 8 figs.

  6. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....... old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...

  7. Portal vein aneurysm and portal biliopathy.

    Science.gov (United States)

    Kurtcehajic, Admir; Vele, Esved; Hujdurovic, Ahmed

    2016-10-01

    Highlight Kurtcehajic and colleagues present a rare case of congenital portal vein aneurysm (PVA) with biliopathy. Symptoms associated with PVA occur in less than 10% of cases. Imaging modalities showed the PVA partially compressing the common and right hepatic ducts. Conservative treatment markedly lowered bilirubin levels and relieved the abdominal pain. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  8. Portal vein thrombosis complicating appendicitis | Ayantunde | West ...

    African Journals Online (AJOL)

    Appendicitis is still the most common acute surgical abdomen all over the world and its complications may be grave. We report an adult case of acute appendicitis complicated by Portal Vein Thrombosis (PVT) and ascending portomesenteric phlebitis treated successfully with antibiotics and anticoagulation with no residual ...

  9. vein thrombosis in elective hip replacement

    African Journals Online (AJOL)

    With the decision tree and these costs, the cost of the various modalities of prophylaxis was then detennined. Results. The probability, detennined by the forum, of developing a deep-vein thrombosis (DYD when no prophylaxis is used was 0.5, with a mortality rate of 2.1 %. The cost of this decision was R875. No prophylaxis ...

  10. Endovascular vein harvest: systemic carbon dioxide absorption.

    Science.gov (United States)

    Maslow, Andrew M; Schwartz, Carl S; Bert, Arthur; Hurlburt, Peter; Gough, Jeffrey; Stearns, Gary; Singh, Arun K

    2006-06-01

    Endovascular vein harvest (EDVH) requires CO(2) insufflation to expand the subcutaneous space, allowing visualization and dissection of the saphenous vein. The purpose of this study was to assess the extent of CO(2) absorption during EDVH. Prospective observational study. Single tertiary care hospital. Sixty patients (30 EDVH and 30 open-vein harvest) undergoing isolated coronary artery bypass graft surgery. Hemodynamic, procedural, and laboratory data were collected prior to (baseline), during, and at it the conclusion (final) of vein harvesting. Data were also collected during cardiopulmonary bypass (CPB). Data were compared by using t tests, analysis of variance, and correlation statistics when needed. There were significant increases in arterial CO(2) (PaCO(2), 35%) and decreases in pH (1.35%) during EDVH. These were associated with increases in heart rate, mean blood pressure, and cardiac output. Within the EDVH group, greater elevations (>10 mmHg) in PaCO2 were more likely during difficult harvest procedures, and these patients exhibited greater increase in heart rate. Elevated CO(2) persisted during CPB, requiring higher systemic gas flows and greater use of phenylephrine to maintain desired hemodynamics. EDVH was associated with systemic absorption of CO(2). Greater absorption was more likely in difficult procedures and was associated with greater hemodynamic changes requiring medical therapy.

  11. CORPOROPLASTY WITH SAPHENOUS VEIN GRAFT IN THE

    African Journals Online (AJOL)

    less rigid erections and are currently re- sponding to oral measures and lCl. Penile numbness occurred in four patients with dorsal plaques, and it was self limiting within six months. We encountered no complaint of penile shortening or impo- tence. Conclusion The saphenous vein presents a reasonable alternative grafting ...

  12. Combined central retinalartery and vein occlusion complicating ...

    African Journals Online (AJOL)

    Orbital Cellulitis is a dreaded ophthalmologic disease. Itmay destroy vision and the eye andmay even become life threatening. Often visual loss is the result of exposure and subsequent destruction of ocular tissue commonly the cornea and the uvea. We report a case of combined central retinal artery and vein occlusion ...

  13. Preduodenal portal vein: A potential laparoscopic cholecystectomy ...

    African Journals Online (AJOL)

    Variations of biliary anatomy are well described. Those of most relevance to the operative surgeon are the variations of the extrahepatic ducts and their relationships to the right hepatic artery and its branches. We describe another even rarer congenital anomaly of a preduodenal portal vein. Its embryological derivation and ...

  14. Retinal Vein Occlusion in Benin City, Nigeria

    African Journals Online (AJOL)

    neovascularization). A diagnosis of CRVO was made in the presence of generalized, scattered hemorrhages consisting of dot, blot, or flame shaped hemorrhages located in the superficial or deep layers of the retina, retinal edema, venous dilatation, and areas of occluded veins. BRVO or HRVO was characterized by retinal ...

  15. Portal vein thrombosis in patients with cirrhosis

    DEFF Research Database (Denmark)

    von Köckritz, Leona; De Gottardi, Andrea; Trebicka, Jonel

    2017-01-01

    Portal vein thrombosis (PVT) is frequent in patients with liver cirrhosis and possible severe complications such as mesenteric ischemia are rare, but can be life-threatening. However, different aspects of clinical relevance, diagnosis and management of PVT are still areas of uncertainty...

  16. Who Is at Risk for Varicose Veins?

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  17. How Can Varicose Veins Be Prevented?

    Science.gov (United States)

    ... Examples of these factors include family history, older age, gender, pregnancy, overweight or obesity , lack of movement, and leg trauma. Varicose veins are treated with lifestyle changes and medical procedures. The goals of treatment are to relieve symptoms, prevent complications, and improve ...

  18. Small saphenous vein: where does reflux go?

    Directory of Open Access Journals (Sweden)

    Guillermo Gustavo Rossi

    2013-06-01

    Full Text Available BACKGROUND: The anatomy of small saphenous vein (SSV is very variable because of its complex embryological origin. SSV incompetence often causes reflux that goes to the perforating veins, sometimes not respecting the anatomical course. OBJECTIVE: To analyze differences in reflux direction and reentry in the SSV. METHODS: In this prospective, observational study, 60 lower limbs with SSV incompetence of 43 patients were assessed using a color Doppler ultrasound protocol. RESULTS: Reentry variations were grouped into four types and subtypes. Percentage results were: Type A, perforating veins on the medial side = 25/60 cases (41.66%; subtypes: Cockett, Sherman, paratibial and vertex; Type B, lateral malleolus and perforating veins on the lateral side (fibular 17-26 cm = 15/60 cases (25%; subtypes: fibular and malleolus; Type C, two branches = 19/60 cases (31.66%; subtypes: gastrocnemius and Cockett, gastrocnemius and malleolus, and/or fibular, Cockett and malleolus, Cockett-vertex and fibular; Type D, reflux in the superficial system = 1/60 cases (1.66%. CONCLUSION: On most of the lower limbs assessed, reflux did not follow the classical anatomic course. Our findings demonstrated a high degree of variation in reflux/reentry, but no SSV anatomical variations. Reflux seems to, either look for the most accessible anatomical connection for reentry or be originated in the distal area and then reach the SSV.

  19. Percutaneous portal vein access and transhepatic tract hemostasis.

    Science.gov (United States)

    Saad, Wael E A; Madoff, David C

    2012-06-01

    Percutaneous portal vein interventions require minimally invasive access to the portal venous system. Common approaches to the portal vein include transjugular hepatic vein to portal vein access and direct transhepatic portal vein access. A major concern of the transhepatic route is the risk of postprocedural bleeding, which is increased when patients are anticoagulated or receiving pharmaceutical thrombolytic therapy. Thus percutaneous portal vein access and subsequent closure are important technical parts of percutaneous portal vein procedures. At present, various techniques have been used for either portal access or subsequent transhepatic tract closure and hemostasis. Regardless of the method used, meticulous technique is required to achieve the overall safety and effectiveness of portal venous procedures. This article reviews the various techniques of percutaneous transhepatic portal vein access and the various closure and hemostatic methods used to reduce the risk of postprocedural bleeding.

  20. Incidental retroaortic left innominate vein in adult patient

    Directory of Open Access Journals (Sweden)

    Alexandre Semionov, MD, PhD

    2017-09-01

    Full Text Available Retro-aortic left innominate vein is a rare vascular abnormality, usually associated with congenital heart disease. Here we report a case of isolated retro-aortic left innominate vein in an adult female.

  1. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin.

    Science.gov (United States)

    da Costa, Maysa Paula; Bozinis, Marize Campos Valadares; Andrade, Wanessa Machado; Costa, Carolina Rodrigues; da Silva, Alessandro Lopes; Alves de Oliveira, Cecília Maria; Kato, Lucília; Fernandes, Orionalda de Fátima Lisboa; Souza, Lúcia Kioko Hasimoto; Silva, Maria do Rosário Rodrigues

    2014-07-16

    The great potential of plants as Hymenaea courbaril L (jatoba) has not yet been throughly explored scientifically and therefore it is very important to investigate their pharmacological and toxicological activities to establish their real efficacy and safety. This study investigated the cytotoxicity of xylem sap of Hymenaea courbaril L and its bioactivity against the fungi Cryptococcus neoformans species complex and dermatophytes. The fresh xylem sap of H. courbaril was filtered resulting in an insoluble brown color precipitate and was identified as fisetin. In the filtrate was identified the mixture of fisetinediol, fustin, 3-O-methyl-2,3-trans-fustin and taxifolin, which were evaluated by broth microdilution antifungal susceptibility testing against C. neoformans species complex and dermatophytes. The fresh xylem sap and fisetin were screened for cytotoxicity against the 3T3-A31 cells of Balb/c using neutral red uptake (NRU) assay. The fresh xylem sap and the fisetin showed higher in vitro activity than the filtrate. The xylem sap of H. courbaril inhibited the growth of dermatophytes and of C. neoformans with minimal inhibition concentration (MIC) < 256 μg/mL, while the fisetin showed MIC < 128 μg/mL for these fungi. Fisetin showed lower toxicity (IC50 = 158 μg/mL) than the fresh xylem sap (IC50 = 109 μg/mL). Naturally occurring fisetin can provide excellent starting points for clinical application and can certainly represent a therapeutic potential against fungal infections, because it showed in vitro antifungal activity and low toxicity on animal cells.

  2. Deep Vein Thrombosis (DVT) / Pulmonary Embolism (PE) - Blood Clot Forming in a Vein

    Science.gov (United States)

    ... Facebook Tweet Share Compartir Deep Vein Thrombosis and Pulmonary Embolism (DVT/PE) are often underdiagnosed and serious, but ... bloodstream to the lungs, causing a blockage called pulmonary embolism (PE). If the clot is small, and with ...

  3. Evaluation of left renal vein entrapment using multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Poyraz, Ahmet K.; Onur, Mehmet R. [Dept. of Radiology, Firat Univ. School of Medicine, Elazig (Turkey)], e-mail: akursadpoyraz@yahoo.com.tr; Firdolas, Fatih [Dept. of Urology, Firat Univ. School of Medicine, Elazig (Turkey); Kocakoc, Ercan [Dept. of Radiology, Bezmialem Vakif Univ., School of Medicine, Istanbul (Turkey)

    2013-03-15

    Background: Nutcracker syndrome, also called left renal vein entrapment syndrome, is a cause of non-glomerular hematuria with difficulties in diagnosis. Multidetector computed tomography (MDCT) is a powerful tool to prevent unnecessary diagnostic procedures. Purpose: To retrospectively determine the prevalence of nutcracker phenomenon and nutcracker syndrome seen in MDCT in consecutive patients. Material and Methods: The institutional review board approved the study and waived the requirement for informed consent. Abdominal contrast-enhanced MDCT scans were reviewed from 1000 consecutive patients. MDCT scan assessment included renal vein diameter measurements and evaluation for the presence of anterior or posterior left renal vein entrapment. Electronic medical records and urine analysis reports of patients with left renal vein entrapment were reviewed. Student's t test was used to assess differences in renal vein diameter in patients with left renal vein entrapment. Results: Left renal vein entrapment was observed in 10.9% (109), retroaortic left renal vein in 6.5% (65), entrapment of left renal vein between superior mesenteric artery and aorta in 4.1% (41), and circumaortic left renal vein in 0.3% (3) of patients. Mean diameters of right (8.8 {+-} 1.9 mm) and unentrapped left (8.9 {+-} 1.8 mm) renal veins were not significantly different (P = 0.1). The mean diameter of anterior entrapped left renal veins (10.3 {+-} 2 mm) was significantly greater (P = 0.04) than contralateral renal veins (8.6 {+-} 2.1 mm) in their widest portion. In 8.8% of patients with the left renal vein entrapment, urine analysis showed isomorphic hematuria or proteinuria with no other known cause. Varicocele and pelvic congestion were seen in 5.5% of patients with the left renal vein entrapment. Conclusion: Left renal vein entrapment is not a rare entity and renal nutcracker phenomenon might be underdiagnosed.

  4. Vein visualization: patient characteristic factors and efficacy of a new infrared vein finder technology.

    Science.gov (United States)

    Chiao, F B; Resta-Flarer, F; Lesser, J; Ng, J; Ganz, A; Pino-Luey, D; Bennett, H; Perkins, C; Witek, B

    2013-06-01

    We investigated the patient characteristic factors that correlate with identification of i.v. cannulation sites with normal eyesight. We evaluated a new infrared vein finding (VF) technology device in identifying i.v. cannulation sites. Each subject underwent two observations: one using the conventional method (CM) of normal, unassisted eyesight and the other with the infrared VF device, VueTek's Veinsite™ (VF). A power analysis for moderate effect size (β=0.95) required 54 samples for within-subject differences. Patient characteristic profiles were obtained from 384 subjects (768 observations). Our sample population exhibited an overall average of 5.8 [95% confidence interval (CI) 5.4-6.2] veins using CM. As a whole, CM vein visualization were less effective among obese [4.5 (95% CI 3.8-5.3)], African-American [4.6 (95% CI 3.6-5.5 veins)], and Asian [5.1 (95% CI 4.1-6.0)] subjects. Next, the VF technology identified an average of 9.1 (95% CI 8.6-9.5) possible cannulation sites compared with CM [average of 5.8 (95% CI 5.4-6.2)]. Seventy-six obese subjects had an average of 4.5 (95% CI 3.8-5.3) and 8.2 (95% CI 7.4-9.1) veins viewable by CM and VF, respectively. In dark skin subjects, 9.1 (95% CI 8.3-9.9) veins were visible by VF compared with 5.4 (95% CI 4.8-6.0) with CM. African-American or Asian ethnicity, and obesity were associated with decreased vein visibility. The visibility of veins eligible for cannulation increased for all subgroups using a new infrared device.

  5. Adventitial cystic disease of the common femoral vein presenting as deep vein thrombosis

    Directory of Open Access Journals (Sweden)

    Young-Kyun Kim

    2016-07-01

    Full Text Available Adventitial cystic disease of the common femoral vein is a rare condition. We herein report the case of a 50-year-old woman who presented with painless swelling in her left lower leg that resembled deep vein thrombosis. She underwent femoral exploration and excision of the cystic wall. The presentation, investigation, treatment, and pathology of this condition are discussed with a literature review.

  6. Transport via xylem and accumulation of aflatoxin in seeds of groundnut plant.

    Science.gov (United States)

    Snigdha, M; Hariprasad, P; Venkateswaran, G

    2015-01-01

    Aflatoxin contamination in groundnut seeds in the absence of any aflatoxigenic fungi leads to a hypothesis that aflatoxins are present naturally in soil and is transferred to seeds through uptake by roots. A survey was conducted on the natural occurrence of aflatoxins in agricultural soils, among nine main groundnut-growing regions of Karnataka state, India. All 71 soil samples collected in this survey were contaminated with aflatoxins esp. AFB1. An in vitro xylem sap experiment proved the ability of groundnut plant roots to absorb AFB1, and transport to aerial plant parts via the xylem. Hydroponics experiment also proved the uptake of AFB1 by the roots and their translocation to shoot. Uptake was affected by the initial concentration of toxin and pH of the medium. Among the 14 varieties screened, GPBD4 and MLT.K.107 (III) recorded highest and least AFB1 uptake, respectively. The above results were validated using a greenhouse experiment. Here, the aflatoxin absorbed by root gradually transferred to shoot that was later found in seeds towards the end of experiment. Thus, the groundnut seeds can also get contaminated with aflatoxin by direct uptake of aflatoxin through conducting tissue in addition to fungal infection. The present study revealed the novel mode of aflatoxin contamination in groundnut seeds without fungal infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Measurement of xylem translocation of weak electrolytes with the pressure chamber technique

    DEFF Research Database (Denmark)

    Ciucani, Giovannella; Trevisan, M.; Sacchi, G.A.

    2002-01-01

    Xylem translocation and root uptake of weak electrolytes were investigated with the pressure chamber technique (PCT) using de-topped soybean plants. Two compounds were organic bases (fenpropimorph and imazalil) and four were organic acids (bentazone, primisulfuron-methyl, rimsulfuron...... and triasulfuron). The compounds covered a wide range of log K-OW and pK(a) values. Concentrations in external solution and in xylem sap were measured by HPLC at pH values in external solution of 4.5, 6.5 and 8.5. For weak bases, translocation was higher at low pH and the transpiration stream concentration factors.......64-1.35 for rimsulfuron, 0.81-0.93 for triasulfuron and 0.69-0.92 for bentazone. The variation of TSCF of the weak electrolytes was much smaller in these PCT experiments than in recent experiments with intact plants. The likely reason is that de-topped soybean plants in the pressure chamber seemed to be unable...

  8. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap.

    Science.gov (United States)

    Okamoto, Satoru; Suzuki, Takamasa; Kawaguchi, Masayoshi; Higashiyama, Tetsuya; Matsubayashi, Yoshikatsu

    2015-11-01

    There is a growing awareness that secreted pemediate organ-to-organ communication in higher plants. Xylem sap peptidomics is an effective but challenging approach for identifying long-distance mobile peptides. In this study we developed a simple, gel-free purification system that combines o-chlorophenol extraction with HPLC separation. Using this system, we successfully identified seven oligopeptides from soybean xylem sap exudate that had one or more post-transcriptional modifications: glycosylation, sulfation and/or hydroxylation. RNA sequencing and quantitative PCR analyses showed that the peptide-encoding genes are expressed in multiple tissues. We further analyzed the long-distance translocation of four of the seven peptides using gene-encoding peptides with single amino acid substitutions, and identified these four peptides as potential root-to-shoot mobile oligopeptides. Promoter-GUS analysis showed that all four peptide-encoding genes were expressed in the inner tissues of the root endodermis. Moreover, we found that some of these peptide-encoding genes responded to biotic and/or abiotic factors. These results indicate that our purification system provides a comprehensive approach for effectively identifying endogenous small peptides and reinforce the concept that higher plants employ various peptides in root-to-shoot signaling. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  10. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana

    Science.gov (United States)

    Siligato, Riccardo; Alonso, Jose M.; Swarup, Ranjan; Bennett, Malcolm J.; Mähönen, Ari Pekka; Caño-Delgado, Ana I.; Ibañes, Marta

    2015-01-01

    Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants. PMID:25922946

  11. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems.

    Science.gov (United States)

    Brodersen, Craig R; Knipfer, Thorsten; McElrone, Andrew J

    2018-01-01

    Embolism removal is critical for restoring hydraulic pathways in some plants, as residual gas bubbles should expand when vessels are reconnected to the transpiration stream. Much of our understanding of embolism removal remains theoretical as a consequence of the lack of in vivo images of the process at high magnification. Here, we used in vivo X-ray micro-computed tomography (microCT) to visualize the final stages of xylem refilling in grapevine (Vitis vinifera) paired with scanning electron microscopy. Before refilling, vessel walls were covered with a surface film, but vessel perforation plate openings and intervessel pits were filled with air. Bubbles were removed from intervessel pits first, followed by bubbles within perforation plates, which hold the last volumes of air which eventually dissolve. Perforation plates were dimorphic, with more steeply angled scalariform plates in narrow diameter vessels, compared with the simple perforation plates in older secondary xylem, which may favor rapid refilling and compartmentalization of embolisms that occur in small vessels, while promoting high hydraulic conductivity in large vessels. Our study provides direct visual evidence of the spatial and temporal dynamics of the final stages of embolism removal. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Effect of Salinity on Growth, Xylem Structure and Anatomical Characteristics of Soybean

    Directory of Open Access Journals (Sweden)

    Aria DOLATABADIAN

    2011-03-01

    Full Text Available This research was conducted in order to evaluation the salinity stress effect on growth parameters and stem anatomical changes of soybean grown under controlled conditions. Soybean seeds were surface sterilized and then sown into plastic pots filled up with perlite and vermiculite. Seeds were irrigated with Broughton and Dilworth solution daily. At full folded cotyledons stage (5 day after sowing, salinity stress was induced by adding NaCl into nutrition solution with final concentration of 0, 25, 50 and 100 mM. Thirty days after sowing plants were harvested and growth parameters and anatomical changes were evaluated. The results showed that, salinity stress was significantly decreased shoot and root weight either fresh weight or dry weight, in addition, total plant weight, plant height and leaf number were decreased due to salinity stress. Interestingly, leaf area was not affected by salinity stress. Stem microscopic study demonstrated that, salinity stress significantly increased cutin mass and trichome density on epidermal cells. On the other hand, cortex thickness was decreased because of salinity stress while xylem thickness had upward increase when soybean plants were grown under salinity stress especially high level of salinity. Additionally, there were changed in xylem formation and arrangement in stressed plants.

  13. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls.

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Juzenas, Kevin

    2017-04-01

    Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  15. The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease.

    Science.gov (United States)

    Krasikov, Vladimir; Dekker, Henk L; Rep, Martijn; Takken, Frank L W

    2011-01-01

    XSP10 is an abundant 10 kDa protein found in the xylem sap of tomato. The protein displays structural similarity to plant lipid transfer proteins (LTPs). LTPs are involved in various physiological processes, including disease resistance, and some are able to bind and transfer diverse lipid molecules. XSP10 abundance in xylem sap declines upon infection with Fusarium oxysporum f. sp. lycopersici (Fol), implying involvement of XSP10 in the plant-pathogen interaction. Here, the biochemical characterization of XSP10 with respect to fatty acid-binding properties is reported; a weak but significant binding to saturated fatty acids was found. Furthermore, XSP10-silenced tomato plants were engineered and it was found that these plants exhibited reduced disease symptom development upon infection with a virulent strain of Fol. Interestingly, the reduced symptoms observed did not correlate with an altered expression profile for known reporter genes of plant defence (PR-1 and WIPI). This work demonstrates that XSP10 has lipid-binding properties and is required for full susceptibility of tomato to Fusarium wilt.

  16. Efficacy of varicose vein surgery with preservation of the great safenous vein.

    Science.gov (United States)

    Barros, Bernardo Cunha Senra; Araujo, Antonio Luiz de; Magalhães, Carlos Eduardo Virgini; Barros, Raimundo Luiz Senra; Fiorelli, Stenio Karlos Alvim; Gatts, Raphaella Ferreira

    2015-01-01

    To evaluate the efficacy of surgical treatment of varicose veins with preservation of the great saphenous vein. We conducted a prospective study of 15 female patients between 25 and 55 years of age with clinical, etiologic, anatomic and pathophysiologic (CEAP) classification 2, 3 and 4. The patients underwent surgical treatment of primary varicose veins with great saphenous vein (GSV) preservation. Doppler ultrasonography exams were carried out in the first and third months postoperatively. The form of clinical severity of venous disease, Venous Clinical Severity Score (VCSS) was completed before and after surgery. We excluded patients with history of deep vein thrombosis, smoking or postoperatively use of elastic stockings or phlebotonics. All patients had improved VCSS (p caliber, as well as with preoperative CEAP. There was improvement in CEAP class in nine patients when compared with the preoperative period (p caliber, and to the symptoms when the vein had maximum caliber of 7.5 mm, correlating directly with the CEAP. The decrease in GSV caliber, even without complete abolition of reflux, leads to clinical improvement by decreasing the reflux volume.

  17. Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins[C][W

    Science.gov (United States)

    Prado, Karine; Boursiac, Yann; Tournaire-Roux, Colette; Monneuse, Jean-Marc; Postaire, Olivier; Da Ines, Olivier; Schäffner, Anton R.; Hem, Sonia; Santoni, Véronique; Maurel, Christophe

    2013-01-01

    The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics. PMID:23532070

  18. Portal vein thrombosis after reconstruction in 270 consecutive patients with portal vein resections in hepatopancreatobiliary (HPB) surgery.

    Science.gov (United States)

    Miyazaki, Masaru; Shimizu, Hiroaki; Ohtuka, Masayuki; Kato, Atsushi; Yoshitomi, Hiroyuki; Furukawa, Katsunori; Takayashiki, Tsukasa; Kuboki, Satoshi; Takano, Shigetsugu; Suzuki, Daisuke; Higashihara, Taku

    2017-07-01

    This study was aimed to evaluate the occurrence of portal vein thrombosis after portal vein reconstruction. The portal veins were repaired with venorrhaphy, end-to-end, patch graft, and segmental graft in consecutive 270 patients undergoing hepato-pancreto-biliary (HPB) surgery. Portal vein thrombosis was encountered in 20 of 163 of end-to-end, 2 of 56 of venorrhaphy, and 2 of 5 of patch graft groups, as compared with 0 of 46 of segmental graft group (p Portal vein thrombosis occurred more frequently after hepatectomy than after pancreatectomy (p portal vein blood flow was more sufficiently achieved in the early re-operation within 3 days after surgery than in the late re-operation over 5 days after surgery (p portal vein reconstruction. The revision surgery for portal vein thrombosis should be performed within 3 days after surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Primary varicose veins: Frequency, clinical significance and surgical treatment

    Directory of Open Access Journals (Sweden)

    Vasić Dragan M.

    2004-01-01

    Full Text Available INTRODUCTION According to the definition of the World Health Organization, varicose veins represent abnormally enlarged superficial veins having baggy or cylindrical shape. The most frequent cause of primary varicose veins is the insufficiency of long saphenous vein (LSV, but especially the basin of its connection with femoral vein and perforating veins. OBJECTIVE The objectives of these investigations were: the determination of insufficiency incidence of SSV in cases of LSV insufficiency; the establishment of association of insufficiency of perforating veins of the basin of LSV and SSV; the study of the results of surgical treatment of insufficiency and varicosity of both short and long saphenous veins. METHODS In this study, 100 patients (66 women and 34 men, average age 52.1 years, with clinical symptoms showing the insufficiency and varicosity of long saphenous vein with no change of deep vein system were examined. Ultrasonographic examinations were made using Color Doppler probes - 7.5 and 3.75 MHz (Toshiba Corevison SSA 350 A; the development of incompetence of long saphenous vein (LSV and short saphenous vein (SSV at the level of the junction as well as other incompetent valves were examined. The reflux was defined as a retrograde flow of the duration longer than 0.5 seconds. RESULTS The insufficiency of short saphenous vein was determined by ultrasonographic examination in 34%, while the insufficiency of perforating veins in 80% of patients. 40% of patients were operated (33.3% of females, and 52.9% of males. The most frequent indications for surgical treatment of superficial veins insufficiency were: strong varicosities, clear symptoms and signs, superficial thrombophlebitis and conditions after superficial thrombophlebitis. Surgical treatment was applied in 16% of patients due to recurrence in the basin of long saphenous vein, and in 6% of cases because of the recurrence in the basin of short saphenous vein. Data analysis failed to

  20. Xylem anatomical responses of Vaccinium myrtillus exposed to air CO2 enrichment and soil warming at treeline

    Science.gov (United States)

    Anadon-Rosell, Alba; Fonti, Patrick; Dawes, Melissa; von Arx, Georg

    2016-04-01

    Plant life at treeline is limited by harsh growth conditions. In this study we used nine years of free air CO2 enrichment (+200 ppm from 2001 to 2009) and six years of soil warming (+4 °C from 2007 to 2012) at a treeline experimental site in the Swiss Alps to investigate xylem anatomical responses of Vaccinium myrtillus, a co-dominant dwarf shrub in many treeline communities. Our aim was to identify whether the release from limiting growth conditions induced adjustments of the water conductive and storage tissues. High-resolution images of wood anatomical microsections from the stem base of 40 individuals were captured with a digital camera mounted on a microscope. We used the specialized image analysis tool ROXAS to quantify size, density, grouping patterns, and potential hydraulic conductivity of vessels. In addition, we measured the abundance and distribution of ray parenchyma. Our preliminary results show that CO2 enrichment and soil warming induced contrasting anatomical responses. In the last years of the CO2 enhancement vessels were larger, whereas soil warming induced an immediate reduction of vessel size. Moreover, larger vessels were found when V. myrtillus was in cohabitation with pine as opposed to larch. Results for ray parenchyma measurements did not show clear trends, although warming seemed to have a slightly positive effect on the fraction of uniseriate vs. multiseriate rays. These results suggest that release from the growth limiting factors can result in contrasting and partially lagged responses in the hydraulic system with little impact on the storage tissues. In addition, the overstory species seem to play a key role on the anatomy of V. myrtillus at treeline.

  1. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability

    Czech Academy of Sciences Publication Activity Database

    Karuppanapandian, T.; Geilfus, C.M.; Muehling, K.H.; Novák, Ondřej; Gloser, V.

    2017-01-01

    Roč. 255, FEB (2017), s. 51-58 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : xylem sap constituents * abscisic-acid * stomatal conductance * leaf apoplast * helianthus-annuus * plant-responses * intact plants * nacl stress * drying soil * guard-cells * Drought stress * Abscisic acid * Soil drying * Xylem sap * Osmolality * Water relations * Leaf water potential Subject RIV: EF - Botanics Impact factor: 3.437, year: 2016

  2. ClariVein® - Early results from a large single-centre series of mechanochemical endovenous ablation for varicose veins.

    Science.gov (United States)

    Tang, T Y; Kam, J W; Gaunt, M E

    2017-02-01

    Objectives This study assessed the effectiveness and patient experience of the ClariVein® endovenous occlusion catheter for varicose veins from a large single-centre series in the UK. Methods A total of 300 patients (371 legs) underwent ClariVein® treatment for their varicose veins; 184 for great saphenous vein (GSV) incompetence, 62 bilateral GSV, 23 short saphenous vein (SSV), 6 bilateral SSV and 25 combined unilateral great saphenous vein and SSV. Patients were reviewed at an interval of two months post procedure and underwent Duplex ultrasound assessment. Postoperative complications were recorded along with patient satisfaction. Results All 393 procedures were completed successfully under local anaesthetic. Complete occlusion of the treated vein was initially achieved in all the patients, but at eight weeks' follow-up, there was only partial obliteration in 13/393 (3.3%) veins. These were all successfully treated with ultrasound-guided foam sclerotherapy. Procedures were well tolerated with a mean pain score of 0.8 (0-10). No significant complications were reported. Conclusions ClariVein® can be used to ablate long and short saphenous varicose veins on a walk-in-walk-out basis. Bilateral procedures can be successfully performed, and these are well tolerated as can multiple veins in the same leg. Early results are promising but further evaluation and longer term follow-up are required.

  3. SAFETY FACTORS FOR XYLEM FAILURE BY IMPLOSION AND AIR-SEEDING WITHIN ROOTS, TRUNKS AND BRANCHES OF YOUNG AND OLD CONIFER TREES

    Energy Technology Data Exchange (ETDEWEB)

    Domec, Jean-Christophe [North Carolina State University; Warren, Jeffrey M. [Oak Ridge National Laboratory (ORNL); Meinzer, Rick [USDA Forest Service; Lachenbruch, Barbara [Oregon State University, Corvallis

    2009-01-01

    The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance of variations in tracheid anatomical features, earlywood to latewood ratios and wood densities with position in young and old Douglas-fir and ponderosa pine trees in terms of their consequences for the safety factors for tracheid implosion and air-seeding. For both species, wood density increased linearly with percent latewood for root, trunk and branch samples. However, the relationships between anatomy and hydraulic function in trunks differed from those in roots and branches. In roots and branches increased hydraulic efficiency was achieved at the cost of increased vulnerability to air-seeding. Mature wood of trunks had earlywood with wide tracheids that optimized water transport and had a high percentage of latewood that optimized structural support. Juvenile wood had higher resistance to air-seeding and cell wall implosion. The two safety factors followed similar axial trends from roots to terminal branches and were similar for both species studied and between juvenile and mature wood.

  4. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru

    Science.gov (United States)

    Chauvet, Alain; Bailly, Laurent; André, Anne-Sylvie; Monié, Patrick; Cassard, Daniel; Tajada, Fernando Llosa; Vargas, Juan Rosas; Tuduri, Johann

    2006-07-01

    The epithermal Shila-Paula Au-Ag district is characterized by numerous veins hosted in Tertiary volcanic rocks of the Western Cordillera (southern Peru). Field studies of the ore bodies reveal a systematic association of a main E-W vein with secondary N55-60°W veins—two directions that are also reflected by the orientation of fluid-inclusion planes in quartz crystals of the host rock. In areas where this pattern is not recognized, such as the Apacheta sector, vein emplacement seems to have been guided by regional N40°E and N40°W fractures. Two main vein-filling stages are identified. stage 1 is a quartz-adularia-pyrite-galena-sphalerite-chalcopyrite-electrum-Mn silicate-carbonate assemblage that fills the main E-W veins. stage 2, which contains most of the precious-metal mineralization, is divided into pre-bonanza and bonanza substages. The pre-bonanza substage consists of a quartz-adularia-carbonate assemblage that is observed within the secondary N45-60°W veins, in veinlets that cut the stage 1 assemblage, and in final open-space fillings. The two latter structures are finally filled by the bonanza substage characterized by a Fe-poor sphalerite-chalcopyrite-pyrite-galena-tennantite-tetrahedrite-polybasite-pearceite-electrum assemblage. The ore in the main veins is systematically brecciated, whereas the ore in the secondary veins and geodes is characteristic of open-space crystallization. Microthermometric measurements on sphalerite from both stages and on quartz and calcite from stage 2 indicate a salinity range of 0 to 15.5 wt% NaCl equivalent and homogenization temperatures bracketed between 200 and 330°C. Secondary CO2-, N2- and H2S-bearing fluid inclusions are also identified. The age of vein emplacement, based on 40Ar/39Ar ages obtained on adularia of different veins, is estimated at around 11 Ma, with some overlap between adularia of stage 1 (11.4±0.4 Ma) and of stage 2 (10.8±0.3 Ma). A three-phase tectonic model has been constructed to explain the

  5. Biometric Authentication Using Infrared Imaging of Hand Vein Patterns

    Science.gov (United States)

    Bhattacharyya, Debnath; Shrotri, A.; Rethrekar, S. C.; Patil, M. H.; Alisherov, Farkhod A.; Kim, Tai-Hoon

    Hand vein patterns are unique and universal. Vein pattern is used as biometric feature in recent years. But, it is not very much popular biometric system as compared to other systems like fingerprint, iris etc, because of the higher cost. For conventional algorithm, it is necessary to use high quality images, which demand high-priced collection devices. There are two approaches for vein authentication, these are hand dorsa and hand ventral. Currently we are working on hand dorsa vein patterns. Here we are putting forward the new approach for low cost hand dorsa vein pattern acquisition using low cost device and proposing a algorithm to extract features from these low quality images.

  6. Primary leiomyosarcoma of saphenous vein presenting as deep venous thrombosis.

    Science.gov (United States)

    Fremed, Daniel I; Faries, Peter L; Schanzer, Harry R; Marin, Michael L; Ting, Windsor

    2014-12-01

    Only a small number of venous leiomyosarcomas have been previously reported. Of these tumors, those of saphenous origin comprise a minority of cases. A 59-year-old man presented with symptoms of deep vein thrombosis and was eventually diagnosed with primary leiomyosarcoma of great saphenous vein origin. The tumor was treated with primary resection and femoral vein reconstruction with autologous patch. Although extremely rare, saphenous leiomyosarcoma can present as deep vein thrombosis. Vascular tumors should be included in the differential diagnosis of atypical extremity swelling refractory to conventional deep vein thrombosis management. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Thermal stimulation of intra-abdominal veins in conscious rabbits.

    Science.gov (United States)

    Cranston, W I; Hellon, R F; Townsend, Y

    1978-01-01

    1. Infusions of hot and cold Hartmann's solution were given into the hepatic portal vein and inferior vena cava of conscious rabbits. Similar infusions were given into an ear vein as controls. The time integral of the displacement of brain temperature was measured. 2. There was no evidence for the presence of warm sensors in the inferior vena cava, portal vein, liver or hepatic vein, and no evidence for a concentration of cold sensors in the inferior vena cava. 3. There may be cold-sensitive elements in the portal vein or the tissue perfused by blood passing through it. PMID:650560

  8. Ligation of superior mesenteric vein and portal to splenic vein anastomosis after superior mesenteric-portal vein confluence resection during pancreaticoduodenectomy – Case report

    Directory of Open Access Journals (Sweden)

    Jianlin Tang

    2014-12-01

    Conclusion: The lessons we learned are (1 Before SMPV confluence resection, internal jugular vein graft should be ready for reconstruction. (2 Synthetic graft is an alternative for internal jugular vein graft. (3 Direct portal vein to SMV anastomosis can be achieved by mobilizing liver. (4 It is possible that venous collaterals secondary to SMV tumor obstruction may have allowed this patient's post-operative survival.

  9. Deep dorsal vein arterialisation in vascular impotence.

    Science.gov (United States)

    Wespes, E; Corbusier, A; Delcour, C; Vandenbosch, G; Struyven, J; Schulman, C C

    1989-11-01

    A series of 12 patients with vasculogenic impotence (4 arterial lesions; 8 arterial and venous lesions) underwent deep dorsal vein arterialisation after pre-operative assessment by a multidisciplinary approach. Cumulative graft patency was 58% (7 of 12 patients) up to 21 months but only 4 patients developed almost normal erections. Digital angiography, with and without the intracavernous injection of papaverine, was performed during follow-up to determine the vascular physiological status. At flaccidity, the corpora cavernosa were never opacified in the absence of a venocorporeal shunt. The penile glans was always visualised. Opacification of the deep dorsal vein and the circumflex system decreased with penile rigidity, resulting from their compression between Buck's fascia and the tunica albuginea. Intracavernous pressure recorded before and after the surgical procedure showed a marked increase when a caverno-venous shunt was performed. Hypervascularisation of the glans occurred in 2 cases. The relevance of this new surgical technique and its functional mechanism are discussed.

  10. Effect of water stress on photosynthesis and related parameters in Pinus halepensis

    Energy Technology Data Exchange (ETDEWEB)

    Melzack, R.N.; Bravdo, B.; Riov, J.

    1985-01-01

    Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6-7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of -0.8 MPa, whereas mesophyll resistance started to increase at about -1.4 MPa. Decreasing xylem water potentials increased the CO/sub 2/ compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.

  11. Antioxidative mechanism in the course of varicose veins.

    Science.gov (United States)

    Horecka, Anna; Biernacka, Jadwiga; Hordyjewska, Anna; Dąbrowski, Wojciech; Terlecki, Piotr; Zubilewicz, Tomasz; Musik, Irena; Kurzepa, Jacek

    2017-01-01

    Objective Our objective was to evaluate the state of oxidative stress in the great saphenous varicose vein wall and blood of varicose vein patients taken from the antecubital vein. Methods The superoxide dismutase, reduced glutathione (GSH) and total antioxidant status were measured with commercially available colorimetric kits in erythrocytes, plasma and varicose vein wall of 65 patients (second degree of clinical state classification, etiology, anatomy and pathophysiology) aged 22-70 (49 women, 16 men) in comparison to normal great saphenous vein walls collected from 10 patients who underwent coronary artery bypass graft and blood collected from 20 healthy individuals. Results A statistically significant decrease (p < 0.001) in superoxide dismutase activity in erythrocytes and the increase (p < 0.05) in superoxide dismutase activity in varicose vein has been observed. There have been no significant changes in the concentration of GSH in plasma and in varicose vein. The decreased concentration of total antioxidant status in plasma (p < 0.001) and in varicose vein wall (p < 0.05) in comparison to the control has been noticed. Conclusion The varicose vein patients are affected by oxidative stress. Our results indicate impaired antioxidant defense mechanism in the blood of varicose vein patients. In contrast to the blood, an increased process of antioxidant defense in the varicose vein wall was noticed.

  12. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  13. Pharmacological assessment of adrenergic receptors in human varicose veins.

    Science.gov (United States)

    Miller, V M; Rud, K S; Gloviczki, P

    2000-06-01

    Experiments were to characterize pharmacologically adrenergic receptors in human varicose veins to the natural transmitter norepinephrine and to an extract of Ruscus. Greater saphenous veins and varicose tributaries from patients undergoing elective surgery for primary varicose disease and portions of greater saphenous veins from patients undergoing peripheral arterial reconstruction (control) were suspended for the measurement of isometric force in organ chambers. Concentration response curves were obtained to norepinephrine or the extract of Ruscus aculeatus in the absence and presence of selective antagonists of alpha, and alpha2 adrenergic receptors. Norepinephrine and Ruscus extract caused concentration-dependent contractions in all veins. Contractions to norepinephrine were greater in control veins than in varicose tributaries. Contractions to the extract were greater in varicose tributaries than in greater saphenous veins from varicose patients. Contractions to norepinephrine were reduced similarly by alpha and alpha2-adrenergic agonists in control and varicose veins but to a greater extent by alpha2-blockade in greater saphenous veins from varicose patients. Contractions to Ruscus extract were not reduced by alpha-adrenergic blockade in control veins but were reduced by alpha2-adrenergic blockade in varicose veins. These results suggest a differential distribution of alpha adrenergic receptors on greater saphenous veins from non-varicose patients compared to those with primary varicose disease. Venotropic agents from plant extract probably exert effects by way of multiple receptor and non-receptor mediated events.

  14. Sclerotherapy and foam sclerotherapy for varicose veins.

    Science.gov (United States)

    Coleridge Smith, P

    2009-12-01

    To review published evidence concerning treatment of varicose veins using ultrasound-guided foam sclerotherapy (UGFS) to assess the safety and efficacy of this treatment. Medical literature databases including MedLine, Embase and DH-DATA were searched for recent literature concerning UGFS. Papers describing the early results and later outcome have been assessed and their main findings were included in this summary. Few randomized studies have been published in this field and much of the available data come from clinical series reported by individual clinicians. It is clear that foam sclerotherapy is far more effective than liquid sclerotherapy and that ultrasound imaging allows the treatment to be delivered accurately to affected veins. There is evidence that 3% polidocanol foam is no more effective than 1% polidocanol foam. The optimum ratio of gas to liquid is 4:1, although a range of ratios is reported in the published work. There is a wide variation in the volume used as well as the method by which it is injected. The use of carbon dioxide foam reduces the systemic complications, particularly visual disturbance, as compared with air foams. Very few serious adverse events have been reported in the literature despite the widespread use of this method. Rates of recanalization of saphenous trunks following UGFS are similar to those observed after endovenous laser and endovenous RF ablation of veins, as well as the residual incompetence after surgical treatment. UGFS is a safe and effective method of treating varicose veins. The relative advantages or disadvantages of this treatment in the longer term have yet to be published.

  15. Varicose veins of the pelvis men

    Directory of Open Access Journals (Sweden)

    O. B. Zhukov

    2016-01-01

    Full Text Available Syndrome of pelvic venous congestion in men and of prostate particularly in contrast to women disease is poorly known. Classification of varicose pelvic veins in men does not exist. In this paper we analyzed their own data on the diagnosis and treatment of venous congestion in the pelvic and prostate in patients with varicocele. Classification of prostate varicose are also offered by us.

  16. Deep Vein Thrombosis after Coronary Angiography

    Directory of Open Access Journals (Sweden)

    Vivek Singh Guleria

    2015-01-01

    Full Text Available Deep vein thrombosis (DVT is a rare but potentially serious complication of coronary angiography (CAG, incidence being just 0.05%. Only a few clinical cases of DVT after diagnostic transfemoral catheterization have been reported. Here, we describe the case of a 54-year-old woman who developed significant DVT after CAG without venous thromboembolism (VTE and, which was treated with anticoagulants.

  17. Atypical ultrasonographic presentation of ovarian vein thrombosis.

    Science.gov (United States)

    Graupera, B; Pascual, M A; Garcia, P; Di Paola, R; Ubeda, B; Tresserra, F

    2011-01-01

    Ovarian vein trombosis (OVT) is a pathologic entity classically considered as a postpartum complication and only rarely associated with other diseases. Due to its vague symptoms, it is usually underdiagnosed. However its consequences can be fatal. We report a case of an incidental finding of ovarian thrombosis in an asymptomatic 45-year-old woman who underwent surgery due to the ultrasonographic finding of a para-ovarian cyst.

  18. Ultrasonic Vein Detector Implementation for Medical Applications

    OpenAIRE

    Taheri, Seyedd Arash

    2013-01-01

    Nowadays, taking blood samples from a human forearm and using Cephalic, Basilic, and Median Cubital veins to perform various injections can be considered as one of the most routine medical procedures for diagnostic purposes. Most human patients don’t need to waste a lot of time in clinics waiting for the nurses and/or doctors to locate an applicable venipuncture site. However, minority of individuals who suffer from obesity, cancer, and other similar medical complications have to go to excruc...

  19. Deep vein thrombosis: diagnosis, treatment, and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.P.; Youngswick, F.D.

    Deep vein thrombosis (DVT) is a dangerous complication that may present after elective foot surgery. Because of the frequency with which DVT occurs in the elderly patient, as well as in the podiatric surgical population, the podiatrist should be acquainted with this entity. A review of the diagnosis, treatment, prevention, and the role of podiatry in the management of DVT is discussed in this paper.

  20. Absent right superior caval vein in situs solitus

    DEFF Research Database (Denmark)

    Lytzen, Rebekka; Sundberg, Karin; Vejlstrup, Niels

    2015-01-01

    Introduction In up to 0.07% of the general population, the right anterior cardinal vein obliterates and the left remains open, creating an absent right superior caval vein and a persistent left superior caval vein. Absent right superior caval vein is associated with additional congenital heart...... disease in about half the patients. We wished to study the consequences of absent right superior caval vein as an incidental finding on prenatal ultrasonic malformation screening. Material and methods This is a retrospective case series study of all foetuses diagnosed with absent right superior caval vein...... at the national referral hospital, Rigshospitalet, Denmark, from 2009 to 2012. RESULTS: In total, five cases of absent right superior caval vein were reviewed. No significant associated cardiac, extra-cardiac, or genetic anomalies were found. Postnatal echocardiographies confirmed the diagnosis and there were...

  1. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries.

    Science.gov (United States)

    Clearwater, Michael J; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T Grant

    2012-03-01

    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis 'Hort16A') exhibiting a pre-harvest 'shrivel' disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (D(a)) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high D(a). Phloem flows were required for growth, with gradual recovery after a step increase in D(a). Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to D(a)-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined.

  2. Relationships among foliar phenology, radial growth rate, and xylem density in a young Douglas-fir plantation

    Science.gov (United States)

    Warren D. Devine; Constance A. Harrington

    2009-01-01

    We related intraannual patterns in radial growth rate and xylem density to foliar phenology and second growth flushes in a young Douglas-fir plantation in western Washington. Three foliar maturity classes were defined: (1) shoots and needles elongating; (2) elongation complete, needles maturing; and (3) needles mature. Diameter growth rate had two peaks, one about the...

  3. Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying.

    Science.gov (United States)

    Pan, Zheng-Ze; Nishihara, Hirotomo; Iwamura, Shinichiroh; Sekiguchi, Takafumi; Sato, Akihiro; Isogai, Akira; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2016-12-27

    Honeycomb structures have been attracting attention from researchers mainly for their high strength-to-weight ratio. As one type of structure, honeycomb monoliths having microscopically dimensioned channels have recently gained many achievements since their emergence. Inspired by the microhoneycomb structure that occurs in natural tree xylems, we have been focusing on the assembly of such a structure by using the major component in tree xylem, cellulose, as the starting material. Through the path that finally led us to the successful reconstruction of tree xylems by the unidirectional freeze-drying (UDF) approach, we verified the function of cellulose nanofibers, toward forming xylem-like monoliths (XMs). The strong tendency of cellulose nanofibers to form XMs through the UDF approach was extensively confirmed with surface grafting or a combination of a variety of second components (or even a third component). The resulting composite XMs were thus imparted with extra properties, which extends the versatility of this kind of material. Particularly, we demonstrated in this paper that XMs containing reduced graphene oxide (denoted as XM/rGO) could be used as strain sensors, taking advantage of their penetrating microchannels and the bulk elasticity property. Our methodology is flexible in its processing and could be utilized to prepare various functional composite XMs.

  4. Measurement of imidacloprid in xylem fluid from eastern hemlock (Tsuga canadensis) by derivitization/GC/MS and ELISA

    Science.gov (United States)

    Anthony Lagalante; Peter Greenbacker; Jonathan Jones; Richard Turcotte; Bradley Onken

    2007-01-01

    Imidacloprid is a nonvolatile insecticide and its direct quantification is not possible by gas chromatography. In order to ascertain imidacloprid levels in soil and trunk injection treated trees, a sensitive and selective method has been developed using GC/MS to measure the imidacloprid levels in xylem fluid exudates. In May 2005, a stand of hemlock trees in West...

  5. Chemical and anatomical changes in Liquidambar styraciflua L.xylem after long term exposure to elevated CO

    Science.gov (United States)

    Keonhee Kim; Nicole Labbé; Jeffrey M. Warren; Thomas Elder; Timothy G. Rials

    2015-01-01

    The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2(544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not...

  6. Potassium co-transport and antiport during the uptake of sucrose and glutamic acid from the xylem vessels

    NARCIS (Netherlands)

    Bel, A.J.E. van; Erven, A.J. van

    Perfusion experiments with excised internodes of tomato (Lycopersicon esculentum cv Moneymaker) showed that the uptake of glutamic acid and sucrose from the xylem vessels is accompanied with coupled proton co-transport and potassium antiport at low pH (<5.5). At high pH (5.5) both proton and

  7. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six

  8. Deep vein thrombosis and pulmonary embolism.

    Science.gov (United States)

    Di Nisio, Marcello; van Es, Nick; Büller, Harry R

    2016-12-17

    Deep vein thrombosis and pulmonary embolism, collectively referred to as venous thromboembolism, constitute a major global burden of disease. The diagnostic work-up of suspected deep vein thrombosis or pulmonary embolism includes the sequential application of a clinical decision rule and D-dimer testing. Imaging and anticoagulation can be safely withheld in patients who are unlikely to have venous thromboembolism and have a normal D-dimer. All other patients should undergo ultrasonography in case of suspected deep vein thrombosis and CT in case of suspected pulmonary embolism. Direct oral anticoagulants are first-line treatment options for venous thromboembolism because they are associated with a lower risk of bleeding than vitamin K antagonists and are easier to use. Use of thrombolysis should be limited to pulmonary embolism associated with haemodynamic instability. Anticoagulant treatment should be continued for at least 3 months to prevent early recurrences. When venous thromboembolism is unprovoked or secondary to persistent risk factors, extended treatment beyond this period should be considered when the risk of recurrence outweighs the risk of major bleeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Laser photocoagulation for retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2015-03-01

    Full Text Available Retinal vein occlusion (RVO is one of the leading causes of permanent vision loss. In adults, central retinal vein occlusion (CRVO occurs in 1.8% while branch retinal vein occlusion (BRVO occurs in 0.2%. Treatment strategy and disease prognosis are determined by RVO type (ischemic/non-ischemic. Despite numerous studies and many current CRVO and BRVO treatment approaches, the management of these patients is still being debated. Intravitreal injections of steroids (triamcinolone acetate, dexamethasone and vascular endothelial growth factor (VEGF inhibitors (bevacizumab, ranibizumab were shown to be fairly effective. However, it is unclear whether anti-VEGF agents are reasonable in ischemic RVOs. Laser photocoagulation remains the only effective treatment of optic nerve head and/or retinal neovascularization. Laser photocoagulation is also indicated for the treatment of macular edema. Both threshold and sub-threshold photocoagulation may be performed. Photocoagulation performed with argon (514 nm, krypton (647 nm, or diode (810 nm laser for macular edema provides similar results (no significant differences. The treatment may be complex and include medication therapy and/or surgery. Medication therapy includes anti-aggregant agents and antioxidants, i.e., emoxypine which may be used in acute RVO as well as in post-thrombotic retinopathy. 

  10. Laser photocoagulation for retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2015-01-01

    Full Text Available Retinal vein occlusion (RVO is one of the leading causes of permanent vision loss. In adults, central retinal vein occlusion (CRVO occurs in 1.8% while branch retinal vein occlusion (BRVO occurs in 0.2%. Treatment strategy and disease prognosis are determined by RVO type (ischemic/non-ischemic. Despite numerous studies and many current CRVO and BRVO treatment approaches, the management of these patients is still being debated. Intravitreal injections of steroids (triamcinolone acetate, dexamethasone and vascular endothelial growth factor (VEGF inhibitors (bevacizumab, ranibizumab were shown to be fairly effective. However, it is unclear whether anti-VEGF agents are reasonable in ischemic RVOs. Laser photocoagulation remains the only effective treatment of optic nerve head and/or retinal neovascularization. Laser photocoagulation is also indicated for the treatment of macular edema. Both threshold and sub-threshold photocoagulation may be performed. Photocoagulation performed with argon (514 nm, krypton (647 nm, or diode (810 nm laser for macular edema provides similar results (no significant differences. The treatment may be complex and include medication therapy and/or surgery. Medication therapy includes anti-aggregant agents and antioxidants, i.e., emoxypine which may be used in acute RVO as well as in post-thrombotic retinopathy. 

  11. The vertebral venous plexuses: the internal veins are muscular and external veins have valves.

    Science.gov (United States)

    Stringer, Mark D; Restieaux, Matthew; Fisher, Amanda L; Crosado, Brynley

    2012-07-01

    The internal and external vertebral venous plexuses (VVP) extend the length of the vertebral column. Authoritative sources state that these veins are devoid of valves, permitting bidirectional blood flow and facilitating the hematogenous spread of malignant tumors that have venous connections with these plexuses. The aim of this investigation was to identify morphologic features that might influence blood flow in the VVP. The VVP of 12 adult cadavers (seven female, mean age 79.5 years) were examined by macro- and micro-dissection and representative veins removed for histology and immunohistochemistry (smooth muscle antibody staining). A total of 26, mostly bicuspid, valves were identified in 19 of 56 veins (34%) from the external VVP, all orientated to promote blood flow towards the internal VVP. The internal VVP was characterized by four main longitudinal channels with transverse interconnections; the maximum caliber of the longitudinal anterior internal VVP veins was significantly greater than their posterior counterparts (P < 0.001). The luminal architecture of the internal VVP veins was striking, consisting of numerous bridging trabeculae (cords, thin membranes and thick bridges) predominantly within the longitudinal venous channels. Trabeculae were composed of collagen and smooth muscle and also contained numerous small arteries and nerve fibers. A similar internal venous trabecular meshwork is known to exist within the dural venous sinuses of the skull. It may serve to prevent venous overdistension or collapse, to regulate the direction and velocity of venous blood flow, or is possibly involved in thermoregulation or other homeostatic processes. © 2011 Wiley Periodicals, Inc.

  12. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    Science.gov (United States)

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Absence of Middle Hepatic Vein Combined with Retro-Aortic Left Renal Vein: a Very Rare Case Report

    Directory of Open Access Journals (Sweden)

    Sezer Akçer

    2012-06-01

    Full Text Available The hepatic and renal veins drain into the inferior vena cava. The upper group of hepatic veins consists of three veins which extend to the posterior face of the liver to join the inferior cava. The left renal vein passes anterior to the aorta just below the origin of the superior mesenteric artery. We detected a variation in the hepatic and renal veins in a multislice CT angiogram of a nine-year-old male patient in the Radiology Department of Afyon Kocatepe University Medical School. The upper group hepatic veins normally drains into the inferior vena cava as three separate trunks, namely the right, left and middle. In our case, we found that only the right and left hepatic veins existed and the middle hepatic vein was absent. Furthermore, the left renal vein, which normally passes anterior to the abdominal aorta, was retro-aortic. Left renal vein variations are of great importance in planning retroperitoneal surgery and vascular interventions. Knowledge of a patient’s hepatic vein and renovascular anatomy and determining their variations and anomalies are of critical importance to abdominal operations, transplantations and preoperative evaluation of endovascular interventions.

  14. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Directory of Open Access Journals (Sweden)

    Shaokang Zhang

    2018-02-01

    Full Text Available Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  15. Intra-annual Dynamics of Xylem Formation inLiquidambar formosanaSubjected to Canopy and Understory N Addition.

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum ( Liquidambar formosana ) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha -1 year -1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March-December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119-292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52-26.64 μm day -1 . The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  16. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments. PMID:29467775

  17. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Science.gov (United States)

    Chen, Hong; Wang, Haiyang; Liu, Yanfang; Dong, Li

    2013-01-01

    1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining

  18. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita

    2016-08-01

    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  19. Altitudinal variations of ground tissue and xylem tissue in terminal shoot of woody species: implications for treeline formation.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available 1. The terminal shoot (or current-year shoot, as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot. 2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA was performed to test the relation among primary xylem, ground tissue, species growth form and altitude. 3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment. 4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary

  20. Mixed xylem and phloem sap ingestion in sheath-feeders as normal dietary behavior: Evidence from the leafhopper Scaphoideus titanus.

    Science.gov (United States)

    Chuche, Julien; Sauvion, Nicolas; Thiéry, Denis

    2017-10-01

    In phytophagous piercing-sucking insects, salivary sheath-feeding species are often described as xylem- or phloem-sap feeding specialists. Because these two food sources have very different characteristics, two feeding tactics are often associated with this supposed specialization. Studying the feeding behavior of insects provides substantial information on their biology, ecology, and evolution. Furthermore, study of feeding behavior is of primary importance to elucidate the transmission ability of insects that act as vectors of plant pathogens. In this study, we compared the durations of ingestion performed in xylem versus phloem by a leafhopper species, Scaphoideus titanus Ball, 1932. This was done by characterizing and statistically analyzing electrical signals recorded using the electropenetrography technique, derived from the feeding behaviors of males and females. We identified three groups of S. titanus based on their feeding behavior: 1) a group that reached the phloem quickly and probed for a longer time in phloem tissue than the other groups, 2) a group that reached the xylem quickly and probed for a longer time in xylem tissue than the other groups, and 3) a group where individuals did not ingest much sap. In addition, the numbers and durations of waveforms representing ingestion of xylem and phloem saps differed significantly depending on the sex of the leafhopper, indicating that the two sexes exhibit different feeding behaviors. Males had longer phloem ingestion events than did females, which indicates that males are greater phloem feeders than females. These differences are discussed, specifically in relation to hypotheses about evolution of sap feeding and phytoplasma transmission from plant to plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multiple variations in the azygos venous system: a preaortic interazygos vein and the absence of hemiazygos vein.

    Science.gov (United States)

    Ozdemir, B; Aldur, M M; Celik, H H

    2002-02-01

    Multiple variations of the azygos venous system were detected during routine dissection. The hemiazygos vein was underdeveloped. On the left side of the thorax, posterior intercostal veins between the 8th and 11th intercostal spaces and the subcostal vein drained into the azygos vein independently. In addition, the posterior 4th, 5th, 6th and 7th intercostal veins united and formed two superior and inferior trunks. The superior common trunk, at the level of the T4 vertebra, crossed the vertebral column obliquely, lying anterior to the aorta and posterior to the esophagus, opening into the azygos vein at the level of the T4 vertebra. The other structures in this part were normal. There were different courses of the azygos vein system. This variation is important in mediastinal surgery and also in the interpretation of radiographs.

  2. MULTIMODAL IMAGING IN VORTEX VEIN VARICES.

    Science.gov (United States)

    Veronese, Chiara; Staurenghi, Giovanni; Pellegrini, Marco; Maiolo, Chiara; Primavera, Laura; Morara, Mariachiara; Armstrong, Grayson W; Ciardella, Antonio P

    2017-03-22

    The aim of this study is to describe the clinical presentation of vortex vein varices with multimodal imaging. The authors carried out a retrospective case series of eight patients (7 female, 1 male) with an average age of 60.2 years (min 8, max 84, median 68.5) presenting with vortex vein varices. All patients were evaluated at the Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy and at Luigi Sacco Hospital, University of Milan, Milan, Italy. Patients underwent complete ophthalmologic examinations, including best corrected visual acuity, intraocular pressure, anterior segment, and fundus examination. Imaging studies, including fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine green angiography, and spectral-domain enhanced depth imaging optical coherence tomography were also performed. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to demonstrate the disappearance of all retinal lesions when pressure was applied to the globe. All eight cases initially presented to the emergency room. One patient presented secondary to trauma, two patients presented for suspected hemangioma, whereas the other five were referred to the authors' hospitals for suspected retinal lesions. On examination, retinal abnormalities were identified in all 8 patients, with 7 (87.5%) oculus dexter and 1 (12.5%) oculus sinister, and with 1 (12.5%) inferotemporally, 3 (37.5%) superonasally, 3 (37.5%) inferonasally, and 1 (12.5%) inferiorly. Fundus color photography showed an elevated lesion in seven patients and a nonelevated red lesion in one patient. In all patients, near-infrared reflectance imaging showed a hyporeflective lesion in the periphery of the retina. Fundus autofluorescence identified round hypofluorescent rings surrounding weakly hyperfluorescent lesions in all

  3. Transport of divalent cations: cation exchange capacity of intact xylem vessels.

    Science.gov (United States)

    Van de Geijn, S C; Petit, C M

    1979-12-01

    The cation exchange capacity of the intact xylem vessels in cut shoots of papyrus (Cyperus papyrus spec.) has been determined. The cation exchange capacity is independent of the cation concentration in the transpiration stream, and is equal for Ca and Co. The high value of the cation exchange capacity (0.6 to 1 x 10(-7) equivalents per square centimeter vessel wall surface) leads to the hypothesis that the porous structure of the vessel wall, and not only the inner vessel wall surface, acts as a cation exchanger.Differences between anion ([(32)P]phosphate, [(45)Ca]EDTA(2-), [(115)Cd(m)]-EDTA(2-)), and cation ([(45)Ca](2+), [(115)Cd(m)](2+)) movement are explained in terms of transport with the transpiration flux or by exchange reactions. The competition between exchange sites and natural or synthetic ligands for the divalent cations is discussed.

  4. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    Science.gov (United States)

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  5. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  6. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases

    Directory of Open Access Journals (Sweden)

    Yunxing Zhang

    2016-06-01

    Full Text Available Background.Chinese fir [Cunninghamia lanceolata (Lamb. Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y generating 68.71 million reads (13.88 Gbp. A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp were obtained via de novo assembly. Of these, 27,427 unigenes (19.52% were further annotated by comparison to public protein databases. A total of 5,331 (3.79% unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Differentially expressed genes (DEG analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.

  7. Anatomic Variation of Facial Vein in Carotid-Cavernous Fistula and Trans-Facial Vein Embolization.

    Science.gov (United States)

    Luo, Chao-Bao; Chang, Feng-Chi; Teng, Michael Mu-Huo; Ting, Ta-Wei

    2015-07-01

    Trans-facial vein (FV) embolization via the internal jugular vein is an alternative approach to embolization of carotid cavernous fistulas (CCFs). The purpose of this study is to report the anatomic variation of FVs and our experience of trans-FV embolization of CCFs. Over 6 years, 26 patients (12 men and 14 women; age range 27-72 years old) with CCFs underwent trans-FV embolization because of anterior drainage of fistulas. We retrospectively analyzed angioarchitecture of the CCFs focusing on the anatomic variations of FVs and angiographic and clinical outcomes after embolization. FVs drained to the internal jugular vein in 10 (38%) cases; FVs unexpectedly emptied into the external jugular vein in 16 (62%) cases. All FVs entered into the internal jugular vein at the level of the hyoid bone. In cases with fistulas to the FV and EJV, the termination of FVs was variable including superior (n = 5), inferior (n = 1), or at the level of the hyoid bone (n = 10). Successful microcatheterization via different insertions of FVs to jugular veins was achieved in all cases. One patient had a small residual fistula, and 2 patients had fistula recurrence. Temporary impairment of cranial nerve III or VI occurred in 4 patients. The mean clinical follow-up time was 18 months. Trans-FV embolization is an effective and safe method to manage CCFs with anterior drainage. However, anatomic variations of the FV exist, and a careful work-up of fistula venous drainage before trans-FV embolization is essential to reduce erroneous attempts, procedure time, and periprocedural risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Automated detection of periventricular veins on 7 T brain MRI

    Science.gov (United States)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  9. Quantification of deep medullary veins at 7 T brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kuijf, Hugo J.; Viergever, Max A.; Vincken, Koen L. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Bouvy, Willem H.; Razoux Schultz, Tom B.; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-10-15

    Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Five participants were scanned twice, to assess the robustness and reproducibility of manual and automated vein detection. Additionally, the method was evaluated on 24 participants to demonstrate its application. Deep medullary veins were assessed within an automatically created region-of-interest around the lateral ventricles, defined such that all veins must intersect it. A combination of vesselness, tubular tracking, and hysteresis thresholding located individual veins, which were quantified by counting and computing (3-D) density maps. Visual assessment was time-consuming (2 h/scan), with an intra-/inter-observer agreement on absolute vein count of ICC = 0.76 and 0.60, respectively. The automated vein detection showed excellent inter-scan reproducibility before (ICC = 0.79) and after (ICC = 0.88) visually censoring false positives. It had a positive predictive value of 71.6 %. Imaging at 7 T allows visualization and quantification of deep medullary veins. The presented method offers fast and reliable automated assessment of deep medullary veins. (orig.)

  10. Computed tomographic evaluation of the portal vein in the hepatomas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Hyung; Lee, Seung Chul; Bae, Man Gil; Seo, Heung Suk; Kim, Soon Yong; Lee, Min Ho; Kee, Choon Suhk; Park, Kyung Nam [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    1986-10-15

    Computed tomography and pornographic findings of 63 patients with hepatoma, undergone hepatic angiography and superior mesenteric pornography for evaluation of tumor and thrombosis of portal vein and determination of indication of transcatheter arterial embolization for palliative treatment of hepatoma from April, 85 to June, 86 in Hanyang university hospital, were reviewed. The results were as follows: 1. In 36 cases, portal vein thrombosis was detected during photography. Nineteen of 37 cases which revealed localized hepatoma in the right lobe of the liver showed portal vein thrombosis; 9 of 11 cases of the left lobe; 8 of 14 cases which were involved in entire liver revealed thrombosis. One case localized in the caudate lobe showed no evidence of invasion to portal vein. 2. Twenty-four of 34 cases with diffuse infiltrative hepatoma revealed portal vein thrombosis and the incidence of portal vein thrombosis in this type were higher than in the cases of the nodular type. 3. The portal vein thrombosis appeared as filling defects of low density in the lumen of the portal veins in CT and they did not reveal contrast enhancement. 4. CT revealed well the evidence of obstructions in the cases of portal vein thrombosis and the findings were well-corresponded to the findings of the superior mesenteric photography. 5. Five of the cases of the portal vein thrombosis were missed in the CT and the causes were considered as due to partial volume effect of enhanced portal vein with partial occlusion or arterioportal shunts. 6. Six of 13 cases with occlusion of main portal vein showed cavernous transformation and they were noted as multiple small enhanced vascularities around the porta hepatis in the CT. According to the results, we conclude that CT is a useful modality to detect the changes of the portal veins in the patients of the hepatoma.

  11. Pressure-Temperature History of Shock-Induced Melt Veins

    Science.gov (United States)

    Decarli, P. S.; Sharp, T. G.; Xie, Z.; Aramovich, C.

    2002-12-01

    Shock-induced melt veins that occur in chondrites commonly contain metastable high-pressure phases such as (Mg,Fe)SiO3-perovskite, akimotoite, ringwoodite, and majorite, that crystallized from the melt at high pressure. The metastable high-pressure minerals invert rapidly to stable low-pressure phases if they remain at high temperatures after the pressure is released. Although shock compression mechanisms permit rapid heating of the vein volume, adiabatic cooling on decompression is negligible because of the relative incompressibility of the material in the vein. The presence of metastable mantle minerals in a vein thus implies that the vein was quenched via thermal conduction to adjacent cooler material at high pressure. The quenching time of the vein can be determined from ordinary heat flow calculations (Langenhorst and Poirier, 2000), given knowledge of the vein dimensions and the temperatures at the time of vein formation in both the vein and the surrounding material. We have calculated a synthetic Hugoniot for the Tenham L6 chondrite to estimate bulk post-shock and shock temperatures as a function of shock pressure. Assuming a superliquidus temperature of 2500°C for the melt vein, we use a simple thermal model to investigate then thermal histories of melt veins during shock. The variation in crystallization assemblages within melt veins can be explained in terms of variable cooling rates. Survival of (Mg,Fe)SiO3-perovskite in Tenham (Tomioka and Fugino, 1997) requires that melt veins cooled to below 565°C before pressure release, which further constrains shock pressure, duration of the pressure pulse and cooling histories.

  12. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure.

    Science.gov (United States)

    Domec, J C; Gartner, B L

    2002-02-01

    We do not know why trees exhibit changes in wood characteristics as a function of cambial age. In part, the answer may lie in the existence of a tradeoff between hydraulic properties and mechanical support. In conifers, longitudinal tracheids represent 92% of the cells comprising the wood and are involved in both water transport and mechanical support. We used three hydraulic parameters to estimate hydraulic safety factors at several vertical and radial locations in the trunk and branches: vulnerability to cavitation; variation in xylem water potential (psi); and xylem relative water content. The hydraulic safety factors for 12 and 88 percent loss of conductivity (S(H12) and S(H88), representing the hydraulic safety factors for the air entry point and full embolism point, respectively) were determined. We also estimated the mechanical safety factor for maximum tree height and for buckling. We estimated the dimensionless hydraulic and mechanical safety factors for six seedlings (4 years old), six saplings (10 years old) and six mature trees (> 110 years old) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Over the natural range of psi, S(H12) decreased linearly from treetop to a minimum of 0.95 at the tree base. Young and mature trees had S(H12) values 1.4 and 1.3 times higher, respectively, at their tips (juvenile wood) than at their bases (mature wood). Modeling analyses indicated that if trees were made entirely of mature wood, S(H12) at the stem base would be only 0.7. The mechanical safety factor was 1.2 times higher for the base of the tree than for the rest of the tree. The minimum mechanical safety factor-1.6 for the critical buckling height and 2.2 for the critical buckling load-occurred at the base of the live crown. Modeling analysis indicated that if trees were made only of mature wood, these values would increase to 1.7 and 2.3, respectively. Hydraulic safety factors had values that were less than half those for mechanical safety factors

  13. Acute Thrombosis of Left Portal Vein during Right Portal Vein Embolization Extended to Segment 4.

    Science.gov (United States)

    Shaw, Colette M; Madoff, David C

    2011-06-01

    Portal vein thrombosis (PVT) is an uncommon, but potentially devastating complication of portal vein embolization (PVE). Its occurrence relates to both local and systemic risk factors. In the setting of PVE, precipitating factors include injury to the vessel wall and reduced portal flow. Contributory factors include portal hypertension, hypercoagulopathy, inflammatory processes, malignancy, pregnancy, oral contraceptive use, and asplenia. The goal of therapy is to prevent thrombus progression and lyse existing clot. Hepatectomy is impossible if adequate recanalization has not occurred and/or overt portal hypertension develops. The mechanisms for thrombus development, its diagnosis, management, and prognosis are discussed.

  14. Portal vein and mesenteric vein gas: CT features; Aeroportie ety aeromesenterie: donnees TDM

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, G.; Fournier, L.; Le Pennec, V.; Provost, N.; Hue, S.; Phi, I.N. [Centre Hospitalier Universitaire, 14 - Caen (France)

    2001-04-01

    Portal vein and mesenteric vein gas are unusual conditions with a complex and nuclear pathogenesis. Mesenteric ischemia frequently causes such pathological conditions but a variety of other causes are known: inflammatory bowel disease, bowel distension, traumatic and iatrogenic injury, intra-abdominal sepsis, and idiopathic conditions. This pathologic entity is favored by intestinal wall alterations, bowel distension and sepsis. The prognosis is frequently fatal, especially when associated with extended bowel necrosis although in the majority of the cases, outcome is favorable without surgery. (author)

  15. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  16. Fluids During Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J. C.; Weins, R. C.; Conrad, P. G.; Kelley, S. P.; Leveille, R.; Mangold, N.; Martin-Torres, J.; McAdam, A.; Newsom, H.; hide

    2016-01-01

    We model the fluids involved in the alteration processes recorded in the Sheep bed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations relative to terrestrial ground waters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(exp -3) to 10(exp -2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this ground water- type fluid formed impure sulfate- and silica-rich deposits veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay,or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.

  17. Vestibular tributaries to the vein of the vestibular aqueduct

    DEFF Research Database (Denmark)

    Hansen, Jesper Marsner; Qvortrup, Klaus; Friis, Morten

    2010-01-01

    CONCLUSION: The vein of the vestibular aqueduct drains blood from areas extensively lined by vestibular dark cells (VDCs). A possible involvement in the pathogenesis of an impaired endolymphatic homeostasis can be envisioned at the level of the dark cells area. OBJECTIVES: The aim of this study...... was to investigate the vascular relationship between the vein of the vestibular aqueduct and the vestibular apparatus, with focus on the VDCs. METHODS: Sixteen male Wistar rats were divided into groups of 6 and 10. In the first group, 2 µm thick sections including the vein of the vestibular aqueduct, utricle...... relation to the VDCs in the utricle and the crista ampullaris of the lateral semicircular canal in the vestibular apparatus. One major vein emanated from these networks, which emptied into the vein of the vestibular aqueduct. Veins draining the saccule and the common crus of the superior and posterior...

  18. Central Retinal Vein Occlusion Revealing Coelic Disease

    Directory of Open Access Journals (Sweden)

    Hana ZOUBEIDI

    2016-11-01

    Full Text Available Introduction: Thrombosis has been widely reported in coeliac disease (CD but central retinal vein occlusion (CRVO is rarely described. Case presentation: A 27-year-old woman presented with acute visual loss and was diagnosed with CRVO. Her protein S and protein C levels were low and CD was diagnosed on the basis of endoscopic, immunological and histological results. A gluten-free diet resulted in favourable evolution. Conclusion: CD should be considered in young patients with thrombosis, especially if in an unusual location. Treatment is based on a gluten-free diet.

  19. Portal vein thrombosis in patients with cirrhosis

    Science.gov (United States)

    von Köckritz, Leona; De Gottardi, Andrea; Praktiknjo, Michael

    2017-01-01

    Abstract Portal vein thrombosis (PVT) is frequent in patients with liver cirrhosis and possible severe complications such as mesenteric ischemia are rare, but can be life-threatening. However, different aspects of clinical relevance, diagnosis and management of PVT are still areas of uncertainty and investigation in international guidelines. In this article, we elaborate on PVT classification, geographical differences in clinical presentation and standards of diagnosis, and briefly on the current pathophysiological understanding and risk factors. This review considers and highlights the pitfalls of the various treatment approaches and prophylactic treatments. Finally, we review the controversial issue of clinical impact of PVT on prognosis, especially considering liver transplantation and future perspectives. PMID:28533912

  20. Unilateral pulmonary vein atresia: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, So Hwa; Kim, Ki Jun [Dept. of Radiology, Incheon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Incheon (Korea, Republic of)

    2014-01-15

    Unilateral pulmonary vein atresia is a rare congenital anomaly. Its symptoms begin to manifest in childhood and a broad spectrum of clinical severity has been described, ranging from asymptomatic, recurrent pulmonary infection, severe hemoptysis, to death. Only a few adult cases with this condition, with no or mild symptoms, have been reported. Pulmonary angiography has been typically used for definite diagnosis. However, pulmonary angiography may be replaced with the current developing multidetector CT. This report presents an adult case with mild symptoms, diagnosed by multidetector CT.

  1. Pediatric aneurysms and vein of Galen malformations

    Science.gov (United States)

    Rao, V. R. K.; Mathuriya, S. N.

    2011-01-01

    Pediatric aneurysms are different from adult aneurysms – they are more rare, are giant and in the posterior circulation more frequently than in adults and may be associated with congenital disorders. Infectious and traumatic aneursyms are also seen more frequently. Vein of Galen malformations are even rarer entities. They may be of choroidal or mural type. Based on the degree of AV shunting they may present with failure to thrive, with hydrocephalus or in severe cases with heart failure. The only possible treatment is by endovascular techniques – both transarterial and transvenous routes are employed. Rarely transtorcular approach is needed. These cases should be managed by an experienced neurointerventionist. PMID:22069420

  2. Fluids and Sulfate Vein Formation in Gale Crater, Mars.

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J.; Leveille, R. J.; Westall, F.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P. G.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    Curiosity detected sulfate veins crosscutting mudstones in the Sheepbed member of Gale Crater (Grotzinger et al., DOI: 10.1126/science.1242777; Manchon et al., DOI:10.1002/2013JE004588). We have used this information to evaluate the clay formation conditions in detail through thermochemical modeling (Bridges et al. submitted to JGR; this conference, session 2128) and compare the calculated fluid to those modeled for the nakhlite alteration mineralogy (Hicks et al. DOI: 10.1016/j.gca.2014.04.010, Bridges and Schwenzer, DOI: 10.1016/j.epsl.2012.09.044) and other Martian fluids. Concentrating the modeled Gale fluid though evaporation (or freezing) leads to a complex set of precipitates, which include silica, sulfate and halite. For example, 1 kg of brine produced by the alteration of a mixture of 70 % amorphous component, 20 % olivine and 10 % host rock (W/R 1000, T= 10 °C) evaporated to dryness (less that 1 % water left) will precipitate 70 mg of anhydrite, 46 mg of silica, 6.5 mg of halite and traces of pyrite, sulfur, calcite, and apatite. A fluid from this host rock with more mature alteration (W/R 100, T = 10 °C) precipitates the same minerals, but in very different abundances: the most abundant phase at dryness is halite (330 mg), followed by silica (88 mg) and anhydrite (30 mg). The calculated pH varies between 8 and 7.3 in both cases. If the evaporating brine is allowed to interact with the precipitate, a 'dirty' sulfate layer or vein filling would result, which could subsequently be refined through dissolution and re-precipitation, a mechanism that, for example, is proposed for the gypsum veins at the UK Triassic coast near Watchet (Philipp doi:10.1017/S0016756808005451). Factors that influence the nature of the precipitate include alteration stage of the host rock during clay formation, and pH and degree of fractionation of the early formed minerals from the evaporating fluid. Using REMS data we also consider desiccation of sulfates in the near surface.

  3. Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta).

    Science.gov (United States)

    Siebers, Tyche; Catarino, Bruno; Agusti, Javier

    2017-03-01

    We have identified new potential regulators of xylem cell-type determination and cellular proliferation in cassava and studied their expression in roots. Results are highly relevant for cassava biotechnology. Cassava's root system is composed of two types of root that coexist in every individual: the fibrous and the storage roots. Whether a root becomes fibrous or storage depends on the xylem cell types that it develops: fibrous roots develop xylem fibres and vessels while storage roots develop parenchyma xylem, the starch-storing tissue. A crucial question in cassava root development is how the specific xylem cell types differentiate and proliferate in the fibrous and storage roots. Using phylogenetic, protein sequence and synteny analyses we identified (1) MeVND6, MeVND7.1, MeVND7.2, MeNST3.1 and MeNST3.2 as the potential cassava orthologues of the Arabidopsis regulators of xylem cell type determination AtVND6, AtVND7 and AtNST3; and (2) MeWOX4.1 and MeWOX4.2 as the potential cassava orthologues of the Arabidopsis cambium regulator AtWOX4. Fibrous and storage roots were anatomically characterised and tested for the expression of the identified genes. Results revealed that (1) MeVND7.1 and MeVND7.2 are expressed in the fibrous but not in the storage roots; (2) MeVND6 shows low expression in both root types; (3) MeNST3.1 is not expressed in the fibrous or storage roots, while MeNST3.2 is highly expressed in both root-types and (4) MeWOX4.1 and, to a higher level, MeWOX4.2 are expressed in both the fibrous and storage roots. Results open new avenues for research in cassava root development and for food security-oriented biotechnology programmes.

  4. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach

    Science.gov (United States)

    Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An

    2011-01-01

    Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...

  5. Treatment of superficial vein thrombosis to prevent deep vein thrombosis and pulmonary embolism: a systematic review

    NARCIS (Netherlands)

    Wichers, Iris M.; Di Nisio, Marcello; Büller, Harry R.; Middeldorp, Saskia

    2005-01-01

    The aim of this systematic review was to summarize the evidence from randomized controlled trials (RCT) concerning the efficacy and safety of medical or surgical treatments of superficial vein thrombosis (SVT) for the prevention of deep venous thrombosis (DVT) and pulmonary embolism (PE). A

  6. Marginal vein is not a varicose vein; it is a venous malformation

    Directory of Open Access Journals (Sweden)

    Byung-Boong Lee

    2014-12-01

    Full Text Available Marginal vein (MV is one form of venous malformation (VM; MV is not a varicose vein. MV is the outcome of defective development during the later stage of embryogenesis while the vein trunk is formed. It is an embryonic vein tissue remnant remaining on birth following the failure of normal involutional process. MV is the most common VM involved to Klippel-Trenaunay syndrome (KTS; together with the lymphatic malformation, MV is one of two clinically most important congenital vascular malformation components among KTS. MV causes chronic venous insufficiency (CVI due to a unique condition of avalvulosis (lack of venous valve development it accompanies with. Besides, it accompanies a high risk of venous thromboembolism (VTE due to its structural defect with a lack of smooth muscle cell to form the media properly as a truncular VM infrequently causing fatal pulmonary embolism. Therefore, the MV is indicated for the surgical excision whenever feasible not only for the prevention of VTE and CVI but also for abnormal long bone growth known as vascular bone syndrome as well as lymphatic complication precipitated by MV.

  7. Vein mechanism simulation study for deep vein thrombosis early diagnosis using cfd

    Science.gov (United States)

    Ibrahim, Nabilah; Aziz, Nur Shazilah Abd; Manap, Abreeza Noorlina Abd

    2017-04-01

    Using a Computational Fluid Dynamics (CFD) technique, this work focus on the analysis of pressure, velocity, and vorticity of blood flow along the popliteal vein. Since the study of early stage of Deep Vein Thrombosis (DVT) becomes essential to prevent the pulmonary embolism (PE), those three parameters are analysed to assess the effect of different opening between two valves of a normal popliteal vein. When only one valve is simulated, the result of pressure shows that the highest and lowest velocities are 15.45 cm/s and 0.73 cm/s, respectively. From the visualization of observed data, however, the different size of orifice between the first and second valves influencing the velocity and vorticity of the blood flow. The rotational motion of blood particle at the same region increases the probability of blood accumulating which is associated with the development of thrombus. Thus, a series of experiment has been conducted by changing the size of valve orifice for the first and second valves along the vein distribution. The result of the CFD simulation shows a significant variation in blood flow in terms of velocity and vorticity.

  8. [Portal perfusion with right gastroepiploic vein flow in liver transplant].

    Science.gov (United States)

    Mendoza-Sánchez, Federico; Javier-Haro, Francisco; Mendoza-Medina, Diego Federico; González-Ojeda, Alejandro; Cortés-Lares, José Antonio; Fuentes-Orozco, Clotilde

    Liver transplantation in patients with liver cirrhosis, portal vein thrombosis, and cavernous transformation of the portal vein, is a complex procedure with high possibility of liver graft dysfunction. It is performed in 2-19% of all liver transplants, and has a significantly high mortality rate in the post-operative period. Other procedures to maintain portal perfusion have been described, however there are no reports of liver graft perfusion using right gastroepiploic vein. A 20 year-old female diagnosed with cryptogenic cirrhosis, with a Child-Pugh score of 7 points (class "B"), and MELD score of 14 points, with thrombosis and cavernous transformation of the portal vein, severe portal hypertension, splenomegaly, a history of upper gastrointestinal bleeding due to oesophageal varices, and left renal agenesis. The preoperative evaluation for liver transplantation was completed, and the right gastroepiploic vein of 1-cm diameter was observed draining to the infrahepatic inferior vena cava and right suprarenal vein. An orthotopic liver transplantation was performed from a non-living donor (deceased on January 30, 2005) using the Piggy-Back technique. Portal vein perfusion was maintained using the right gastroepiploic vein, and the outcome was satisfactory. The patient was discharged 13 days after surgery. Liver transplantation was performed satisfactorily, obtaining an acceptable outcome. In this case, the portal perfusion had adequate blood flow through the right gastroepiploic vein. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Portal Vein Thrombosis After Splenic and Pancreatic Surgery.

    Science.gov (United States)

    Ruiz-Tovar, Jaime; Priego, Pablo

    2017-01-01

    The portal vein is formed by the confluence of the splenic and superior mesenteric veins, which drain the spleen and small intestine respectively. Occlusion of the portal vein by thrombus typically occurs in patients with cirrhosis and/or prothrombotic disorders. However, portal vein thrombosis (PVT) can also happen after determined surgeries. Moreover, PVT can have serious consequences depending on the location and extent of the thrombosis, including hepatic ischemia, intestinal ischemia, portal hypertension… In this chapter, we will review the incidence, management and prophylaxis of PVT after splenectomy, pancreas transplantation, pancreatic surgery and in the setting of acute and chronic pancreatitis.

  10. A rare case of branch retinal vein occlusion following Sirsasana

    National Research Council Canada - National Science Library

    Balamurugan, Anugraha; Srikanth, Krishnagopal

    2016-01-01

    .... It is also known to cause causes raised intraocular pressure, decompression retinopathy, glaucomatous visual field defects, central retinal vein occlusion, progression of glaucoma, optic neuropathy...

  11. Can deep vein thrombosis be predicted after varicose vein operation in women in rural areas?

    Science.gov (United States)

    Warot, Marcin; Synowiec, Tomasz; Wencel-Warot, Agnieszka; Daroszewski, Przemysław; Bojar, Iwona; Micker, Maciej; Chęciński, Paweł

    2014-01-01

    Chronic venous disease is a group of symptoms caused by functional and structural defects of the venous vessels. One of the most common aspects of this disease is the occurrence of varicose veins. There are many ways of prevention and treatment of varicose veins, but in Poland the leading one is still surgery. As in every medical procedure there is the possibility of some complications. One of them is deep vein thrombosis (DVT). The diagnosis of DVT can be difficult, especially when access to a specialist is limited, such as in case of rural patients. The aim of the study. The aim of the study was estimation of the influence of LMWH primary prophylaxis on the formation of postoperative DVT, as well as sensitivity and specificity of clinical examination and D-dimer value in diagnosis of postoperative DVT in women. The study was conducted in a group of 93 women operated on in the Department of General, Vascular Surgery and Angiology at the Karol Marcinkowski University of Medical Sciences in Poznań, Poland. The patients had undergone a varicose vein operation and were randomly divided into two groups: A - 48 women receiving LMWH during two days of the perioperative period, B - 45 women receiving LMWH during seven days of the perioperative period. There was no significant difference in the postoperative DVT complications in both groups. The value of D-dimer > 0.987 mcg/ml and swelling > 1.5 cm of shin (in comparison to the preoperative period) plays a significant role in diagnosis of DVT. The extended primary prophylaxis with LMWH does not affect the amount or quality of thrombotic complications after varicose vein operation. If the DVT occurs, the evaluation of the D - dimer and careful clinical examination can be a useful method for its diagnosis.

  12. Can deep vein thrombosis be predicted after varicose vein operation in women in rural areas?

    Directory of Open Access Journals (Sweden)

    Marcin Warot

    2014-09-01

    Full Text Available [b]Introduction[/b]. Chronic venous disease is a group of symptoms caused by functional and structural defects of the venous vessels. One of the most common aspects of this disease is the occurrence of varicose veins. There are many ways of prevention and treatment of varicose veins, but in Poland the leading one is still surgery. As in every medical procedure there is the possibility of some complications. One of them is deep vein thrombosis (DVT. The diagnosis of DVT can be difficult, especially when access to a specialist is limited, such as in case of rural patients. [b]The aim of the study.[/b] The aim of the study was estimation of the influence of LMWH primary prophylaxis on the formation of postoperative DVT, as well as sensitivity and specificity of clinical examination and D-dimer value in diagnosis of postoperative DVT in women. [b]Materials and methods[/b]. The study was conducted in a group of 93 women operated on in the Department of General, Vascular Surgery and Angiology at the Karol Marcinkowski University of Medical Sciences in Poznań, Poland. The patients had undergone a varicose vein operation and were randomly divided into two groups: A – 48 women receiving LMWH during two days of the perioperative period, B – 45 women receiving LMWH during seven days of the perioperative period. [b]Results[/b]. There was no significant difference in the postoperative DVT complications in both groups. The value of D-dimer > 0.987 mcg/ml and swelling > 1.5 cm of shin (in comparison to the preoperative period plays a significant role in diagnosis of DVT. [b]Conclusions[/b]. The extended primary prophylaxis with LMWH does not affect the amount or quality of thrombotic complications after varicose vein operation. If the DVT occurs, the evaluation of the D – dimer and careful clinical examination can be a useful method for its diagnosis.

  13. Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants.

    Science.gov (United States)

    Chatelet, David S; Matthews, Mark A; Rost, Thomas L

    2006-09-01

    Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.

  14. Neonatal vitelline vein aneurysm with thrombosis: prompt treatment should be needed

    Science.gov (United States)

    Kim, Soo-Hong; Yu, Hyeong Won; Jo, Heui Seung

    2015-01-01

    Vitelline veins are a pair of embryonic structures. The veins develop the portal vein system. Serious problems occur if the vitelline vein does not regress and becomes an aneurysm. Thrombus formation in the vitelline vein aneurysm could lead to portal vein thrombosis and portal hypertension unless promptly and correctly treated. Though vitelline vein aneurysm is an extremely rare anomaly, it rapidly progresses to portal vein thrombosis that requires prompt diagnosis and treatment. We reported a case of neonatal vitelline vein aneurysm and thrombosis that was cured by prompt operation. PMID:26665130

  15. Doppler-guided cannulation of internal jugular vein, subclavian vein and innominate (brachiocephalic) vein--a case-control comparison in patients with reduced and normal intracranial compliance.

    Science.gov (United States)

    Schummer, Wolfram; Schummer, Claudia; Niesen, Wolf-Dirk; Gerstenberg, Hendrik

    2003-09-01

    A case-control comparison of Doppler guidance on the success rate of central venous cannulation in patients with normal or reduced intracranial compliance. A single operator performed central venous access procedures with continuous wave Doppler guidance. It was used on patients on a ventilator. The position of patients with reduced intracranial compliance (RIC) was not changed for the procedure. Patients with normal intracranial compliance (NIC) were put in the Trendelenburg position. We prospectively evaluated 249 Doppler-guided central venous access procedures performed over a 12-month period at our 10-bed neuro-intensive care unit at a university hospital. The group with RIC included 26 males and 35 females (n=61) aged 16-79 years. In this group 155 Doppler-guided cannulation procedures (62%) were performed. The group with NIC (n=52) comprised 29 males and 23 females aged 34-76 years; 94 Doppler-guided cannulation procedures (38%) were carried out. The veins cannulated in RIC and NIC, respectively, were: right innominate vein: 24/18, left innominate vein 26/12, right subclavian vein 12/7, left subclavian vein 25/14, and right internal jugular vein 33/18 and left internal jugular vein 35/24. The absence of one left internal jugular vein was identified in the NIC group. The success rate of first needle pass in patients with RIC was 92% and in patients with NIC 89%. This study showed that Doppler guidance allows the cannulation of central veins in patients with RIC placed in head-up position. Cannulation can be ensured and first-pass needle placement maximised.

  16. Further evidence of Mirafiori lettuce big-vein virus but not of Lettuce big-vein associated virus with big-vein disease in lettuce.

    Science.gov (United States)

    Sasaya, Takahide; Fujii, Hiroya; Ishikawa, Koichi; Koganezawa, Hiroki

    2008-04-01

    Mirafiori lettuce big-vein virus (MLBVV) and Lettuce big-vein associated virus (LBVaV) are found in association with big-vein disease of lettuce. Discrimination between the two viruses is critical for elucidating the etiology of big-vein disease. Using specific antibodies to MLBVV and LBVaV for western blotting and exploiting differences between MLBVV and LBVaV in host reaction of cucumber and temperature dependence in lettuce, we separated the two viruses by transfering each virus from doubly infected lettuce plants to cucumber or lettuce plants. A virus-free fungal isolate was allowed to acquire the two viruses individually or together. To confirm the separation, zoospores from MLBVV-, LBVaV-, and dually infected lettuce plants were used for serial inoculations of lettuce seedlings 12 successive times. Lettuce seedlings were infected at each transfer either with MLBVV alone, LBVaV alone, or both viruses together, depending on the virus carried by the vector. Lettuce seedlings infected with MLBVV alone developed the big-vein symptoms, while those infected with LBVaV alone developed no symptoms. In field surveys, MLBVV was consistently detected in lettuce plants from big-vein-affected fields, whereas LBVaV was detected in lettuce plants not only from big-vein-affected fields but also from big-vein-free fields. LBVaV occurred widely at high rates in winter-spring lettuce-growing regions irrespective of the presence of MLBVV and, hence, of the presence of the big-vein disease.

  17. Elevated CO2 decreases both transpiration flow and concentrations of Ca and Mg in the xylem sap of wheat.

    Science.gov (United States)

    Houshmandfar, Alireza; Fitzgerald, Glenn J; Tausz, Michael

    2015-02-01

    The impact of elevated atmospheric [CO2] (e[CO2]) on plants often includes a decrease in their nutrient status, including Ca and Mg, but the reasons for this decline have not been clearly identified. One of the proposed hypotheses is a decrease in transpiration-driven mass flow of nutrients due to decreased stomatal conductance. We used glasshouse and Free Air CO2 Enrichment (FACE) experiments with wheat to show that, in addition to decrease in transpiration rate, e[CO2] decreased the concentrations of Ca and Mg in the xylem sap. This result suggests that uptake of nutrients is not only decreased by reduced transpiration-driven mass flow, but also by as yet unidentified mechanisms that lead to reduced concentrations in the xylem sap. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    Science.gov (United States)

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross

  19. Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.

    Science.gov (United States)

    Camarero, J J; Guada, G; Sánchez-Salguero, R; Cervantes, E

    2016-12-01

    Continental Mediterranean forests face drought but also cold spells and both climate extremes can impair the resilience capacity of these forests. Climate warming could amplify the negative effects of cold spells by inducing premature dehardening. Here we capitalize on a winter drought-induced dieback triggered by a cold spell which occurred in December 2001 affecting Scots pine forests in eastern Spain. We assessed post-dieback recovery by quantifying and comparing radial growth and xylem anatomy of non-declining (ND, crown cover >50%) and declining (D, crown cover ≤50%) trees in two sites (VP, Villarroya de los Pinares; TO, Torrijas). We also characterized xylogenesis in both sites and aboveground productivity in site VP. Dieback caused legacy effects since needle loss, a 60% reduction in litter fall and radial-growth decline characterized D-trees 3 years after dieback symptoms started appearing in spring 2002. D-trees formed collapsed tracheids in the 2002-ring, particularly in the most affected VP site where xylogenesis differences between ND and D trees were most noticeable. The lower growth rates of D-trees were caused by a shorter duration of their major xylogenesis phases. In site VP the radial-enlargement and wall-thickening of tracheids were significantly reduced in D-trees as compared to ND-trees because these xylogenesis phases tended to start earlier and end later in ND-trees. Gompertz models fitted to tracheid production predicted that maximum growth rates occurred 11-12 days earlier in ND than in D-trees. The formation of radially-enlarging tracheids was enhanced by longer days in both study sites and also by wetter conditions in the driest TO site, but xylogenesis sensitivity to climate was reduced in D-trees. Winter-drought dieback impairs xylem anatomy and phenology, aboveground productivity, xylogenesis and growth in Mediterranean Scots pine populations. Affected stands show a costly post-dieback recovery challenging their resilience ability

  20. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil.

    Science.gov (United States)

    Love, Christopher J; Zhang, Shuguang; Mershin, Andreas

    2008-08-13

    It has long been known that there is a sustained electrical potential (voltage) difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50-200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored.

  1. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil.

    Directory of Open Access Journals (Sweden)

    Christopher J Love

    Full Text Available It has long been known that there is a sustained electrical potential (voltage difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50-200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored.

  2. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na(+) loading and stomatal density.

    Science.gov (United States)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-07-01

    Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K(+) concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na(+) content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na(+) under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na(+) in the shoot. Increased leaf sap K(+), controlled Na(+) loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  4. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    Science.gov (United States)

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-02

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  5. Preventing intimal thickening of vein grafts in vein artery bypass using STAT-3 siRNA

    Directory of Open Access Journals (Sweden)

    Sun Jiangbin

    2012-01-01

    Full Text Available Abstract Background Proliferation and migration of vascular smooth muscle cells (VSMCs play a key role in neointimal formation which leads to restenosis of vein graft in venous bypass. STAT-3 is a transcription factor associated with cell proliferation. We hypothesized that silencing of STAT-3 by siRNA will inhibit proliferation of VSMCs and attenuate intimal thickening. Methods Rat VSMCs were isolated and cultured in vitro by applying tissue piece inoculation methods. VSMCs were transfected with STAT 3 siRNA using lipofectamine 2000. In vitro proliferation of VSMC was quantified by the MTT assay, while in vivo assessment was performed in a venous transplantation model. In vivo delivery of STAT-3 siRNA plasmid or scramble plasmid was performed by admixing with liposomes 2000 and transfected into the vein graft by bioprotein gel applied onto the adventitia. Rat jugular vein-carotid artery bypass was performed. On day 3 and7 after grafting, the vein grafts were extracted, and analyzed morphologically by haematoxylin eosin (H&E, and assessed by immunohistochemistry for expression of Ki-67 and proliferating cell nuclear antigen (PCNA. Western-blot and reverse transcriptase polymerase chain reaction (RT-PCR were used to detect the protein and mRNA expression in vivo and in vitro. Cell apoptosis in vein grafts was detected by TUNEL assay. Results MTT assay shows that the proliferation of VSMCs in the STAT-3 siRNA treated group was inhibited. On day 7 after operation, a reduced number of Ki-67 and PCNA positive cells were observed in the neointima of the vein graft in the STAT-3 siRNA treated group as compared to the scramble control. The PCNA index in the control group (31.3 ± 4.7 was higher than that in the STAT-3 siRNA treated group (23.3 ± 2.8 (P Conclusions The STAT-3 siRNA can inhibit the proliferation of VSMCs in vivo and in vitro and attenuate neointimal formation.

  6. Supraclavicular versus Infraclavicular Subclavian Vein Catheterization in Infants

    OpenAIRE

    Wen-Hsien Lu; Mei-Ling Yao; Kai-Sheng Hsieh; Pao-Chin Chiu; Ying-Yao Chen; Chu-Chuan Lin; Ta-Cheng Huang; Chu-Chin Chen

    2006-01-01

    Central venous catheterization is an important procedure for infant patients for a number of different purposes, including nutritional support, surgical operation, hemodynamic monitoring, and multiple lines for critical care medications. Subclavian vein catheterization (SVC) is one of the central vein catheterization techniques. SVC can be performed from 4 different locations: right supraclavicular (RSC), left supraclavicular (LSC), right infraclavicular (RIC), and left infraclavicular (LIC)....

  7. Ovarian vein thrombosis | Jenayah | Pan African Medical Journal

    African Journals Online (AJOL)

    Ovarian vein thrombosis (OVT) is a rare cause of abdominal pain that may mimic a surgical abdomen. It is most often diagnosed during the postpartum period. In this report, we present four cases of postoperative ovarian vein thrombosis .The complications of OVT can be significant, and the diagnosis relies on a careful ...

  8. Portal Vein Stenting for Portal Biliopathy with Jaundice.

    Science.gov (United States)

    Hyun, Dongho; Park, Kwang Bo; Lim, Seong Joo; Hwang, Jin Ho; Sinn, Dong Hyun

    2016-04-01

    Portal biliopathy refers to obstruction of the bile duct by dilated peri- or para-ductal collateral channels following the main portal vein occlusion from various causes. Surgical shunt operation or endoscopic treatment has been reported. Herein, we report a case of portal biliopathy that was successfully treated by interventional portal vein recanalization.

  9. Endovascular management for significant iatrogenic portal vein bleeding.

    Science.gov (United States)

    Kim, Jong Woo; Shin, Ji Hoon; Park, Jonathan K; Yoon, Hyun-Ki; Ko, Gi-Young; Gwon, Dong Il; Kim, Jin Hyoung; Sung, Kyu-Bo

    2017-11-01

    Background Despite conservative treatment, hemorrhage from an intrahepatic branch of the portal vein can cause hemodynamic instability requiring urgent intervention. Purpose To retrospectively report the outcomes of hemodynamically significant portal vein bleeding after endovascular management. Material and Methods During a period of 15 years, four patients (2 men, 2 women; median age, 70.5 years) underwent angiography and embolization for iatrogenic portal vein bleeding. Causes of hemorrhage, angiographic findings, endovascular treatment, and complications were reported. Results Portal vein bleeding occurred after percutaneous liver biopsy (n = 2), percutaneous radiofrequency ablation (n = 1), and percutaneous cholecystostomy (n = 1). The median time interval between angiography and percutaneous procedure was 5 h (range, 4-240 h). Common hepatic angiograms including indirect mesenteric portograms showed active portal vein bleeding into the peritoneal cavity with (n = 1) or without (n = 2) an arterioportal (AP) fistula, and portal vein pseudoaneurysm alone with an AP fistula (n = 1). Successful transcatheter arterial embolization (n = 2) or percutaneous transhepatic portal vein embolization (n = 2) was performed. Embolic materials were n-butyl cyanoacrylate alone (n = 2) or in combination with gelatin sponge particles and coils (n = 2). There were no major treatment-related complications or patient mortality within 30 days. Conclusion Patients with symptomatic or life-threatening portal vein bleeding following liver-penetrating procedures can successfully be managed with embolization.

  10. Portal Vein Stenting for Portal Biliopathy with Jaundice

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Dongho, E-mail: mesentery@naver.com; Park, Kwang Bo, E-mail: kbjh.park@samsung.com [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center (Korea, Republic of); Lim, Seong Joo [Konyang University, Department of Radiology, College of Medicine, Konyang University Hospital (Korea, Republic of); Hwang, Jin Ho [Hallym University Sacred Heart Hospital, Department of Radiology (Korea, Republic of); Sinn, Dong Hyun [Sungkyunkwan University School of Medicine, Department of Medicine, Samsung Medical Center (Korea, Republic of)

    2016-04-15

    Portal biliopathy refers to obstruction of the bile duct by dilated peri- or para-ductal collateral channels following the main portal vein occlusion from various causes. Surgical shunt operation or endoscopic treatment has been reported. Herein, we report a case of portal biliopathy that was successfully treated by interventional portal vein recanalization.

  11. unilateral idiopathic dilated episcleral vein with secondary open ...

    African Journals Online (AJOL)

    TAIBAT OTULANA

    intraocular pressure (IOP) is a function of: production of aqueous humour, resistance to aqueous outflow at the anterior chamber angles, and episcleral venous pressure. When the episcleral veins are dilated, the pressure in these veins becomes elevated. Prolonged elevation of episcleral venous pressure often causes ...

  12. Foam treatment for varicose veins; efficacy and safety | Kotb ...

    African Journals Online (AJOL)

    Introduction: Lower extremity varicose vein is a common disease. Sclerotherapy can be used to treat truncal varices of the superficial venous system. This involves injecting a sclerosant intraluminally in order to cause fibrosis and eventual obliteration of the vein. Objective: To demonstrate the efficacy and safety of foam ...

  13. Foam treatment for varicose veins; efficacy and safety

    African Journals Online (AJOL)

    Mamdouh Mohamed Kotb

    2013-04-08

    Apr 8, 2013 ... Abstract Introduction: Lower extremity varicose vein is a common disease. Sclerotherapy can be used to treat truncal varices of the superficial venous system. This involves injecting a sclerosant intraluminally in order to cause fibrosis and eventual obliteration of the vein. Objective: To demonstrate the ...

  14. HIV Associated Deep Vein Thrombosis: Case Reports from Jos ...

    African Journals Online (AJOL)

    Deep vein thrombosis (DVT) has been reported to be 2-10 times commoner in HIV infected patients than in the general population. We report two cases of extensive unilateral deep vein thrombosis involving the lower limb in HIV infected patients on highly active antiretroviral therapy (HAART). Doppler ultrasound in the two ...

  15. Early Diagnosis of Posttraumatic Deep Vein Thrombosis - A Review ...

    African Journals Online (AJOL)

    OBJECTIVE: The importance of early diagnosis and treatment of deep vein thrombosis in patients with fractures of long bones. INTRODUCTION: Associated injury to deep-veins in limb fractures presents a serious pathology. It results not only to localized venous occlusion but also to death from pulmonary embolism.

  16. Upper extremity deep vein thrombosis after elbow trauma: a case ...

    African Journals Online (AJOL)

    Treatment by low molecular weight heparin (LMWH) then by vitamin K antagonists was conducted and evaluation by Doppler ultrasonography realized 18 months after trauma showed recanalization of basilica and humeral veins and thrombosis of axillary and subclavian veins. Management of occupational activity was ...

  17. A Tight Spot After Pulmonary Vein Catheter Ablation

    NARCIS (Netherlands)

    Amir, Rabia; Yeh, Lu; Montealegre-Gallegos, Mario; Saraf, Rabya; Matyal, Robina; Mahmood, Feroze

    2016-01-01

    A 52-YEAR-OLD woman with a history of embolic stroke due to paroxysmal atrial fibrillation was referred to the authors’ institution for epicardial surgical pulmonary vein isolation with left atrial appendage resection. The patient had 2 previous failed pulmonary vein catheter ablations. Dense

  18. Geology and geochemistry of giant quartz veins from the ...

    Indian Academy of Sciences (India)

    They show imprints of strong brittle to ductile–brittle deformation, and in places are associated with base metal and gold incidences, and pyrophyllite-diaspore mineralization. The geochemistry of giant quartz veins were studied. Apart from presenting new data on the geology and geochemistry of these veins, an attempt has ...

  19. Renal Vein Leiomyoma: A Rare Entity with Review of Literature

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    2014-01-01

    Full Text Available Tumors of vascular origin are unusual. These tumors are predominantly malignant and commonly arise from the inferior vena cava. Benign smooth muscle tumors arising from renal vein are very rare. We present a case of leiomyoma of renal vein in a post-menopausal woman that clinically resembled a retroperitoneal paraganglioma.

  20. The fifth pulmonary vein | Kinfemichael | Anatomy Journal of Africa

    African Journals Online (AJOL)

    A cadaver in Myungsung Medical College (MMC) had a 3rd pulmonary vein originating from the middle lobe of the right lung. Such anatomical variations are very rare. People with this variation have a total of five pulmonary veins entering left atrium. It has clinical implications especially for thoracic surgeons and radiologists ...

  1. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  2. Leiomyosarcoma of the great saphenous vein

    Directory of Open Access Journals (Sweden)

    Alexandre Campos Moraes Amato

    2015-06-01

    Full Text Available A 56-year-old male patient presented with a complaint of two painful, hard, palpable nodules in the right lower limb. A Doppler ultrasound scan revealed the presence of nodules, likely to be neoplastic. Computed angiography showed two solid hypervascular nodules in the right great saphenous vein, fed by branches of the posterior tibial artery. Embolization of the nodules using surgical cyanoacrylate was performed, followed by an excisional biopsy. Anatomical pathology and immunohistochemical analysis identified the nodule as a high-grade leiomyosarcoma, characterized by ten mitotic figures per ten high-power fields, necrosis and cell pleomorphism. Immunohistochemical analysis results were positive for caldesmon and desmin labeling. A second surgical procedure was performed to enlarge the free margins.

  3. Doppler spectral characteristics of infrainguinal vein bypasses

    DEFF Research Database (Denmark)

    Nielsen, Tina G; von Jessen, F; Sillesen, H

    1993-01-01

    of arteriovenous fistulas the initially antegrade diastolic velocity was replaced by a retrograde flow within 3 months, whereas a forward flow in diastole was sustained in grafts with patent fistulas. Abnormal Duplex findings in 31 patients led to angiography and revision in 13 cases. Four revised grafts failed......, while nine remained patent at follow-up 1-12 months later. Ten (56%) of 18 non-revised bypasses with abnormal Duplex findings failed within 9 months compared to 1 (1%) of 76 bypasses with a normal velocity profile (p ... valuable information concerning haemodynamics of infrainguinal vein bypasses and identifies grafts at risk of thrombosis. Inclusion of low resistance index (detection of stenoses appears to improve the sensitivity of Duplex scanning....

  4. Mineral vein dynamics modelling (FRACS II)

    Energy Technology Data Exchange (ETDEWEB)

    Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany); and others

    2016-08-15

    The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.

  5. Asymptomatic portal vein aneurysms: To treat, or not to treat?

    Science.gov (United States)

    Hirji, Sameer A; Robertson, Faith C; Casillas, Sergio; McPhee, James T; Gupta, Naren; Martin, Michelle C; Raffetto, Joseph D

    2017-01-01

    Background Portal vein aneurysms are rare dilations in the portal venous system, for which the etiology and pathophysiological consequences are poorly understood. Method We reviewed the existing literature as well as present a unique anecdotal case of a patient presenting with a very large portal vein aneurysm that was successfully managed conservatively and non-operatively without anticoagulation, with close follow-up and routine surveillance. Result The rising prevalence of abdominal imaging in clinical practice has increased rates of portal vein aneurysm detection. While asymptomatic aneurysms less than 3 cm can be clinically observed, surgical intervention may be necessary in large asymptomatic aneurysms (>3 cm) with or without thrombus, or small aneurysms with evidence of evolving mural thrombus formation on imaging. Conclusion Portal vein aneurysms present a diagnostic challenge for any surgeon, and the goal for surgical therapy is based on repairing the portal vein aneurysm, and if portal hypertension is present decompressing via surgically constructed shunts.

  6. Three superficial veins coursing over the clavicles: a case report.

    Science.gov (United States)

    Anastasopoulos, Nikolaos; Paraskevas, George; Apostolidis, Stylianos; Natsis, Konstantinos

    2015-11-01

    We report a unique bilateral combination of multiple variations in the superficial venous system of the neck of a 77-year-old male cadaver. On the right side of the neck, the external jugular vein (EJV) crossed superficial to the lateral third of the clavicle constituting a common trunk with the cephalic vein (CV) that drained into the subclavian vein (SCV). On the left side the EJV descended distally, passed over the anterior surface of the medial third of the clavicle and drained into the SCV. The posterior external jugular vein (PEJV) crossed superficial to the lateral third of the clavicle and terminated into the CV, providing an additional communicating branch to the EJV. Knowledge of both normal and abnormal anatomy of the veins of the neck plays an important role for anesthesiologists or cardiologists doing catheterization, orthopedic surgeons treating clavicle fractures and general surgeons performing head and neck surgery, to avoid inadvertent injury to these vascular structures.

  7. Thrombolysis for acute upper extremity deep vein thrombosis

    DEFF Research Database (Denmark)

    Feinberg, Joshua; Nielsen, Emil Eik; Jakobsen, Janus C

    2017-01-01

    BACKGROUND: About 5% to 10% of all deep vein thromboses occur in the upper extremities. Serious complications of upper extremity deep vein thrombosis, such as post-thrombotic syndrome and pulmonary embolism, may in theory be avoided using thrombolysis. No systematic review has assessed the effects...... of thrombolysis for the treatment of individuals with acute upper extremity deep vein thrombosis. OBJECTIVES: To assess the beneficial and harmful effects of thrombolysis for the treatment of individuals with acute upper extremity deep vein thrombosis. SEARCH METHODS: The Cochrane Vascular Information Specialist...... of thrombolytics added to anticoagulation, thrombolysis versus anticoagulation, or thrombolysis versus any other type of medical intervention for the treatment of acute upper extremity deep vein thrombosis. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all records to identify those...

  8. Persistent right umbilical vein: sonographic detection and subsequent neonatal outcome.

    Science.gov (United States)

    Hill, L M; Mills, A; Peterson, C; Boyles, D

    1994-12-01

    To review our experience with antenatal detection and subsequent neonatal outcome of fetuses with a persistent right umbilical vein. In a prospective observational study, 33 cases of persistent right umbilical vein were detected during 15,237 obstetric ultrasound examinations performed after 15 weeks' gestation. Persistent right umbilical vein was detected at a rate of one per 476 obstetric ultrasound examinations. Six of 33 (18.2%) fetuses with a persistent right umbilical vein had additional important congenital malformations. Careful second- and third-trimester ultrasound examinations can detect a persistent right umbilical vein. When this particular anomaly is detected, a thorough fetal anatomic survey, including echocardiography, should be performed to rule out more serious congenital malformations.

  9. Catheter entrapment in a pulmonary vein: a unique complication of pulmonary vein isolation.

    Science.gov (United States)

    Monney, Pierre; Pascale, Patrizio; Fromer, Martin; Pruvot, Etienne

    2010-08-01

    Ablation strategies for the treatment of atrial fibrillation (AF) are associated with several potential complications. During electro-anatomic mapping of the left atrium (LA) before ablation, the ablation catheter was entrapped in the right inferior pulmonary vein (RIPV). After multiple unsuccessful gentle tractions, stronger maneuvers with rotation of the catheter slowly allowed its retrieval. Examination of the catheter showed a thin, translucent membrane covering its tip, suggesting complete stripping of a vein branch. Occlusion of the superior branch of the RIPV was confirmed by LA angiogram. During the following days, no pericardial effusion was noted, but the patient complained of light chest pain and mild hemoptysis, spontaneously resolving within 48 h. This case shows that catheter entrapment and mechanical disruption of a PV branch can be a rare potential complication of AF ablation. In this case, the outcome was spontaneously favorable and symptoms only included transient mild hemoptysis.

  10. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport

    NARCIS (Netherlands)

    As, van H.

    2007-01-01

    Water content and hydraulic conductivity, including transport within cells, over membranes, cell-to-cell, and long-distance xylem and phloem transport, are strongly affected by plant water stress. By being able to measure these transport processes non-invasely in the intact plant situation in

  11. Evaluation of endoscopic vein extraction on structural and functional viability of saphenous vein endothelium

    OpenAIRE

    Hussaini, Bader E; Lu, Xiu-Gui; Wolfe, J Alan; Thatte, Hemant S

    2011-01-01

    Abstract Objectives Endothelial injury during harvest influences graft patency post CABG. We have previously shown that endoscopic harvest causes structural and functional damage to the saphenous vein (SV) endothelium. However, causes of such injury may depend on the extraction technique. In order to assess this supposition, we evaluated the effect of VirtuoSaph endoscopic SV harvesting technique (VsEVH) on structural and functional viability of SV endothelium using multiphoton imaging, bioch...

  12. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation.

    Science.gov (United States)

    Clinton, Barton D; Vose, James M; Vroblesky, Don A; Harvey, Gregory J

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  13. Portal Vein Recanalization and Transjugular Intrahepatic Portosystemic Shunt Creation for Chronic Portal Vein Thrombosis: Technical Considerations.

    Science.gov (United States)

    Thornburg, Bartley; Desai, Kush; Hickey, Ryan; Kulik, Laura; Ganger, Daniel; Baker, Talia; Abecassis, Michael; Lewandowski, Robert J; Salem, Riad

    2016-03-01

    Portal vein thrombosis (PVT) is common in cirrhotic patients and presents a challenge at the time of transplant. Owing to the increased posttransplant morbidity and mortality associated with complete PVT, the presence of PVT is a relative contraindication to liver transplantation at many centers. Our group began performing portal vein (PV) recanalization and transjugular intrahepatic portostystemic shunt placement (PVR-TIPS) several years ago to optimize the transplant candidacy of patients with PVT. The procedure has evolved to include transsplenic access to assist with recanalization, which is now our preferred method due to its technical success without significant added morbidity. Here, we describe in detail our approach to PVR-TIPS with a focus on the transsplenic method. The procedure was attempted in 61 patients and was technically successful in 60 patients (98%). After transitioning to transsplenic access to assist with recanalization, the technical success rate has improved to 100%. The recanalized portal vein and TIPS have maintained patency during follow-up, or to the time of transplant, in 55 patients (92%) with a mean follow-up of 16.7 months. In total, 23 patients (38%) have undergone transplant, all of whom received a physiologic anastomosis (end-to-end anastomosis in 22 of 23 patients, 96%). PVR-TIPS placement should be considered as an option for patients with chronic PVT in need of transplantation. Transsplenic access makes the procedure technically straightforward and should be considered as the primary method for recanalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stylet morphometrics and citrus leaf vein structure in relation to feeding behavior of the Asian citrus psyllid Diaphorina citri, vector of citrus huanglongbing bacterium.

    Directory of Open Access Journals (Sweden)

    El-Desouky Ammar

    Full Text Available The Asian citrus psyllid (ACP, Diaphorina citri (Hemiptera: Psyllidae, is the primary vector of the phloem-limited bacterium Candidatus Liberibacter asiaticus (LAS associated with huanglongbing (HLB, citrus greening, considered the world's most serious disease of citrus. Stylet morphometrics of ACP nymphs and adults were studied in relation to citrus vein structure and to their putative (histologically verified feeding sites on Valencia orange leaves. ACP nymphs preferred to settle and feed on the lower (abaxial side of young leaves either on secondary veins or on the sides of the midrib, whereas adults preferred to settle and feed on the upper (adaxial or lower secondary veins of young or old leaves. Early instar nymphs can reach and probe the phloem probably because the distance to the phloem is considerably shorter in younger than in mature leaves, and is shorter from the sides of the midrib compared to that from the center. Additionally, the thick-walled 'fibrous ring' (sclerenchyma around the phloem, which may act as a barrier to ACP stylet penetration into the phloem, is more prominent in older than in younger leaves and in the center than on the sides of the midrib. The majority (80-90% of the salivary sheath termini produced by ACP nymphs and adults that reached a vascular bundle were associated with the phloem, whereas only 10-20% were associated with xylem vessels. Ultrastructural studies on ACP stylets and LAS-infected leaves suggested that the width of the maxillary food canal in first instar nymphs is wide enough for LAS bacteria to traverse during food ingestion (and LAS acquisition. However, the width of the maxillary salivary canal in these nymphs may not be wide enough to accommodate LAS bacteria during salivation (and LAS inoculation into host plants. This may explain the inability of early instar nymphs to transmit LAS/HLB in earlier reports.

  15. Total anomalous connection of pulmonary veins to the portal vein. Value of multislice angiotomography. Report on three cases

    Directory of Open Access Journals (Sweden)

    Sara Alejandra Solórzano-Morales

    2014-07-01

    15 and 26% if all its varieties. Multislice angiotomography allows us to view the blood vessels and adjacent organs under consideration and obtain high-definition anatomic information. In the patients in this study, total anomalous connection of pulmonary veins to the portal vein was viewed with three-dimensional volumetric tomographic reconstructions and their correlation with ultrasonography studies.

  16. Factors Associated with Recurrence of Varicose Veins after Thermal Ablation: Results of The Recurrent Veins after Thermal Ablation Study

    Directory of Open Access Journals (Sweden)

    R. G. Bush

    2014-01-01

    Full Text Available Background. The goal of this retrospective cohort study (REVATA was to determine the site, source, and contributory factors of varicose vein recurrence after radiofrequency (RF and laser ablation. Methods. Seven centers enrolled patients into the study over a 1-year period. All patients underwent previous thermal ablation of the great saphenous vein (GSV, small saphenous vein (SSV, or anterior accessory great saphenous vein (AAGSV. From a specific designed study tool, the etiology of recurrence was identified. Results. 2,380 patients were evaluated during this time frame. A total of 164 patients had varicose vein recurrence at a median of 3 years. GSV ablation was the initial treatment in 159 patients (RF: 33, laser: 126, 52 of these patients had either SSV or AAGSV ablation concurrently. Total or partial GSV recanalization occurred in 47 patients. New AAGSV reflux occurred in 40 patients, and new SSV reflux occurred in 24 patients. Perforator pathology was present in 64% of patients. Conclusion. Recurrence of varicose veins occurred at a median of 3 years after procedure. The four most important factors associated with recurrent veins included perforating veins, recanalized GSV, new AAGSV reflux, and new SSV reflux in decreasing frequency. Patients who underwent RF treatment had a statistically higher rate of recanalization than those treated with laser.

  17. Diagnosis of environmental problems related to vein gold mining in Colombia

    Science.gov (United States)

    Prieto, Gloria R.; Gonzalez, Myriam L.

    Since 1985 the annual gold production in Colombia has been fluctuating between 30 and 35 tons (1-1.4 million ounces troy). Exploitation plants can be found in vein and placer gold deposits. During 1992 a preliminary study was undertaken, resulting in a diagnosis of problems in small scale mining in 6 gold areas (vein type) of Colombia. In order to evaluate the general impact caused to the environment due to mining activities, six gold districts located in Nariño, Antioquia, Bolivar, Valle and Caldas Departments were visited. Geochemical analysis (ES, AAS, HGAAS, GFAAS) of orebodies, tailings and waters were carried out, with results that showed high levels of heavy metals in the environmental compartments studied.

  18. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

    Science.gov (United States)

    Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2011-12-01

    Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. Copyright

  19. Palm Vein Verification Using Multiple Features and Locality Preserving Projections

    Directory of Open Access Journals (Sweden)

    Ali Mohsin Al-juboori

    2014-01-01

    Full Text Available Biometrics is defined as identifying people by their physiological characteristic, such as iris pattern, fingerprint, and face, or by some aspects of their behavior, such as voice, signature, and gesture. Considerable attention has been drawn on these issues during the last several decades. And many biometric systems for commercial applications have been successfully developed. Recently, the vein pattern biometric becomes increasingly attractive for its uniqueness, stability, and noninvasiveness. A vein pattern is the physical distribution structure of the blood vessels underneath a person’s skin. The palm vein pattern is very ganglion and it shows a huge number of vessels. The attitude of the palm vein vessels stays in the same location for the whole life and its pattern is definitely unique. In our work, the matching filter method is proposed for the palm vein image enhancement. New palm vein features extraction methods, global feature extracted based on wavelet coefficients and locality preserving projections (WLPP, and local feature based on local binary pattern variance and locality preserving projections (LBPV_LPP have been proposed. Finally, the nearest neighbour matching method has been proposed that verified the test palm vein images. The experimental result shows that the EER to the proposed method is 0.1378%.

  20. Preliminary Study for Designing a Novel Vein-Visualizing Device

    Science.gov (United States)

    Kim, Donghoon; Kim, Yujin; Yoon, Siyeop; Lee, Deukhee

    2017-01-01

    Venipuncture is an important health diagnosis process. Although venipuncture is one of the most commonly performed procedures in medical environments, locating the veins of infants, obese, anemic, or colored patients is still an arduous task even for skilled practitioners. To solve this problem, several devices using infrared light have recently become commercially available. However, such devices for venipuncture share a common drawback, especially when visualizing deep veins or veins of a thick part of the body like the cubital fossa. This paper proposes a new vein-visualizing device applying a new penetration method using near-infrared (NIR) light. The light module is attached directly on to the declared area of the skin. Then, NIR beam is rayed from two sides of the light module to the vein with a specific angle. This gives a penetration effect. In addition, through an image processing procedure, the vein structure is enhanced to show it more accurately. Through a phantom study, the most effective penetration angle of the NIR module is decided. Additionally, the feasibility of the device is verified through experiments in vivo. The prototype allows us to visualize the vein patterns of thicker body parts, such as arms. PMID:28178227

  1. Morphopatological and histochemical highlights in normal and varicose vein wall

    Directory of Open Access Journals (Sweden)

    Alina Condor

    2016-04-01

    Full Text Available The nutrition of the venous wall appears to be an important factor in the vascularfibrillar trophicity and in the dynamic of the extracellular matrix formation for the normal veins and, for the chronic venous ulcers of legs, on period of healing. Sequential biopsies were taken at various levels of venous wall of external and internal saphena in 16 cases presenting a chronic condition of legs venous system (35-58 years old patients, both sexes. 8 vein fragments with normal macroscopic appearance were also taken, in necropsy. These samples were analyzed using regular morphological methods and some histochemical reactions to reveal the glycogen, glycoproteins, and glycosaminoglycans substrates. There were been used the Gomori silver impregnation and orcein to expose some specific substrates like reticulin or elastin. Other staining methods, like Gomori trichrome, were used to differentiate the specific structures of the vein wall, were used to differentiate the specific structures of the vein wall. A rich vascularization of normal and dilated vein wall could be remarked.Angiogenesis in vein wall and vasa vasorum changes as well as alcianophilic of vascular intima seem to be reactive and protective factors, depending on the applied therapeutic modalities. The veins are weak structures whose integrity depends on the thickness of the media and the support of neighboring structures.

  2. Renal Vein Reconstruction for Harvesting Injury in Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Birkan Bozkurt

    2014-03-01

    Full Text Available Kidney transplantation is the best treatment choice in the end-stage renal disease. In the renal transplantation, renal vein damage or shortness which occurs during cadaveric or living donor nephrectomy causes technical difficulties for surgeons. The lack of the donors already especially cadaveric, the acquirement of the graft, gets very much importance. In this report, it is aimed to share the clinical experiment by which it seen, how anastomosis can become appropriate by using the renal vein which is damaged in the way that anastomosis cannot be done anyway by using cadaveric vena cava graft. The renal vein brought to length for anostomosis which is repaired by using cadaveric vena cava graft, is anastomosed successfully by becoming an end-to-side of the external iliac vein of the recipient. Vascular anastomoses are applied easily in technique. The time of the warm ischemia was under 2 hours and the kidney was functional in the post-operative period. Renal vein trombosis was not observed. The renal vein damage occured during cadaveric or living donor nephrectomy, can be repaired by some methods. In the kidneys in which vein requirement is done, the success rates are rather high although acute tubular necrosis and delayed function can be seen more.

  3. Applied anatomic study of testicular veins in adult cadavers and in human fetuses

    Directory of Open Access Journals (Sweden)

    Luciano A. Favorito

    2007-04-01

    Full Text Available OBJECTIVES: Analyze the anatomic variations of the testicular veins in human cadavers and fetuses. MATERIALS AND METHODS: One hundred male adult cadavers and 24 fetuses were studied. Four anatomic aspects were considered: 1 Number of testicular veins, 2 The local of vein termination, 3 Type and number of collaterals present and 4 Testicular vein termination angle. RESULTS: Cadavers - Right side - One testicular vein occurred in 85% and 2 veins in 5% of the cases. There were communicating veins with the colon in 21% of the cases. Left side - One testicular vein occurred in 82%, two veins in 15%, three veins in 2% and four veins in 1% of the cases. There were communicating veins with the colon in 31% of the cases. Fetuses - Right side -One testicular vein occurred in all cases. This vein drained to the vena cava in 83.3% of the cases, to the junction of the vena cava with the renal vein in 12.5% and to the renal vein in 4.2%. There were communicating veins with the colon in 25% of the cases. Left side - One testicular vein occurred in 66.6% of the cases, and 2 veins in occurred 33.3%. Communicating veins with the colon were found in 41.6% of the cases. CONCLUSION: The testicular vein presents numeric variations and also variations in its local of termination. In approximately 30% of the cases, there are collaterals that communicate the testicular vein with retroperitoneal veins. These anatomic findings can help understanding the origin of varicocele and its recurrence after surgical interventions.

  4. [Prevalence and risk factors of varicose veins in adults].

    Science.gov (United States)

    Ahumada, Miguel; Vioque, Jesús

    2004-11-13

    We intended to estimate the prevalence of varicose veins in the mature population of the Valencia Community and to analyze its relationship with socio-demographic variables, self-reported health status, body mass index and the presence of hemorrhoids, tobacco smoking, alcohol consumption and physical activity. Information on self-reported varicose veins was collected from 1,778 adults older than 14 years (819 men and 959 women) who participated in the Health and Nutrition Survey of the Valencia Community (Spain). We estimated the prevalence of varicose veins by age groups and sex. To explore the association between varicose veins and variables, we estimated adjusted odds ratios (OR) with 95% confidence intervals (CI 95%) by multiple logistic regression. The overall prevalence of varicose veins was 16.4%, with a much higher prevalence in women that in men (26.7% versus 5.5%) and with older age. Gender and age were the 2 strongest predictors of varicose veins in multivariate analysis. Women had seven times more risk than men (OR = 7.01; CI 95%, 4.52-10.87) and those older than 35 years almost tripled the risk with respect to those aged 15-24 years. A body mass index of 30 kg/m2, a poor self-reported health status and hemorrhoids were significantly associated with the presence of varicose veins. Employers showed higher risk than workers. A moderate alcohol consumption (varicose veins. Although being a woman and having an advanced age were the strongest predictors of varicose veins, other factors such as a high BMI, poor health status, hemorrhoids and some professional categories may be also important factors in their presentation. A moderate alcohol consumption seems to have a protective effect.

  5. Deep vein thrombosis as a paraneoplastic syndrome

    Directory of Open Access Journals (Sweden)

    Klačar Marija

    2014-01-01

    Full Text Available Introduction: Several conditions represent the risk factor for deep vein thrombosis (DVT but sometimes it occurs with no apparent reason. DVT usually involve lower extremities. It can be a component of paraneoplastic syndrome, and occasionally it is the first manifestation of malignancy. Case report: Fifty-five years old male reported to his general practitioner with history of painless right leg swelling of three weeks duration. He denied leg trauma or any other hardship. The patient had a long history of hypertension and took his medications irregularly. Family history was positive for cardiovascular diseases but negative for metabolic diseases or malignancies. He was a smoker and physically active. Physical examination revealed right calf swelling without skin discoloration, distention of superficial veins or trophic changes. Pulses of magistral arteries of the leg were symmetrical, Homans' sign was positive on the right leg. The rest of the physical examination was normal, except for the blood pressure. He was referred to vascular surgeon with the clinical diagnosis of femoro- popliteal phlebothrombosis of the right leg. Vascular surgeon performed the Color duplex scan of the lower extremities which confirmed the diagnosis. The patient was treated with low-molecular-weight heparin. The swelling significantly subsided after two weeks of therapy, but then patient fell and fractured left ramus of ischial bone. X-ray examination of pelvis revealed both fracture line and osteoblastic deposits in pelvis and the fracture was pronounced pathological. In order to localize the primary tumor, subsequent tests included chest X-ray, abdominal and pelvic ultrasound and digitorectal examination of prostate were performed. The results of all of the above mentioned examinations were within normal ranges, including routine blood tests. Skeletal scintigraphy revealed multiple secondary deposits in pelvic bones, vertebral column and ribs. Tumor markers' values

  6. Xylem of early angiosperms: Nuphar (Nymphaeaceae) has novel tracheid microstructure1.

    Science.gov (United States)

    Carlquist, Sherwin; Schneider, Edward L; Hellquist, C Barre

    2009-01-01

    SEM studies of xylem of stems of Nuphar reveal a novel feature, not previously reported for any angiosperm. Pit membranes of tracheid end walls are composed of coarse fibrils, densest on the distal (outside surface, facing the pit of an adjacent cell) surface of the pit membrane of a tracheid, thinner, and disposed at various levels on the lumen side of a pit membrane. The fibrils tend to be randomly oriented on the distal face of the pit membrane; the innermost fibrils facing the lumen take the form of longitudinally oriented strands. Where most abundantly present, the fibrils tend to be disposed in a spongiform, three-dimensional pattern. Pores that interconnect tracheids are present within the fibrillar meshwork. Pit membranes on lateral walls of stem tracheids bear variously diminished versions of this pattern. Pits of root tracheids are unlike those of stems in that the lumen side of pit membranes bears a reticulum revealed on the outer surface of the tracheid after most of the thickness of a pit membrane is shaved away by the sectioning process. No fibrillar texturing is visible on the root tracheid pits when they are viewed from the inside of a tracheid. Tracheid end walls of roots do contain pores of various sizes in pit membranes. These root and stem patterns were seen in six species representing the two sections of Nuphar, plus one intersectional hybrid, as well as in one collection of Nymphaea, included for purposes of comparison. Differences between root and stem tracheids with respect to microstructure are consistent in all species studied. Microstructural patterns reported here for stem tracheid pits of Nymphaeaceae are not like those of Chloranthaceae, Illiciaceae, or other basal angiosperms. They are not referable to any of the patterns reported for early vascular plants. The adaptational nature of the pit membrane structure in these tracheids is not apparent; microstructure of pit membranes in basal angiosperms is more diverse than thought prior to

  7. Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available Betula platyphylla Suk (birch is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW than in opposite wood (OW or normal wood (NW, whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level.

  8. Pylephlebitis of a variant mesenteric vein complicating sigmoid diverticulitis.

    Science.gov (United States)

    Falkowski, Anna L; Cathomas, Gieri; Zerz, Andreas; Rasch, Helmut; Tarr, Philip E

    2014-02-01

    Pylephlebitis--suppurative thrombophlebitis of the portal and/or mesenteric veins--is a rare complication of abdominal infections, especially diverticulitis. It can lead to severe complications such as hepatic abscess, sepsis, peritonitis, bowel ischemia, etc., which increase the mortality rate. Here we present a case of suppurative thrombophlebitis of the inferior mesenteric vein, as a complication of sigmoid diverticulitis. The epidemiology, clinical and radiological features as well as treatment strategies are discussed. We also review the anatomy of the mesenteric vein given its anatomic variation in the present case and how this anatomic knowledge might influence the operative approach should surgery be necessary.

  9. MDCT of inferior mesenteric vein: normal anatomy and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Akpinar, E.; Turkbey, B. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey); Karcaaltincaba, M. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)], E-mail: musturayk@yahoo.com; Karaosmanoglu, D.; Akata, D. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)

    2008-07-15

    Multidetector computed tomography (MDCT) is a useful technique for imaging the inferior mesenteric vein. The aim of the present review was to discuss the normal anatomy and the pathologies of the inferior mesenteric vein, including partial or total thrombosis secondary to inflammation (pyophlebitis) and malignancy, occlusion, dilatation and reversed flow, which are rarely encountered. Optimal reconstruction techniques are also discussed. The pathologies of the inferior mesenteric vein can be clearly demonstrated using MDCT using curved-planar reformatted multiplanar reconstruction (MPR) and minimum intensity projection (MIP) images.

  10. Bilateral retinal vein occlusion and rubeosis irides: lessons to learn.

    Directory of Open Access Journals (Sweden)

    Umi Kalthum Md Noh

    2013-09-01

    Full Text Available Uncontrolled hypertension is well- known to give rise to systemic complications involving multiple central organs. Artherosclerosis leads to damage of the retinal vessels wall, contributing to venous stasis, thrombosis and finally, occlusion. Retinal vein occlusions compromise vision through development of ischaemic maculopathy, macular oedema, and rubeotic glaucoma. Laser photocoagulation remains the definitive treatment for ischaemic vein occlusion with secondary neovascularization. Timely treatment with anti- vascular endothelial growth factor prevents development of rubeotic glaucoma. We hereby report an unusual case of bilateral retinal vein occlusion complicated by rubeosis irides, which was successfully managed to improve vision and prevent rubeotic glaucoma.

  11. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  12. Formation of the external jugular vein in the brown brocket deer (Mazama gouazoubira

    Directory of Open Access Journals (Sweden)

    Gregório Corrêa Guimarães

    2012-11-01

    Full Text Available The brown brocket deer (Mazama gouazoubira is a brown-greyish short-haired wild ruminant living in Central and South Americas. This paper aimed at describing the formation of the external jugular vein in a male specimen which died due to run-over. The facial and cervical regions were dissected so as to allow the visualization of the external jugular vein and its tributaries. This vein was formed by the union of the maxillary and linguofacial veins. The first originated from the superficial and transverse facial temporal veins, and it received along its length the angular vein of the eye, as well as the dorsal and lateral veins of the nose and upper lip. The second was formed after the anastomosis of the lingual and facial veins. The facial vein was originated by the union of the lower lip and deep facial veins, in the middle third of the face, rostral to the masseter muscle. This vascular arrangement differs from that usually observed in domestic ruminants, in which the transverse facial vein is underdeveloped and the facial vein receives the angular vein of the eye, the dorsal and lateral veins of the nose, besides the upper lip vein. The external jugular vein in the brown brocket deer presented the same tributaries than domestic ruminants, however, with a different vessel arrangement of the facial and facial transverse veins.

  13. Portal vein stent placement for the treatment of postoperative portal vein stenosis: long-term success and factor associated with stent failure.

    Science.gov (United States)

    Kato, Atsushi; Shimizu, Hiroaki; Ohtsuka, Masayuki; Yoshitomi, Hideyuki; Furukawa, Katsunori; Miyazaki, Masaru

    2017-02-01

    Portal vein stenosis develops due to different causes including postoperative inflammation and oncological processes. However, limited effective therapy is available for portal vein stenosis. The objectives of this study were to evaluate the efficacy of a portal vein stent for portal vein stenosis after hepatobiliary pancreatic surgery and to determine the factors associated with stent patency. From December 2003 to December 2015, portal vein stents were implanted in 29 patients who had portal vein stenosis after hepatobiliary pancreatic surgery. We conducted a retrospective analysis to evaluate the efficacy and safety of portal vein stent placement. Twelve clinical variables were analyzed for their role in stent patency. The symptoms before portal vein stent placements included nine patients with hepatic encephalopathy, six patients with gastrointestinal bleeding, four patients with ascites, and four patients with hyperbilirubinemia. Portal vein thrombosis due to postoperative portal stenosis was found in four patients. Portal vein stent were successfully implanted without any major complications. Of the 21 patients with symptoms, 17 showed improvement, and stent patency was maintained in 22 (76%) patients. The presence of a collateral vein is the only variable related to the development of an occlusion after portal stenting. Portal vein stent were implanted safely and had good long-term patency. This procedure is useful to relieve portal hypertension-related symptoms and to improve the quality of life. Our data strongly suggest that embolization to block blood flow in a collateral vein during portal vein stent placement will improve the patency of the stent.

  14. The Aristotelian account of "heart and veins".

    Science.gov (United States)

    Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios; Ardalan, Mohammad R

    2008-04-25

    The exploration of the cardiovascular (CV) system has a history of at least five millennia. The model of the heart and veins represented by Aristotle (384-322 B.C.) is one of the earliest and accurate descriptions of the CV system. With his own specific metaphysical approach, Aristotle discussed why there might be a vascular tree composed of two vessels and also why these vessels must extend throughout the entire body. Herein, the authors present a history of the original account of the CV system based on the studies and teachings of Aristotle who made detailed observations and experimented upon animals and human corpses to explore the anatomy of the heart and vessels and thus provided the basis for modern CV medicine. The Aristotelian CV model consisted of two related but slightly dissimilar passages based on experimentation and tradition, which could be perceived as the morphology and metaphysical accounts of physiology, respectively. Restricted by his own methodology of dissecting dead animals, Aristotle was the first to describe the anatomy of the heart and blood vessels. A thorough reading of his Historia Animalium showed that he was able to morphologically delineate the right atrium in addition to three distinct heart cavities corresponding to the left atrium and right and left ventricles. The authors conclude that when interpreting Aristotelian doctrine, the methodology and terminology should be taken into account in order to prevent potential misconceptions. It is the early work of such scientists as Aristotle on which we base our current understanding of the CV system.

  15. Nitroprusside modulates pulmonary vein arrhythmogenic activity

    Directory of Open Access Journals (Sweden)

    Chen Yao-Chang

    2010-03-01

    Full Text Available Abstract Background Pulmonary veins (PVs are the most important sources of ectopic beats with the initiation of paroxysmal atrial fibrillation, or the foci of ectopic atrial tachycardia and focal atrial fibrillation. Elimination of nitric oxide (NO enhances cardiac triggered activity, and NO can decrease PV arrhythmogensis through mechano-electrical feedback. However, it is not clear whether NO may have direct electrophysiological effects on PV cardiomyocytes. This study is aimed to study the effects of nitroprusside (NO donor, on the ionic currents and arrhythmogenic activity of single cardiomyocytes from the PVs. Methods Single PV cardiomyocytes were isolated from the canine PVs. The action potential and ionic currents were investigated in isolated single canine PV cardiomyocytes before and after sodium nitroprusside (80 μM, using the whole-cell patch clamp technique. Results Nitroprusside decreased PV cardiomyocytes spontaneous beating rates from 1.7 ± 0.3 Hz to 0.5 ± 0.4 Hz in 9 cells (P Conclusion Nitroprusside regulates the electrical activity of PV cardiomyocytes, which suggests that NO may play a role in PV arrhythmogenesis.

  16. Deep Vein Thrombosis in Intensive Care.

    Science.gov (United States)

    Boddi, Maria; Peris, Adriano

    2017-01-01

    Venous thromboembolism (VTE) which includes deep vein thrombosis (DVT) and pulmonary embolism (PE) is a severe complication in critically ill patients generally affected by multiorgan disfunction associated with immobilization also prolonged.Nowadays, VTE prophylaxis is included in the requirements of hospital accreditation and evaluation of the maintenance of standards of quality of care. ICU patients are characterized by a dynamic day-to-day variation both of thromboembolic that bleeding risk and DVT incidence in presence of thromboprophylaxis ranges between 5 and 15 %.Patient-centered methods for the assessment of both thrombotic and bleeding risk are recommended because pre-existent factors to ICU admission, diagnosis, emerging syndromes, invasive procedures and pharmacological treatments daily induce important changes in clinical condition.General consensus currently establishes use of heparin in pharmacological prophylaxis at the time of admission to the ICU and the temporary suspension of heparin in patients with active bleeding or severe (pneumatic compression was reported but no general consensus was reached about its use at the best. Much work has to be done but ICU remain the last frontier for VTE prophylaxis.

  17. Deep Vein Thrombosis Prophylaxis in Trauma Patients

    Directory of Open Access Journals (Sweden)

    Serdar Toker

    2011-01-01

    Full Text Available Deep vein thrombosis (DVT and pulmonary embolism (PE are known collectively as venous thromboembolism (VTE. Venous thromboembolic events are common and potentially life-threatening complications following trauma with an incidence of\t5 to 63%. DVT prophylaxis is essential in the management of trauma patients. Currently, the optimal VTE prophylaxis strategy for trauma patients is unknown. Traditionally, pelvic and lower extremity fractures, head injury, and prolonged immobilization have been considered risk factors for VTE; however it is unclear which combination of risk factors defines a high-risk group. Modalities available for trauma patient thromboprophylaxis are classified into pharmacologic anticoagulation, mechanical prophylaxis, and inferior vena cava (IVC filters. The available pharmacologic agents include low-dose heparin (LDH, low molecular weight heparin (LMWH, and factor Xa inhibitors. Mechanical prophylaxis methods include graduated compression stockings (GCSs, pneumatic compression devices (PCDs, and A-V foot pumps. IVCs are traditionally used in high risk patients in whom pharmacological prophylaxis is contraindicated. Both EAST and ACCP guidelines recommend primary use of LMWHs in trauma patients; however there are still controversies regarding the definitive VTE prophylaxis in trauma patients. Large randomized prospective clinical studies would be required to provide level I evidence to define the optimal VTE prophylaxis in trauma patients.

  18. Spatial and temporal patterns of xylem sap pH derived from stems and twigs of Populus deltoides L.

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey, Doug P. [Univ. of Georgia, Athens, GA (United States); Boyles, Justin G. [Univ. of Pretoria (South Africa); Krysinsky, Laura S. [USDA Forest Service, Aiken, SC (United States), Southern Research Station; Teskey, Robert O. [Univ. of Georgia, Athens, GA (United States)

    2011-02-12

    Xylem sap pH (pHX) is critical in determining the quantity of inorganic carbon dissolved in xylem solution from gaseous [CO2] measurements. Studies of internal carbon transport have generally assumed that pHX derived from stems and twigs is similar and that pHX remains constant through time; however, no empirical studies have investigated these assumptions. If any of these assumptions are violated, potentially large errors can be introduced into calculations of dissolved CO2 in xylem and resulting estimates of internal carbon transport.Wetested the validity of assumptions related to pHX in Populus deltoides L. with a series of non-manipulative experiments. The pHX derived from stems and twigs was generally similar and remained relatively constant through a diel period. The only exception was that pHX derived from lower stem sections at night was higher than that derived from twigs. The pHX derived from stems was similar on clear days when solar radiation and vapor pressure deficit (VPD) were similar, but higher on an overcast day when solar radiation and VPD were lower. Similarly, cloudy conditions immediately before an afternoon thunderstorm increased pHX derived from twigs. The pHX derived from twigs remained similar when measured on sunny afternoons between July and October. Our results suggest that common assumptions of pHX used in studies of internal carbon transport appear valid for P. deltoides and further suggest pHX is influenced by environmental factors, such as solar radiation and VPD that affect transpiration rates.

  19. Ovarian vein thrombosis – a rare but important complication of ...

    African Journals Online (AJOL)

    This case study highlights the clinical importance of ovarian vein thrombosis in the context of pelvic surgery for benign gynaecological conditions and the role of imaging, particularly computed tomography with reformatting, in confirming the diagnosis.

  20. Plantar vein thrombosis: a rare cause of plantar foot pain

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Daniel S.; Wu, Jim S.; Brennan, Darren D.; Hochman, Mary G. [Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA (United States); Challies, Tracy [Beth Israel Deaconess Medical Center, Department of Pathology, Boston, MA (United States)

    2008-03-15

    Plantar vein thrombosis is a rare condition, with only a handful of cases reported in the literature. The cause is unknown; however, the disease has been attributed to prior surgery, trauma, and paraneoplastic conditions. We present a case of a 32-year-old female runner with plantar vein thrombosis diagnosed on contrast-enhanced MRI and confirmed on ultrasound. The symptoms resolved with conservative treatment and evaluation revealed the presence of a prothrombin gene mutation and use of oral contraceptive pills. To our knowledge, this is the first case of plantar vein thrombosis diagnosed initially by MRI. Moreover, this case suggests that plantar vein thrombosis should be considered in patients with hypercoagulable states and plantar foot pain. (orig.)

  1. Travelers' Health: Deep Vein Thrombosis and Pulmonary Embolism

    Science.gov (United States)

    ... Books, Journals, Articles & Websites Resources for the Travel Industry Yellow Book Contents Chapter 2 (19) Deep Vein ... recommended. For long-distance travelers, the use of aspirin or anticoagulants to prevent VTE is not recommended. ...

  2. Management Strategy for Patients With Chronic Subclavian Vein Thrombosis.

    Science.gov (United States)

    Keir, Graham; Marshall, M Blair

    2017-02-01

    We performed a systematic review to determine best practice for the management of patients with chronic or subacute subclavian vein thrombosis. This condition is best managed with surgical excision of the first rib followed by long-term anticoagulation. Interventional techniques aimed at restoring patency are ineffective beyond 2 weeks postthrombosis. Additional therapeutic options should be made based on the severity of symptoms as well as vein status. Patients with milder symptoms are given decompression surgery followed by anticoagulation whereas patients with more severe symptoms are considered for either a jugular vein transposition or saphenous patch based on the vein characteristics. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Prevalence of Deep Vein Thrombosis and Associated Factors in ...

    African Journals Online (AJOL)

    SITWALA COMPUTERS

    ABSTRACT. Background: Deep vein thrombosis (DVT) and pulmonary embolism (PE) collectively referred to as venous thromboembolism (VTE) are associated with significant morbidity and mortality worldwide. DVT is common in hospitalized patients with acute medical illness. Routine use of thromboprophylaxis has.

  4. Two cases of jugular vein thrombosis in severely burned patients

    Directory of Open Access Journals (Sweden)

    Cen H

    2013-07-01

    Full Text Available Hanghui Cen, Xiaojie HeDepartment of Burn, The Second Affiliated Hospital, Zhejiang University Medical College, Hangzhou, People’s Republic of ChinaAbstract: Here we present two cases of jugular vein thrombosis in burn patients, with diagnosis, risk factor analysis, and treatment approaches. Severely burned patients have high risk of deep vein thrombosis occurrence due to multiple surgeries. The deep vein catheter should be carefully performed. Once deep vein thrombosis is detected, a wide ultrasonography helps to find other thrombosis sites. During the acute phase, low molecular weight heparin can be used. Upon long-term anti-thrombosis treatment, combined use of herbal medicine during rehabilitation is helpful.Keywords: burn, heparin, combined treatment

  5. Blood pooling in extrathoracic veins after glossopharyngeal insufflation

    DEFF Research Database (Denmark)

    Mijacika, Tanja; Frestad, Daria; Kyhl, Kasper

    2017-01-01

    divers in a sub-study. Results: After GPI, pulmonary volume increased by 0.8 ± 0.6 L above total lung capacity. The diameter of the superior caval (by 36 ± 17%) and intrathoracic part of the inferior caval vein decreased (by 21 ± 16%), while the diameters of the internal jugular (by 53 ± 34%), hepatic......Purpose: Trained breath-hold divers hyperinflate their lungs by glossopharyngeal insufflation (GPI) to prolong submersion time and withstand lung collapse at depths. Pulmonary hyperinflation leads to profound hemodynamic changes. Methods: Thirteen divers performed preparatory breath-holds followed...... (by 28 ± 40%), abdominal part of the inferior caval (by 28 ± 28%), and femoral veins (by 65 ± 50%) all increased (P volume of the internal jugular, the hepatic, the abdominal part of the inferior caval vein, and the combined common iliac and femoral veins increased by 145 ± 115, 80 ± 88...

  6. Central Retinal Vein Occlusion AssociatedWith Sildenafil (Viagra

    Directory of Open Access Journals (Sweden)

    H C Obiudu

    2010-01-01

    Conclusion - Central retinal vein occlusion is a possible adverse effect of sildenafil use. Physicians should be vigilant while prescribing thismedication and avoid its use in patients with elevated intraocular pressure

  7. Primary leiomyosarcoma of the jugular vein in a dog

    Directory of Open Access Journals (Sweden)

    Alessio Pierini

    2017-03-01

    Full Text Available A four-year-old, male, Labrador retriever was referred for removal of a spindle cell sarcoma involving the right jugular vein. A post-contrast CT scan showed a seven-centimeter subcutaneous mass originated from the right external jugular vein, which was partially obstructed and showing contrast stasis, suggested a primary intravascular tumor of the jugular vein. The mass was resected, and histological evaluation was consistent with grade II intravenous spindle cell sarcoma of the jugular vein. Immunohistochemical positivity for vimentin, desmin, and αSMA antibody and negativity for S-100 protein confirmed venous leiomyosarcoma. The dog received five doses of intravenous doxorubicin, and there was no recurrence of the tumor 30 months post treatment. In dogs, primary intravascular sarcomas are rare and primary venous leiomyosarcoma has not been described. A venous tumor may be considered as a differential diagnosis in dogs with ventral neck swelling.

  8. Sciatica caused by a dilated epidural vein: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, P.; Petre, C.; Wilms, G. [Dept. of Radiology, Catholic University of Leuven (Belgium); Plets, C. [Dept. of Neurosurgery, Catholic University of Leuven (Belgium)

    1999-02-01

    We report the MR imaging findings in a 41-year-old woman presenting with sudden low back pain and sciatica. At surgery a dilated epidural vein was found compressing the nerve root. The MR findings may suggest the diagnosis. Magnetic resonance imaging of a dilated epidural vein or varix causing sciatica has not been reported until now. (orig.) (orig.) With 1 fig., 4 refs.

  9. Vein graphite deposits: geological settings, origin, and economic significance

    OpenAIRE

    Luque del Villar, Francisco Javier; Huizenga, Jan-Marten; Crespo Feo, Elena; Wada, Hideki; Ortega Menor, Lorena; Barrenechea, Edurne

    2014-01-01

    Graphite deposits result from the metamorphism of sedimentary rocks rich in carbonaceous matter or from precipitation from carbon-bearing fluids (or melts). The latter process forms vein deposits which are structurally controlled and usually occur in granulites or igneous rocks. The origin of carbon, the mechanisms of transport, and the factors controlling graphite deposition are discussed in relation to their geological settings. Carbon in granulite-hosted graphite veins derives from sublith...

  10. Neurogenic contraction and relaxation of human penile deep dorsal vein

    OpenAIRE

    Segarra, Gloria; Medina, Pascual; Domenech, Cristina; Martínez León, Juan B; Vila, José M.; Aldasoro, Martin; Lluch, Salvador

    1998-01-01

    The aim of the present study was to characterize neurogenic and pharmacological responses of human penile deep dorsal vein and to determine whether the responses are mediated by nitric oxide from neural or endothelial origin.Ring segments of human penile deep dorsal vein were obtained from 22 multiorgan donors during procurement of organs for transplantation. The rings were suspended in organ bath chambers for isometric recording of tension. We then studied the contractile and relaxant respon...

  11. Leiomyosarcoma of the pulmonary veins extending into the left atrium.

    Science.gov (United States)

    Hong, S P; Choi, J Y; Son, J Y; Lee, Y S; Lee, J B; Kim, K S

    2014-08-01

    Primary tumors of the great vessels are very rare. Primary leiomyosarcomas of the pulmonary vein are extremely rare and little is known about their clinical manifestation and treatment. We report the case of a 34-year-old patient with primary leiomyosarcoma of the pulmonary vein extending into the left atrium. A review of the clinical manifestation and treatment of 24 cases including our own is provided.

  12. Engorgement of vortex vein and polypoidal choroidal vasculopathy.

    Science.gov (United States)

    Chung, Song Ee; Kang, Se Woong; Kim, Jae Hui; Kim, Yun Taek; Park, Do Young

    2013-04-01

    The purpose of this study was to identify a correlation between engorgement of the vortex vein and the development of polypoidal choroidal vasculopathy (PCV). Engorgement of the vortex vein was evaluated by masked observers using a montage of indocyanine green angiography images. Sixty-three eyes with PCV, 27 uninvolved fellow eyes with PCV, and 30 eyes of age-matched control subjects were included. The incidence and distribution pattern of engorgement were evaluated. Thirty-three eyes (52.4%) of PCV evidenced engorgement of the vortex vein, whereas such engorgement was detected in only 7 of the 30 eyes (30.4%) of the control subjects (P = 0.016). Among 27 fellow eyes with PCV, it was detected in 11 (40.7%) (P = 0.706 vs. control eyes). In all groups, it was most frequently detected at the inferior temporal quadrant. In eyes with PCV, mean (±standard deviation) choroidal thickness of the eyes evidencing vortex vein engorgement was 338.1 ± 131.3 μm and the thickness of those not evidencing vortex vein engorgement was 275.1 ± 107.7 μm. When the choroidal thickness increased to 10 μm in the eyes with PCV, the odds of detecting the engorgement was multiplied by a factor of 1.05 (P = 0.042). The incidence of the engorgement of vortex vein was correlated with the presence of choroidal vascular hyperpermeability (P = 0.009). This study demonstrates that engorgement of the vortex vein was observed more frequently in the eyes with PCV. Such a finding was associated with choroidal thickening and choroidal vascular hyperpermeability. These indicate that the engorgement of the vortex vein might be involved in the pathogenic mechanisms of PCV.

  13. Branch retinal vein occlusion associated with quetiapine fumarate

    Directory of Open Access Journals (Sweden)

    Siang Lim

    2011-08-01

    Full Text Available Abstract Background To report a case of branch retinal vein occlusion in a young adult with bipolar mood disorder treated with quetiapine fumarate. Case Presentation A 29 years old gentleman who was taking quetiapine fumarate for 3 years for bipolar mood disorder, presented with sudden vision loss. He was found to have a superior temporal branch retinal vein occlusion associated with hypercholesterolemia. Conclusion Atypical antipsychotic drugs have metabolic side effects which require regular monitoring and prompt treatment.

  14. Morphopatological and histochemical highlights in normal and varicose vein wall

    OpenAIRE

    Alina Condor; Caius Solovan; Liliana Vasile

    2016-01-01

    The nutrition of the venous wall appears to be an important factor in the vascularfibrillar trophicity and in the dynamic of the extracellular matrix formation for the normal veins and, for the chronic venous ulcers of legs, on period of healing. Sequential biopsies were taken at various levels of venous wall of external and internal saphena in 16 cases presenting a chronic condition of legs venous system (35-58 years old patients, both sexes). 8 vein fragments with normal macroscopic appeara...

  15. Associations of Antiphospholipid Antibodies With Splanchnic Vein Thrombosis

    OpenAIRE

    Qi, Xingshun; De Stefano, Valerio; Su, Chunping; Bai, Ming; GUO Xiaozhong; Fan, Daiming

    2015-01-01

    Abstract Splanchnic vein thrombosis (SVT) refers to Budd–Chiari syndrome (BCS) and portal vein system thrombosis (PVST). Current practice guidelines have recommended the routine screening for antiphospholipid antibodies (APAs) in patients with SVT. A systematic review and meta-analysis of observational studies was performed to explore the association between APAs and SVT. The PubMed, EMBASE, and ScienceDirect databases were searched for all relevant papers, in which the prevalence of positive...

  16. Ultrasonography of the lower extremity veins: Anatomy and basic approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Kyu; Ahn, Kyung Sik; Kang, Chang Ho; Cho, Sung Bum [Dept. of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Ultrasonography is an imaging modality widely used to evaluate venous diseases of the lower extremities. It is important to understand the normal venous anatomy of the lower extremities, which has deep, superficial, and perforating venous components, in order to determine the pathophysiology of venous disease. This review provides a basic description of the anatomy of the lower extremity veins and useful techniques for approaching each vein via ultrasonography.

  17. Vein mineralizations - record of paleo-fluid systems in the Thuringian basin (Germany)

    Science.gov (United States)

    Lepetit, Petra; Viereck, Lothar; Abratis, Michael; Fritsch, Stefanie

    2014-05-01

    Vein-related mineralizations within the Mesozoic sediments of the Thuringian basin (Germany) are investigated in analytical detail (petrography, XRD, XRF, EPMA, LA-ICP-MS, and isotope studies: O, C, S, Sr) in order to characterize paleo-fluid systems that intruded the basin and circulated within it millions of years ago. Samples from 55 outcrops, 34 quarries and 21 drill cores comprise mainly carbonates (calcite, dolomite, siderite, ankerite), additional sulfates (gypsum, celestine, barite,), and rarely sulfides. The mineralizations are almost exclusively restricted to WNW-ESE trending fault systems. First δ13C and δ18O isotope analyses of calcite mineralizations reveal differences between veins within Triassic sediments (Lower Muschelkalk: δ13C: 1.8 to 2.9 o, mean 2.3 o, δ18O: -7.3 to -10.4 o, mean -8.2 o) and Jurassic sediments (δ13C: -0.7 to -2.1 o, mean -1.4 o, δ18O: -9.3 to -10.6 o, mean -9.9 o), indicating intra-formational and extra-formational paleo-fluid transport. Also first δ34S and δ18O isotope analyses of gypsum mineralizations display differences between veins within Triassic and Permian sediments, respectively. These initial data are comparable with isotope analyses of vein-related host rocks and hydrochemical signatures of recent well waters in the Thuringian basin indicating intra-formational in addition to extra-formational paleo-fluid transport. Further isotope studies are in progress including high resolution in situ-Sr- isotope analysis. The present study is part of INFLUINS, a BMBF-funded project bundle, which is dedicated to the comprehensive description and understanding of the fluid systems within the Thuringian basin in time and space.

  18. [Treatment of nontumoral portal vein thrombosis in cirrhosis].

    Science.gov (United States)

    Bañares, Rafael; Catalina, María-Vega

    2014-07-01

    Portal vein thrombosis in cirrhosis is a relatively common complication associated with the presence of an accompanying prothrombotic phenotype of advanced cirrhosis. The consequences of portal vein thrombosis are relevant because it can be associated with impaired hepatic function, might contraindicate hepatic transplantation and could increase morbidity in the surgical procedure. There is controversy concerning the most effective treatment of portal vein thrombosis, which is based on information that is seldom robust and whose primary objective is to achieve a return to vessel patency. Various studies have suggested that starting anticoagulation therapy early is associated with portal vein repatency more frequently than without treatment and has a low rate of complications. There are no proven data on the type of anticoagulant (low-molecular-weight heparins or dicoumarin agents) and the treatment duration. The implementation of TIPS is technically feasible in thrombosis without cavernous transformation and is associated with portal vein recanalization in a significant proportion of cases. Thrombolytic therapy does not appear to present an adequate balance between efficacy and safety; its use is therefore not supported for this indication. The proper definition of treatment for portal vein thrombosis requires properly designed studies to delimit the efficacy and safety of the various alternatives. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  19. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    Directory of Open Access Journals (Sweden)

    Dong Sun Park

    2013-10-01

    Full Text Available Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  20. Giant Intrahepatic Portal Vein Aneurysm: Leave it or Treat it?

    Science.gov (United States)

    Shrivastava, Amit; Rampal, Jagdeesh S; Nageshwar Reddy, D

    2017-03-01

    Portal vein aneurysm (PVA) is a rare vascular dilatation of the portal vein. It is a rare vascular anomaly representing less than 3% of all visceral aneurysms and is not well understood. Usually, PVA are incidental findings, are asymptomatic, and clinical symptoms are proportionally related to size. Patients present with nonspecific epigastric pain or gastrointestinal bleeding with underlying portal hypertension. PVA may be associated with various complications such as biliary tract compression, portal vein thrombosis/rupture, duodenal compression, gastrointestinal bleeding, and inferior vena cava obstruction. Differential diagnoses of portal vein aneurysms are solid, cystic, and hypervascular abdominal masses, and it is important that the radiologists be aware of their multi-modality appearance; hence, the aim of this article was to provide an overview of the available literature to better simplify various aspects of this rare entity and diagnostic appearance on different modality with available treatment options. In our case, a 55-year-old male patient came to the gastroenterology OPD for further management of pancreatitis with portal hypertension and biliary obstruction with plastic stents in CBD and PD for the same. In this article, we have reported a case of largest intrahepatic portal vein aneurysm and its management by endovascular technique. As per our knowledge, this is the largest intrahepatic portal vein aneurysm and first case where the endovascular technique was used for the treatment of the same.